Search Results

Search found 4999 results on 200 pages for 'derived instances'.

Page 178/200 | < Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >

  • Trouble using gitweb with nginx

    - by Rayne
    I have a git repository in a directory inside of /home/raynes/pubgit/. I'm trying to use gitweb to provide a web interface to it. I use nginx as my web server for everything else, so I don't really want to have to use another just for this. I'm mostly following this guide: http://michalbugno.pl/en/blog/gitweb-nginx, which is the only guide I can find via google and is really recent. fcgiwrap apparently isn't in Lucid Lynx's repositories, so I installed it manually. I spawn instances via spawn-fcgi: spawn-fcgi -f /usr/local/sbin/fcgiwrap -a 127.0.0.1 -p 9001 That's all good. My /etc/gitweb.conf is as follows: # path to git projects (<project>.git) #$projectroot = "/home/raynes/pubgit"; $my_uri = "http://mc.raynes.me"; $home_link = "http://mc.raynes.me/"; # directory to use for temp files $git_temp = "/tmp"; # target of the home link on top of all pages #$home_link = $my_uri || "/"; # html text to include at home page $home_text = "indextext.html"; # file with project list; by default, simply scan the projectroot dir. $projects_list = $projectroot; # stylesheet to use $stylesheet = "/gitweb/gitweb.css"; # logo to use $logo = "/gitweb/git-logo.png"; # the 'favicon' $favicon = "/gitweb/git-favicon.png"; And my nginx server configuration is this: server { listen 80; server_name mc.raynes.me; location / { root /usr/share/gitweb; if (!-f $request_filename) { fastcgi_pass 127.0.0.1:9001; } fastcgi_index index.cgi; fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_name; include fastcgi_params; } } The only difference here is that I've set fastcgi_pass to 127.0.0.1:9001. When I go to http://mc.raynes.me I'm greeted with a page that simply says "403" and nothing else. I have not the slightest clue what I did wrong. Any ideas?

    Read the article

  • What is good usage scenario for Rackspace Cloud Files CDN (powered by AKAMAI) [closed]

    - by Andrew Smith
    I have just setup my website as static page via Rackspace CDN / Akamai. www.example.co.uk is an alias for d9771e6f24423091aebc-345678991111238fabcdef6114258d0e1.r61.cf3.rackcdn.com. d9771e6f24423091aebc-345678991111238fabcdef6114258d0e1.r61.cf3.rackcdn.com is an alias for a61.rackcdn.com. a61.rackcdn.com is an alias for a61.rackcdn.com.mdc.edgesuite.net. a61.rackcdn.com.mdc.edgesuite.net is an alias for a63.dscg10.akamai.net. a63.dscg10.akamai.net has address 63.166.98.41 a63.dscg10.akamai.net has address 63.166.98.40 a63.dscg10.akamai.net has IPv6 address 2001:428:4c02::cda8:ecb9 a63.dscg10.akamai.net has IPv6 address 2001:428:4c02::cda8:ed09 The HTTP header: HTTP/1.0 200 OK Last-Modified: Fri, 19 Oct 2012 23:27:41 GMT ETag: fdf9e14b77def799e09e8ce815a521da X-Timestamp: 1350689261.23382 Content-Type: text/html X-Trans-Id: tx457979be3bd746c2b4e5403a1189cdbc Cache-Control: public, max-age=900 Expires: Sat, 27 Oct 2012 22:18:56 GMT Date: Sat, 27 Oct 2012 22:03:56 GMT Content-Length: 7124 Connection: keep-alive I am wondering, if it's really the fastest solution to power the website? By investigating it thru http://www.just-ping.com/ it seems, that from many places the ping is very high, and during quick investigation I found that they use GeoIP to resolve addresses based on WHOIS, which is not accurate and because of that from many places the ping is above 300ms (for example, if ISP is in balgladore and request is routed to bangladore even if it's 300ms, for period of 1 month), while by just using Amazon Web Services and Route 53 Anycast DNS servers and only 4 EC2 instances it seems that for example India is always below 100ms, while using Akamai it goes above 300ms in some cases, and this is because Route 53 is using BGP. By quickly checking the Akamai, it seems that they are not getting feedback from the traffic - the high ping stays constant even if I keep downloading large files and videos, which is opposite to what they say on their website. They state, that they optimize the performance by taking feedback from the requests, while it seems they just use GeoIP with per City resolution (which are mostly big cities). Because of this, AWS with Route 53 / Anycast DNS seems to be much more reliable, as well EdgeCast which is using BGP, but I dont know how much does it cost to deploy static website. Actually, I dont know if EdgeCast is not a lie, because from isolated places there are many errors - so their performance is at the cost of quality of delivery, because of BGP switching the routes during transfer of large files. So I was wondering, what is really Akamai good for, because they dont seem to pose any strength in any field in what I do understand now, except they offer some software based WAF on their website, but what I really care about is the core distribiution, so the question is? Is really Akamai good for Videos? For static websites? ??? I found so far AWS most usable with most consistent ping and stable transfers.

    Read the article

  • load-causing processes disappearing from "top" ps -o pcpu shows bogus numbers

    - by Alec Matusis
    I administer a large number of servers, and I have this problem only with Ubuntu 10.04 LTS: I run a server under normal load (say load average 3.0 on an 8-core server). The "top" command shows processes taking certain % of CPU that cause this load average: say PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 11008 mysql 20 0 25.9g 22g 5496 S 67 76.0 643539:38 mysqld ps -o pcpu,pid -p11008 %CPU PID 53.1 11008 , everything is consistent. The all of the sudden, the process causing the load average disappears from "top", but the process continues to run normally (albeit with a slight performance decrease), and the system load average becomes somewhat higher. The output of ps -o pcpu becomes bogus: # ps -o pcpu,pid -p11008 %CPU PID 317910278 1587 This happened to at least 5 different severs (different brand new IBM System X hardware), each running different software: one httpd 2.2, one mysqld 5.1, and one Twisted Python TCP servers. Each time the kernel was between 2.6.32-32-server and 2.6.32-40-server. I updated some machines to 2.6.32-41-server, and it has not happened on those yet, but the bug is rare (once every 60 days or so). This is from an affected machine: top - 10:39:06 up 73 days, 17:57, 3 users, load average: 6.62, 5.60, 5.34 Tasks: 207 total, 2 running, 205 sleeping, 0 stopped, 0 zombie Cpu(s): 11.4%us, 18.0%sy, 0.0%ni, 66.3%id, 4.3%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 74341464k total, 71985004k used, 2356460k free, 236456k buffers Swap: 3906552k total, 328k used, 3906224k free, 24838212k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 805 root 20 0 0 0 0 S 3 0.0 1493:09 fct0-worker 982 root 20 0 0 0 0 S 1 0.0 111:35.05 fioa-data-groom 914 root 20 0 0 0 0 S 0 0.0 884:42.71 fct1-worker 1068 root 20 0 19364 1496 1060 R 0 0.0 0:00.02 top Nothing causing high load is showing on top, but I have two highly loaded mysqld instances on it, that suddenly show crazy %CPU: #ps -o pcpu,pid,cmd -p1587 %CPU PID CMD 317713124 1587 /nail/encap/mysql-5.1.60/libexec/mysqld and #ps -o pcpu,pid,cmd -p1624 %CPU PID CMD 2802 1624 /nail/encap/mysql-5.1.60/libexec/mysqld Here are the numbers from # cat /proc/1587/stat 1587 (mysqld) S 1212 1088 1088 0 -1 4202752 14307313 0 162 0 85773299069 4611685932654088833 0 0 20 0 52 0 3549 27255418880 5483524 18446744073709551615 4194304 11111617 140733749236976 140733749235984 8858659 0 552967 4102 26345 18446744073709551615 0 0 17 5 0 0 0 0 0 the 14th and 15th numbers according to man proc are supposed to be utime %lu Amount of time that this process has been scheduled in user mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK). This includes guest time, guest_time (time spent running a virtual CPU, see below), so that applications that are not aware of the guest time field do not lose that time from their calculations. stime %lu Amount of time that this process has been scheduled in kernel mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK). On a normal server, these numbers are advancing, every time I check the /proc/PID/stat. On a buggy server, these numbers are stuck at a ridiculously high value like 4611685932654088833, and it's not changing. Has anyone encountered this bug?

    Read the article

  • Windows Service Limit Crashes Services on Startup

    - by Paul Williams
    We have developed a custom Windows service in C# as part of a large Enterprise application. Our QA department tests multiple versions of this service. The QA lab has several (over 20) copies of this service installed on one Windows 2003 test box. Each copy is in its own folder and has a unique service name, though each executable file is named the same (OurWindowsService.exe, for example). Each service uses the same Windows credentials (a domain user). The purpose of this service is to handle MSMQ messages. The queued messages do all sorts of important stuff. For some reason, they can run only 5 of these services at a time. When we start a 6th, the service crashes on startup. For example, I can start #1, #2, #3, #4, and #5. When I start #6, it crashes. However, if I stop #1 and start #6, #6 runs fine, and now #1 fails to start. When the services crash, the following error appears in the Windows event log: Faulting application OurWindowsService.exe, version 5.40.1.1, faulting module kernel32.dll, version 5.2.3790.4480, fault address 0x0000bef7. I was able to use WinDbg to generate a postmortem dump file. The dump file revealed that the crash occurs trying to delay load SHLWAPI.dll: 0:000> kb100 ChildEBP RetAddr Args to Child 0012ece4 79037966 c06d007e 00000000 00000001 KERNEL32!RaiseException+0x53 0012ed4c 790099ba 00000008 0012ed08 7c82860c mscoree!__delayLoadHelper2+0x139 0012ed98 790075b1 001550c8 0012edac 0012fb34 mscoree!_tailMerge_**SHLWAPI_dll**+0xd 0012edb0 79007623 001550c8 0012edf8 0012edf4 mscoree!XMLGetVersionWithSupported+0x22 0012ee00 790069a4 aa06f1b0 00000000 000001fe mscoree!RuntimeRequest::GetRuntimeVersion+0x56 0012f478 790077aa 00000001 7903fb4c 0012fb34 mscoree!RuntimeRequest::ComputeVersionString+0x5bd 0012f89c 79007802 00000001 0012f8b4 7903fb4c mscoree!RuntimeRequest::FindVersionedRuntime+0x11c 0012f8b8 79007b19 00000001 00000000 aa06fa6c mscoree!RuntimeRequest::RequestRuntimeDll+0x2c 0012ffa4 79007c02 00000001 0012ffbc 00000000 mscoree!GetInstallation+0x72 0012ffc0 77e6f23b 00000000 00000000 7ffdf000 mscoree!_CorExeMain+0x12 0012fff0 00000000 79007bf0 00000000 78746341 KERNEL32!BaseProcessStart+0x23 I believe the error code handed to Kernel32.RaiseException, c06d007e, means Module Not Found, but I'm not certain. Does this sound familiar to anyone? Are we hitting some limit on the number of service instances on some file name? Does MSMQ dislike more than 5 listening services?

    Read the article

  • Batch file to uninstall all Sun Java versions?

    - by Ricket
    I'm setting up a system to keep Java in our office up to date. Everyone has all different versions of Java, many of them old and insecure, and some dating back as far as 1.4. I have a System Center Essentials server which can push out and silently run a .msi file, and I've already tested that it can install the latest Java. But old versions (such as 1.4) aren't removed by the installer, so I need to uninstall them. Everyone is running Windows XP. The neat coincidence is that Sun just got bought by Oracle and Oracle has now changed all the instances of "Sun" to "Oracle" in Java. So, I can conveniently not have to worry about uninstalling the latest Java, because I can just do a search and uninstall all Sun Java programs. I found the following batch script on a forum post which looked promising: @echo off & cls Rem List all Installation subkeys from uninstall key. echo Searching Registry for Java Installs for /f %%I in ('reg query HKLM\SOFTWARE\microsoft\windows\currentversion\uninstall') do echo %%I | find "{" > nul && call :All-Installations %%I echo Search Complete.. goto :EOF :All-Installations Rem Filter out all but the Sun Installations for /f "tokens=2*" %%T in ('reg query %1 /v Publisher 2^> nul') do echo %%U | find "Sun" > nul && call :Sun-Installations %1 goto :EOF :Sun-Installations Rem Filter out all but the Sun-Java Installations. Note the tilda + n, which drops all the subkeys from the path for /f "tokens=2*" %%T in ('reg query %1 /v DisplayName 2^> nul') do echo . Uninstalling - %%U: | find "Java" && call :Sun-Java-Installs %~n1 goto :EOF :Sun-Java-Installs Rem Run Uninstaller for the installation MsiExec.exe /x%1 /qb echo . Uninstall Complete, Resuming Search.. goto :EOF However, when I run the script, I get the following output: Searching Registry for Java Installs 'DEV_24x6' is not recognized as an internal or external command, operable program or batch file. 'SUBSYS_542214F1' is not recognized as an internal or external command, operable program or batch file. And then it appears to hang and I ctrl-c to stop it. Reading through the script, I don't understand everything, but I don't know why it is trying to run pieces of registry keys as programs. What is wrong with the batch script? How can I fix it, so that I can move on to somehow turning it into a MSI and deploying it to everyone to clean up this office? Or alternatively, can you suggest a better solution or existing MSI file to do what I need? I just want to make sure to get all the old versions of Java off of everyone's computers, since I've heard of exploits that cause web pages to load using old versions of Java and I want to avoid those.

    Read the article

  • Scaling a video processing application on EC2?

    - by Stpn
    I am approaching the need to scale a video-processign application that runs on EC2. So far the setup is one machine: Backbonejs frontend Rails 3.2 Postgresql Resque + S3 for storage The flow of the app is as follows: 1) Request from frontend. Upload a video. 2) Storing video 3) Quering external APIs. 4) Processing / encoding videos. 5) Post to frontend. I can separate the backend and frontend without any problems, but when it comes to distributing the backend between several servers I am a bit puzzled. I can probably come up with a temporary solution (like just duplicating apps making several instances), but since I don't really have expertise in backend system administration, there can be some fundamental mistakes.. Also I would rather have something that is scalable. I wonder if anyone can give some feedback on the following plan: A) Frontend machine. Just frontend, talks to backend via REST Api of sorts. B) Backend server (BS), main database. Gets request from 1), posts to 2) saves uploads to 3) C) S3 storage. D) Server for quering APIs. Basically just a Resque workers, that post info back to 2) E) Server for video encoding. Processes videos uploaded on 3) and uploads them back. So I will have: A)frontend \ \ B)MAIN_APP/DB ----- C)S3 Storage (Files) / \ / / \ / D)ExternalAPI_queries E)Video_Processing (redundant DB) (redundant DB) All this will supposedly talk to each other via HTTP requests. My reason for this is that Video Processing part is really the most resource-intensive and I would just run barebones application that accepts requests and starts processing them. Questions: 1) In this setup I will have the main database at B) and all other servers will communicate with it via HTTP requests (and store duplicates of databases also I guess..for safety reasons). Is it the right approach or should I have 1 database that everyone connects to (how then?) 2) Is it a good idea to separate API queries from Video Processing part? Logically they are very close (processing is determined by the result of API queries), but resource-wise Video Processing is waaay more intensive. 3) what should I use to distribute calls between backend apps based on load?

    Read the article

  • SQL Clustering on Hyper V - is a cluster within a cluster a benefit.

    - by Chris W
    This is a re-hash of a question I asked a while back - after a consultant has come in firing ideas in to other teams in the department the whole issue has been raised again hence I'm looking for more detailed answers. We're intending to set-up a multi-instance SQL Cluster across a number of physical blades which will run a variety of different systems across each SQL instance. In general use there will be one virtual SQL instance running on each VM host. Again, in general operation each VM host will run on a dedicated underlying blade. The set-up should give us lots of flexibility for maintenance of any individual VM or underlying blade with all the SQL instances able to fail over as required. My original plan had been to do the following: Install 2008 R2 on each blade Add Hyper V to each blade Install a 2008 R2 VM to each blade Within the VMs - create a failover cluster and then install SQL Server clustering. The consultant has suggested that we instead do the following: Install 2008 R2 on each blade Add Hyper V to each blade Install a 2008 R2 VM to each blade Create a cluster on the HOST machines which will host all the VMs. Within the VMs - create a failover cluster and then install SQL Server clustering. The big difference is the addition of step 4 whereby we cluster all of the guest VMs as well. The argument is that it improves maintenance further since we have no ties at all between the SQL cluster and physical hardware. We can in theory live migrate the guest VMs around the hosts without affecting the SQL cluster at all so we for routine maintenance physical blades we move the SQL cluster around without interruption and without needing to failover. It sounds like a nice idea but I've not come across anything on the internet where people say they've done this and it works OK. Can I actually do the live migrations of the guests without the SQL Cluster hosted within them getting upset? Does anyone have any experience of this set up, good or bad? Are there some pros and cons that I've not considered? I appreciate that mirroring is also a valuable option to consider - in this case we're favouring clustering since it will do the whole of each instance and we have a good number of databases. Some DBs are for lumbering 3rd party systems that may not even work kindly with mirroring (and my understanding of clustering is that fail overs are completely transparent to the clients). Thanks.

    Read the article

  • Looking for personal scheduling software / todo list with rather particular requirements

    - by Cthulhu
    I've been scouring the web for a couple of (my boss') hours, looking for a piece of software that can organize my tasks in two ways. First, I have a list of bullet points / todo items I can do at any given time. Think of stuff like solve issue X, ask X about Y, write documentation about Z, etcetera. Second, I have a number of running projects I'd like to organize better, as in schedule for a certain part of a day of the week. Ideally (I think), my day would be organized as 50% spent on projects and 50% on the other small things. Now, I don't like most calendar applications (such as Outlook & friends), their UI is too 'official', not really easy to move stuff around (in my experience). I don't like most todo lists either, too static and things. I like new, fast and hip software. I've looked at GTD versions of Tiddlywiki, and I like mGSD for one particular feature. You can make lists of tasks and basically give them one of three statusses - Now (nothing required, you can do it right away), Waiting (you need someone or something before you can work on this), or the most gratifying of all, Done. I like that feature because it's a simple todo list, but indicates more accurately the things you can do right now and the things you depend on someone else for to do. Anyways, that's just a small aspect of that program - most of the other things in there I can't find a particularly good use for. If there's something like that (maybe something that works even snappier, cleaner UI), combined with an easy to use bit of scheduling software (optionally separated into two applications, but preferrably not), I think I'd like that. (Besides something like that, I also use several instances of Trac to monitor tasks and bugs and things for the various clients and projects I have to serve, and TaskCoach to monitor the amount of time I spend on each task / each client. An easy / low-maintenance time tracking software would be neat too) Of course, the software has to be free to use. I don't like shareware, trials, limited software and the like. I could develop my own too, but I'm lazy like that and there's a dozen other projects I'd like to do in my free time (neither of which I actually do). Edit: I like David Seah's printable CEO stuff, if something like that (with some video game / instant achievement / gratification) exists in software, it'd be awesome.

    Read the article

  • VPC SSH port forward into private subnet

    - by CP510
    Ok, so I've been racking my brain for DAYS on this dilema. I have a VPC setup with a public subnet, and a private subnet. The NAT is in place of course. I can connect from SSH into a instance in the public subnet, as well as the NAT. I can even ssh connect to the private instance from the public instance. I changed the SSHD configuration on the private instance to accept both port 22 and an arbitrary port number 1300. That works fine. But I need to set it up so that I can connect to the private instance directly using the 1300 port number, ie. ssh -i keyfile.pem [email protected] -p 1300 and 1.2.3.4 should route it to the internal server 10.10.10.10. Now I heard iptables is the job for this, so I went ahead and researched and played around with some routing with that. These are the rules I have setup on the public instance (not the NAT). I didn't want to use the NAT for this since AWS apperantly pre-configures the NAT instances when you set them up and I heard using iptables can mess that up. *filter :INPUT ACCEPT [129:12186] :FORWARD ACCEPT [0:0] :OUTPUT ACCEPT [84:10472] -A INPUT -i lo -j ACCEPT -A INPUT -i eth0 -p tcp -m state --state NEW -m tcp --dport 1300 -j ACCEPT -A INPUT -d 10.10.10.10/32 -p tcp -m limit --limit 5/min -j LOG --log-prefix "SSH Dropped: " -A FORWARD -d 10.10.10.10/32 -p tcp -m tcp --dport 1300 -j ACCEPT -A OUTPUT -o lo -j ACCEPT COMMIT # Completed on Wed Apr 17 04:19:29 2013 # Generated by iptables-save v1.4.12 on Wed Apr 17 04:19:29 2013 *nat :PREROUTING ACCEPT [2:104] :INPUT ACCEPT [2:104] :OUTPUT ACCEPT [6:681] :POSTROUTING ACCEPT [7:745] -A PREROUTING -i eth0 -p tcp -m tcp --dport 1300 -j DNAT --to-destination 10.10.10.10:1300 -A POSTROUTING -p tcp -m tcp --dport 1300 -j MASQUERADE COMMIT So when I try this from home. It just times out. No connection refused messages or anything. And I can't seem to find any log messages about dropped packets. My security groups and ACL settings allow communications on these ports in both directions in both subnets and on the NAT. I'm at a loss. What am I doing wrong?

    Read the article

  • Which hardware to VM ratio for Build-Server virtualization?

    - by Martin
    Let's start with saying that I'm a total noob wrt. to server virtualization. That is, I use VMs often during development, but they're simple desktop machine things for me. Now to my problem: We have two (physical) build servers, one master, one slave running Jenkins to do daily tasks and build (Visual C++ Builds) our release packages for our software. As such these machines are critical to our company, because we do lot's releases and without a controlled environment to create them, we can't ship fixes. (And currently there's no proper backup of these machines in place, because they do not hold any data as such - it just would be a major pain to setup them again should they go bust. (But setting up backup that I'd know would work in case of HW failure would even be more pain, so we have skipped that until now.)) Therefore (and for scaling purposes) we would like to go virtual with these machines. Outsourcing to the cloud is not an option, not at all, so we'll have to use on-premises hardware and VM hosts. Each Build-Server (master or slave) is a fully configured (installs, licenses, shares in case of the master, ...) Windows Server box. I would now ideally like to just convert the (two) existing physical nodes to VM images and run them. Later add more VM slave instances as clones of the existing ones. And here begin my questions: Should I go for one VM per one hardware-box or should I go for something where a single hardware runs multiple VMs? That would mean a single point of failure hardware wise and doesn't seem like a good idea ... or?? Since we're doing C++ compilation with Visual Studio, I assume that during a build the hardware (processor cores + disk) will be fully utilized, so going with more than one build-node per hardware doesn't seem to make much sense?? Wrt. to hardware options, does it make any difference which VM software we use (VMWare, MS, Virtualbox, ... ?) (We're using Windows exclusively for our builds.) Regarding budget: We have a normal small company (20 developers) budget for this. ;-) That is, if it's going to cost a few k$ it's going to cost. If it's free - the better. I strongly prefer solutions where there's no multi-k$ maintenance costs per year.

    Read the article

  • SQL Express 2008 R2 on Amazon EC2 instance: tons of free memory, poor performance

    - by gravyface
    The old SQL Express 2005 was running on a low-end single Xeon CPU Dell server, RAID 5 7200 disks, 2 GB RAM (SBS 2003). I have not done any baseline measurements on the old physical server, but the Web app is used by half a dozen people (maybe 2 concurrently), so I figured "how bad can an Amazon EC2 instance be?". It's pretty horrible: a difference of 8 seconds of load time on one screen. First of all, I'm not a SQL guru, but here's what I've tried: Had a Small Instance, now running a c1.medium (High Cpu Medium) Windows 2008 32-bit R2 EBS-backed instance running IIS 7.5 and SQL Express 2008 R2. No noticeable improvement. Changed Page File from fixed 256 to Automatic. Setup a Striped Mirror from within Disk Management with two attached 1 GB EBS volumes. Moved database and transaction log, left everything else on the boot EBS volume. No noticeable change. Looked at memory, ~1000 MB of physical memory free (1.7 GB total). Changed SQL instance to use a minimum of 1024 RAM; restarted server, no change in memory usage. SQL still only using ~28MB of RAM(!). So I'm thinking: this database is tiny (28MB), why isn't the whole thing cached in RAM? Surely that would speed up performance. The transaction log is 241 MB. Seems kind of large in comparison -- has this not been committed? Is it a cause of performance degradation? I recall something about Recovery Models and log sizes somewhere in my travels, but not positive. Another thing: the old server was running SQL Express 2005. Not sure if that has any impact, but I tried changing the compatibility level from SQL 2000 to 2008, but that had no effect. Anyways, what else can I try here? Seems ridiculous to throw more virtual hardware at this thing. I know I/O is going to be rough on EBS volumes, but surely others are successfully running small .NET/SQL apps on reasonably priced instances?

    Read the article

  • Where is my app.config for SSIS?

    Sometimes when working with SSIS you need to add or change settings in the .NET application configuration file, which can be a bit confusing when you are building a SSIS package not an application. First of all lets review a couple of examples where you may need to do this. You are using referencing an assembly in a Script Task that uses Enterprise Library (aka EntLib), so you need to add the relevant configuration sections and settings, perhaps for the logging application block. You are using using Enterprise Library in a custom task or component, and again you need to add the relevant configuration sections and settings. You are using a web service with Microsoft Web Services Enhancements (WSE) 3.0 and hosting the proxy in SSIS, in an assembly used by your package, and need to add the configuration sections and settings. You need to change behaviours of the .NET framework which can be influenced by a configuration file, such as the System.Net.Mail default SMTP settings. Perhaps you wish to configure System.Net and the httpWebRequest header for parsing unsafe header (useUnsafeHeaderParsing), which will change the way the HTTP Connection manager behaves. You are consuming a WCF service and wish to specify the endpoint in configuration. There are no doubt plenty more examples but each of these requires us to identify the correct configuration file and and make the relevant changes. There are actually several configuration files, each used by a different execution host depending on how you are working with the SSIS package. The folders we need to look in will actually vary depending on the version of SQL Server as well as the processor architecture, but most are all what we can call the Binn folder. The SQL Server 2005 Binn folder is at C:\Program Files\Microsoft SQL Server\90\DTS\Binn\, compared to C:\Program Files\Microsoft SQL Server\100\DTS\Binn\ for SQL Server 2008. If you are on a 64-bit machine then you will see C:\Program Files (x86)\Microsoft SQL Server\90\DTS\Binn\ for the 32-bit executables and C:\Program Files\Microsoft SQL Server\90\DTS\Binn\ for 64-bit, so be sure to check all relevant locations. Of course SQL Server 2008 may have a C:\Program Files (x86)\Microsoft SQL Server\100\DTS\Binn\ on a 64-bit machine too. To recap, the version of SQL Server determines if you look in the 90 or 100 sub-folder under SQL Server in Program Files (C:\Program Files\Microsoft SQL Server\nn\) . If you are running a 64-bit operating system then you will have two instances program files, C:\Program Files (x86)\ for 32-bit and  C:\Program Files\ for 64-bit. You may wish to check both depending on what you are doing, but this is covered more under each section below. There are a total of five specific configuration files that you may need to change, each one is detailed below: DTExec.exe.config DTExec.exe is the standalone command line tool used for executing SSIS packages, and therefore it is an execution host with an app.config file. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DTExec.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. DtsDebugHost.exe.config DtsDebugHost.exe is the execution host used by Business Intelligence Development Studio (BIDS) / Visual Studio when executing a package from the designer in debug mode, which is the default behaviour. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DtsDebugHost.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. This may surprise some people as Visual Studio is only 32-bit, but thankfully the debugger supports both. This can be set in the project properties, see the Run64BitRuntime property (true or false) in the Debugging pane of the Project Properties. dtshost.exe.config dtshost.exe is the execution host used by what I think of as the built-in features of SQL Server such as SQL Server Agent e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\dtshost.exe.config This file can be found in both the 32-bit and 64-bit Binn folders devenv.exe.config Something slightly different is devenv.exe which is Visual Studio. This configuration file may also need changing if you need a feature at design-time such as in a Task Editor or Connection Manager editor. Visual Studio 2005 for SQL Server 2005  - C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\devenv.exe.config Visual Studio 2008 for SQL Server 2008  - C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe.config Visual Studio is only available for 32-bit so on a 64-bit machine you will have to look in C:\Program Files (x86)\ only. DTExecUI.exe.config The DTExec UI tool can also have a configuration file and these cab be found under the Tools folders for SQL Sever as shown below. C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe A configuration file may not exist, but if you can find the matching executable you know you are in the right place so can go ahead and add a new file yourself. In summary we have covered the assembly configuration files for all of the standard methods of building and running a SSIS package, but obviously if you are working programmatically you will need to make the relevant modifications to your program’s app.config as well.

    Read the article

  • Problem compiling hive with ant

    - by conandor
    I compiling with Solaris 10 SPARC, jdk 1.6 from Sun, Ant 1.7.1 from OpenCSW. I have no problem running hadoop 0.17.2.1 However, I have problem compiling/integrating hive with the error 'cannot find symbol', although I followed the tutorial. I have the hive source code from SVN exactly from tutorial. How can I know the hive version I compiling and how can I compile against hadoop 0.17.2.1? Please advice. Thank you. -bash-3.00$ export PATH=/usr/jdk/instances/jdk1.6.0/bin:/usr/bin:/opt/csw/bin:/opt/webstack/bin -bash-3.00$ export JAVA_HOME=/usr/jdk/instances/jdk1.6.0 -bash-3.00$ export HADOOP=/export/home/mywork/hadoop-0.17.2.1/bin/hadoop -bash-3.00$ /opt/csw/bin/ant package -Dhadoop.version=0.17.2.1 Buildfile: build.xml jar: create-dirs: compile-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks deploy-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks jar: init: compile: ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 25878ms :: artifacts dl 37ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/82ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.17.2.1 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.17.2.1) ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 12041ms :: artifacts dl 30ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/39ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.18.3 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.18.3) ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 11107ms :: artifacts dl 36ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/49ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.19.0 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.19.0) ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 9969ms :: artifacts dl 33ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/57ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.20.0 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.20.0) jar: [echo] Jar: shims create-dirs: compile-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks deploy-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks jar: init: install-hadoopcore: install-hadoopcore-default: ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#common;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 4864ms :: artifacts dl 13ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 1 | 0 | 0 | 0 || 1 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#common [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 1 already retrieved (0kB/52ms) install-hadoopcore-internal: setup: compile: [echo] Compiling: common jar: [echo] Jar: common create-dirs: compile-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks deploy-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks jar: init: dynamic-serde: compile: [echo] Compiling: hive [javac] Compiling 167 source files to /export/home/mywork/hive/build/serde/classes [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/objectinspector/ObjectInspectorFactory.java:30: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/objectinspector/ObjectInspectorFactory.java:31: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorUtils [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/MetadataTypedColumnsetSerDe.java:31: cannot find symbol [javac] symbol : class MetadataListStructObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector [javac] import org.apache.hadoop.hive.serde2.objectinspector.MetadataListStructObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:33: cannot find symbol [javac] symbol : class BooleanObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:35: cannot find symbol [javac] symbol : class DoubleObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:36: cannot find symbol [javac] symbol : class FloatObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.FloatObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:39: cannot find symbol [javac] symbol : class ShortObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.ShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:40: cannot find symbol [javac] symbol : class StringObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:44: cannot find symbol [javac] symbol : class BooleanObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:46: cannot find symbol [javac] symbol : class DoubleObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:47: cannot find symbol [javac] symbol : class FloatObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.FloatObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:50: cannot find symbol [javac] symbol : class ShortObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.ShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:51: cannot find symbol [javac] symbol : class StringObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazySimpleSerDe.java:43: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/columnar/ColumnarSerDe.java:41: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyStruct.java:26: cannot find symbol [javac] symbol : class LazySimpleStructObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.lazy.objectinspector [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyStruct.java:39: cannot find symbol [javac] symbol: class LazySimpleStructObjectInspector [javac] LazyNonPrimitive<LazySimpleStructObjectInspector> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyStruct.java:68: cannot find symbol [javac] symbol : class LazySimpleStructObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyStruct [javac] public LazyStruct(LazySimpleStructObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDe.java:36: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDe.java:37: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorUtils [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypeString.java:23: cannot find symbol [javac] symbol : class StringObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypei16.java:23: cannot find symbol [javac] symbol : class ShortObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.ShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypeDouble.java:23: cannot find symbol [javac] symbol : class DoubleObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypeBool.java:23: cannot find symbol [javac] symbol : class BooleanObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyBoolean.java:20: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyBooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyBoolean.java:37: cannot find symbol [javac] symbol: class LazyBooleanObjectInspector [javac] LazyPrimitive<LazyBooleanObjectInspector, BooleanWritable> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyBoolean.java:39: cannot find symbol [javac] symbol : class LazyBooleanObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyBoolean [javac] public LazyBoolean(LazyBooleanObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyByte.java:21: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyByteObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyByte.java:37: cannot find symbol [javac] symbol: class LazyByteObjectInspector [javac] LazyPrimitive<LazyByteObjectInspector, ByteWritable> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyByte.java:39: cannot find symbol [javac] symbol : class LazyByteObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyByte [javac] public LazyByte(LazyByteObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyDouble.java:23: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyDoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyDouble.java:31: cannot find symbol [javac] symbol: class LazyDoubleObjectInspector [javac] LazyPrimitive<LazyDoubleObjectInspector, DoubleWritable> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyDouble.java:33: cannot find symbol [javac] symbol : class LazyDoubleObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyDouble [javac] public LazyDouble(LazyDoubleObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:25: cannot find symbol [javac] symbol : class LazyObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.lazy.objectinspector [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.LazyObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:26: cannot find symbol [javac] symbol : class LazySimpleStructObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.lazy.objectinspector [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:27: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyBooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:28: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyByteObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:29: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyDoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:30: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyFloatObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:31: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyIntObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:32: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyLongObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:33: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyPrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:34: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:35: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyStringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFloat.java:

    Read the article

  • Real Excel Templates I

    - by Tim Dexter
    As promised, I'm starting to document the new Excel templates that I teased you all with a few weeks back. Leslie is buried in 11g documentation and will not get to officially documenting the templates for a while. I'll do my best to be professional and not ramble on about this and that, although the weather here has finally turned and its 'scorchio' here in Colorado today. Maybe our stand of Aspen will finally come into leaf ... but I digress. Preamble These templates are not actually that new, I helped in a small way to develop them a few years back with Excel 'meistress' Shirley for a company that was trying to use the Report Manager(RR) Excel FSG outputs under EBS 12. The functionality they needed was just not there in the RR FSG templates, the templates are actually XSL that is created from the the RR Excel template builder and fed to BIP for processing. Think of Excel from our RTF templates and you'll be there ie not really Excel but HTML masquerading as Excel. Although still under controlled release in EBS they have now made their way to the standlone release and are willing to share their Excel goodness. You get everything you have with hte Excel Analyzer Excel templates plus so much more. Therein lies a question, what will happen to the Analyzer templates? My understanding is that both will come together into a single Excel template format some time in the post-11g release world. The new XLSX format for Exce 2007/10 is also in the mix too so watch this space. What more do these templates offer? Well, you can structure data in the Excel output. Similar to RTF templates you can create sheets of data that have master-detail n relationships. Although the analyzer templates can do this, you have to get into macros whereas BIP will do this all for you. You can also use native XSL functions in your data to manipulate it prior to rendering. BP functions are not currently supported. The most impressive, for me at least, is the sheet 'bursting'. You can split your hierarchical data across multiple sheets and dynamically name those sheets. Finally, you of course, still get all the native Excel functionality. Pre-reqs You must be on 10.1.3.4.1 plus the latest rollup patch, 9546699. You can patch upa BIP instance running with OBIEE, no problem You need Excel 2000 or above to build the templates Some patience - there is no Excel template builder for these new templates. So its all going to have to be done by hand. Its not that tough but can get a little 'fiddly'. You can not test the template from Excel , it has to be deployed and then run. Limitations The new templates are definitely superior to the Analyzer templates but there are a few limitations. Re-grouping is not supported. You can only follow a data hierarchy not bend it to your will unless you want to get into macros. No support for BIP functions. The templates support native XSL functions only. No template builder Getting Started The templates make the use of named cells and groups of cells to allow BIP to find the insertion point for data points. It also uses a hidden sheet to store calculation mappings from named cells to XML data elements. To start with, in the great BIP tradition, we need some sample XML data. Becasue I wanted to show the master-detail output we need some hierarchical data. If you have not yet gotten into the data templates, now is a good time, I wrote a post a while back starting from the simple to more complex. They generate ideal data sets for these templates. Im working with the following data set: <EMPLOYEES> <LIST_G_DEPT> <G_DEPT> <DEPARTMENT_ID>10</DEPARTMENT_ID> <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME> <LIST_G_EMP> <G_EMP> <EMPLOYEE_ID>200</EMPLOYEE_ID> <EMP_NAME>Jennifer Whalen</EMP_NAME> <EMAIL>JWHALEN</EMAIL> <PHONE_NUMBER>515.123.4444</PHONE_NUMBER> <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE> <SALARY>4400</SALARY> </G_EMP> </LIST_G_EMP> <TOTAL_EMPS>1</TOTAL_EMPS> <TOTAL_SALARY>4400</TOTAL_SALARY> <AVG_SALARY>4400</AVG_SALARY> <MAX_SALARY>4400</MAX_SALARY> <MIN_SALARY>4400</MIN_SALARY> </G_DEPT> ... <LIST_G_DEPT> <EMPLOYEES> Simple enough to follow and bread and butter stuff for an RTF template. Building the Template For an Excel template we need to start by thinking about how we want to render the data. Come up with a sample output in Excel. Its all dummy data, nothing marked up yet with one row of data for each level. I have the department name and then a repeating row for the employees. You can apply Excel formatting to the layout. The total is going to be derived from a data element. We'll get to Excel functions later. Marking Up Cells Next we need to start marking up the cells with custom names to map them to data elements. The cell names need to follow a specific format: For data grouping, XDO_GROUP_?group_name? For data elements, XDO_?element_name? Notice the question mark delimter, the group_name and element_name are case sensitive. The next step is to find how to name cells; the easiest method is to highlight the cell and then type in the name. You can also find the Name Manager dialog. I use 2007 and its available on the ribbon under the Formulas section Go thorugh the process of naming all the cells for the element values you have. Using my data set from above.You should end up with something like this in your 'Name Manager' dialog. You can update any mistakes you might have made through this dialog. Creating Groups In the image above you can see there are a couple of named group cells. To create these its a simple case of highlighting the cells that make up the group and then naming them. For the EMP group, highlight the employee row and then type in the name, XDO_GROUP?G_EMP? Notice the 10,000 total is outside of the G_EMP group. Its actually named, XDO_?TOTAL_SALARY?, a query calculated value. For the department group, we need to include the department name cell and the sub EMP grouping and name it, XDO_GROUP?G_DEPT? Notice, the 10,000 total is included in the G_DEPT group. This will ensure it repeats at the department level. Lastly, we do need to include a special sheet in the workbook. We will not have anything meaningful in there for now, but it needs to be present. Create a new sheet and name it XDO_METADATA. The name is important as the BIP rendering engine will looking for it. For our current example we do not need anything other than the required stuff in our XDO_METADATA sheet but, it must be present. Easy enough to hide it. Here's what I have: The only cell that is important is the 'Data Constraints:' cell. The rest is optional. To save curious users getting distracted, hide the metadata sheet. Deploying & Running Templates We should now have a usable Excel template. Loading it into a report is easy enough using the browser UI, just like an RTF template. Set the template type to Excel. You will now be able to run the report and hopefully get something like this. You will not get the red highlighting, thats just some conditional formatting I added to the template using Excel functionality. Your dates are probably going to look raw too. I got around this for now using an Excel function on the cell: =--REPLACE(SUBSTITUTE(E8,"T"," "),LEN(E8)-6,6,"") Google to the rescue on that one. Try some other stuff out. To avoid constantly loading the template through the UI. If you have BIP running locally or you can access the reports repository, once you have loaded the template the first time. Just save the template directly into the report folder. I have put together a sample report using a sample data set, available here. Just drop the xml data file, EmpbyDeptExcelData.xml into 'demo files' folder and you should be good to go. Thats the basics, next we'll start using some XSL functions in the template and move onto the 'bursting' across sheets.

    Read the article

  • Azure - Part 4 - Table Storage Service in Windows Azure

    - by Shaun
    In Windows Azure platform there are 3 storage we can use to save our data on the cloud. They are the Table, Blob and Queue. Before the Chinese New Year Microsoft announced that Azure SDK 1.1 had been released and it supports a new type of storage – Drive, which allows us to operate NTFS files on the cloud. I will cover it in the coming few posts but now I would like to talk a bit about the Table Storage.   Concept of Table Storage Service The most common development scenario is to retrieve, create, update and remove data from the data storage. In the normal way we communicate with database. When we attempt to move our application over to the cloud the most common requirement should be have a storage service. Windows Azure provides a in-build service that allow us to storage the structured data, which is called Windows Azure Table Storage Service. The data stored in the table service are like the collection of entities. And the entities are similar to rows or records in the tradtional database. An entity should had a partition key, a row key, a timestamp and set of properties. You can treat the partition key as a group name, the row key as a primary key and the timestamp as the identifer for solving the concurrency problem. Different with a table in a database, the table service does not enforce the schema for tables, which means you can have 2 entities in the same table with different property sets. The partition key is being used for the load balance of the Azure OS and the group entity transaction. As you know in the cloud you will never know which machine is hosting your application and your data. It could be moving based on the transaction weight and the number of the requests. If the Azure OS found that there are many requests connect to your Book entities with the partition key equals “Novel” it will move them to another idle machine to increase the performance. So when choosing the partition key for your entities you need to make sure they indecate the category or gourp information so that the Azure OS can perform the load balance as you wish.   Consuming the Table Although the table service looks like a database, you cannot access it through the way you are using now, neither ADO.NET nor ODBC. The table service exposed itself by ADO.NET Data Service protocol, which allows you can consume it through the RESTful style by Http requests. The Azure SDK provides a sets of classes for us to connect it. There are 2 classes we might need: TableServiceContext and TableServiceEntity. The TableServiceContext inherited from the DataServiceContext, which represents the runtime context of the ADO.NET data service. It provides 4 methods mainly used by us: CreateQuery: It will create a IQueryable instance from a given type of entity. AddObject: Add the specified entity into Table Service. UpdateObject: Update an existing entity in the Table Service. DeleteObject: Delete an entity from the Table Service. Beofre you operate the table service you need to provide the valid account information. It’s something like the connect string of the database but with your account name and the account key when you created the storage service on the Windows Azure Development Portal. After getting the CloudStorageAccount you can create the CloudTableClient instance which provides a set of methods for using the table service. A very useful method would be CreateTableIfNotExist. It will create the table container for you if it’s not exsited. And then you can operate the eneities to that table through the methods I mentioned above. Let me explain a bit more through an exmaple. We always like code rather than sentence.   Straightforward Accessing to the Table Here I would like to build a WCF service on the Windows Azure platform, and for now just one requirement: it would allow the client to create an account entity on the table service. The WCF service would have a method named Register and accept an instance of the account which the client wants to create. After perform some validation it will add the entity into the table service. So the first thing I should do is to create a Cloud Application on my VIstial Studio 2010 RC. (The Azure SDK 1.1 only supports VS2008 and VS2010 RC.) The solution should be like this below. Then I added a configuration items for the storage account through the Settings section under the cloud project. (Double click the Services file under Roles folder and navigate to the Setting section.) This setting will be used when to retrieve my storage account information. Since for now I just in the development phase I will select “UseDevelopmentStorage=true”. And then I navigated to the WebRole.cs file under my WCF project. If you have read my previous posts you would know that this file defines the process when the application start, and terminate on the cloud. What I need to do is to when the application start, set the configuration publisher to load my config file with the config name I specified. So the code would be like below. I removed the original service and contract created by the VS template and add my IAccountService contract and its implementation class - AccountService. And I add the service method Register with the parameters: email, password and it will return a boolean value to indicates the result which is very simple. At this moment if I press F5 the application will be established on my local development fabric and I can see my service runs well through the browser. Let’s implement the service method Rigister, add a new entity to the table service. As I said before the entities you want to store in the table service must have 3 properties: partition key, row key and timespan. You can create a class with these 3 properties. The Azure SDK provides us a base class for that named TableServiceEntity in Microsoft.WindowsAzure.StorageClient namespace. So what we need to do is more simply, create a class named Account and let it derived from the TableServiceEntity. And I need to add my own properties: Email, Password, DateCreated and DateDeleted. The DateDeleted is a nullable date time value to indecate whether this entity had been deleted and when. Do you notice that I missed something here? Yes it’s the partition key and row key I didn’t assigned. The TableServiceEntity base class defined 2 constructors one was a parameter-less constructor which will be used to fill values into the properties from the table service when retrieving data. The other was one with 2 parameters: partition key and row key. As I said below the partition key may affect the load balance and the row key must be unique so here I would like to use the email as the parition key and the email plus a Guid as the row key. OK now we finished the entity class we need to store onto the table service. The next step is to create a data access class for us to add it. Azure SDK gives us a base class for it named TableServiceContext as I mentioned below. So let’s create a class for operate the Account entities. The TableServiceContext need the storage account information for its constructor. It’s the combination of the storage service URI that we will create on Windows Azure platform, and the relevant account name and key. The TableServiceContext will use this information to find the related address and verify the account to operate the storage entities. Hence in my AccountDataContext class I need to override this constructor and pass the storage account into it. All entities will be saved in the table storage with one or many tables which we call them “table containers”. Before we operate an entity we need to make sure that the table container had been created on the storage. There’s a method we can use for that: CloudTableClient.CreateTableIfNotExist. So in the constructor I will perform it firstly to make sure all method will be invoked after the table had been created. Notice that I passed the storage account enpoint URI and the credentials to specify where my storage is located and who am I. Another advise is that, make your entity class name as the same as the table name when create the table. It will increase the performance when you operate it over the cloud especially querying. Since the Register WCF method will add a new account into the table service, here I will create a relevant method to add the account entity. Before implement, I should add a reference - System.Data.Services.Client to the project. This reference provides some common method within the ADO.NET Data Service which can be used in the Windows Azure Table Service. I will use its AddObject method to create my account entity. Since the table service are not fully implemented the ADO.NET Data Service, there are some methods in the System.Data.Services.Client that TableServiceContext doesn’t support, such as AddLinks, etc. Then I implemented the serivce method to add the account entity through the AccountDataContext. You can see in the service implmentation I load the storage account information through my configuration file and created the account table entity from the parameters. Then I created the AccountDataContext. If it’s my first time to invoke this method the constructor of the AccountDataContext will create a table container for me. Then I use Add method to add the account entity into the table. Next, let’s create a farely simple client application to test this service. I created a windows console application and added a service reference to my WCF service. The metadata information of the WCF service cannot be retrieved if it’s deployed on the Windows Azure even though the <serviceMetadata httpGetEnabled="true"/> had been set. If we need to get its metadata we can deploy it on the local development service and then changed the endpoint to the address which is on the cloud. In the client side app.config file I specified the endpoint to the local development fabric address. And the just implement the client to let me input an email and a password then invoke the WCF service to add my acocunt. Let’s run my application and see the result. Of course it should return TRUE to me. And in the local SQL Express I can see the data had been saved in the table.   Summary In this post I explained more about the Windows Azure Table Storage Service. I also created a small application for demostration of how to connect and consume it through the ADO.NET Data Service Managed Library provided within the Azure SDK. I only show how to create an eneity in the storage service. In the next post I would like to explain about how to query the entities with conditions thruogh LINQ. I also would like to refactor my AccountDataContext class to make it dyamic for any kinds of entities.   Hope this helps, Shaun   All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Where is my app.config for SSIS?

    Sometimes when working with SSIS you need to add or change settings in the .NET application configuration file, which can be a bit confusing when you are building a SSIS package not an application. First of all lets review a couple of examples where you may need to do this. You are using referencing an assembly in a Script Task that uses Enterprise Library (aka EntLib), so you need to add the relevant configuration sections and settings, perhaps for the logging application block. You are using using Enterprise Library in a custom task or component, and again you need to add the relevant configuration sections and settings. You are using a web service with Microsoft Web Services Enhancements (WSE) 3.0 and hosting the proxy in SSIS, in an assembly used by your package, and need to add the configuration sections and settings. You need to change behaviours of the .NET framework which can be influenced by a configuration file, such as the System.Net.Mail default SMTP settings. Perhaps you wish to configure System.Net and the httpWebRequest header for parsing unsafe header (useUnsafeHeaderParsing), which will change the way the HTTP Connection manager behaves. You are consuming a WCF service and wish to specify the endpoint in configuration. There are no doubt plenty more examples but each of these requires us to identify the correct configuration file and and make the relevant changes. There are actually several configuration files, each used by a different execution host depending on how you are working with the SSIS package. The folders we need to look in will actually vary depending on the version of SQL Server as well as the processor architecture, but most are all what we can call the Binn folder. The SQL Server 2005 Binn folder is at C:\Program Files\Microsoft SQL Server\90\DTS\Binn\, compared to C:\Program Files\Microsoft SQL Server\100\DTS\Binn\ for SQL Server 2008. If you are on a 64-bit machine then you will see C:\Program Files (x86)\Microsoft SQL Server\90\DTS\Binn\ for the 32-bit executables and C:\Program Files\Microsoft SQL Server\90\DTS\Binn\ for 64-bit, so be sure to check all relevant locations. Of course SQL Server 2008 may have a C:\Program Files (x86)\Microsoft SQL Server\100\DTS\Binn\ on a 64-bit machine too. To recap, the version of SQL Server determines if you look in the 90 or 100 sub-folder under SQL Server in Program Files (C:\Program Files\Microsoft SQL Server\nn\) . If you are running a 64-bit operating system then you will have two instances program files, C:\Program Files (x86)\ for 32-bit and  C:\Program Files\ for 64-bit. You may wish to check both depending on what you are doing, but this is covered more under each section below. There are a total of five specific configuration files that you may need to change, each one is detailed below: DTExec.exe.config DTExec.exe is the standalone command line tool used for executing SSIS packages, and therefore it is an execution host with an app.config file. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DTExec.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. DtsDebugHost.exe.config DtsDebugHost.exe is the execution host used by Business Intelligence Development Studio (BIDS) / Visual Studio when executing a package from the designer in debug mode, which is the default behaviour. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DtsDebugHost.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. This may surprise some people as Visual Studio is only 32-bit, but thankfully the debugger supports both. This can be set in the project properties, see the Run64BitRuntime property (true or false) in the Debugging pane of the Project Properties. dtshost.exe.config dtshost.exe is the execution host used by what I think of as the built-in features of SQL Server such as SQL Server Agent e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\dtshost.exe.config This file can be found in both the 32-bit and 64-bit Binn folders devenv.exe.config Something slightly different is devenv.exe which is Visual Studio. This configuration file may also need changing if you need a feature at design-time such as in a Task Editor or Connection Manager editor. Visual Studio 2005 for SQL Server 2005  - C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\devenv.exe.config Visual Studio 2008 for SQL Server 2008  - C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe.config Visual Studio is only available for 32-bit so on a 64-bit machine you will have to look in C:\Program Files (x86)\ only. DTExecUI.exe.config The DTExec UI tool can also have a configuration file and these cab be found under the Tools folders for SQL Sever as shown below. C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe A configuration file may not exist, but if you can find the matching executable you know you are in the right place so can go ahead and add a new file yourself. In summary we have covered the assembly configuration files for all of the standard methods of building and running a SSIS package, but obviously if you are working programmatically you will need to make the relevant modifications to your program’s app.config as well.

    Read the article

  • Parallelism in .NET – Part 13, Introducing the Task class

    - by Reed
    Once we’ve used a task-based decomposition to decompose a problem, we need a clean abstraction usable to implement the resulting decomposition.  Given that task decomposition is founded upon defining discrete tasks, .NET 4 has introduced a new API for dealing with task related issues, the aptly named Task class. The Task class is a wrapper for a delegate representing a single, discrete task within your decomposition.  We will go into various methods of construction for tasks later, but, when reduced to its fundamentals, an instance of a Task is nothing more than a wrapper around a delegate with some utility functionality added.  In order to fully understand the Task class within the new Task Parallel Library, it is important to realize that a task really is just a delegate – nothing more.  In particular, note that I never mentioned threading or parallelism in my description of a Task.  Although the Task class exists in the new System.Threading.Tasks namespace: Tasks are not directly related to threads or multithreading. Of course, Task instances will typically be used in our implementation of concurrency within an application, but the Task class itself does not provide the concurrency used.  The Task API supports using Tasks in an entirely single threaded, synchronous manner. Tasks are very much like standard delegates.  You can execute a task synchronously via Task.RunSynchronously(), or you can use Task.Start() to schedule a task to run, typically asynchronously.  This is very similar to using delegate.Invoke to execute a delegate synchronously, or using delegate.BeginInvoke to execute it asynchronously. The Task class adds some nice functionality on top of a standard delegate which improves usability in both synchronous and multithreaded environments. The first addition provided by Task is a means of handling cancellation via the new unified cancellation mechanism of .NET 4.  If the wrapped delegate within a Task raises an OperationCanceledException during it’s operation, which is typically generated via calling ThrowIfCancellationRequested on a CancellationToken, or if the CancellationToken used to construct a Task instance is flagged as canceled, the Task’s IsCanceled property will be set to true automatically.  This provides a clean way to determine whether a Task has been canceled, often without requiring specific exception handling. Tasks also provide a clean API which can be used for waiting on a task.  Although the Task class explicitly implements IAsyncResult, Tasks provide a nicer usage model than the traditional .NET Asynchronous Programming Model.  Instead of needing to track an IAsyncResult handle, you can just directly call Task.Wait() to block until a Task has completed.  Overloads exist for providing a timeout, a CancellationToken, or both to prevent waiting indefinitely.  In addition, the Task class provides static methods for waiting on multiple tasks – Task.WaitAll and Task.WaitAny, again with overloads providing time out options.  This provides a very simple, clean API for waiting on single or multiple tasks. Finally, Tasks provide a much nicer model for Exception handling.  If the delegate wrapped within a Task raises an exception, the exception will automatically get wrapped into an AggregateException and exposed via the Task.Exception property.  This exception is stored with the Task directly, and does not tear down the application.  Later, when Task.Wait() (or Task.WaitAll or Task.WaitAny) is called on this task, an AggregateException will be raised at that point if any of the tasks raised an exception.  For example, suppose we have the following code: Task taskOne = new Task( () => { throw new ApplicationException("Random Exception!"); }); Task taskTwo = new Task( () => { throw new ArgumentException("Different exception here"); }); // Start the tasks taskOne.Start(); taskTwo.Start(); try { Task.WaitAll(new[] { taskOne, taskTwo }); } catch (AggregateException e) { Console.WriteLine(e.InnerExceptions.Count); foreach (var inner in e.InnerExceptions) Console.WriteLine(inner.Message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, our routine will print: 2 Different exception here Random Exception! Note that we had two separate tasks, each of which raised two distinctly different types of exceptions.  We can handle this cleanly, with very little code, in a much nicer manner than the Asynchronous Programming API.  We no longer need to handle TargetInvocationException or worry about implementing the Event-based Asynchronous Pattern properly by setting the AsyncCompletedEventArgs.Error property.  Instead, we just raise our exception as normal, and handle AggregateException in a single location in our calling code.

    Read the article

  • C# 4.0: Dynamic Programming

    - by Paulo Morgado
    The major feature of C# 4.0 is dynamic programming. Not just dynamic typing, but dynamic in broader sense, which means talking to anything that is not statically typed to be a .NET object. Dynamic Language Runtime The Dynamic Language Runtime (DLR) is piece of technology that unifies dynamic programming on the .NET platform, the same way the Common Language Runtime (CLR) has been a common platform for statically typed languages. The CLR always had dynamic capabilities. You could always use reflection, but its main goal was never to be a dynamic programming environment and there were some features missing. The DLR is built on top of the CLR and adds those missing features to the .NET platform. The Dynamic Language Runtime is the core infrastructure that consists of: Expression Trees The same expression trees used in LINQ, now improved to support statements. Dynamic Dispatch Dispatches invocations to the appropriate binder. Call Site Caching For improved efficiency. Dynamic languages and languages with dynamic capabilities are built on top of the DLR. IronPython and IronRuby were already built on top of the DLR, and now, the support for using the DLR is being added to C# and Visual Basic. Other languages built on top of the CLR are expected to also use the DLR in the future. Underneath the DLR there are binders that talk to a variety of different technologies: .NET Binder Allows to talk to .NET objects. JavaScript Binder Allows to talk to JavaScript in SilverLight. IronPython Binder Allows to talk to IronPython. IronRuby Binder Allows to talk to IronRuby. COM Binder Allows to talk to COM. Whit all these binders it is possible to have a single programming experience to talk to all these environments that are not statically typed .NET objects. The dynamic Static Type Let’s take this traditional statically typed code: Calculator calculator = GetCalculator(); int sum = calculator.Sum(10, 20); Because the variable that receives the return value of the GetCalulator method is statically typed to be of type Calculator and, because the Calculator type has an Add method that receives two integers and returns an integer, it is possible to call that Sum method and assign its return value to a variable statically typed as integer. Now lets suppose the calculator was not a statically typed .NET class, but, instead, a COM object or some .NET code we don’t know he type of. All of the sudden it gets very painful to call the Add method: object calculator = GetCalculator(); Type calculatorType = calculator.GetType(); object res = calculatorType.InvokeMember("Add", BindingFlags.InvokeMethod, null, calculator, new object[] { 10, 20 }); int sum = Convert.ToInt32(res); And what if the calculator was a JavaScript object? ScriptObject calculator = GetCalculator(); object res = calculator.Invoke("Add", 10, 20); int sum = Convert.ToInt32(res); For each dynamic domain we have a different programming experience and that makes it very hard to unify the code. With C# 4.0 it becomes possible to write code this way: dynamic calculator = GetCalculator(); int sum = calculator.Add(10, 20); You simply declare a variable who’s static type is dynamic. dynamic is a pseudo-keyword (like var) that indicates to the compiler that operations on the calculator object will be done dynamically. The way you should look at dynamic is that it’s just like object (System.Object) with dynamic semantics associated. Anything can be assigned to a dynamic. dynamic x = 1; dynamic y = "Hello"; dynamic z = new List<int> { 1, 2, 3 }; At run-time, all object will have a type. In the above example x is of type System.Int32. When one or more operands in an operation are typed dynamic, member selection is deferred to run-time instead of compile-time. Then the run-time type is substituted in all variables and normal overload resolution is done, just like it would happen at compile-time. The result of any dynamic operation is always dynamic and, when a dynamic object is assigned to something else, a dynamic conversion will occur. Code Resolution Method double x = 1.75; double y = Math.Abs(x); compile-time double Abs(double x) dynamic x = 1.75; dynamic y = Math.Abs(x); run-time double Abs(double x) dynamic x = 2; dynamic y = Math.Abs(x); run-time int Abs(int x) The above code will always be strongly typed. The difference is that, in the first case the method resolution is done at compile-time, and the others it’s done ate run-time. IDynamicMetaObjectObject The DLR is pre-wired to know .NET objects, COM objects and so forth but any dynamic language can implement their own objects or you can implement your own objects in C# through the implementation of the IDynamicMetaObjectProvider interface. When an object implements IDynamicMetaObjectProvider, it can participate in the resolution of how method calls and property access is done. The .NET Framework already provides two implementations of IDynamicMetaObjectProvider: DynamicObject : IDynamicMetaObjectProvider The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to perform those operations. For example, you can define what happens when you try to get or set an object property, call a method, or perform standard mathematical operations such as addition and multiplication. ExpandoObject : IDynamicMetaObjectProvider The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get values of these members. This class supports dynamic binding, which enables you to use standard syntax like sampleObject.sampleMember, instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

    Read the article

  • Parallelism in .NET – Part 16, Creating Tasks via a TaskFactory

    - by Reed
    The Task class in the Task Parallel Library supplies a large set of features.  However, when creating the task, and assigning it to a TaskScheduler, and starting the Task, there are quite a few steps involved.  This gets even more cumbersome when multiple tasks are involved.  Each task must be constructed, duplicating any options required, then started individually, potentially on a specific scheduler.  At first glance, this makes the new Task class seem like more work than ThreadPool.QueueUserWorkItem in .NET 3.5. In order to simplify this process, and make Tasks simple to use in simple cases, without sacrificing their power and flexibility, the Task Parallel Library added a new class: TaskFactory. The TaskFactory class is intended to “Provide support for creating and scheduling Task objects.”  Its entire purpose is to simplify development when working with Task instances.  The Task class provides access to the default TaskFactory via the Task.Factory static property.  By default, TaskFactory uses the default TaskScheduler to schedule tasks on a ThreadPool thread.  By using Task.Factory, we can automatically create and start a task in a single “fire and forget” manner, similar to how we did with ThreadPool.QueueUserWorkItem: Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides us with the same level of simplicity we had with ThreadPool.QueueUserWorkItem, but even more power.  For example, we can now easily wait on the task: // Start our task on a background thread var task = Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); // Do other work on the main thread, // while the task above executes in the background this.ExecuteWorkSynchronously(); // Wait for the background task to finish task.Wait(); TaskFactory simplifies creation and startup of simple background tasks dramatically. In addition to using the default TaskFactory, it’s often useful to construct a custom TaskFactory.  The TaskFactory class includes an entire set of constructors which allow you to specify the default configuration for every Task instance created by that factory.  This is particularly useful when using a custom TaskScheduler.  For example, look at the sample code for starting a task on the UI thread in Part 15: // Given the following, constructed on the UI thread // TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // When inside a background task, we can do string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); This is actually quite a bit more complicated than necessary.  When we create the uiScheduler instance, we can use that to construct a TaskFactory that will automatically schedule tasks on the UI thread.  To do that, we’d create the following on our main thread, prior to constructing our background tasks: // Construct a task scheduler from the current SynchronizationContext (UI thread) var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Construct a new TaskFactory using our UI scheduler var uiTaskFactory = new TaskFactory(uiScheduler); If we do this, when we’re on a background thread, we can use this new TaskFactory to marshal a Task back onto the UI thread.  Our previous code simplifies to: // When inside a background task, we can do string status = GetUpdatedStatus(); // Update our UI uiTaskFactory.StartNew( () => statusLabel.Text = status); Notice how much simpler this becomes!  By taking advantage of the convenience provided by a custom TaskFactory, we can now marshal to set data on the UI thread in a single, clear line of code!

    Read the article

  • Parallelism in .NET – Part 1, Decomposition

    - by Reed
    The first step in designing any parallelized system is Decomposition.  Decomposition is nothing more than taking a problem space and breaking it into discrete parts.  When we want to work in parallel, we need to have at least two separate things that we are trying to run.  We do this by taking our problem and decomposing it into parts. There are two common abstractions that are useful when discussing parallel decomposition: Data Decomposition and Task Decomposition.  These two abstractions allow us to think about our problem in a way that helps leads us to correct decision making in terms of the algorithms we’ll use to parallelize our routine. To start, I will make a couple of minor points. I’d like to stress that Decomposition has nothing to do with specific algorithms or techniques.  It’s about how you approach and think about the problem, not how you solve the problem using a specific tool, technique, or library.  Decomposing the problem is about constructing the appropriate mental model: once this is done, you can choose the appropriate design and tools, which is a subject for future posts. Decomposition, being unrelated to tools or specific techniques, is not specific to .NET in any way.  This should be the first step to parallelizing a problem, and is valid using any framework, language, or toolset.  However, this gives us a starting point – without a proper understanding of decomposition, it is difficult to understand the proper usage of specific classes and tools within the .NET framework. Data Decomposition is often the simpler abstraction to use when trying to parallelize a routine.  In order to decompose our problem domain by data, we take our entire set of data and break it into smaller, discrete portions, or chunks.  We then work on each chunk in the data set in parallel. This is particularly useful if we can process each element of data independently of the rest of the data.  In a situation like this, there are some wonderfully simple techniques we can use to take advantage of our data.  By decomposing our domain by data, we can very simply parallelize our routines.  In general, we, as developers, should be always searching for data that can be decomposed. Finding data to decompose if fairly simple, in many instances.  Data decomposition is typically used with collections of data.  Any time you have a collection of items, and you’re going to perform work on or with each of the items, you potentially have a situation where parallelism can be exploited.  This is fairly easy to do in practice: look for iteration statements in your code, such as for and foreach. Granted, every for loop is not a candidate to be parallelized.  If the collection is being modified as it’s iterated, or the processing of elements depends on other elements, the iteration block may need to be processed in serial.  However, if this is not the case, data decomposition may be possible. Let’s look at one example of how we might use data decomposition.  Suppose we were working with an image, and we were applying a simple contrast stretching filter.  When we go to apply the filter, once we know the minimum and maximum values, we can apply this to each pixel independently of the other pixels.  This means that we can easily decompose this problem based off data – we will do the same operation, in parallel, on individual chunks of data (each pixel). Task Decomposition, on the other hand, is focused on the individual tasks that need to be performed instead of focusing on the data.  In order to decompose our problem domain by tasks, we need to think about our algorithm in terms of discrete operations, or tasks, which can then later be parallelized. Task decomposition, in practice, can be a bit more tricky than data decomposition.  Here, we need to look at what our algorithm actually does, and how it performs its actions.  Once we have all of the basic steps taken into account, we can try to analyze them and determine whether there are any constraints in terms of shared data or ordering.  There are no simple things to look for in terms of finding tasks we can decompose for parallelism; every algorithm is unique in terms of its tasks, so every algorithm will have unique opportunities for task decomposition. For example, say we want our software to perform some customized actions on startup, prior to showing our main screen.  Perhaps we want to check for proper licensing, notify the user if the license is not valid, and also check for updates to the program.  Once we verify the license, and that there are no updates, we’ll start normally.  In this case, we can decompose this problem into tasks – we have a few tasks, but there are at least two discrete, independent tasks (check licensing, check for updates) which we can perform in parallel.  Once those are completed, we will continue on with our other tasks. One final note – Data Decomposition and Task Decomposition are not mutually exclusive.  Often, you’ll mix the two approaches while trying to parallelize a single routine.  It’s possible to decompose your problem based off data, then further decompose the processing of each element of data based on tasks.  This just provides a framework for thinking about our algorithms, and for discussing the problem.

    Read the article

  • Silverlight for Windows Embedded tutorial (step 6)

    - by Valter Minute
    In this tutorial step we will develop a very simple clock application that may be used as a screensaver on our devices and will allow us to discover a new feature of Silverlight for Windows Embedded (transforms) and how to use an “old” feature of Windows CE (timers) inside a Silverlight for Windows Embedded application. Let’s start with some XAML, as usual: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="640" Height="480" FontSize="18" x:Name="Clock">   <Canvas x:Name="LayoutRoot" Background="#FF000000"> <Grid Height="24" Width="150" Canvas.Left="320" Canvas.Top="234" x:Name="SecondsHand" Background="#FFFF0000"> <TextBlock Text="Seconds" TextWrapping="Wrap" Width="50" HorizontalAlignment="Right" VerticalAlignment="Center" x:Name="SecondsText" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="MinutesHand" Width="100" Background="#FF00FF00" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="MinutesText" VerticalAlignment="Center" Width="50" Text="Minutes" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="HoursHand" Width="50" Background="#FF0000FF" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="HoursText" VerticalAlignment="Center" Width="50" Text="Hours" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> </Canvas> </UserControl> This XAML file defines three grid panels, one for each hand of our clock (we are implementing an analog clock using one of the most advanced technologies of the digital world… how cool is that?). Inside each hand we put a TextBlock that will be used to display the current hour, minute, second inside the dial (you can’t do that on plain old analog clocks, but it looks nice). As usual we use XAML2CPP to generate the boring part of our code. We declare a class named “Clock” and derives from the TClock template that XAML2CPP has declared for us. class Clock : public TClock<Clock> { ... }; Our WinMain function is more or less the same we used in all the previous samples. It initializes the XAML runtime, create an instance of our class, initialize it and shows it as a dialog: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1; Clock clock;   if (FAILED(clock.Init(hInstance,app))) return -1;     UINT exitcode;   if (FAILED(clock.GetVisualHost()->StartDialog(&exitcode))) return -1;   return exitcode; } Silverlight for Windows Embedded provides a lot of features to implement our UI, but it does not provide timers. How we can update our clock if we don’t have a timer feature? We just use plain old Windows timers, as we do in “regular” Windows CE applications! To use a timer in WinCE we should declare an id for it: #define IDT_CLOCKUPDATE 0x12341234 We also need an HWND that will be used to receive WM_TIMER messages. Our Silverlight for Windows Embedded page is “hosted” inside a GWES Window and we can retrieve its handle using the GetContainerHWND function of our VisualHost object. Let’s see how this is implemented inside our Clock class’ Init method: HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TClock<Clock>::Init(hInstance,app))) return retcode;   // create the timer user to update the clock HWND clockhwnd;   if (FAILED(GetVisualHost()->GetContainerHWND(&clockhwnd))) return -1;   timer=SetTimer(clockhwnd,IDT_CLOCKUPDATE,1000,NULL); return 0; } We use SetTimer to create a new timer and GWES will send a WM_TIMER to our window every second, giving us a chance to update our clock. That sounds great… but how could we handle the WM_TIMER message if we didn’t implement a window procedure for our window? We have to move a step back and look how a visual host is created. This code is generated by XAML2CPP and is inside xaml2cppbase.h: virtual HRESULT CreateHost(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode; XRWindowCreateParams wp;   ZeroMemory(&wp, sizeof(XRWindowCreateParams)); InitWindowParms(&wp);   XRXamlSource xamlsrc;   SetXAMLSource(hInstance,&xamlsrc); if (FAILED(retcode=app->CreateHostFromXaml(&xamlsrc, &wp, &vhost))) return retcode;   if (FAILED(retcode=vhost->GetRootElement(&root))) return retcode; return S_OK; } As you can see the CreateHostFromXaml function of IXRApplication accepts a structure named XRWindowCreateParams that control how the “plain old” GWES Window is created by the runtime. This structure is initialized inside the InitWindowParm method: // Initializes Windows parameters, can be overridden in the user class to change its appearance virtual void InitWindowParms(XRWindowCreateParams* wp) { wp->Style = WS_OVERLAPPED; wp->pTitle = windowtitle; wp->Left = 0; wp->Top = 0; } This method set up the window style, title and position. But the XRWindowCreateParams contains also other fields and, since the function is declared as virtual, we could initialize them inside our version of InitWindowParms: // add hook procedure to the standard windows creation parms virtual void InitWindowParms(XRWindowCreateParams* wp) { TClock<Clock>::InitWindowParms(wp);   wp->pHookProc=StaticHostHookProc; wp->pvUserParam=this; } This method calls the base class implementation (useful to not having to re-write some code, did I told you that I’m quite lazy?) and then initializes the pHookProc and pvUserParam members of the XRWindowsCreateParams structure. Those members will allow us to install a “hook” procedure that will be called each time the GWES window “hosting” our Silverlight for Windows Embedded UI receives a message. We can declare a hook procedure inside our Clock class: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { ... } You should notice two things here. First that the function is declared as static. This is required because a non-static function has a “hidden” parameters, that is the “this” pointer of our object. Having an extra parameter is not allowed for the type defined for the pHookProc member of the XRWindowsCreateParams struct and so we should implement our hook procedure as static. But in a static procedure we will not have a this pointer. How could we access the data member of our class? Here’s the second thing to notice. We initialized also the pvUserParam of the XRWindowsCreateParams struct. We set it to our this pointer. This value will be passed as the first parameter of the hook procedure. In this way we can retrieve our this pointer and use it to call a non-static version of our hook procedure: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { return ((Clock*)pv)->HostHookProc(hwnd,Msg,wParam,lParam,pRetVal); } Inside our non-static hook procedure we will have access to our this pointer and we will be able to update our clock: // hook procedure (handles timers) BOOL HostHookProc(HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { switch (Msg) { case WM_TIMER: if (wParam==IDT_CLOCKUPDATE) UpdateClock(); *pRetVal=0; return TRUE; } return FALSE; } The UpdateClock member function will update the text inside our TextBlocks and rotate the hands to reflect current time: // udates Hands positions and labels HRESULT UpdateClock() { SYSTEMTIME time; HRESULT retcode;   GetLocalTime(&time);   //updates the text fields TCHAR timebuffer[32];   _itow(time.wSecond,timebuffer,10);   SecondsText->SetText(timebuffer);   _itow(time.wMinute,timebuffer,10);   MinutesText->SetText(timebuffer);   _itow(time.wHour,timebuffer,10);   HoursText->SetText(timebuffer);   if (FAILED(retcode=RotateHand(((float)time.wSecond)*6-90,SecondsHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)time.wMinute)*6-90,MinutesHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)(time.wHour%12))*30-90,HoursHand))) return retcode;   return S_OK; } The function retrieves current time, convert hours, minutes and seconds to strings and display those strings inside the three TextBlocks that we put inside our clock hands. Then it rotates the hands to position them at the right angle (angles are in degrees and we have to subtract 90 degrees because 0 degrees means horizontal on Silverlight for Windows Embedded and usually a clock 0 is in the top position of the dial. The code of the RotateHand function uses transforms to rotate our clock hands on the screen: // rotates a Hand HRESULT RotateHand(float angle,IXRFrameworkElement* Hand) { HRESULT retcode; IXRRotateTransformPtr rotatetransform; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode;   if (FAILED(retcode=app->CreateObject(IID_IXRRotateTransform,&rotatetransform))) return retcode;     if (FAILED(retcode=rotatetransform->SetAngle(angle))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterX(0.0))) return retcode;   float height;   if (FAILED(retcode==Hand->GetActualHeight(&height))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterY(height/2))) return retcode; if (FAILED(retcode=Hand->SetRenderTransform(rotatetransform))) return retcode;   return S_OK; } It creates a IXRotateTransform object, set its rotation angle and origin (the default origin is at the top-left corner of our Grid panel, we move it in the vertical center to keep the hand rotating around a single point in a more “clock like” way. Then we can apply the transform to our UI object using SetRenderTransform. Every UI element (derived from IXRFrameworkElement) can be rotated! And using different subclasses of IXRTransform also moved, scaled, skewed and distorted in many ways. You can also concatenate multiple transforms and apply them at once suing a IXRTransformGroup object. The XAML engine uses vector graphics and object will not look “pixelated” when they are rotated or scaled. As usual you can download the code here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/Clock.zip If you read up to (down to?) this point you seem to be interested in Silverlight for Windows Embedded. If you want me to discuss some specific topic, please feel free to point it out in the comments! Technorati Tags: Silverlight for Windows Embedded,Windows CE

    Read the article

  • How can I dynamically change auto complete entries in a C# combobox or textbox?

    - by Sam Hopkins
    I have a combobox in C# and I want to use auto complete suggestions with it, however I want to be able to change the auto complete entries as the user types, because the possible valid entries are far too numerous to populate the AutoCompleteStringCollection at startup. As an example, suppose I'm letting the user type in a name. I have a list of possible first names ("Joe", "John") and a list of surnames ("Bloggs", "Smith"), but if I have a thousand of each, then that would be a million possible strings - too many to put in the auto complete entries. So initially I want to have just the first names as suggestions ("Joe", "John") , and then once the user has typed the first name, ("Joe"), I want to remove the existing auto complete entries and replace them with a new set consisting of the chosen first name followed by the possible surnames ("Joe Bloggs", "Joe Smith"). In order to do this, I tried the following code: void InitializeComboBox() { ComboName.AutoCompleteMode = AutoCompleteMode.SuggestAppend; ComboName.AutoCompleteSource = AutoCompleteSource.CustomSource; ComboName.AutoCompleteCustomSource = new AutoCompleteStringCollection(); ComboName.TextChanged += new EventHandler( ComboName_TextChanged ); } void ComboName_TextChanged( object sender, EventArgs e ) { string text = this.ComboName.Text; string[] suggestions = GetNameSuggestions( text ); this.ComboQuery.AutoCompleteCustomSource.Clear(); this.ComboQuery.AutoCompleteCustomSource.AddRange( suggestions ); } However, this does not work properly. It seems that the call to Clear() causes the auto complete mechanism to "turn off" until the next character appears in the combo box, but of course when the next character appears the above code calls Clear() again, so the user never actually sees the auto complete functionality. It also causes the entire contents of the combo box to become selected, so between every keypress you have to deselect the existing text, which makes it unusable. If I remove the call to Clear() then the auto complete works, but it seems that then the AddRange() call has no effect, because the new suggestions that I add do not appear in the auto complete dropdown. I have been searching for a solution to this, and seen various things suggested, but I cannot get any of them to work - either the auto complete functionality appears disabled, or new strings do not appear. Here is a list of things I have tried: Calling BeginUpdate() before changing the strings and EndUpdate() afterwards. Calling Remove() on all the existing strings instead of Clear(). Clearing the text from the combobox while I update the strings, and adding it back afterwards. Setting the AutoCompleteMode to "None" while I change the strings, and setting it back to "SuggestAppend" afterwards. Hooking the TextUpdate or KeyPress event instead of TextChanged. Replacing the existing AutoCompleteCustomSource with a new AutoCompleteStringCollection each time. None of these helped, even in various combinations. Spence suggested that I try overriding the ComboBox function that gets the list of strings to use in auto complete. Using a reflector I found a couple of methods in the ComboBox class that look promising - GetStringsForAutoComplete() and SetAutoComplete(), but they are both private so I can't access them from a derived class. I couldn't take that any further. I tried replacing the ComboBox with a TextBox, because the auto complete interface is the same, and I found that the behaviour is slightly different. With the TextBox it appears to work better, in that the Append part of the auto complete works properly, but the Suggest part doesn't - the suggestion box briefly flashes to life but then immediately disappears. So I thought "Okay, I'll

    Read the article

  • Trace File Source Adapter

    The Trace File Source adapter is a useful addition to your SSIS toolbox.  It allows you to read 2005 and 2008 profiler traces stored as .trc files and read them into the Data Flow.  From there you can perform filtering and analysis using the power of SSIS. There is no need for a SQL Server connection this just uses the trace file. Example Usages Cache warming for SQL Server Analysis Services Reading the flight recorder Find out the longest running queries on a server Analyze statements for CPU, memory by user or some other criteria you choose Properties The Trace File Source adapter has two properties, both of which combine to control the source trace file that is read at runtime. SQL Server 2005 and SQL Server 2008 trace files are supported for both the Database Engine (SQL Server) and Analysis Services. The properties are managed by the Editor form or can be set directly from the Properties Grid in Visual Studio. Property Type Description AccessMode Enumeration This property determines how the Filename property is interpreted. The values available are: DirectInput Variable Filename String This property holds the path for trace file to load (*.trc). The value is either a full path, or the name of a variable which contains the full path to the trace file, depending on the AccessMode property. Trace Column Definition Hopefully the majority of you can skip this section entirely, but if you encounter some problems processing a trace file this may explain it and allow you to fix the problem. The component is built upon the trace management API provided by Microsoft. Unfortunately API methods that expose the schema of a trace file have known issues and are unreliable, put simply the data often differs from what was specified. To overcome these limitations the component uses  some simple XML files. These files enable the trace column data types and sizing attributes to be overridden. For example SQL Server Profiler or TMO generated structures define EventClass as an integer, but the real value is a string. TraceDataColumnsSQL.xml  - SQL Server Database Engine Trace Columns TraceDataColumnsAS.xml    - SQL Server Analysis Services Trace Columns The files can be found in the %ProgramFiles%\Microsoft SQL Server\100\DTS\PipelineComponents folder, e.g. "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsSQL.xml" "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml" If at runtime the component encounters a type conversion or sizing error it is most likely due to a discrepancy between the column definition as reported by the API and the actual value encountered. Whilst most common issues have already been fixed through these files we have implemented specific exception traps to direct you to the files to enable you to fix any further issues due to different usage or data scenarios that we have not tested. An example error that you can fix through these files is shown below. Buffer exception writing value to column 'Column Name'. The string value is 999 characters in length, the column is only 111. Columns can be overridden by the TraceDataColumns XML files in "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml". Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Finally you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Trace File Source transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations. Please note that the Microsoft Trace classes used in the component are not supported on 64-bit platforms. To use the Trace File Source on a 64-bit host you need to ensure you have the 32-bit (x86) tools available, and the way you execute your package is setup to use them, please see the help topic 64-bit Considerations for Integration Services for more details. Downloads Trace Sources for SQL Server 2005 -- Trace Sources for SQL Server 2008 Version History SQL Server 2008 Version 2.0.0.382 - SQL Sever 2008 public release. (9 Apr 2009) SQL Server 2005 Version 1.0.0.321 - SQL Server 2005 public release. (18 Nov 2008) -- Screenshots

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

  • ADO.NET (WCF) Data Services Query Interceptor Hangs IIS

    - by PreMagination
    I have an ADO.NET Data Service that's supposed to provide read-only access to a somewhat complex database. Logically I have table-per-type (TPT) inheritance in my data model but the EDM doesn't implement inheritance. (Limitation of EF and navigation properties on derived types. STILL not fixed in EF4!) I can query my EDM directly (using a separate project) using a copy of the query I'm trying to run against the web service, results are returned within 10 seconds. Disabling the query interceptors I'm able to make the same query against the web service, results are returned similarly quickly. I can enable some of the query interceptors and the results are returned slowly, up to a minute or so later. Alternatively, I can enable all the query interceptors, expand less of the properties on the main object I'm querying, and results are returned in a similar period of time. (I've increased some of the timeout periods) Up til this point Sql Profiler indicates the slow-down is the database. (That's a post for a different day) But when I enable all my query interceptors and expand all the properties I'd like to have the IIS worker process pegs the CPU for 20 minutes and a query is never even made against the database. This implies to me that yes, my implementation probably sucks but regardless the Data Services "tier" is having an issue it shouldn't. WCF tracing didn't reveal anything interesting to my untrained eye. Details: Data model: Agent-Person-Student Student has a collection of referrals Students and referrals are private, queries against the web service should only return "your" students and referrals. This means Person and Agent need to be filtered too. Other entities (Agent-Organization-School) can be accessed by anyone who has authenticated. The existing security model is poorly suited to perform this type of filtering for this type of data access, the query interceptors are complicated and cause EF to generate some entertaining sql queries. Sample Interceptor [QueryInterceptor("Agents")] public Expression<Func<Agent, Boolean>> OnQueryAgents() { //Agent is a Person(1), Educator(2), Student(3), or Other Person(13); allow if scope permissions exist return ag => (ag.AgentType.AgentTypeId == 1 || ag.AgentType.AgentTypeId == 2 || ag.AgentType.AgentTypeId == 3 || ag.AgentType.AgentTypeId == 13) && ag.Person.OrganizationPersons.Count<OrganizationPerson>(op => op.Organization.ScopePermissions.Any<ScopePermission> (p => p.ApplicationRoleAccount.Account.UserName == HttpContext.Current.User.Identity.Name && p.ApplicationRoleAccount.Application.ApplicationId == 124) || op.Organization.HierarchyDescendents.Any<OrganizationsHierarchy>(oh => oh.AncestorOrganization.ScopePermissions.Any<ScopePermission> (p => p.ApplicationRoleAccount.Account.UserName == HttpContext.Current.User.Identity.Name && p.ApplicationRoleAccount.Application.ApplicationId == 124))) > 0; } The query interceptors for Person, Student, Referral are all very similar, ie they traverse multiple same/similar tables to look for ScopePermissions as above. Sample Query var referrals = (from r in service.Referrals .Expand("Organization/ParentOrganization") .Expand("Educator/Person/Agent") .Expand("Student/Person/Agent") .Expand("Student") .Expand("Grade") .Expand("ProblemBehavior") .Expand("Location") .Expand("Motivation") .Expand("AdminDecision") .Expand("OthersInvolved") where r.DateCreated >= coupledays && r.DateDeleted == null select r); Any suggestions or tips would be greatly associated, for fixing my current implementation or in developing a new one, with the caveat that the database can't be changed and that ultimately I need to expose a large portion of the database via a web service that limits data access to the data authorized for, for the purpose of data integration with multiple outside parties. THANK YOU!!!

    Read the article

< Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >