Search Results

Search found 6682 results on 268 pages for 'edge cases'.

Page 178/268 | < Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >

  • RFC 1918 address on open internet?

    - by longneck
    In trying to diagnose a failover problem with my Cisco ASA 5520 firewalls, I ran a traceroute to www.btfl.com and, much to my surprise, some of the hops came back as RFC 1918 addresses. Just to be clear, this host is not behind my firewall and there is no VPN involved. I have to connect across the open internet to get there. How/why is this possible? asa# traceroute www.btfl.com Tracing the route to 157.56.176.94 1 <redacted> 2 <redacted> 3 <redacted> 4 <redacted> 5 nap-edge-04.inet.qwest.net (67.14.29.170) 0 msec 10 msec 10 msec 6 65.122.166.30 0 msec 0 msec 10 msec 7 207.46.34.23 10 msec 0 msec 10 msec 8 * * * 9 207.46.37.235 30 msec 30 msec 50 msec 10 10.22.112.221 30 msec 10.22.112.219 30 msec 10.22.112.223 30 msec 11 10.175.9.193 30 msec 30 msec 10.175.9.67 30 msec 12 100.94.68.79 40 msec 100.94.70.79 30 msec 100.94.71.73 30 msec 13 100.94.80.39 30 msec 100.94.80.205 40 msec 100.94.80.137 40 msec 14 10.215.80.2 30 msec 10.215.68.16 30 msec 10.175.244.2 30 msec 15 * * * 16 * * * 17 * * * and it does the same thing from my FiOS connection at home: C:\>tracert www.btfl.com Tracing route to www.btfl.com [157.56.176.94] over a maximum of 30 hops: 1 1 ms <1 ms <1 ms myrouter.home [192.168.1.1] 2 8 ms 7 ms 8 ms <redacted> 3 10 ms 13 ms 11 ms <redacted> 4 12 ms 10 ms 10 ms ae2-0.TPA01-BB-RTR2.verizon-gni.net [130.81.199.82] 5 16 ms 16 ms 15 ms 0.ae4.XL2.MIA19.ALTER.NET [152.63.8.117] 6 14 ms 16 ms 16 ms 0.xe-11-0-0.GW1.MIA19.ALTER.NET [152.63.85.94] 7 19 ms 16 ms 16 ms microsoft-gw.customer.alter.net [63.65.188.170] 8 27 ms 33 ms * ge-5-3-0-0.ash-64cb-1a.ntwk.msn.net [207.46.46.177] 9 * * * Request timed out. 10 44 ms 43 ms 43 ms 207.46.37.235 11 42 ms 41 ms 40 ms 10.22.112.225 12 42 ms 43 ms 43 ms 10.175.9.1 13 42 ms 41 ms 42 ms 100.94.68.79 14 40 ms 40 ms 41 ms 100.94.80.193 15 * * * Request timed out.

    Read the article

  • How do large blobs affect SQL delete performance, and how can I mitigate the impact?

    - by Max Pollack
    I'm currently experiencing a strange issue that my understanding of SQL Server doesn't quite mesh with. We use SQL as our file storage for our internal storage service, and our database has about half a million rows in it. Most of the files (86%) are 1mb or under, but even on fresh copies of our database where we simply populate the table with data for the purposes of a test, it appears that rows with large amounts of data stored in a BLOB frequently cause timeouts when our SQL Server is under load. My understanding of how SQL Server deletes rows is that it's a garbage collection process, i.e. the row is marked as a ghost and the row is later deleted by the ghost cleanup process after the changes are copied to the transaction log. This suggests to me that regardless of the size of the data in the blob, row deletion should be close to instantaneous. However when deleting these rows we are definitely experiencing large numbers of timeouts and astoundingly low performance. In our test data set, its files over 30mb that cause this issue. This is an edge case, we don't frequently encounter these, and even though we're looking into SQL filestream as a solution to some of our problems, we're trying to narrow down where these issues are originating from. We ARE performing our deletes inside of a transaction. We're also performing updates to metadata such as file size stats, but these exist in a separate table away from the file data itself. Hierarchy data is stored in the table that contains the file information. Really, in the end it's not so much what we're doing around the deletes that matters, we just can't find any references to low delete performance on rows that contain a large amount of data in a BLOB. We are trying to determine if this is even an avenue worth exploring, or if it has to be one of our processes around the delete that's causing the issue. Are there any situations in which this could occur? Is it common for a database server to come to the point of complete timeouts when many of these deletes are occurring simultaneously? Is there a way to combat this issue if it exists? (cross-posted from StackOverflow )

    Read the article

  • Thunderbird 3: can't change column width?

    - by rumtscho
    I recently installed Thunderbird 3.0.3. Just noticed a suboptimal UI setting: in the upper pane, which lists the e-mails in the current folder, the Date column is about 200px wide. So when I keep the window at 480x600, all I see in a row is: | tree icon | favourites icon | attachment icon | read icon | junk icon | Date and time, followed by 5cm whitespace | ... | P Where "P" is the first letter of the name of the sender. And the "..." is actually shown this way, I have no idea which column it is meant to be. But I don't see neither the sender, nor the message subject, which makes scrolling a folder for a certain mail rather pointless. I see these when I maximize the window, actually the columns are then not only bigger, they are arranged in another sequence. But I feel that holding a mail client permanently maximised at 1600x1200 is a waste of screen real estate. My naive solution attempt was to try to go with the mouse cursor to the right edge of the date column and try to shrink it by moving the cursor left while holding down the left mouse button. Not only is this default behaviour for all resizable columns I've ever encountered in GUIs, the cursor actually turns into a horizontal double-headed arrow. But pulling has no effect at all. I cannot make a wide column narrow, and I cannot make the narrow columns wide. I didn't find anything in the preferences either. So can please somebody explain how to get the columns arranged sensibly? Edit: I found out that I only have the problem when I drag the Thunderbird window to a GridMove screen area. It gets automatically resized, but doesn't notice the resize event or something, so the column width remains the same as under a maximized window. First making the window narrow using the mouse helps with column width, but the width of the mail pane is still too wide (rows don't reflow). Anyway, this seems to be a bug caused by the combination of the two applications and not a configuration problem, so I guess I'll have to live with it.

    Read the article

  • Tool or script to detect moved or renamed files on Linux prior to a backup

    - by Pharaun
    Basically I am searching to see if there exists a tool or script that can detect moved or renamed files so that I can get a list of renamed/moved files and apply the same operation on the other end of the network to conserve on bandwidth. Basically disk storage is cheap but bandwidth isn't, and the problem is that the files often will be reorganized or moved around into a better directory structure thus when you use rsync to do the backup, rsync won't notice that its a renamed or moved file and re-transmission it over the network all over again despite having the same file on the other end. So I am wondering if there exists a script or tool that can record where all the files are and their names, then just prior to a backup, it would rescan and detect moved or renamed files, then I can take that list and re-apply the move/rename operation on the other side. Here's a list of the "general" features of the files: Large unchanging files They can be renamed or moved around [Edit:] These all are good answers, and what I end up doing in the end was looking at all of the answers and will be writing some code to deal with this. Basically what I am thinking/working on now is: Using something like AIDE for the "initial" scan and enable me to keep checksums on the files because they are supposed to never change, so it would aid on detecting corruption. Creating an inotify daemon that would monitor these files/directory and recording any changes relating to renames & moving the files around to a log file. There are some edge cases where inotify might fail to record that something happened to the file system, thus there is a final step of using find to search the file system for files that has a change time latter than the last backup. This has several benefits: Checksums/etc from AIDE to be able to check/make sure that some media did not get corrupt Inotify keeps resource usage low and no need to re-scan the filesystem over and over No need to patch rsync; If I have to patch things I can, but I would prefer to avoid patching things to keep the burden lower, (IE don't need to re-patch everytime there is an update). I've used Unison before and its really nice, however I could've sworn that Unison does keep copies around on the filesystem and that its "archive" files can grow to be rather large?

    Read the article

  • Nginx Reverse Proxy Node.js and Wordpress + Static Files Issue

    - by joemccann
    I have had quite a time trying to get nginx to serve static assets from my wordpress blog. Have a look at the config and let me know if you can help. ( https://gist.github.com/1130332 - to see the entire thing) server { listen 80; server_name subprint.com; access_log /var/www/subprint/logs/access.log; error_log /var/www/subprint/logs/error.log; root /var/www/subprint/server/public; # express serves static resources for subprint.com out of here location / { proxy_pass http://127.0.0.1:8124; root /var/www/subprint/server; access_log on; } #serve static assets location ~* ^(?!\/).+\.(jpg|jpeg|gif|png|ico|css|zip|tgz|gz|rar|bz2|pdf|txt|tar|wav|bmp|rtf|js|flv|swf|html|htm)$ { expires max; access_log off; } # the route for the wordpress blog # unfortunately the static assets (css, img, etc.) are not being pathed/served properly location /blog { root /var/www/localhost/public; index index.php; access_log /var/www/localhost/logs/access.log; error_log /var/www/localhost/logs/error.log; if (!-e $request_filename) { rewrite ^/(.*)$ /index.php?q=$1 last; break; } if (!-f $request_filename) { rewrite /blog$ /blog/index.php last; break; } } # actually serves the wordpress and subsequently phpmyadmin location ~* (?!\/blog).+\.php$ { fastcgi_pass localhost:9000; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME /var/www/localhost/public$fastcgi_script_name; fastcgi_param PATH_INFO $fastcgi_script_name; include /usr/local/nginx/conf/fastcgi_params; } # This works fine, but ONLY with a symlink inside the /var/www/localhost/public directory pointing to /usr/share/phpmyadmin location /phpmyadmin { index index.php; access_log /var/www/phpmyadmin/logs/access.log; error_log /var/www/phpmyadmin/logs/error.log; alias /usr/share/phpmyadmin/; if (!-f $request_filename) { rewrite /phpmyadmin$ /phpmyadmin/index.php permanent; break; } } # opt-in to the future add_header "X-UA-Compatible" "IE=Edge,chrome=1"; }

    Read the article

  • Fitting an Image to Screen on Rotation iPhone / iPad ?

    - by user356937
    I have been playing around with one of the iPhone examples from Apple' web site (ScrollViewSuite) . I am trying to tweak it a bit so that when I rotate the the iPad the image will fit into the screen in landscape mode vertical. I have been successful in getting the image to rotate, but the image is larger than the height of the landscape screen, so the bottom is below the screen. I would like to image to scale to the height of the landscape screen. I have been playing around with various autoSizingMask attributes without success. The imageView is called "zoomView" this is the actual image which loads into a scrollView called imageScrollView. I am trying to achieve the screen to rotate and look like this.... olsonvox.com/photos/correct.png However, this is what My screen is looking like. olsonvox.com/photos/incorrect.png I would really appreciate some advice or guidance. Below is the RootViewController.m for the project. Blade # import "RootViewController.h" #define ZOOM_VIEW_TAG 100 #define ZOOM_STEP 1.5 #define THUMB_HEIGHT 150 #define THUMB_V_PADDING 25 #define THUMB_H_PADDING 25 #define CREDIT_LABEL_HEIGHT 25 #define AUTOSCROLL_THRESHOLD 30 @interface RootViewController (ViewHandlingMethods) - (void)toggleThumbView; - (void)pickImageNamed:(NSString *)name; - (NSArray *)imageNames; - (void)createThumbScrollViewIfNecessary; - (void)createSlideUpViewIfNecessary; @end @interface RootViewController (AutoscrollingMethods) - (void)maybeAutoscrollForThumb:(ThumbImageView *)thumb; - (void)autoscrollTimerFired:(NSTimer *)timer; - (void)legalizeAutoscrollDistance; - (float)autoscrollDistanceForProximityToEdge:(float)proximity; @end @interface RootViewController (UtilityMethods) - (CGRect)zoomRectForScale:(float)scale withCenter:(CGPoint)center; @end @implementation RootViewController - (void)loadView { [super loadView]; imageScrollView = [[UIScrollView alloc] initWithFrame:[[self view]bounds]]; // this code makes the image resize to the width and height properly. imageScrollView.autoresizingMask = UIViewAutoresizingFlexibleHeight | UIViewAutoresizingFlexibleLeftMargin | UIViewAutoresizingFlexibleRightMargin| UIViewAutoresizingFlexibleBottomMargin| UIViewAutoresizingFlexibleBottomMargin; // TRY SETTNG CENTER HERE SOMEHOW&gt;.... [imageScrollView setBackgroundColor:[UIColor blackColor]]; [imageScrollView setDelegate:self]; [imageScrollView setBouncesZoom:YES]; [[self view] addSubview:imageScrollView]; [self toggleThumbView]; // intitializes with the first image. [self pickImageNamed:@"lookbook1"]; } - (void)dealloc { [imageScrollView release]; [slideUpView release]; [thumbScrollView release]; [super dealloc]; } #pragma mark UIScrollViewDelegate methods - (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView { UIView *view = nil; if (scrollView == imageScrollView) { view = [imageScrollView viewWithTag:ZOOM_VIEW_TAG]; } return view; } /************************************** NOTE **************************************/ /* The following delegate method works around a known bug in zoomToRect:animated: */ /* In the next release after 3.0 this workaround will no longer be necessary */ /**********************************************************************************/ - (void)scrollViewDidEndZooming:(UIScrollView *)scrollView withView:(UIView *)view atScale:(float)scale { [scrollView setZoomScale:scale+0.01 animated:NO]; [scrollView setZoomScale:scale animated:NO]; } #pragma mark TapDetectingImageViewDelegate methods - (void)tapDetectingImageView:(TapDetectingImageView *)view gotSingleTapAtPoint:(CGPoint)tapPoint { // Single tap shows or hides drawer of thumbnails. [self toggleThumbView]; } - (void)tapDetectingImageView:(TapDetectingImageView *)view gotDoubleTapAtPoint:(CGPoint)tapPoint { // double tap zooms in float newScale = [imageScrollView zoomScale] * ZOOM_STEP; CGRect zoomRect = [self zoomRectForScale:newScale withCenter:tapPoint]; [imageScrollView zoomToRect:zoomRect animated:YES]; } - (void)tapDetectingImageView:(TapDetectingImageView *)view gotTwoFingerTapAtPoint:(CGPoint)tapPoint { // two-finger tap zooms out float newScale = [imageScrollView zoomScale] / ZOOM_STEP; CGRect zoomRect = [self zoomRectForScale:newScale withCenter:tapPoint]; [imageScrollView zoomToRect:zoomRect animated:YES]; } #pragma mark ThumbImageViewDelegate methods - (void)thumbImageViewWasTapped:(ThumbImageView *)tiv { [self pickImageNamed:[tiv imageName]]; [self toggleThumbView]; } - (void)thumbImageViewStartedTracking:(ThumbImageView *)tiv { [thumbScrollView bringSubviewToFront:tiv]; } // CONTROLS DRAGGING AND DROPPING THUMBNAILS... - (void)thumbImageViewMoved:(ThumbImageView *)draggingThumb { // check if we've moved close enough to an edge to autoscroll, or far enough away to stop autoscrolling [self maybeAutoscrollForThumb:draggingThumb]; /* The rest of this method handles the reordering of thumbnails in the thumbScrollView. See */ /* ThumbImageView.h and ThumbImageView.m for more information about how this works. */ // we'll reorder only if the thumb is overlapping the scroll view if (CGRectIntersectsRect([draggingThumb frame], [thumbScrollView bounds])) { BOOL draggingRight = [draggingThumb frame].origin.x &gt; [draggingThumb home].origin.x ? YES : NO; /* we're going to shift over all the thumbs who live between the home of the moving thumb */ /* and the current touch location. A thumb counts as living in this area if the midpoint */ /* of its home is contained in the area. */ NSMutableArray *thumbsToShift = [[NSMutableArray alloc] init]; // get the touch location in the coordinate system of the scroll view CGPoint touchLocation = [draggingThumb convertPoint:[draggingThumb touchLocation] toView:thumbScrollView]; // calculate minimum and maximum boundaries of the affected area float minX = draggingRight ? CGRectGetMaxX([draggingThumb home]) : touchLocation.x; float maxX = draggingRight ? touchLocation.x : CGRectGetMinX([draggingThumb home]); // iterate through thumbnails and see which ones need to move over for (ThumbImageView *thumb in [thumbScrollView subviews]) { // skip the thumb being dragged if (thumb == draggingThumb) continue; // skip non-thumb subviews of the scroll view (such as the scroll indicators) if (! [thumb isMemberOfClass:[ThumbImageView class]]) continue; float thumbMidpoint = CGRectGetMidX([thumb home]); if (thumbMidpoint &gt;= minX &amp;&amp; thumbMidpoint &lt;= maxX) { [thumbsToShift addObject:thumb]; } } // shift over the other thumbs to make room for the dragging thumb. (if we're dragging right, they shift to the left) float otherThumbShift = ([draggingThumb home].size.width + THUMB_H_PADDING) * (draggingRight ? -1 : 1); // as we shift over the other thumbs, we'll calculate how much the dragging thumb's home is going to move float draggingThumbShift = 0.0; // send each of the shifting thumbs to its new home for (ThumbImageView *otherThumb in thumbsToShift) { CGRect home = [otherThumb home]; home.origin.x += otherThumbShift; [otherThumb setHome:home]; [otherThumb goHome]; draggingThumbShift += ([otherThumb frame].size.width + THUMB_H_PADDING) * (draggingRight ? 1 : -1); } // change the home of the dragging thumb, but don't send it there because it's still being dragged CGRect home = [draggingThumb home]; home.origin.x += draggingThumbShift; [draggingThumb setHome:home]; } } - (void)thumbImageViewStoppedTracking:(ThumbImageView *)tiv { // if the user lets go of the thumb image view, stop autoscrolling [autoscrollTimer invalidate]; autoscrollTimer = nil; } #pragma mark Autoscrolling methods - (void)maybeAutoscrollForThumb:(ThumbImageView *)thumb { autoscrollDistance = 0; // only autoscroll if the thumb is overlapping the thumbScrollView if (CGRectIntersectsRect([thumb frame], [thumbScrollView bounds])) { CGPoint touchLocation = [thumb convertPoint:[thumb touchLocation] toView:thumbScrollView]; float distanceFromLeftEdge = touchLocation.x - CGRectGetMinX([thumbScrollView bounds]); float distanceFromRightEdge = CGRectGetMaxX([thumbScrollView bounds]) - touchLocation.x; if (distanceFromLeftEdge &lt; AUTOSCROLL_THRESHOLD) { autoscrollDistance = [self autoscrollDistanceForProximityToEdge:distanceFromLeftEdge] * -1; // if scrolling left, distance is negative } else if (distanceFromRightEdge &lt; AUTOSCROLL_THRESHOLD) { autoscrollDistance = [self autoscrollDistanceForProximityToEdge:distanceFromRightEdge]; } } // if no autoscrolling, stop and clear timer if (autoscrollDistance == 0) { [autoscrollTimer invalidate]; autoscrollTimer = nil; } // otherwise create and start timer (if we don't already have a timer going) else if (autoscrollTimer == nil) { autoscrollTimer = [NSTimer scheduledTimerWithTimeInterval:(1.0 / 60.0) target:self selector:@selector(autoscrollTimerFired:) userInfo:thumb repeats:YES]; } } - (float)autoscrollDistanceForProximityToEdge:(float)proximity { // the scroll distance grows as the proximity to the edge decreases, so that moving the thumb // further over results in faster scrolling. return ceilf((AUTOSCROLL_THRESHOLD - proximity) / 5.0); } - (void)legalizeAutoscrollDistance { // makes sure the autoscroll distance won't result in scrolling past the content of the scroll view float minimumLegalDistance = [thumbScrollView contentOffset].x * -1; float maximumLegalDistance = [thumbScrollView contentSize].width - ([thumbScrollView frame].size.width + [thumbScrollView contentOffset].x); autoscrollDistance = MAX(autoscrollDistance, minimumLegalDistance); autoscrollDistance = MIN(autoscrollDistance, maximumLegalDistance); } - (void)autoscrollTimerFired:(NSTimer*)timer { [self legalizeAutoscrollDistance]; // autoscroll by changing content offset CGPoint contentOffset = [thumbScrollView contentOffset]; contentOffset.x += autoscrollDistance; [thumbScrollView setContentOffset:contentOffset]; // adjust thumb position so it appears to stay still ThumbImageView *thumb = (ThumbImageView *)[timer userInfo]; [thumb moveByOffset:CGPointMake(autoscrollDistance, 0)]; } #pragma mark View handling methods - (void)toggleThumbView { [self createSlideUpViewIfNecessary]; // no-op if slideUpView has already been created CGRect frame = [slideUpView frame]; if (thumbViewShowing) { frame.origin.y = 0; } else { frame.origin.y = -225; } [UIView beginAnimations:nil context:nil]; [UIView setAnimationDuration:0.3]; [slideUpView setFrame:frame]; [UIView commitAnimations]; thumbViewShowing = !thumbViewShowing; } - (void)pickImageNamed:(NSString *)name { // first remove previous image view, if any [[imageScrollView viewWithTag:ZOOM_VIEW_TAG] removeFromSuperview]; UIImage *image = [UIImage imageNamed:[NSString stringWithFormat:@"%@.jpg", name]]; TapDetectingImageView *zoomView = [[TapDetectingImageView alloc] initWithImage:image]; zoomView.autoresizingMask = UIViewAutoresizingFlexibleWidth ; [zoomView setDelegate:self]; [zoomView setTag:ZOOM_VIEW_TAG]; [imageScrollView addSubview:zoomView]; [imageScrollView setContentSize:[zoomView frame].size]; [zoomView release]; // choose minimum scale so image width fits screen float minScale = [imageScrollView frame].size.width / [zoomView frame].size.width; [imageScrollView setMinimumZoomScale:minScale]; [imageScrollView setZoomScale:minScale]; [imageScrollView setContentOffset:CGPointZero]; } - (NSArray *)imageNames { // the filenames are stored in a plist in the app bundle, so create array by reading this plist NSString *path = [[NSBundle mainBundle] pathForResource:@"Images" ofType:@"plist"]; NSData *plistData = [NSData dataWithContentsOfFile:path]; NSString *error; NSPropertyListFormat format; NSArray *imageNames = [NSPropertyListSerialization propertyListFromData:plistData mutabilityOption:NSPropertyListImmutable format:&amp;format errorDescription:&amp;error]; if (!imageNames) { NSLog(@"Failed to read image names. Error: %@", error); [error release]; } return imageNames; } - (void)createSlideUpViewIfNecessary { if (!slideUpView) { [self createThumbScrollViewIfNecessary]; CGRect bounds = [[self view] bounds]; float thumbHeight = [thumbScrollView frame].size.height; float labelHeight = CREDIT_LABEL_HEIGHT; // create label giving credit for images UILabel *creditLabel = [[UILabel alloc] initWithFrame:CGRectMake(0, thumbHeight, bounds.size.width, labelHeight)]; [creditLabel setBackgroundColor:[UIColor clearColor]]; [creditLabel setTextColor:[UIColor whiteColor]]; // [creditLabel setFont:[UIFont fontWithName:@"Helvetica" size:16]]; // [creditLabel setText:@"SAMPLE TEXT"]; [creditLabel setTextAlignment:UITextAlignmentCenter]; // create container view that will hold scroll view and label CGRect frame = CGRectMake(0.0, -225.00, bounds.size.width+256, thumbHeight + labelHeight); slideUpView.autoresizingMask = UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleTopMargin; slideUpView = [[UIView alloc] initWithFrame:frame]; [slideUpView setBackgroundColor:[UIColor blackColor]]; [slideUpView setOpaque:NO]; [slideUpView setAlpha:.75]; [[self view] addSubview:slideUpView]; // add subviews to container view [slideUpView addSubview:thumbScrollView]; [slideUpView addSubview:creditLabel]; [creditLabel release]; } } - (void)createThumbScrollViewIfNecessary { if (!thumbScrollView) { float scrollViewHeight = THUMB_HEIGHT + THUMB_V_PADDING; float scrollViewWidth = [[self view] bounds].size.width; thumbScrollView = [[UIScrollView alloc] initWithFrame:CGRectMake(0, 0, scrollViewWidth, scrollViewHeight)]; [thumbScrollView setCanCancelContentTouches:NO]; [thumbScrollView setClipsToBounds:NO]; // now place all the thumb views as subviews of the scroll view // and in the course of doing so calculate the content width float xPosition = THUMB_H_PADDING; for (NSString *name in [self imageNames]) { UIImage *thumbImage = [UIImage imageNamed:[NSString stringWithFormat:@"%@_thumb.jpg", name]]; if (thumbImage) { ThumbImageView *thumbView = [[ThumbImageView alloc] initWithImage:thumbImage]; [thumbView setDelegate:self]; [thumbView setImageName:name]; CGRect frame = [thumbView frame]; frame.origin.y = THUMB_V_PADDING; frame.origin.x = xPosition; [thumbView setFrame:frame]; [thumbView setHome:frame]; [thumbScrollView addSubview:thumbView]; [thumbView release]; xPosition += (frame.size.width + THUMB_H_PADDING); } } [thumbScrollView setContentSize:CGSizeMake(xPosition, scrollViewHeight)]; } } #pragma mark Utility methods - (CGRect)zoomRectForScale:(float)scale withCenter:(CGPoint)center { CGRect zoomRect; // the zoom rect is in the content view's coordinates. // At a zoom scale of 1.0, it would be the size of the imageScrollView's bounds. // As the zoom scale decreases, so more content is visible, the size of the rect grows. zoomRect.size.height = [imageScrollView frame].size.height / scale; zoomRect.size.width = [imageScrollView frame].size.width / scale; // choose an origin so as to get the right center. zoomRect.origin.x = center.x - (zoomRect.size.width / 2.0); zoomRect.origin.y = center.y - (zoomRect.size.height / 2.0); return zoomRect; } #pragma mark - #pragma mark Rotation support // Ensure that the view controller supports rotation and that the split view can therefore show in both portrait and landscape. - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { return YES; } @end

    Read the article

  • SQL SERVER – Remove Debug Button in SSMS – SQL in Sixty Seconds #020 – Video

    - by pinaldave
    SQL in Sixty Seconds is indeed tremendous fun to do. Every week, we try to come up with some new learning which we can share in Sixty Seconds. In this busy world, we all have sixty seconds to learn something new – no matter how much busy we are. In this episode of the series, we talk about another interesting feature of SQL Server Management Studio. In SQL Server Management Studio (SSMS) we have two button side by side. 1) Execute (!) and 2) Debug (>). It is quite confusing to a few developers. The debug button which looks like a play button encourages developers to click on the same thinking it will execute the code. Also developer with a Visual Studio background often click it because of their habit. However, Debug button is not the same as Execute button. In most of the cases developers want to click on Execute to run the query but by mistake they click on Debug and it wastes their valuable time. It is very easy to fix this. If developers are not frequently using a debug feature in SQL Server they should hide it from the toolbar itself. This will reduce the chances to incorrectly click on the debug button greatly as well save lots of time for developer as invoking debug processes and turning it off takes a few extra moments. In this Sixty second video we will discuss how one can hide the debug button and avoid confusion regarding execution button. I personally use function key F5 to execute the T-SQL code so I do not face this problem that often. More on Removing Debug Button in SSMS: SQL SERVER – Read Only Files and SQL Server Management Studio (SSMS) SQL SERVER – Standard Reports from SQL Server Management Studio – SQL in Sixty Seconds #016 – Video SQL SERVER – Discard Results After Query Execution – SSMS SQL SERVER – Tricks to Comment T-SQL in SSMS – SQL in Sixty Seconds #019 – Video SQL SERVER – Right Aligning Numerics in SQL Server Management Studio (SSMS) I encourage you to submit your ideas for SQL in Sixty Seconds. We will try to accommodate as many as we can. If we like your idea we promise to share with you educational material. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

  • The Challenge with HTML5 – In Pictures

    - by dwahlin
    I love working with Web technologies and am looking forward to the new functionality that HTML5 will ultimately bring to the table (some of which can be used today). Having been through the div versus layer battle back in the IE4 and Netscape 4 days I think we’re headed down that road again as a result of browsers implementing features differently. I’ve been spending a lot of time researching and playing around with HTML5 samples and features (mainly because we’re already seeing demand for training on HTML5) and there’s a lot of great stuff there that will truly revolutionize web applications as we know them. However, browsers just aren’t there yet and many people outside of the development world don’t really feel a need to upgrade their browser if it’s working reasonably well (Mom and Dad come to mind) so it’s going to be awhile. There’s a nice test site at http://www.HTML5Test.com that runs through different HTML5 features and scores how well they’re supported. They don’t test for everything and are very clear about that on the site: “The HTML5 test score is only an indication of how well your browser supports the upcoming HTML5 standard and related specifications. It does not try to test all of the new features offered by HTML5, nor does it try to test the functionality of each feature it does detect. Despite these shortcomings we hope that by quantifying the level of support users and web developers will get an idea of how hard the browser manufacturers work on improving their browsers and the web as a development platform. The score is calculated by testing for the many new features of HTML5. Each feature is worth one or more points. Apart from the main HTML5 specification and other specifications created the W3C HTML Working Group, this test also awards points for supporting related drafts and specifications. Some of these specifications were initially part of HTML5, but are now further developed by other W3C working groups. WebGL is also part of this test despite not being developed by the W3C, because it extends the HTML5 canvas element with a 3d context. The test also awards bonus points for supporting audio and video codecs and supporting SVG or MathML embedding in a plain HTML document. These test do not count towards the total score because HTML5 does not specify any required audio or video codec. Also SVG and MathML are not required by HTML5, the specification only specifies rules for how such content should be embedded inside a plain HTML file. Please be aware that the specifications that are being tested are still in development and could change before receiving an official status. In the future new tests will be added for the pieces of the specification that are currently still missing. The maximum number of points that can be scored is 300 at this moment, but this is a moving goalpost.” It looks like their tests haven’t been updated since June, but the numbers are pretty scary as a developer because it means I’m going to have to do a lot of browser sniffing before assuming a particular feature is available to use. Not that much different from what we do today as far as browser sniffing you say? I’d have to disagree since HTML5 takes it to a whole new level. In today’s world we have script libraries such as jQuery (my personal favorite), Prototype, script.aculo.us, YUI Library, MooTools, etc. that handle the heavy lifting for us. Until those libraries handle all of the key HTML5 features available it’s going to be a challenge. Certain features such as Canvas are supported fairly well across most of the major browsers while other features such as audio and video are hit or miss depending upon what codec you want to use. Run the tests yourself to see what passes and what fails for different browsers. You can also view the HTML5 Test Suite Conformance Results at http://test.w3.org/html/tests/reporting/report.htm (a work in progress). The table below lists the scores that the HTML5Test site returned for different browsers I have installed on my desktop PC and laptop. A specific list of tests run and features supported are given when you go to the site. Note that I went ahead and tested the IE9 beta and it didn’t do nearly as good as I expected it would, but it’s not officially out yet so I expect that number will change a lot. Am I opposed to HTML5 as a result of these tests? Of course not - I’m actually really excited about what it offers.  However, I’m trying to be realistic and feel it'll definitely add a new level of headache to the Web application development process having been through something like this many years ago. On the flipside, developers that are able to target a specific browser (typically Intranet apps) or master the cross-browser issues are going to release some pretty sweet applications. Check out http://html5gallery.com/ for a look at some of the more cutting-edge sites out there that use HTML5. Also check out the http://www.beautyoftheweb.com site that Microsoft put together to showcase IE9. Chrome 8 Safari 5 for Windows     Opera 10 Firefox 3.6     Internet Explorer 9 Beta (Note that it’s still beta) Internet Explorer 8

    Read the article

  • Tales from the Trenches – Building a Real-World Silverlight Line of Business Application

    - by dwahlin
    There's rarely a boring day working in the world of software development. Part of the fun associated with being a developer is that change is guaranteed and the more you learn about a particular technology the more you realize there's always a different or better way to perform a task. I've had the opportunity to work on several different real-world Silverlight Line of Business (LOB) applications over the past few years and wanted to put together a list of some of the key things I've learned as well as key problems I've encountered and resolved. There are several different topics I could cover related to "lessons learned" (some of them were more painful than others) but I'll keep it to 5 items for this post and cover additional lessons learned in the future. The topics discussed were put together for a TechEd talk: Pick a Pattern and Stick To It Data Binding and Nested Controls Notify Users of Successes (and failures) Get an Agent – A Service Agent Extend Existing Controls The first topic covered relates to architecture best practices and how the MVVM pattern can save you time in the long run. When I was first introduced to MVVM I thought it was a lot of work for very little payoff. I've since learned (the hard way in some cases) that my initial impressions were dead wrong and that my criticisms of the pattern were generally caused by doing things the wrong way. In addition to MVVM pros the slides and sample app below also jump into data binding tricks in nested control scenarios and discuss how animations and media can be used to enhance LOB applications in subtle ways. Finally, a discussion of creating a re-usable service agent to interact with backend services is discussed as well as how existing controls make good candidates for customization. I tried to keep the samples simple while still covering the topics as much as possible so if you’re new to Silverlight you should definitely be able to follow along with a little study and practice. I’d recommend starting with the SilverlightDemos.View project, moving to the SilverlightDemos.ViewModels project and then going to the SilverlightDemos.ServiceAgents project. All of the backend “Model” code can be found in the SilverlightDemos.Web project. Custom controls used in the app can be found in the SivlerlightDemos.Controls project.   Sample Code and Slides

    Read the article

  • Serious about Embedded: Java Embedded @ JavaOne 2012

    - by terrencebarr
    It bears repeating: More than ever, the Java platform is the best technology for many embedded use cases. Java’s platform independence, high level of functionality, security, and developer productivity address the key pain points in building embedded solutions. Transitioning from 16 to 32 bit or even 64 bit? Need to support multiple architectures and operating systems with a single code base? Want to scale on multi-core systems? Require a proven security model? Dynamically deploy and manage software on your devices? Cut time to market by leveraging code, expertise, and tools from a large developer ecosystem? Looking for back-end services, integration, and management? The Java platform has got you covered. Java already powers around 10 billion devices worldwide, with traditional desktops and servers being only a small portion of that. And the ‘Internet of Things‘ is just really starting to explode … it is estimated that within five years, intelligent and connected embedded devices will outnumber desktops and mobile phones combined, and will generate the majority of the traffic on the Internet. Is your platform and services strategy ready for the coming disruptions and opportunities? It should come as no surprise that Oracle is keenly focused on Java for Embedded. At JavaOne 2012 San Francisco the dedicated track for Java ME, Java Card, and Embedded keeps growing, with 52 sessions, tutorials, Hands-on-Labs, and BOFs scheduled for this track alone, plus keynotes, demos, booths, and a variety of other embedded content. To further prove Oracle’s commitment, in 2012 for the first time there will be a dedicated sub-conference focused on the business aspects of embedded Java: Java Embedded @ JavaOne. This conference will run for two days in parallel to JavaOne in San Francisco, will have its own business-oriented track and content, and targets C-level executives, architects, business leaders, and decision makers. Registration and Call For Papers for Java Embedded @ JavaOne are now live. We expect a lot of interest in this new event and space is limited, so be sure to submit your paper and register soon. Hope to see you there! Cheers, – Terrence Filed under: Mobile & Embedded Tagged: ARM, Call for Papers, Embedded Java, Java Embedded, Java Embedded @ JavaOne, Java ME, Java SE Embedded, Java SE for Embedded, JavaOne San Francisco, PowerPC

    Read the article

  • Mobile HCM: It’s not the future, it is right now

    - by Natalia Rachelson
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} A guest post by Steve Boese, Director Product Strategy, Oracle I’ll bet you reached for your iPhone or Android or BlackBerry and took a quick look at email or Facebook or last night’s text messages before you even got out of bed this morning. Come on, admit it, it’s ok, you are among friends here. See, feel better now? But seriously, the incredible growth and near-ubiquity of increasingly powerful, capable, and for many of us, essential in our daily lives mobile devices has profoundly changed the way we communicate, consume information, socialize, and more and more, conduct business and get our work done. And if you doubt that profound change has happened, just think for a moment about the last time you misplaced your iPhone.  The shivers, the cold sweats, the panic... We have all been there. And indeed your personal experiences with mobile technology echoes throughout the world - here are a few data points to consider: Market research firm IDC estimates 1.8 billion mobile phones will be shipped in 2012. A recent Pew study reports 46% of Americans own a smartphone of some kind. And finally in the USA, ownership of tablets like the iPad has doubled from 10% to 19% in the last year. So truly for the Human Resources leader, the question is no longer, ‘Should HR explore ways to exploit mobile devices and their always-on nature to better support and empower the modern workforce?’, but rather ‘How can HR best take advantage of smartphone and tablet capability to provide information, enable transactions, and enhance decision making?’. Because even though moving HCM applications to mobile devices seems inherently logical given today’s fast-moving and mobile workforces, and its promise to deliver incredible value to the organization, HR leaders also have to consider many factors before devising their Mobile HCM strategy and embarking on mobile HR technology projects. Here are just some of the important considerations for HR leaders as you build your strategies and evaluate mobile HCM solutions: Does your organization provide mobile devices to the workforce today, and if so, will the current set of deployed devices have the necessary capability and ecosystems to support your mobile HCM initiatives? Will you allow workers to use or bring their own mobile devices, (commonly abbreviated as ‘BYOD’), and if so are your IT and Security organizations in agreement and capable of supporting that strategy? Do you know which workers need access to mobile HCM applications? Often mobile HCM capability flows down in an organization, with executives and other ‘road-warrior’ types having the most immediate needs, followed by field sales staff, project managers, and even potential job candidates. But just as an organization will have to spend time understanding ‘who’ should have access to mobile HCM technology, the ‘what’ of the way the solutions should be deployed to these groups will also vary. What works and makes sense for the executive, (company-wide dashboards and analytics on an iPad), might not be as relevant for a retail store manager, (employee schedules, location-level sales and inventory data, transaction approvals, etc.). With Oracle Fusion HCM, we are taking an approach to mobile HR that encompasses not just the mobile solution needs for the various types of worker, but also incorporates the fundamental attributes of great mobile applications - the ability to support end-to-end transactions, apps that respond with lightning-fast speed, with functions that are embedded in a worker’s daily activities, and features that can be mashed-up easily with other business areas like Finance and CRM. Finally, and perhaps most importantly for the Oracle Fusion HCM team, delivering mobile experiences that truly enhance, enable, and empower the mobile workforce, and deliver on the design mantras of the best-in-class consumer applications, continues to shape and drive design decisions. Mobile is no longer the future, it is right now, and the cutting-edge HR leader of today will need to consider how mobile fits her HCM technology strategy from here on out. You can learn more about our ideas and plans for Oracle Fusion HCM mobile solutions at https://fusiontap.oracle.com/.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Unable to ssh out anywhere - ssh_exchange_identification

    - by Chowlett
    I have a setup where I'm running Ubuntu 11.10 as a VirtualBox guest under a Windows 7 host, behind a restrictive corporate firewall. I have set up NAT from the host port 22 to Ubuntu's port 22; IT inform me that they have opened port 22 outbound for the host machine's IP address. I have run ssh-keygen -t rsa, and am trying to test the setup by connecting to github and another known ssh server. In both cases the connect is refused with ssh_exchange_identification: Connection closed by remote host. Full -vvv log is below. Is this possibly still due to the corporate firewall? If so, what else might I need to request from them? Any other ideas what might be wrong and how to fix it? ~$ ssh -Tvvv [email protected] OpenSSH_5.8p1 Debian-7ubuntu1, OpenSSL 1.0.0e 6 Sep 2011 debug1: Reading configuration data /etc/ssh/ssh_config debug1: Applying options for * debug2: ssh_connect: needpriv 0 debug1: Connecting to github.com [207.97.227.239] port 22. debug1: Connection established. debug3: Incorrect RSA1 identifier debug3: Could not load "/home/chris/.ssh/id_rsa" as a RSA1 public key debug2: key_type_from_name: unknown key type '-----BEGIN' debug3: key_read: missing keytype debug2: key_type_from_name: unknown key type 'Proc-Type:' debug3: key_read: missing keytype debug2: key_type_from_name: unknown key type 'DEK-Info:' debug3: key_read: missing keytype debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug2: key_type_from_name: unknown key type '-----END' debug3: key_read: missing keytype debug1: identity file /home/chris/.ssh/id_rsa type 1 debug1: Checking blacklist file /usr/share/ssh/blacklist.RSA-2048 debug1: Checking blacklist file /etc/ssh/blacklist.RSA-2048 debug1: identity file /home/chris/.ssh/id_rsa-cert type -1 debug1: identity file /home/chris/.ssh/id_dsa type -1 debug1: identity file /home/chris/.ssh/id_dsa-cert type -1 debug1: identity file /home/chris/.ssh/id_ecdsa type -1 debug1: identity file /home/chris/.ssh/id_ecdsa-cert type -1 ssh_exchange_identification: Connection closed by remote host Edit: Requested diagnostics: ~$ ls -la ~/.ssh total 16 drwx------ 2 chris chris 4096 2012-03-30 13:12 . drwxr-xr-x 29 chris chris 4096 2012-03-30 13:25 .. -rw------- 1 chris chris 1766 2012-03-30 13:12 id_rsa -rw-r--r-- 1 chris chris 409 2012-03-30 13:12 id_rsa.pub

    Read the article

  • Multitask Like a Pro with AquaSnap

    - by Matthew Guay
    Are you tired of shuffling back and forth between windows?  Here’s a handy app that can help you keep all of your windows organized and accessible. AquaSnap is a great free utility that helps you use multiple windows at the same time easily and efficiently.  One of Windows 7’s greatest new features is Aero Snap, which lets you easily view windows side by side by simply dragging windows to side of your screen.  After using Windows 7 for the past year, Aero Snap is one of the features we really miss when using older versions of Windows. With AquaSnap, you now have all of the features of Aero Snap and more in Windows 2000, XP, Vista, and of course Windows 7.  Not only does it give you Aero Snap features, but AquaSnap also gives you more control over your windows to make you more productive. Getting Started AquaSnap is a a free download for Windows 2000, XP, Vista, and 7.  Download the small installer (link below) and install it with the default settings. AquaSnap automatically runs as soon as it is installed, and you will notice a new icon in your system tray. Now you can go ahead and put it to use.  Drag a window to any edge or corner of your desktop, and you will see an icon showing what part of the screen the window will cover. Dragging it to the side of the screen expanded the window to fill the right half of the screen, just like the default Aero Snap in Windows 7.  You can drag the window away to restore it to its former size. AquaSnap works on any corner of the screen too, so you can have 4 windows side-by-side.  We already have 3 windows snapped to the corners, and notice that we’re dragging a fourth window to the bottom right corner. You can also snap windows to the bottom and top of the screen.  Here we have Word snapped to the bottom half of the screen, and we’re dragging Chrome to the top. You can even snap internal windows in Multiple Document Interface (MDI) programs such as Excel.  Here we are snapping a workbook in Excel to the left to view 2 workbooks side-by-side.   Additionally, AquaSnap lets you keep any window always on top.  Simply shake any window, and it will turn semi-transparent and stay on top of all other windows.  Notice the transparent calculator here on top of Excel. All of AquaSnap’s features work great in Windows 2000, XP, and Vista too.  Here we are snapping IE6 to the left of the screen in XP. Here are 3 windows snapped to the sides in XP.  You can mix the snap modes, and have, for instance, two windows on the right side and one window on the left.  This is a great way to maximize productivity if you need more space in one of the windows. Even AquaShake works to keep a window transparent and on top in XP. Settings AquaSnap has a detailed settings dialog where you can tweak it to work exactly like you want.  Simply right-click on its icon in the taskbar, and select Settings. From the first screen, you can choose if you want AquaSnap to start with Windows, and if you want it to show an icon in the system tray.  If you turn off the system tray icon, you can access the AquaSnap settings from Start > All Programs > AquaSnap > Configuration (or simply search for Configuration in Vista or Windows 7). The second tab in settings lets you choose what you want each snapping region to do.  You can also choose two other presets, including AeroSnap (which works just like the default Aero Snap in Windows 7) and AquaSnap simple (which only snaps at the edges of the screen, not the corners). The third tab lets you increase or decrease the opacity of pinned windows when using AquaShake, and also lets you increase or decrease the shaking sensitivity.  Additionally, if you prefer the standard AeroShake functionality, which minimizes all other open windows when you shake a window, you can choose that too. The fourth tab lets you activate an optional feature, AquaGlass.  If you activate this, it will make windows turn transparent when you drag them across the screen.   Finally, the last tab lets you change the color and opacity of the preview rectangle, or simply turn it off. Or, if you want to temporarily turn AquaSnap off, simply right-click on its icon and select Off.  In Windows 7, turning off AquaSnap will restore your standard Windows Aero Snap functionality, and in other version of Windows it will stop letting you snap windows at all.  You can then repeat the steps and select On when you want to use AquaSnap again. Conclusion AquaSnap is a handy tool to make you more productive at your computer.  With a wide variety of useful features, there’s something here for everyone.  Download AquaSnap Similar Articles Productive Geek Tips How to Get Virtual Desktops on Windows XP TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Out of band Security Update for Internet Explorer 7 Cool Looking Screensavers for Windows SyncToy syncs Files and Folders across Computers on a Network (or partitions on the same drive) If it were only this easy Classic Cinema Online offers 100’s of OnDemand Movies OutSync will Sync Photos of your Friends on Facebook and Outlook

    Read the article

  • JMX Based Monitoring - Part Two - JVM Monitoring

    - by Anthony Shorten
    This the second article in the series focussing on the JMX based monitoring capabilities possible with the Oracle Utilities Application Framework. In all versions of the Oracle utilities Application Framework, it is possible to use the basic JMX based monitoring available with the Java Virtual Machine to provide basic statistics ablut the JVM. In Java 5 and above, the JVM automatically allowed local monitoring of the JVM statistics from an approporiate console. When I say local I mean the monitoring tool must be executed from the same machine (and in some cases the same user that is running the JVM) to connect to the JVM directly. If you are using jconsole, for example, then you must have access to a GUI (X-Windows or Windows) to display the jconsole output. This is the easist way of monitoring without doing too much configration but is not always practical. Java offers a remote monitorig capability to allow yo to connect to a remotely executing JVM from a console (like jconsole). To use this facility additional JVM options must be added to the command line that started the JVM. Details of the additional options for the version of the Java you are running is located at the JMX information site. Typically to remotely connect to a running JVM that JVM must be configured with the following categories of options: JMX Port - The JVM must allow connections on a listening port specified on the command line Connection security - The connection to the JVM can be secured. This is recommended as JMX is not just a monitoring protocol it is a managemet protocol. It is possible to change values in a running JVM using JMX and there are NO "Are you sure?" safeguards. For a Oracle Utilities Application Framework based application there are a few guidelines when configuring and using this JMX based remote monitoring of the JVM's: Online JVM - The JVM used to run the online system is embedded within the J2EE Web Application Server. To enable JMX monitoring on this JVM you can either change the startup script that starts the Web Application Server or check whether your J2EE Web Application natively supports JVM statistics collection. Child JVM's (COBOL only) - The Child JVM's should not be monitored using this method as they are recycled regularly by the configuration and therefore statistics collected are of little value. Batch Threadpoools - Batch already has a JMX interface (which will be covered in another article). Additional monitoring can be enabled but the base supported monitoring is sufficient for most needs. If you are an Oracle Utilities Application Framework site, then you can specify the additional options for JMX Java monitoring on the OPTS paramaters supported for each component of the architecture. Just ensure the port numbers used are unique for each JVM running on any machine.

    Read the article

  • Last week I was presented with a Microsoft MVP award in Virtual Machines – time to thank all who hel

    - by Liam Westley
    MVP in Virtual Machines Last week, on 1st April, I received an e-mail from Microsoft letting me know that I had been presented with a 2010 Microsoft® MVP Award for outstanding contributions in Virtual Machine technical communities during the past year.   It was an honour to be nominated, and is a great reflection on the vibrancy of the UK user group community which made this possible. Virtualisation for developers, not just IT Pros I consider it a special honour as my expertise in virtualisation is as a software developer utilising virtual machines to aid my software development, rather than an IT Pro who manages data centre and network infrastructure.  I’ve been on a minor mission over the past few years to enthuse developers in a topic usually seen as only for network admins, but which can make their life a whole lot easier once understood properly. Continuous learning is fun In 1676, the scientist Isaac Newton, in a letter to Robert Hooke used the phrase (http://www.phrases.org.uk/meanings/268025.html) ‘If I have seen a little further it is by standing on the shoulders of Giants’ I’m a nuclear physicist by education, so I am more than comfortable that any knowledge I have is based on the work of others.  Although far from a science, software development and IT is equally built upon the work of others. It’s one of the reasons I despise software patents. So in that sense this MVP award is a result of all the great minds that have provided virtualisation solutions for me to talk about.  I hope that I have always acknowledged those whose work I have used when blogging or giving presentations, and that I have executed my responsibility to share any knowledge gained as widely as possible. Thanks to all those who helped – a big thanks to the UK user group community I reckon this journey started in 2003 when I started attending a user group called the London .Net Users Group (http://www.dnug.org.uk) started by a nice chap called Ian Cooper. The great thing about Ian was that he always encouraged non professional speakers to take the stage at the user group, and my first ever presentation was on 30th September 2003; SQL Server CE 2.0 and the.NET Compact Framework. In 2005 Ian Cooper was on the committee for the first DeveloperDeveloperDeveloper! day, the free community conference held at Microsoft’s UK HQ in Thames Valley park in Reading.  He encouraged me to take part and so on 14th May 2005 I presented a talk previously given to the London .Net User Group on Simplifying access to multiple DB providers in .NET.  From that point on I definitely had the bug; presenting at DDD2, DDD3, groking at DDD4 and SQLBits I and after a break, DDD7, DDD Scotland and DDD8.  What definitely made me keen was the encouragement and infectious enthusiasm of some of the other DDD organisers; Craig Murphy, Barry Dorrans, Phil Winstanley and Colin Mackay. During the first few DDD events I met the Dave McMahon and Richard Costall from NxtGenUG who made it easy to start presenting at their user groups.  Along the way I’ve met a load of great user group organisers; Guy Smith-Ferrier of the .Net Developer Network, Jimmy Skowronski of GL.Net and the double act of Ray Booysen and Gavin Osborn behind what was Vista Squad and is now Edge UG. Final thanks to those who suggested virtualisation as a topic ... Final thanks have to go the people who inspired me to create my Virtualisation for Developers talk.  Toby Henderson (@holytshirt) ensured I took notice of Sun’s VirtualBox, Peter Ibbotson for being a fine sounding board at the Kew Railway over quite a few Adnam’s Broadside and to Guy Smith-Ferrier for allowing his user group to be the guinea pigs for the talk before it was seen at DDD7.  Thanks to all of you I now know much more about virtualisation than I would have thought possible and it continues to be great fun. Conclusion If this was an academy award acceptance speech I would have been cut off after the first few paragraphs, so well done if you made it this far.  I’ll be doing my best to do justice to the MVP award and the UK community.  I’m fortunate in having a new employer who considers presenting at user groups as a good thing, so don’t expect me to stop any time soon. If you’ve never seen me in action, then you can view the original DDD7 Virtualisation for Developers presentation (filmed by the Microsoft Channel 9 team) as part of the full DDD7 video list here, http://www.craigmurphy.com/blog/?p=1591.  Also thanks to Craig Murphy’s fine video work you can also view my latest DDD8 presentation on Commercial Software Development, here, http://vimeo.com/9216563 P.S. If I’ve missed anyone out, do feel free to lambast me in comments, it’s your duty.

    Read the article

  • SQL SERVER – Introduction to Adaptive ETL Tool – How adaptive is your ETL?

    - by pinaldave
    I am often reminded by the fact that BI/data warehousing infrastructure is very brittle and not very adaptive to change. There are lots of basic use cases where data needs to be frequently loaded into SQL Server or another database. What I have found is that as long as the sources and targets stay the same, SSIS or any other ETL tool for that matter does a pretty good job handling these types of scenarios. But what happens when you are faced with more challenging scenarios, where the data formats and possibly the data types of the source data are changing from customer to customer?  Let’s examine a real life situation where a health management company receives claims data from their customers in various source formats. Even though this company supplied all their customers with the same claims forms, they ended up building one-off ETL applications to process the claims for each customer. Why, you ask? Well, it turned out that the claims data from various regional hospitals they needed to process had slightly different data formats, e.g. “integer” versus “string” data field definitions.  Moreover the data itself was represented with slight nuances, e.g. “0001124” or “1124” or “0000001124” to represent a particular account number, which forced them, as I eluded above, to build new ETL processes for each customer in order to overcome the inconsistencies in the various claims forms.  As a result, they experienced a lot of redundancy in these ETL processes and recognized quickly that their system would become more difficult to maintain over time. So imagine for a moment that you could use an ETL tool that helps you abstract the data formats so that your ETL transformation process becomes more reusable. Imagine that one claims form represents a data item as a string – acc_no(varchar) – while a second claims form represents the same data item as an integer – account_no(integer). This would break your traditional ETL process as the data mappings are hard-wired.  But in a world of abstracted definitions, all you need to do is create parallel data mappings to a common data representation used within your ETL application; that is, map both external data fields to a common attribute whose name and type remain unchanged within the application. acc_no(varchar) is mapped to account_number(integer) expressor Studio first claim form schema mapping account_no(integer) is also mapped to account_number(integer) expressor Studio second claim form schema mapping All the data processing logic that follows manipulates the data as an integer value named account_number. Well, these are the kind of problems that that the expressor data integration solution automates for you.  I’ve been following them since last year and encourage you to check them out by downloading their free expressor Studio ETL software. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Business Intelligence, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: ETL, SSIS

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Rob Blackwell on interoperability and Azure

    - by Eric Nelson
    At QCon in March we had a sample Azure application implemented in both Java and Ruby to demonstrate that the Windows Azure Platform is not just about .NET. The following is an interesting interview with Rob Blackwell, the R&D director of the partner who implemented the application. UK Interoperability Team Interviews Rob Blackwell, R&D Director at Active Web Solutions. Is Microsoft taking interoperability seriously? Yes. In the past, I think Microsoft has, quite rightly come in for criticism, but architects and developers should look at this again. The Interoperability Bridges site (http://www.interoperabilitybridges.com/ ) shows a wide range of projects that allow interoperability from Java, Ruby and PHP for example. The Windows Azure platform has been architected with interoperable APIs in mind. It's straightforward to access the various storage facilities from just about any language or platform. Azure compute is capable of running more than just C# applications! Why is interoperability important to you? My company provides consultancy and bespoke development services. We're a Microsoft Gold Partner, but we live in the real world where companies have a mix of technologies provided by a variety of vendors. When developing an enterprise software solution, you rarely have a completely blank canvas. We often see integration scenarios where we need to exchange data with legacy systems. It's not unusual to see modern Silverlight applications being built on top of Java or Mainframe based back ends. Could you give us some examples of where interoperability has been important for your projects? We developed an innovative Sea Safety system for the RNLI Lifeboats here in the UK. Commercial Fishing is one of the most dangerous professions and we helped developed the MOB Guardian System which uses satellite technology and man overboard devices to raise the alarm when a fisherman gets into trouble. The solution is implemented in .NET running on Windows, but without interoperable standards, it would have been impossible to communicate with the satellite gateway technology. For more information, please see the case study: http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=4000005892 More recently, we were asked to build a web site to accompany the QCon 2010 conference in London to help demonstrate and promote interoperability. We built the site using Java and Restlet and hosted it in Windows Azure Compute. The site accepts feedback from visitors and all the data is stored in Windows Azure Storage. We also ported the application to Ruby on Rails for demonstration purposes. Visitors to the stand were surprised that this was even possible. Why should Java developers be interested in Windows Azure? Windows Azure Storage consists of Blobs, Queues and Tables. The storage is scalable, durable, secure and cost-effective. Using the WindowsAzure4j library, it's easy to use, and takes just a few lines of code. If you are writing an application with large data storage requirements, or you want an offsite backup, it makes a lot of sense. Running Java applications in Azure Compute is straightforward with tools like the Tomcat Solution Accelerator (http://code.msdn.microsoft.com/winazuretomcat )and AzureRunMe (http://azurerunme.codeplex.com/ ). The Windows Azure AppFabric Service Bus can also be used to connect heterogeneous systems running on different networks and in different data centres. How can The Service Bus be considered an interoperability solution? I think that the Windows Azure AppFabric Service Bus is one of Microsoft’s best kept secrets. Think of it as “a globally scalable application plumbing kit in the sky”. If you have used Enterprise Service Buses before, you’ll be familiar with the concept. Applications can connect to the service bus to securely exchange data – these can be point to point or multicast links. With the AppFabric Service Bus, the applications can exist anywhere that has access to the Internet and the connections can traverse firewalls. This makes it easy to extend or scale your application or reach out to other networks and technologies. For example, let’s say you have a SQL Server database running on premises and you want to expose the data to a Java application running in the cloud. You could set up a point to point Service Bus connection and use JDBC. Traditionally this would have been difficult or impossible without punching holes in firewalls and compromising security. Rob Blackwell is R&D Director at Active Web Solutions, www.aws.net , a Microsoft Gold Partner specialising in leading edge software solutions. He is an occasional writer and conference speaker and blogs at www.robblackwell.org.uk Related Links: UK Azure Online Community – join today. UK Windows Azure Site Start working with Windows Azure

    Read the article

  • Resources such as libraries, engines and frameworks to make Javacript-based MMORTS? [closed]

    - by hhh
    I am looking for resources outlined to make a MMORTS with Javascript as the client-side, probably just a simple canvas for the frontend. The guy in the video here mentions that JavaScript is one of the most misunderstood language -- and I do believe that. I think one can make quite cool games with it in the future. So I am now proactively looking for resources and perhaps some ideas. My first idea contained Node.js, C and NetBSD/bozohttpd (or the-4-7-chars' *ix-thing with green-logo -thing, move the q here) but I acknowledge my beginner -style approach -- this issue is broad and not only for one person to make it all-the-time-improved project! So I think perfect for community to tinker. Some games and examples possibly easy to make into MMORTS BrowserQuest here under MPL 2.0 and its content licensed under CC-BY-SA 3.0 (source here) [proprietary] LoU here and built with JS/Qooxdoo/c#/Windows-Server/ISS/etc, source. MY ANSWER BEGINS HERE TO BE MOVED BELOW, REQUIRING RE-OPENING. PLEASE, VOTE TO OPEN IT -- HELP US TO TINKER! My answer Generic Is there an MMO-related research body? Although about Android, certain things also appropriate with JS -game: Are there any 2D gaming libraries/frameworks/engines for Android? Why is it so hard to develop a MMO? Browser based MMO Architecture MMO architecture - Highly Scalable with Reporting capabilities What are the Elements of an MMO Game? Is this the right architecture for our MMORPG mobile game? Looking for architectures to develop massive multiplayer game server Information on seamless MMO server architecture Game-mechanics (search) Question sounding like about LoU: What are the different ways to balance an online multiplayer game where user spend different amounts of time online? Building an instance system What are the different ways to balance an online multiplayer game where user spend different amounts of time online? Hosting is it possible to make a MMO starting with scalable hosting? Should I keep login server apart from game server? MMO techniques, algorithms and resources for keeping bandwidth low? MMO Proxy Server Javascript and Client-based things What do I need to do a MMORTS in JavaScript with small amount of Developers? How to update the monsters in my MMO server using Node.js and Socket.IO Are there any good html 5 mmo design tutorials? Networking Loadbalancing Questions Something about TCP, routers, NAT, etc: How do I start writing an MMO game server? Who does the AI calculations in an MMO? They need someone more knowledgable to work with, a lot of cases where the same words mean different things. Data Structures What data structure should I use for a Diablo/WoW-style talent tree? Game Engine Need an engine for MMO mockup Helper sites http://www.gamedev.net/page/index.html

    Read the article

  • HTTP Headers: Max-Age vs Expires – Which One To Choose?

    - by Gopinath
    Caching of static content like images, scripts, styles on the client browser reduces load on the webservers and also improves end users browsing experience by loading web pages quickly. We can use HTTP headers Expires or Cache-Control:max-age to cache content on client browser and set expiry time for them. Expire header is HTTP/1.0 standard and Cache-Control:max-age is introduced in HTTP/1.1 specification to solve the issues and limitation with Expire  header. Consider the following headers.   Cache-Control: max-age=24560 Expires: Tue, 15 May 2012 06:17:00 GMT The first header instructs web browsers to cache the content for 24560 seconds relative to the time the content is downloaded and expire it after the time period elapses. The second header instructs web browser to expiry the content after 15th May 2011 06:17. Out of these two options which one to use – max-age or expires? I prefer max-age header for the following reasons As max-age  is a relative value and in most of the cases it makes sense to set relative expiry date rather than an absolute expiry date. Expire  header values are complex to set – time format should be proper, time zones should be appropriate. Even a small mistake in settings these values results in unexpected behaviour. As Expire header values are absolute, we need to  keep changing them at regular intervals. Lets say if we set 2011 June 1 as expiry date to all the image files of this blog, on 2011 June 2 we should modify the expiry date to something like 2012 Jan 1. This add burden of managing the Expire headers. Related: Amazon S3 Tips: Quickly Add/Modify HTTP Headers To All Files Recursively cc image flickr:rogue3w This article titled,HTTP Headers: Max-Age vs Expires – Which One To Choose?, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Windows and SQL Azure Best Practices: Affinity Groups

    - by BuckWoody
    When you create a Windows Azure application, you’ll pick a subscription to put it under. This is a billing container - underneath that, you’ll deploy a Hosted Service. That holds the Web and Worker Roles that you’ll deploy for your applications. along side that, you use the Storage Account to create storage for the application. (In some cases, you might choose to use only storage or Roles - the info here applies anyway) As you are setting up your environment, you’re asked to pick a “region” where your application will run. If you choose a Region, you’ll be asked where to put the Roles. You’re given choices like Asia, North America and so on. This is where the hardware that physically runs your code lives. We have lots of fault domains, power considerations and so on to keep that set of datacenters running, but keep in mind that this is where the application lives. You also get this selection for Storage Accounts. When you make new storage, it’s a best practice to put it where your computing is. This makes the shortest path from the code to the data, and then back out to the user. One of the selections for the location is “Anywhere U.S.”. This selection might be interpreted to mean that we will bias towards keeping the data and the code together, but that may not be the case. There is a specific abstraction we created for just that purpose: Affinity Groups. An Affinity Group is simply a name you can use to tie together resources. You can do this in two places - when you’re creating the Hosted Service (shown above) and on it’s own tree item on the left, called “Affinity Groups”. When you select either of those actions, You’re presented with a dialog box that allows you to specify a name, and then the Region that  names ties the resources to. Now you can select that Affinity Group just as if it were a Region, and your code and data will stay together. That helps with keeping the performance high. Official Documentation: http://msdn.microsoft.com/en-us/library/windowsazure/hh531560.aspx

    Read the article

  • Predicting Likelihood of Click with Multiple Presentations

    - by Michel Adar
    When using predictive models to predict the likelihood of an ad or a banner to be clicked on it is common to ignore the fact that the same content may have been presented in the past to the same visitor. While the error may be small if the visitors do not often see repeated content, it may be very significant for sites where visitors come repeatedly. This is a well recognized problem that usually gets handled with presentation thresholds – do not present the same content more than 6 times. Observations and measurements of visitor behavior provide evidence that something better is needed. Observations For a specific visitor, during a single session, for a banner in a not too prominent space, the second presentation of the same content is more likely to be clicked on than the first presentation. The difference can be 30% to 100% higher likelihood for the second presentation when compared to the first. That is, for example, if the first presentation has an average click rate of 1%, the second presentation may have an average CTR of between 1.3% and 2%. After the second presentation the CTR stays more or less the same for a few more presentations. The number of presentations in this plateau seems to vary by the location of the content in the page and by the visual attraction of the content. After these few presentations the CTR starts decaying with a curve that is very well approximated by an exponential decay. For example, the 13th presentation may have 90% the likelihood of the 12th, and the 14th has 90% the likelihood of the 13th. The decay constant seems also to depend on the visibility of the content. Modeling Options Now that we know the empirical data, we can propose modeling techniques that will correctly predict the likelihood of a click. Use presentation number as an input to the predictive model Probably the most straight forward approach is to add the presentation number as an input to the predictive model. While this is certainly a simple solution, it carries with it several problems, among them: If the model learns on each case, repeated non-clicks for the same content will reinforce the belief of the model on the non-clicker disproportionately. That is, the weight of a person that does not click for 200 presentations of an offer may be the same as 100 other people that on average click on the second presentation. The effect of the presentation number is not a customer characteristic or a piece of contextual data about the interaction with the customer, but it is contextual data about the content presented. Models tend to underestimate the effect of the presentation number. For these reasons it is not advisable to use this approach when the average number of presentations of the same content to the same person is above 3, or when there are cases of having the presentation number be very large, in the tens or hundreds. Use presentation number as a partitioning attribute to the predictive model In this approach we essentially build a separate predictive model for each presentation number. This approach overcomes all of the problems in the previous approach, nevertheless, it can be applied only when the volume of data is large enough to have these very specific sub-models converge.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Fed Authentication Methods in OIF / IdP

    - by Damien Carru
    This article is a continuation of my previous entry where I explained how OIF/IdP leverages OAM to authenticate users at runtime: OIF/IdP internally forwards the user to OAM and indicates which Authentication Scheme should be used to challenge the user if needed OAM determine if the user should be challenged (user already authenticated, session timed out or not, session authentication level equal or higher than the level of the authentication scheme specified by OIF/IdP…) After identifying the user, OAM internally forwards the user back to OIF/IdP OIF/IdP can resume its operation In this article, I will discuss how OIF/IdP can be configured to map Federation Authentication Methods to OAM Authentication Schemes: When processing an Authn Request, where the SP requests a specific Federation Authentication Method with which the user should be challenged When sending an Assertion, where OIF/IdP sets the Federation Authentication Method in the Assertion Enjoy the reading! Overview The various Federation protocols support mechanisms allowing the partners to exchange information on: How the user should be challenged, when the SP/RP makes a request How the user was challenged, when the IdP/OP issues an SSO response When a remote SP partner redirects the user to OIF/IdP for Federation SSO, the message might contain data requesting how the user should be challenged by the IdP: this is treated as the Requested Federation Authentication Method. OIF/IdP will need to map that Requested Federation Authentication Method to a local Authentication Scheme, and then invoke OAM for user authentication/challenge with the mapped Authentication Scheme. OAM would authenticate the user if necessary with the scheme specified by OIF/IdP. Similarly, when an IdP issues an SSO response, most of the time it will need to include an identifier representing how the user was challenged: this is treated as the Federation Authentication Method. When OIF/IdP issues an Assertion, it will evaluate the Authentication Scheme with which OAM identified the user: If the Authentication Scheme can be mapped to a Federation Authentication Method, then OIF/IdP will use the result of that mapping in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled If the Authentication Scheme cannot be mapped, then OIF/IdP will set the Federation Authentication Method as the Authentication Scheme name in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled Mappings In OIF/IdP, the mapping between Federation Authentication Methods and Authentication Schemes has the following rules: One Federation Authentication Method can be mapped to several Authentication Schemes In a Federation Authentication Method <-> Authentication Schemes mapping, a single Authentication Scheme is marked as the default scheme that will be used to authenticate a user, if the SP/RP partner requests the user to be authenticated via a specific Federation Authentication Method An Authentication Scheme can be mapped to a single Federation Authentication Method Let’s examine the following example and the various use cases, based on the SAML 2.0 protocol: Mappings defined as: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport mapped to LDAPScheme, marked as the default scheme used for authentication BasicScheme urn:oasis:names:tc:SAML:2.0:ac:classes:X509 mapped to X509Scheme, marked as the default scheme used for authentication Use cases: SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:X509 as the RequestedAuthnContext: OIF/IdP will authenticate the use with X509Scheme since it is the default scheme mapped for that method. SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the RequestedAuthnContext: OIF/IdP will authenticate the use with LDAPScheme since it is the default scheme mapped for that method, not the BasicScheme SP did not request any specific methods, and user was authenticated with BasisScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with LDAPScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with BasisSessionlessScheme: OIF/IdP will issue an Assertion with BasisSessionlessScheme as the FederationAuthenticationMethod, since that scheme could not be mapped to any Federation Authentication Method (in this case, the administrator would need to correct that and create a mapping) Configuration Mapping Federation Authentication Methods to OAM Authentication Schemes is protocol dependent, since the methods are defined in the various protocols (SAML 2.0, SAML 1.1, OpenID 2.0). As such, the WLST commands to set those mappings will involve: Either the SP Partner Profile and affect all Partners referencing that profile, which do not override the Federation Authentication Method to OAM Authentication Scheme mappings Or the SP Partner entry, which will only affect the SP Partner It is important to note that if an SP Partner is configured to define one or more Federation Authentication Method to OAM Authentication Scheme mappings, then all the mappings defined in the SP Partner Profile will be ignored. Authentication Schemes As discussed in the previous article, during Federation SSO, OIF/IdP will internally forward the user to OAM for authentication/verification and specify which Authentication Scheme to use. OAM will determine if a user needs to be challenged: If the user is not authenticated yet If the user is authenticated but the session timed out If the user is authenticated, but the authentication scheme level of the original authentication is lower than the level of the authentication scheme requested by OIF/IdP So even though an SP requests a specific Federation Authentication Method to be used to challenge the user, if that method is mapped to an Authentication Scheme and that at runtime OAM deems that the user does not need to be challenged with that scheme (because the user is already authenticated, session did not time out, and the session authn level is equal or higher than the one for the specified Authentication Scheme), the flow won’t result in a challenge operation. Protocols SAML 2.0 The SAML 2.0 specifications define the following Federation Authentication Methods for SAML 2.0 flows: urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard urn:oasis:names:tc:SAML:2.0:ac:classes:Password urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword urn:oasis:names:tc:SAML:2.0:ac:classes:X509 urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient urn:oasis:names:tc:SAML:2.0:ac:classes:PGP urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken Out of the box, OIF/IdP has the following mappings for the SAML 2.0 protocol: Only urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml20-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 2.0 An example of an AuthnRequest message sent by an SP to an IdP with the SP requesting a specific Federation Authentication Method to be used to challenge the user would be: <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" Destination="https://idp.com/oamfed/idp/samlv20" ID="id-8bWn-A9o4aoMl3Nhx1DuPOOjawc-" IssueInstant="2014-03-21T20:51:11Z" Version="2.0">  <saml:Issuer ...>https://acme.com/sp</saml:Issuer>  <samlp:NameIDPolicy AllowCreate="false" Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>  <samlp:RequestedAuthnContext Comparison="minimum">    <saml:AuthnContextClassRef xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">      urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport </saml:AuthnContextClassRef>  </samlp:RequestedAuthnContext></samlp:AuthnRequest> An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                    urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> An administrator would be able to specify a mapping between a SAML 2.0 Federation Authentication Method and one or more OAM Authentication Schemes SAML 1.1 The SAML 1.1 specifications define the following Federation Authentication Methods for SAML 1.1 flows: urn:oasis:names:tc:SAML:1.0:am:unspecified urn:oasis:names:tc:SAML:1.0:am:HardwareToken urn:oasis:names:tc:SAML:1.0:am:password urn:oasis:names:tc:SAML:1.0:am:X509-PKI urn:ietf:rfc:2246 urn:oasis:names:tc:SAML:1.0:am:PGP urn:oasis:names:tc:SAML:1.0:am:SPKI urn:ietf:rfc:3075 urn:oasis:names:tc:SAML:1.0:am:XKMS urn:ietf:rfc:1510 urn:ietf:rfc:2945 Out of the box, OIF/IdP has the following mappings for the SAML 1.1 protocol: Only urn:oasis:names:tc:SAML:1.0:am:password is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml11-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 1.1 An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameID ...>[email protected]</saml:NameID>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Note: SAML 1.1 does not define an AuthnRequest message. An administrator would be able to specify a mapping between a SAML 1.1 Federation Authentication Method and one or more OAM Authentication Schemes OpenID 2.0 The OpenID 2.0 PAPE specifications define the following Federation Authentication Methods for OpenID 2.0 flows: http://schemas.openid.net/pape/policies/2007/06/phishing-resistant http://schemas.openid.net/pape/policies/2007/06/multi-factor http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical Out of the box, OIF/IdP does not define any mappings for the OpenID 2.0 Federation Authentication Methods. For OpenID 2.0, the configuration will involve mapping a list of OpenID 2.0 policies to a list of Authentication Schemes. An example of an OpenID 2.0 Request message sent by an SP/RP to an IdP/OP would be: https://idp.com/openid?openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=checkid_setup&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.realm=https%3A%2F%2Facme.com%2Fopenid&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_request&openid.ax.type.attr0=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.if_available=attr0&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.max_auth_age=0 An example of an Open ID 2.0 SSO Response issued by an IdP/OP would be: https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=http%3A%2F%2Fschemas.openid.net%2Fpape%2Fpolicies%2F2007%2F06%2Fphishing-resistant&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D In the next article, I will provide examples on how to configure OIF/IdP for the various protocols, to map OAM Authentication Schemes to Federation Authentication Methods.Cheers,Damien Carru

    Read the article

< Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >