Search Results

Search found 4458 results on 179 pages for 'individual improvement'.

Page 178/179 | < Previous Page | 174 175 176 177 178 179  | Next Page >

  • Java code optimization on matrix windowing computes in more time

    - by rano
    I have a matrix which represents an image and I need to cycle over each pixel and for each one of those I have to compute the sum of all its neighbors, ie the pixels that belong to a window of radius rad centered on the pixel. I came up with three alternatives: The simplest way, the one that recomputes the window for each pixel The more optimized way that uses a queue to store the sums of the window columns and cycling through the columns of the matrix updates this queue by adding a new element and removing the oldes The even more optimized way that does not need to recompute the queue for each row but incrementally adjusts a previously saved one I implemented them in c++ using a queue for the second method and a combination of deques for the third (I need to iterate through their elements without destructing them) and scored their times to see if there was an actual improvement. it appears that the third method is indeed faster. Then I tried to port the code to Java (and I must admit that I'm not very comfortable with it). I used ArrayDeque for the second method and LinkedLists for the third resulting in the third being inefficient in time. Here is the simplest method in C++ (I'm not posting the java version since it is almost identical): void normalWindowing(int mat[][MAX], int cols, int rows, int rad){ int i, j; int h = 0; for (i = 0; i < rows; ++i) { for (j = 0; j < cols; j++) { h = 0; for (int ry =- rad; ry <= rad; ry++) { int y = i + ry; if (y >= 0 && y < rows) { for (int rx =- rad; rx <= rad; rx++) { int x = j + rx; if (x >= 0 && x < cols) { h += mat[y][x]; } } } } } } } Here is the second method (the one optimized through columns) in C++: void opt1Windowing(int mat[][MAX], int cols, int rows, int rad){ int i, j, h, y, col; queue<int>* q = NULL; for (i = 0; i < rows; ++i) { if (q != NULL) delete(q); q = new queue<int>(); h = 0; for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][rx]; } } q->push(mem); h += mem; } } for (j = 1; j < cols; j++) { col = j + rad; if (j - rad > 0) { h -= q->front(); q->pop(); } if (j + rad < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][col]; } } q->push(mem); h += mem; } } } } And here is the Java version: public static void opt1Windowing(int [][] mat, int rad){ int i, j = 0, h, y, col; int cols = mat[0].length; int rows = mat.length; ArrayDeque<Integer> q = null; for (i = 0; i < rows; ++i) { q = new ArrayDeque<Integer>(); h = 0; for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][rx]; } } q.addLast(mem); h += mem; } } j = 0; for (j = 1; j < cols; j++) { col = j + rad; if (j - rad > 0) { h -= q.peekFirst(); q.pop(); } if (j + rad < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][col]; } } q.addLast(mem); h += mem; } } } } I recognize this post will be a wall of text. Here is the third method in C++: void opt2Windowing(int mat[][MAX], int cols, int rows, int rad){ int i = 0; int j = 0; int h = 0; int hh = 0; deque< deque<int> *> * M = new deque< deque<int> *>(); for (int ry = 0; ry <= rad; ry++) { if (ry < rows) { deque<int> * q = new deque<int>(); M->push_back(q); for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int val = mat[ry][rx]; q->push_back(val); h += val; } } } } deque<int> * C = new deque<int>(M->front()->size()); deque<int> * Q = new deque<int>(M->front()->size()); deque<int> * R = new deque<int>(M->size()); deque< deque<int> *>::iterator mit; deque< deque<int> *>::iterator mstart = M->begin(); deque< deque<int> *>::iterator mend = M->end(); deque<int>::iterator rit; deque<int>::iterator rstart = R->begin(); deque<int>::iterator rend = R->end(); deque<int>::iterator cit; deque<int>::iterator cstart = C->begin(); deque<int>::iterator cend = C->end(); for (mit = mstart, rit = rstart; mit != mend, rit != rend; ++mit, ++rit) { deque<int>::iterator pit; deque<int>::iterator pstart = (* mit)->begin(); deque<int>::iterator pend = (* mit)->end(); for(cit = cstart, pit = pstart; cit != cend && pit != pend; ++cit, ++pit) { (* cit) += (* pit); (* rit) += (* pit); } } for (i = 0; i < rows; ++i) { j = 0; if (i - rad > 0) { deque<int>::iterator cit; deque<int>::iterator cstart = C->begin(); deque<int>::iterator cend = C->end(); deque<int>::iterator pit; deque<int>::iterator pstart = (M->front())->begin(); deque<int>::iterator pend = (M->front())->end(); for(cit = cstart, pit = pstart; cit != cend; ++cit, ++pit) { (* cit) -= (* pit); } deque<int> * k = M->front(); M->pop_front(); delete k; h -= R->front(); R->pop_front(); } int row = i + rad; if (row < rows && i > 0) { deque<int> * newQ = new deque<int>(); M->push_back(newQ); deque<int>::iterator cit; deque<int>::iterator cstart = C->begin(); deque<int>::iterator cend = C->end(); int rx; int tot = 0; for (rx = 0, cit = cstart; rx <= rad; rx++, ++cit) { if (rx < cols) { int val = mat[row][rx]; newQ->push_back(val); (* cit) += val; tot += val; } } R->push_back(tot); h += tot; } hh = h; copy(C->begin(), C->end(), Q->begin()); for (j = 1; j < cols; j++) { int col = j + rad; if (j - rad > 0) { hh -= Q->front(); Q->pop_front(); } if (j + rad < cols) { int val = 0; for (int ry =- rad; ry <= rad; ry++) { int y = i + ry; if (y >= 0 && y < rows) { val += mat[y][col]; } } hh += val; Q->push_back(val); } } } } And finally its Java version: public static void opt2Windowing(int [][] mat, int rad){ int cols = mat[0].length; int rows = mat.length; int i = 0; int j = 0; int h = 0; int hh = 0; LinkedList<LinkedList<Integer>> M = new LinkedList<LinkedList<Integer>>(); for (int ry = 0; ry <= rad; ry++) { if (ry < rows) { LinkedList<Integer> q = new LinkedList<Integer>(); M.addLast(q); for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int val = mat[ry][rx]; q.addLast(val); h += val; } } } } int firstSize = M.getFirst().size(); int mSize = M.size(); LinkedList<Integer> C = new LinkedList<Integer>(); LinkedList<Integer> Q = null; LinkedList<Integer> R = new LinkedList<Integer>(); for (int k = 0; k < firstSize; k++) { C.add(0); } for (int k = 0; k < mSize; k++) { R.add(0); } ListIterator<LinkedList<Integer>> mit; ListIterator<Integer> rit; ListIterator<Integer> cit; ListIterator<Integer> pit; for (mit = M.listIterator(), rit = R.listIterator(); mit.hasNext();) { Integer r = rit.next(); int rsum = 0; for (cit = C.listIterator(), pit = (mit.next()).listIterator(); cit.hasNext();) { Integer c = cit.next(); Integer p = pit.next(); rsum += p; cit.set(c + p); } rit.set(r + rsum); } for (i = 0; i < rows; ++i) { j = 0; if (i - rad > 0) { for(cit = C.listIterator(), pit = M.getFirst().listIterator(); cit.hasNext();) { Integer c = cit.next(); Integer p = pit.next(); cit.set(c - p); } M.removeFirst(); h -= R.getFirst(); R.removeFirst(); } int row = i + rad; if (row < rows && i > 0) { LinkedList<Integer> newQ = new LinkedList<Integer>(); M.addLast(newQ); int rx; int tot = 0; for (rx = 0, cit = C.listIterator(); rx <= rad; rx++) { if (rx < cols) { Integer c = cit.next(); int val = mat[row][rx]; newQ.addLast(val); cit.set(c + val); tot += val; } } R.addLast(tot); h += tot; } hh = h; Q = new LinkedList<Integer>(); Q.addAll(C); for (j = 1; j < cols; j++) { int col = j + rad; if (j - rad > 0) { hh -= Q.getFirst(); Q.pop(); } if (j + rad < cols) { int val = 0; for (int ry =- rad; ry <= rad; ry++) { int y = i + ry; if (y >= 0 && y < rows) { val += mat[y][col]; } } hh += val; Q.addLast(val); } } } } I guess that most is due to the poor choice of the LinkedList in Java and to the lack of an efficient (not shallow) copy method between two LinkedList. How can I improve the third Java method? Am I doing some conceptual error? As always, any criticisms is welcome. UPDATE Even if it does not solve the issue, using ArrayLists, as being suggested, instead of LinkedList improves the third method. The second one performs still better (but when the number of rows and columns of the matrix is lower than 300 and the window radius is small the first unoptimized method is the fastest in Java)

    Read the article

  • I need some help with either my SQL or my PHP I do not know which...

    - by sico87
    Hello I am creating a CMS and some of the functionality of it that the images that are within the content are managable. I currently trying to display a table that shows the the content title and then the associated images, ideally I would like a layout similar to this, Content Title Image 1 Image 2 Image 3 Content Title 2 Image 1 Image 2 Content Title 3 Image 1 The SQL the returns the data is actually formed using Codeigniters Active Record class, function getAllContentImages() { $this->db->select('*'); $this->db->from('contentImagesTable'); $this->db->join('contentTable', 'contentTable.contentId = contentImagesTable.contentId'); $this->db->join('categoryTable', 'categoryTable.categoryId = contentTable.categoryId'); $query = $this->db->get(); return $query->result_array(); } The array that is returned is looks like this, I have cut the size down for readability. Array ( [0] => Array ( [contentImageId] => 25 [contentImageName] => green.png [contentImageType] => .png [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/2/green.png [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265222654 [contentId] => 2 [dashboardUserId] => 0 [contentTitle] => sadsadsadassss [contentAbstract] => <p>Pllllleeeeeeeaaaaasssssseeeeee Work</p> [contentBody] => <p>Please work :-( please</p> [contentOnline] => 0 [contentAllowComments] => 0 [contentDateCreated] => 1265124038 [categoryId] => 1 [categoryTitle] => blogsss [categoryAbstract] => <p>asdsdsadasdsadfdsgdgdsgdsgssssssssssss</p> [categorySlug] => blog [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1266588327 ) [1] => Array ( [contentImageId] => 28 [contentImageName] => yellow.png [contentImageType] => .png [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/7/yellow.png [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265388055 [contentId] => 7 [dashboardUserId] => 0 [contentTitle] => Another Blog [contentAbstract] => <p>This is another blog and it is shit becuase this does not work</p> [contentBody] => <p>ioasfihfududfhdufhuishdfiudshfiudhsfiuhdsiufhusdhfuids</p> [contentOnline] => 1 [contentAllowComments] => 0 [contentDateCreated] => 1265388034 [categoryId] => 1 [categoryTitle] => blogsss [categoryAbstract] => <p>asdsdsadasdsadfdsgdgdsgdsgssssssssssss</p> [categorySlug] => blog [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1266588327 ) [2] => Array ( [contentImageId] => 33 [contentImageName] => portaski.jpg [contentImageType] => .jpg [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/11/portaski.jpg [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265714175 [contentId] => 11 [dashboardUserId] => 0 [contentTitle] => Portaski - new product and brand launch by Bang [contentAbstract] => <p>Bang's experience in new product development has helped launch PortaSki &ndash; the pocket-sized device which is set to revolutionise skiing.</p> [contentBody] => <p>After developing Portaski's brand identity and positioning, Bang re-designed the product and its packaging ahead of launch in late 2008.</p> <p>A media and PR strategy was devised and implemented using Bang's close relationship with two of the UK's most influential organisations in the Advertising and Media Buying industries. On-line advertising was supported with editorial reviews in the UK's leading broadsheets and tabloids, which combined with pin-point HTML direct mail to drive consumers to the new e-commerce site.</p> <p>Impressive month-on-month growth has been achieved since launch, and the direct marketing activity resulted in an unprecedented 2.71% of targets going on-line to purchase a PortaSki.</p> <p>For further information visit <a href="http://www.portaski.com" target="_blank">www.portaski.com</a></p> [contentOnline] => 1 [contentAllowComments] => 0 [contentDateCreated] => 1265718184 [categoryId] => 1 [categoryTitle] => blogsss [categoryAbstract] => <p>asdsdsadasdsadfdsgdgdsgdsgssssssssssss</p> [categorySlug] => blog [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1266588327 ) [3] => Array ( [contentImageId] => 26 [contentImageName] => housingplus.jpg [contentImageType] => .jpg [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/5/housingplus.jpg [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265284989 [contentId] => 5 [dashboardUserId] => 0 [contentTitle] => Bang launches Housing Plus [contentAbstract] => <p>Bang has launched Housing Plus, the new brand for the Central Borders Housing Group, along with new sub-brands Property Care and SSHA.</p> [contentBody] => <p>The Midlands based Group, with turnover in excess of &pound;21M, appointed Bang in 2008 following an open pitch of over 40 agencies. Bang's work began with an extensive marketing research strategy that challenged the Group's former positioning and brand structure.</p> <p>The research unveiled that the housing sector demanded a values-led Group. This led Bang to develop the brave &lsquo;Together for the Right Reasons' positioning for Housing Plus.</p> <p>Chris Garratt, Marketing Director at Bang explained "The housing sector has witnessed wholesale change in recent years. Much to tenant's dismay, many associations and Groups appear to be losing touch with their roots, we wanted to develop a Group for associations who place principles at the heart of their corporate strategy".</p> <p>The repositioned sub-brands also play an important role in the Group's revised brand by highlighting Housing Plus' willingness to embrace and nurture individual identities. Chris Garratt continued "By adopting a &lsquo;house of brands' hierarchy from the outset, Housing Plus has sent out a strong message to prospective strategic partners".</p> <p>Bang handled all aspects of work for the redevelopment of the three brands, including research, brand creation, naming, positioning, internal branding and communications, advertising, the brand launches, building the brands' on-line presence and the creation of a powerful brand film &ndash; which is already attracting significant interest from across the sector.</p> [contentOnline] => 1 [contentAllowComments] => 0 [contentDateCreated] => 1265285940 [categoryId] => 8 [categoryTitle] => News [categoryAbstract] => <p>The world at Bang Marketing moves fast, keep up to date w [categorySlug] => news [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1265283717 ) I need a way that I can get all the content images associated with the same content title in one group and then display under the content title. Can anyone help?

    Read the article

  • ANSI C blackjack assignment, linux GCC compiler, i'm stuck...

    - by Bill Adams
    Here's what i have so far... I have yet to figure out how i'm going to handle the 11 / 1 situation with an ace, and when the player chooses an option for hit/stand, i get segfault. HELP!!! #include <stdio.h> #include <string.h> #include <stdlib.h> #include <time.h> #define DECKSIZE 52 #define VALUE 9 #define FACE 4 #define HANDSIZE 26 typedef struct { int value; char* suit; char* name; }Card; typedef struct { int value; char* suit; char* name; }dealerHand; typedef struct { int value; char* suit; char* name; }playerHand; Card cards[DECKSIZE]; dealerHand deal[HANDSIZE]; playerHand dealt[HANDSIZE]; char *faceName[]={"two","three", "four","five","six", "seven","eight","nine", "ten", "jack","queen", "king","ace"}; char *suitName[]={"spades","diamonds","clubs","hearts"}; void printDeck(){ int i; for(i=0;i<DECKSIZE;i++){ printf("%s of %s value = %d\n ",cards[i].name,cards[i].suit,cards[i].value); if((i+1)%13==0 && i!=0) printf("-------------------\n\n"); } } void shuffleDeck(){ srand(time(NULL)); int this; int that; Card temp; int c; for(c=0;c<10000;c++){ //c is the index for number of individual card shuffles should be set to c<10000 or more this=rand()%DECKSIZE; that=rand()%DECKSIZE; temp=cards[this]; cards[this]=cards[that]; cards[that]=temp; } } /*void hitStand(i,y){ // I dumped this because of a segfault i couldn't figure out. int k; printf(" Press 1 to HIT or press 2 to STAND:"); scanf("%d",k); if(k=1){ dealt[y].suit=cards[i].suit; dealt[y].name=cards[i].name; dealt[y].value=cards[i].value; y++; i++; } } */ int main(){ int suitCount=0; int faceCount=0; int i; int x; int y; int d; int p; int k; for(i=0;i<DECKSIZE;i++){ //this for statement builds the deck if(faceCount<9){ cards[i].value=faceCount+2; }else{ //assigns face cards as value 10 cards[i].value=10; } cards[i].suit=suitName[suitCount]; cards[i].name=faceName[faceCount++]; if(faceCount==13){ //this if loop increments suit count once cards[i].value=11; //all faces have been assigned, and also suitCount++; //assigns the ace as 11 faceCount=0; } //end building deck } /*printDeck(); //prints the deck in order shuffleDeck(); //shuffles the deck printDeck(); //prints the deck as shuffled This was used in testing, commented out to keep the deck hidden!*/ shuffleDeck(); x=0; y=0; for(i=0;i<4;i++){ //this for loop deals the first 4 cards, dealt[y].suit=cards[i].suit; //first card to player, second to dealer, dealt[y].name=cards[i].name; //as per standard dealing practice. dealt[y].value=cards[i].value; i++; y++; deal[x].suit=cards[i].suit; deal[x].name=cards[i].name; deal[x].value=cards[i].value; x++; } printf(" Dealer's hand is: %s of %s and XXXX of XXXX. (Second card is hidden!)\n",deal[0].name,deal[0].suit,deal[1].name,deal[1].suit); printf(" Player's hand is: %s of %s and %s of %s.\n",dealt[0].name,dealt[0].suit,dealt[1].name,dealt[1].suit); printf(" the current value of the index i=%d\n",i); //this line gave me the value of i for testing d=deal[0].value+deal[1].value; p=dealt[0].value+dealt[1].value; if(d==21){ printf(" The Dealer has Blackjack! House win!\n"); }else{ if(d>21){ printf(" The dealer is Bust! You win!\n"); }else{ if(d>17){ printf(" Press 1 to HIT or 2 to STAND"); scanf("%d",k); if(k==1){ dealt[y].suit=cards[i].suit; dealt[y].name=cards[i].name; dealt[y].value=cards[i].value; y++; i++; } }else{ if(d<17){ printf(" Dealer Hits!"); deal[x].suit=cards[i].suit; deal[x].name=cards[i].name; deal[x].value=cards[i].value; x++; i++; } } } } return 0; }

    Read the article

  • Mysql - help me optimize this query

    - by sandeepan-nath
    About the system: -The system has a total of 8 tables - Users - Tutor_Details (Tutors are a type of User,Tutor_Details table is linked to Users) - learning_packs, (stores packs created by tutors) - learning_packs_tag_relations, (holds tag relations meant for search) - tutors_tag_relations and tags and orders (containing purchase details of tutor's packs), order_details linked to orders and tutor_details. For a more clear idea about the tables involved please check the The tables section in the end. -A tags based search approach is being followed.Tag relations are created when new tutors register and when tutors create packs (this makes tutors and packs searcheable). For details please check the section How tags work in this system? below. Following is a simpler representation (not the actual) of the more complex query which I am trying to optimize:- I have used statements like explanation of parts in the query select SUM(DISTINCT( t.tag LIKE "%Dictatorship%" )) as key_1_total_matches, SUM(DISTINCT( t.tag LIKE "%democracy%" )) as key_2_total_matches, td., u., count(distinct(od.id_od)), if (lp.id_lp > 0) then some conditional logic on lp fields else 0 as tutor_popularity from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN `some other tables on lp.id_lp - let's call learning pack tables set (including Learning_Packs table)` LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) where some condition on Users table's fields AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN `some conditions on learning pack tables set` ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN `some conditions on webclasses tables set` ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and some conditions on Orders table's fields ELSE 1 END AND ( t.tag LIKE "%Dictatorship%" OR t.tag LIKE "%democracy%") group by td.id_tutor HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 ===================================================================== What does the above query do? Does AND logic search on the search keywords (2 in this example - "Democracy" and "Dictatorship"). Returns only those tutors for which both the keywords are present in the union of the two sets - tutors details and details of all the packs created by a tutor. To make things clear - Suppose a Tutor name "Sandeepan Nath" has created a pack "My first pack", then:- Searching "Sandeepan Nath" returns Sandeepan Nath. Searching "Sandeepan first" returns Sandeepan Nath. Searching "Sandeepan second" does not return Sandeepan Nath. ====================================================================================== The problem The results returned by the above query are correct (AND logic working as per expectation), but the time taken by the query on heavily loaded databases is like 25 seconds as against normal query timings of the order of 0.005 - 0.0002 seconds, which makes it totally unusable. It is possible that some of the delay is being caused because all the possible fields have not yet been indexed, but I would appreciate a better query as a solution, optimized as much as possible, displaying the same results ========================================================================================== How tags work in this system? When a tutor registers, tags are entered and tag relations are created with respect to tutor's details like name, surname etc. When a Tutors create packs, again tags are entered and tag relations are created with respect to pack's details like pack name, description etc. tag relations for tutors stored in tutors_tag_relations and those for packs stored in learning_packs_tag_relations. All individual tags are stored in tags table. ==================================================================== The tables Most of the following tables contain many other fields which I have omitted here. CREATE TABLE IF NOT EXISTS users ( id_user int(10) unsigned NOT NULL AUTO_INCREMENT, name varchar(100) NOT NULL DEFAULT '', surname varchar(155) NOT NULL DEFAULT '', PRIMARY KEY (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=636 ; CREATE TABLE IF NOT EXISTS tutor_details ( id_tutor int(10) NOT NULL AUTO_INCREMENT, id_user int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_tutor), KEY Users_FKIndex1 (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=51 ; CREATE TABLE IF NOT EXISTS orders ( id_order int(10) unsigned NOT NULL AUTO_INCREMENT, PRIMARY KEY (id_order), KEY Orders_FKIndex1 (id_user), ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=275 ; ALTER TABLE orders ADD CONSTRAINT Orders_ibfk_1 FOREIGN KEY (id_user) REFERENCES users (id_user) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS order_details ( id_od int(10) unsigned NOT NULL AUTO_INCREMENT, id_order int(10) unsigned NOT NULL DEFAULT '0', id_author int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_od), KEY Order_Details_FKIndex1 (id_order) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=284 ; ALTER TABLE order_details ADD CONSTRAINT Order_Details_ibfk_1 FOREIGN KEY (id_order) REFERENCES orders (id_order) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs ( id_lp int(10) unsigned NOT NULL AUTO_INCREMENT, id_author int(10) unsigned NOT NULL DEFAULT '0', PRIMARY KEY (id_lp), KEY Learning_Packs_FKIndex2 (id_author), KEY id_lp (id_lp) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=23 ; CREATE TABLE IF NOT EXISTS tags ( id_tag int(10) unsigned NOT NULL AUTO_INCREMENT, tag varchar(255) DEFAULT NULL, PRIMARY KEY (id_tag), UNIQUE KEY tag (tag), KEY id_tag (id_tag), KEY tag_2 (tag), KEY tag_3 (tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3419 ; CREATE TABLE IF NOT EXISTS tutors_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, KEY Tutors_Tag_Relations (id_tag), KEY id_tutor (id_tutor), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE tutors_tag_relations ADD CONSTRAINT Tutors_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, id_lp int(10) unsigned DEFAULT NULL, KEY Learning_Packs_Tag_Relations_FKIndex1 (id_tag), KEY id_lp (id_lp), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE learning_packs_tag_relations ADD CONSTRAINT Learning_Packs_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; =================================================================================== Following is the exact query (this includes classes also - tutors can create classes and search terms are matched with classes created by tutors):- select count(distinct(od.id_od)) as tutor_popularity, CASE WHEN (IF((wc.id_wc 0), ( wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT'))), 0)) THEN 1 ELSE 0 END as 'classes_published', CASE WHEN (IF((lp.id_lp 0), (lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT'))),0)) THEN 1 ELSE 0 END as 'packs_published', td . * , u . * from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN Learning_Packs_Categories AS lpc ON lpc.id_lp_cat = lp.id_lp_cat LEFT JOIN Learning_Packs_Categories AS lpcp ON lpcp.id_lp_cat = lpc.id_parent LEFT JOIN Learning_Pack_Content as lpct on (lp.id_lp = lpct.id_lp) LEFT JOIN Webclasses_Tag_Relations AS wtagrels ON td.id_tutor = wtagrels.id_tutor LEFT JOIN WebClasses AS wc ON wtagrels.id_wc = wc.id_wc LEFT JOIN Learning_Packs_Categories AS wcc ON wcc.id_lp_cat = wc.id_wp_cat LEFT JOIN Learning_Packs_Categories AS wccp ON wccp.id_lp_cat = wcc.id_parent LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) OR (t.id_tag = wtagrels.id_tag) where (u.country='IE' or u.country IN ('INT')) AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and o.order_status = 'paid' and CASE WHEN (od.id_wc 0) THEN od.can_attend_class=1 ELSE 1 END ELSE 1 END AND 1 group by td.id_tutor order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 Please note - The provided database structure does not show all the fields and tables as in this query

    Read the article

  • PHP inserting Apostrophes where it shouldn't

    - by Jack W-H
    Hi folks Not too sure what's going on here as this doesn't seem like standard practise to me. But basically I have a basic database thingy going on that lets users submit code snippets. They can provide up to 5 tags for their submission. Now I'm still learning so please forgive me if this is obvious! Here's the PHP script that makes it all work (note there may be some CodeIgniter specific functions in there): function submitform() { $this->load->helper(array('form', 'url')); $this->load->library('form_validation'); $this->load->database(); $this->form_validation->set_error_delimiters('<p style="color:#FF0000;">', '</p>'); $this->form_validation->set_rules('title', 'Title', 'trim|required|min_length[5]|max_length[255]|xss_clean'); $this->form_validation->set_rules('summary', 'Summary', 'trim|required|min_length[5]|max_length[255]|xss_clean'); $this->form_validation->set_rules('bbcode', 'Code', 'required|min_length[5]'); // No XSS clean (or <script> tags etc. are gone) $this->form_validation->set_rules('tags', 'Tags', 'trim|xss_clean|required|max_length[254]'); if ($this->form_validation->run() == FALSE) { // Do some stuff if it fails } else { // User's input values $title = $this->db->escape(set_value('title')); $summary = $this->db->escape(set_value('summary')); $code = $this->db->escape(set_value('bbcode')); $tags = $this->db->escape(set_value('tags')); // Stop things like <script> tags working $codesanitised = htmlspecialchars($code); // Other values to be entered $author = $this->tank_auth->get_user_id(); $bi1 = ""; $bi2 = ""; // This long messy bit basically sees which browsers the code is compatible with. if (isset($_POST['IE6'])) {$bi1 .= "IE6, "; $bi2 .= "1, ";} else {$bi1 .= "IE6, "; $bi2 .= "NULL, ";} if (isset($_POST['IE7'])) {$bi1 .= "IE7, "; $bi2 .= "1, ";} else {$bi1 .= "IE7, "; $bi2 .= "NULL, ";} if (isset($_POST['IE8'])) {$bi1 .= "IE8, "; $bi2 .= "1, ";} else {$bi1 .= "IE8, "; $bi2 .= "NULL, ";} if (isset($_POST['FF2'])) {$bi1 .= "FF2, "; $bi2 .= "1, ";} else {$bi1 .= "FF2, "; $bi2 .= "NULL, ";} if (isset($_POST['FF3'])) {$bi1 .= "FF3, "; $bi2 .= "1, ";} else {$bi1 .= "FF3, "; $bi2 .= "NULL, ";} if (isset($_POST['SA3'])) {$bi1 .= "SA3, "; $bi2 .= "1, ";} else {$bi1 .= "SA3, "; $bi2 .= "NULL, ";} if (isset($_POST['SA4'])) {$bi1 .= "SA4, "; $bi2 .= "1, ";} else {$bi1 .= "SA4, "; $bi2 .= "NULL, ";} if (isset($_POST['CHR'])) {$bi1 .= "CHR, "; $bi2 .= "1, ";} else {$bi1 .= "CHR, "; $bi2 .= "NULL, ";} if (isset($_POST['OPE'])) {$bi1 .= "OPE, "; $bi2 .= "1, ";} else {$bi1 .= "OPE, "; $bi2 .= "NULL, ";} if (isset($_POST['OTH'])) {$bi1 .= "OTH, "; $bi2 .= "1, ";} else {$bi1 .= "OTH, "; $bi2 .= "NULL, ";} // $b1 is $bi1 without the last two characters (, ) which would cause a query error $b1 = substr($bi1, 0, -2); $b2 = substr($bi2, 0, -2); // :::::::::::THIS IS WHERE THE IMPORTANT STUFF IS, STACKOVERFLOW READERS:::::::::: // Split up all the words in $tags into individual variables - each tag is seperated with a space $pieces = explode(" ", $tags); // Usage: // echo $pieces[0]; // piece1 etc $ti1 = ""; $ti2 = ""; // Now we'll do similar to what we did with the compatible browsers to generate a bit of a query string if ($pieces[0]!=NULL) {$ti1 .= "tag1, "; $ti2 .= "$pieces[0], ";} else {$ti1 .= "tag1, "; $ti2 .= "NULL, ";} if ($pieces[1]!=NULL) {$ti1 .= "tag2, "; $ti2 .= "$pieces[1], ";} else {$ti1 .= "tag2, "; $ti2 .= "NULL, ";} if ($pieces[2]!=NULL) {$ti1 .= "tag3, "; $ti2 .= "$pieces[2], ";} else {$ti1 .= "tag3, "; $ti2 .= "NULL, ";} if ($pieces[3]!=NULL) {$ti1 .= "tag4, "; $ti2 .= "$pieces[3], ";} else {$ti1 .= "tag4, "; $ti2 .= "NULL, ";} if ($pieces[4]!=NULL) {$ti1 .= "tag5, "; $ti2 .= "$pieces[4], ";} else {$ti1 .= "tag5, "; $ti2 .= "NULL, ";} $t1 = substr($ti1, 0, -2); $t2 = substr($ti2, 0, -2); $sql = "INSERT INTO code (id, title, author, summary, code, date, $t1, $b1) VALUES ('', $title, $author, $summary, $codesanitised, NOW(), $t2, $b2)"; $this->db->query($sql); $this->load->view('subviews/template/headerview'); $this->load->view('subviews/template/menuview'); $this->load->view('subviews/template/sidebar'); $this->load->view('thanksforsubmission'); $this->load->view('subviews/template/footerview'); } } Sorry about that boring drivel of code there. I realise I probably have a few bad practises in there - please point them out if so. This is what the outputted query looks like (it results in an error and isn't queried at all): A Database Error Occurred Error Number: 1136 Column count doesn't match value count at row 1 INSERT INTO code (id, title, author, summary, code, date, tag1, tag2, tag3, tag4, tag5, IE6, IE7, IE8, FF2, FF3, SA3, SA4, CHR, OPE, OTH) VALUES ('', 'test2', 1, 'test2', 'test2 ', NOW(), 'test2, test2, test2, test2, test2', NULL, NULL, 1, 1, 1, 1, 1, 1, 1, NULL) You'll see at the bit after NOW(), 'test2, test2, test2, test2, test2' - I never asked it to put all that in apostrophes. Did I? What I could do is put each of those lines like this: if ($pieces[0]!=NULL) {$ti1 .= "tag1, "; $ti2 .= "'$pieces[0]', ";} else {$ti1 .= "tag1, "; $ti2 .= "NULL, ";} With single quotes around $pieces[0] etc. - but then my problem is that this kinda fails when the user only enters 4 tags, or 3, or whatever. Sorry if that's the worst phrased question in history, I tried, but my brain has turned to mush. Thanks for your help! Jack

    Read the article

  • g++ SSE intrinsics dilemma - value from intrinsic "saturates"

    - by Sriram
    Hi, I wrote a simple program to implement SSE intrinsics for computing the inner product of two large (100000 or more elements) vectors. The program compares the execution time for both, inner product computed the conventional way and using intrinsics. Everything works out fine, until I insert (just for the fun of it) an inner loop before the statement that computes the inner product. Before I go further, here is the code: //this is a sample Intrinsics program to compute inner product of two vectors and compare Intrinsics with traditional method of doing things. #include <iostream> #include <iomanip> #include <xmmintrin.h> #include <stdio.h> #include <time.h> #include <stdlib.h> using namespace std; typedef float v4sf __attribute__ ((vector_size(16))); double innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume len1 = len2. float result = 0.0; for(int i = 0; i < len1; i++) { for(int j = 0; j < len1; j++) { result += (arr1[i] * arr2[i]); } } //float y = 1.23e+09; //cout << "y = " << y << endl; return result; } double sse_v4sf_innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume that len1 = len2. if(len1 != len2) { cout << "Lengths not equal." << endl; exit(1); } /*steps: * 1. load a long-type (4 float) into a v4sf type data from both arrays. * 2. multiply the two. * 3. multiply the same and store result. * 4. add this to previous results. */ v4sf arr1Data, arr2Data, prevSums, multVal, xyz; //__builtin_ia32_xorps(prevSums, prevSums); //making it equal zero. //can explicitly load 0 into prevSums using loadps or storeps (Check). float temp[4] = {0.0, 0.0, 0.0, 0.0}; prevSums = __builtin_ia32_loadups(temp); float result = 0.0; for(int i = 0; i < (len1 - 3); i += 4) { for(int j = 0; j < len1; j++) { arr1Data = __builtin_ia32_loadups(&arr1[i]); arr2Data = __builtin_ia32_loadups(&arr2[i]); //store the contents of two arrays. multVal = __builtin_ia32_mulps(arr1Data, arr2Data); //multiply. xyz = __builtin_ia32_addps(multVal, prevSums); prevSums = xyz; } } //prevSums will hold the sums of 4 32-bit floating point values taken at a time. Individual entries in prevSums also need to be added. __builtin_ia32_storeups(temp, prevSums); //store prevSums into temp. cout << "Values of temp:" << endl; for(int i = 0; i < 4; i++) cout << temp[i] << endl; result += temp[0] + temp[1] + temp[2] + temp[3]; return result; } int main() { clock_t begin, end; int length = 100000; float *arr1, *arr2; double result_Conventional, result_Intrinsic; // printStats("Allocating memory."); arr1 = new float[length]; arr2 = new float[length]; // printStats("End allocation."); srand(time(NULL)); //init random seed. // printStats("Initializing array1 and array2"); begin = clock(); for(int i = 0; i < length; i++) { // for(int j = 0; j < length; j++) { // arr1[i] = rand() % 10 + 1; arr1[i] = 2.5; // arr2[i] = rand() % 10 - 1; arr2[i] = 2.5; // } } end = clock(); cout << "Time to initialize array1 and array2 = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("Finished initialization."); // printStats("Begin inner product conventionally."); begin = clock(); result_Conventional = innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product conventionally = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("End inner product conventionally."); // printStats("Begin inner product using Intrinsics."); begin = clock(); result_Intrinsic = sse_v4sf_innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product with intrinsics = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; //printStats("End inner product using Intrinsics."); cout << "Results: " << endl; cout << " result_Conventional = " << result_Conventional << endl; cout << " result_Intrinsics = " << result_Intrinsic << endl; return 0; } I use the following g++ invocation to build this: g++ -W -Wall -O2 -pedantic -march=i386 -msse intrinsics_SSE_innerProduct.C -o innerProduct Each of the loops above, in both the functions, runs a total of N^2 times. However, given that arr1 and arr2 (the two floating point vectors) are loaded with a value 2.5, the length of the array is 100,000, the result in both cases should be 6.25e+10. The results I get are: Results: result_Conventional = 6.25e+10 result_Intrinsics = 5.36871e+08 This is not all. It seems that the value returned from the function that uses intrinsics "saturates" at the value above. I tried putting other values for the elements of the array and different sizes too. But it seems that any value above 1.0 for the array contents and any size above 1000 meets with the same value we see above. Initially, I thought it might be because all operations within SSE are in floating point, but floating point should be able to store a number that is of the order of e+08. I am trying to see where I could be going wrong but cannot seem to figure it out. I am using g++ version: g++ (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2). Any help on this is most welcome. Thanks, Sriram.

    Read the article

  • (PHP) Validation, Security and Speed - Does my app have these?

    - by Devner
    Hi all, I am currently working on a building community website in PHP. This contains forms that a user can fill right from registration to lot of other functionality. I am not an Object-oriented guy, so I am using functions most of the time to handle my application. I know I have to learn OOPS, but currently need to develop this website and get it running soon. Anyway, here's a sample of what I let my app. do: Consider a page (register.php) that has a form where a user has 3 fields to fill up, say: First Name, Last Name and Email. Upon submission of this form, I want to validate the form and show the corresponding errors to the users: <form id="form1" name="form1" method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <label for="name">Name:</label> <input type="text" name="name" id="name" /><br /> <label for="lname">Last Name:</label> <input type="text" name="lname" id="lname" /><br /> <label for="email">Email:</label> <input type="text" name="email" id="email" /><br /> <input type="submit" name="submit" id="submit" value="Submit" /> </form> This form will POST the info to the same page. So here's the code that will process the POST'ed info: <?php require("functions.php"); if( isset($_POST['submit']) ) { $errors = fn_register(); if( count($errors) ) { //Show error messages } else { //Send welcome mail to the user or do database stuff... } } ?> <?php //functions.php page: function sql_quote( $value ) { if( get_magic_quotes_gpc() ) { $value = stripslashes( $value ); } else { $value = addslashes( $value ); } if( function_exists( "mysql_real_escape_string" ) ) { $value = mysql_real_escape_string( $value ); } return $value; } function clean($str) { $str = strip_tags($str, '<br>,<br />'); $str = trim($str); $str = sql_quote($str); return $str; } foreach ($_POST as &$value) { if (!is_array($value)) { $value = clean($value); } else { clean($value); } } foreach ($_GET as &$value) { if (!is_array($value)) { $value = clean($value); } else { clean($value); } } function validate_name( $fld, $min, $max, $rule, $label ) { if( $rule == 'required' ) { if ( trim($fld) == '' ) { $str = "$label: Cannot be left blank."; return $str; } } if ( isset($fld) && trim($fld) != '' ) { if ( isset($fld) && $fld != '' && !preg_match("/^[a-zA-Z\ ]+$/", $fld)) { $str = "$label: Invalid characters used! Only Lowercase, Uppercase alphabets and Spaces are allowed"; } else if ( strlen($fld) < $min or strlen($fld) > $max ) { $curr_char = strlen($fld); $str = "$label: Must be atleast $min character &amp; less than $max char. Entered characters: $curr_char"; } else { $str = 0; } } else { $str = 0; } return $str; } function validate_email( $fld, $min, $max, $rule, $label ) { if( $rule == 'required' ) { if ( trim($fld) == '' ) { $str = "$label: Cannot be left blank."; return $str; } } if ( isset($fld) && trim($fld) != '' ) { if ( !eregi('^[a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.([a-zA-Z]{2,4})$', $fld) ) { $str = "$label: Invalid format. Please check."; } else if ( strlen($fld) < $min or strlen($fld) > $max ) { $curr_char = strlen($fld); $str = "$label: Must be atleast $min character &amp; less than $max char. Entered characters: $curr_char"; } else { $str = 0; } } else { $str = 0; } return $str; } function val_rules( $str, $val_type, $rule='required' ){ switch ($val_type) { case 'name': $val = validate_name( $str, 3, 20, $rule, 'First Name'); break; case 'lname': $val = validate_name( $str, 10, 20, $rule, 'Last Name'); break; case 'email': $val = validate_email( $str, 10, 60, $rule, 'Email'); break; } return $val; } function fn_register() { $errors = array(); $val_name = val_rules( $_POST['name'], 'name' ); $val_lname = val_rules( $_POST['lname'], 'lname', 'optional' ); $val_email = val_rules( $_POST['email'], 'email' ); if ( $val_name != '0' ) { $errors['name'] = $val_name; } if ( $val_lname != '0' ) { $errors['lname'] = $val_lname; } if ( $val_email != '0' ) { $errors['email'] = $val_email; } return $errors; } //END of functions.php page ?> OK, now it might look like there's a lot, but lemme break it down target wise: 1. I wanted the foreach ($_POST as &$value) and foreach ($_GET as &$value) loops to loop through the received info from the user submission and strip/remove all malicious input. I am calling a function called clean on the input first to achieve the objective as stated above. This function will process each of the input, whether individual field values or even arrays and allow only tags and remove everything else. The rest of it is obvious. Once this happens, the new/cleaned values will be processed by the fn_register() function and based on the values returned after the validation, we get the corresponding errors or NULL values (as applicable). So here's my questions: 1. This pretty much makes me feel secure as I am forcing the user to correct malicious data and won't process the final data unless the errors are corrected. Am I correct? Does the method that I follow guarantee the speed (as I am using lots of functions and their corresponding calls)? The fields of a form differ and the minimum number of fields I may have at any given point of time in any form may be 3 and can go upto as high as 100 (or even more, I am not sure as the website is still being developed). Will having 100's of fields and their validation in the above way, reduce the speed of application (say upto half a million users are accessing the website at the same time?). What can I do to improve the speed and reduce function calls (if possible)? 3, Can I do something to improve the current ways of validation? I am holding off object oriented approach and using FILTERS in PHP for the later. So please, I request you all to suggest me way to improve/tweak the current ways and suggest me if the script is vulnerable or safe enough to be used in a Live production environment. If not, what I can do to be able to use it live? Thank you all in advance.

    Read the article

  • how to pass an id number string to this class

    - by Phil
    I'm very much a vb person, but have had to use this id number class in c#. I got it from http://www.codingsanity.com/idnumber.htm : using System; using System.Text.RegularExpressions; namespace Utilities.SouthAfrica { /// <summary> /// Represents a South African Identity Number. /// valid number = 7707215230080 /// invalid test number = 1234567891234 /// /// </summary> [Serializable()] public class IdentityNumber { #region Enumerations /// <summary> /// Indicates a gender. /// </summary> public enum PersonGender { Female = 0, Male = 5 } public enum PersonCitizenship { SouthAfrican = 0, Foreign = 1 } #endregion #region Declarations static Regex _expression; Match _match; const string _IDExpression = @"(?<Year>[0-9][0-9])(?<Month>([0][1-9])|([1][0-2]))(?<Day>([0-2][0-9])|([3][0-1]))(?<Gender>[0-9])(?<Series>[0-9]{3})(?<Citizenship>[0-9])(?<Uniform>[0-9])(?<Control>[0-9])"; #endregion #region Constuctors /// <summary> /// Sets up the shared objects for ID validation. /// </summary> static IdentityNumber() { _expression = new Regex(_IDExpression, RegexOptions.Compiled | RegexOptions.Singleline); } /// <summary> /// Creates the ID number from a string. /// </summary> /// <param name="IDNumber">The string ID number.</param> public IdentityNumber(string IDNumber) { _match = _expression.Match(IDNumber.Trim()); } #endregion #region Properties /// <summary> /// Indicates the date of birth encoded in the ID Number. /// </summary> /// <exception cref="System.ArgumentException">Thrown if the ID Number is not usable.</exception> public DateTime DateOfBirth { get { if(IsUsable == false) { throw new ArgumentException("ID Number is unusable!", "IDNumber"); } int year = int.Parse(_match.Groups["Year"].Value); // NOTE: Do not optimize by moving these to static, otherwise the calculation may be incorrect // over year changes, especially century changes. int currentCentury = int.Parse(DateTime.Now.Year.ToString().Substring(0, 2) + "00"); int lastCentury = currentCentury - 100; int currentYear = int.Parse(DateTime.Now.Year.ToString().Substring(2, 2)); // If the year is after or at the current YY, then add last century to it, otherwise add // this century. // TODO: YY -> YYYY logic needs thinking about if(year > currentYear) { year += lastCentury; } else { year += currentCentury; } return new DateTime(year, int.Parse(_match.Groups["Month"].Value), int.Parse(_match.Groups["Day"].Value)); } } /// <summary> /// Indicates the gender for the ID number. /// </summary> /// <exception cref="System.ArgumentException">Thrown if the ID Number is not usable.</exception> public PersonGender Gender { get { if(IsUsable == false) { throw new ArgumentException("ID Number is unusable!", "IDNumber"); } int gender = int.Parse(_match.Groups["Gender"].Value); if(gender < (int) PersonGender.Male) { return PersonGender.Female; } else { return PersonGender.Male; } } } /// <summary> /// Indicates the citizenship for the ID number. /// </summary> /// <exception cref="System.ArgumentException">Thrown if the ID Number is not usable.</exception> public PersonCitizenship Citizenship { get { if(IsUsable == false) { throw new ArgumentException("ID Number is unusable!", "IDNumber"); } return (PersonCitizenship) Enum.Parse(typeof(PersonCitizenship), _match.Groups["Citizenship"].Value); } } /// <summary> /// Indicates if the IDNumber is usable or not. /// </summary> public bool IsUsable { get { return _match.Success; } } /// <summary> /// Indicates if the IDNumber is valid or not. /// </summary> public bool IsValid { get { if(IsUsable == true) { // Calculate total A by adding the figures in the odd positions i.e. the first, third, fifth, // seventh, ninth and eleventh digits. int a = int.Parse(_match.Value.Substring(0, 1)) + int.Parse(_match.Value.Substring(2, 1)) + int.Parse(_match.Value.Substring(4, 1)) + int.Parse(_match.Value.Substring(6, 1)) + int.Parse(_match.Value.Substring(8, 1)) + int.Parse(_match.Value.Substring(10, 1)); // Calculate total B by taking the even figures of the number as a whole number, and then // multiplying that number by 2, and then add the individual figures together. int b = int.Parse(_match.Value.Substring(1, 1) + _match.Value.Substring(3, 1) + _match.Value.Substring(5, 1) + _match.Value.Substring(7, 1) + _match.Value.Substring(9, 1) + _match.Value.Substring(11, 1)); b *= 2; string bString = b.ToString(); b = 0; for(int index = 0; index < bString.Length; index++) { b += int.Parse(bString.Substring(index, 1)); } // Calculate total C by adding total A to total B. int c = a + b; // The control-figure can now be determined by subtracting the ones in figure C from 10. string cString = c.ToString() ; cString = cString.Substring(cString.Length - 1, 1) ; int control = 0; // Where the total C is a multiple of 10, the control figure will be 0. if(cString != "0") { control = 10 - int.Parse(cString.Substring(cString.Length - 1, 1)); } if(_match.Groups["Control"].Value == control.ToString()) { return true; } } return false; } } #endregion } } Here is the code from my default.aspx.cs page: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using Utilities.Southafrica; <- this is the one i added to public partial class _Default : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { var someNumber = new IdentityNumber("123456"); <- gives error } } Can someone please tell the syntax for how I pass an id number to the class? Thanks

    Read the article

  • how to pass an id number string to this class (asp.net, c#)

    - by Phil
    I'm very much a vb person, but have had to use this id number class in c#. I got it from http://www.codingsanity.com/idnumber.htm : using System; using System.Text.RegularExpressions; namespace Utilities.SouthAfrica { /// <summary> /// Represents a South African Identity Number. /// valid number = 7707215230080 /// invalid test number = 1234567891234 /// /// </summary> [Serializable()] public class IdentityNumber { #region Enumerations /// <summary> /// Indicates a gender. /// </summary> public enum PersonGender { Female = 0, Male = 5 } public enum PersonCitizenship { SouthAfrican = 0, Foreign = 1 } #endregion #region Declarations static Regex _expression; Match _match; const string _IDExpression = @"(?<Year>[0-9][0-9])(?<Month>([0][1-9])|([1][0-2]))(?<Day>([0-2][0-9])|([3][0-1]))(?<Gender>[0-9])(?<Series>[0-9]{3})(?<Citizenship>[0-9])(?<Uniform>[0-9])(?<Control>[0-9])"; #endregion #region Constuctors /// <summary> /// Sets up the shared objects for ID validation. /// </summary> static IdentityNumber() { _expression = new Regex(_IDExpression, RegexOptions.Compiled | RegexOptions.Singleline); } /// <summary> /// Creates the ID number from a string. /// </summary> /// <param name="IDNumber">The string ID number.</param> public IdentityNumber(string IDNumber) { _match = _expression.Match(IDNumber.Trim()); } #endregion #region Properties /// <summary> /// Indicates the date of birth encoded in the ID Number. /// </summary> /// <exception cref="System.ArgumentException">Thrown if the ID Number is not usable.</exception> public DateTime DateOfBirth { get { if(IsUsable == false) { throw new ArgumentException("ID Number is unusable!", "IDNumber"); } int year = int.Parse(_match.Groups["Year"].Value); // NOTE: Do not optimize by moving these to static, otherwise the calculation may be incorrect // over year changes, especially century changes. int currentCentury = int.Parse(DateTime.Now.Year.ToString().Substring(0, 2) + "00"); int lastCentury = currentCentury - 100; int currentYear = int.Parse(DateTime.Now.Year.ToString().Substring(2, 2)); // If the year is after or at the current YY, then add last century to it, otherwise add // this century. // TODO: YY -> YYYY logic needs thinking about if(year > currentYear) { year += lastCentury; } else { year += currentCentury; } return new DateTime(year, int.Parse(_match.Groups["Month"].Value), int.Parse(_match.Groups["Day"].Value)); } } /// <summary> /// Indicates the gender for the ID number. /// </summary> /// <exception cref="System.ArgumentException">Thrown if the ID Number is not usable.</exception> public PersonGender Gender { get { if(IsUsable == false) { throw new ArgumentException("ID Number is unusable!", "IDNumber"); } int gender = int.Parse(_match.Groups["Gender"].Value); if(gender < (int) PersonGender.Male) { return PersonGender.Female; } else { return PersonGender.Male; } } } /// <summary> /// Indicates the citizenship for the ID number. /// </summary> /// <exception cref="System.ArgumentException">Thrown if the ID Number is not usable.</exception> public PersonCitizenship Citizenship { get { if(IsUsable == false) { throw new ArgumentException("ID Number is unusable!", "IDNumber"); } return (PersonCitizenship) Enum.Parse(typeof(PersonCitizenship), _match.Groups["Citizenship"].Value); } } /// <summary> /// Indicates if the IDNumber is usable or not. /// </summary> public bool IsUsable { get { return _match.Success; } } /// <summary> /// Indicates if the IDNumber is valid or not. /// </summary> public bool IsValid { get { if(IsUsable == true) { // Calculate total A by adding the figures in the odd positions i.e. the first, third, fifth, // seventh, ninth and eleventh digits. int a = int.Parse(_match.Value.Substring(0, 1)) + int.Parse(_match.Value.Substring(2, 1)) + int.Parse(_match.Value.Substring(4, 1)) + int.Parse(_match.Value.Substring(6, 1)) + int.Parse(_match.Value.Substring(8, 1)) + int.Parse(_match.Value.Substring(10, 1)); // Calculate total B by taking the even figures of the number as a whole number, and then // multiplying that number by 2, and then add the individual figures together. int b = int.Parse(_match.Value.Substring(1, 1) + _match.Value.Substring(3, 1) + _match.Value.Substring(5, 1) + _match.Value.Substring(7, 1) + _match.Value.Substring(9, 1) + _match.Value.Substring(11, 1)); b *= 2; string bString = b.ToString(); b = 0; for(int index = 0; index < bString.Length; index++) { b += int.Parse(bString.Substring(index, 1)); } // Calculate total C by adding total A to total B. int c = a + b; // The control-figure can now be determined by subtracting the ones in figure C from 10. string cString = c.ToString() ; cString = cString.Substring(cString.Length - 1, 1) ; int control = 0; // Where the total C is a multiple of 10, the control figure will be 0. if(cString != "0") { control = 10 - int.Parse(cString.Substring(cString.Length - 1, 1)); } if(_match.Groups["Control"].Value == control.ToString()) { return true; } } return false; } } #endregion } } Can someone please tell the syntax for how I pass an id number to the class? Thanks

    Read the article

  • PHP - My array returns NULL values when placed in a function, but works fine outside of the function

    - by orbit82
    Okay, let me see if I can explain this. I am making a newspaper WordPress theme. The theme pulls posts from categories. The front page shows multiple categories, organized as "newsboxes". Each post should show up only ONCE on the front page, even if said post is in two or more categories. To prevent posts from duplicating on the front page, I've created an array that keeps track of the individual post IDs. When a post FIRST shows up on the front page, its ID gets added to the array. Before looping through the posts for each category, the code first checks the array to see which posts have ALREADY been displayed. OK, so now remember how I said earlier that the front page shows multiple categories organized as "newsboxes"? Well, these newsboxes are called onto the front page using PHP includes. I have 6 newsboxes appearing on the front page, and the code to call them is EXACTLY the same. I didn't want to repeat the same code 6 times, so I put all of the inclusion code into a function. The function works, but the only problem is that it screws up the duplicate posts code I mentioned earlier. The posts all repeat. Running a var_dump on the $do_not_duplicate variable returns an array with null indices. Everything works PERFECTLY if I don't put the code inside a function, but once I do put them in a function it's like the arrays aren't even connecting with the posts. Here is the code with the arrays. The key variables in question here include $do_not_duplicate[] = $post-ID, $do_not_duplicate and 'post__not_in' = $do_not_duplicate <?php query_posts('cat='.$settings['cpress_top_story_category'].'&posts_per_page='.$settings['cpress_number_of_top_stories'].'');?> <?php if (have_posts()) : ?> <!--TOP STORY--> <div id="topStory"> <?php while ( have_posts() ) : the_post(); $do_not_duplicate[] = $post->ID; ?> <a href="<?php the_permalink() ?>" rel="bookmark" title="Permanent Link to <?php the_title_attribute(); ?>"><?php the_post_thumbnail('top-story-thumbnail'); ?></a> <h2 class="extraLargeHeadline"><a href="<?php the_permalink() ?>" rel="bookmark" title="Permanent Link to <?php the_title_attribute(); ?>"><?php the_title(); ?></a></h2> <div class="topStory_author"><?php cpress_show_post_author_byline(); ?></div> <div <?php post_class('topStory_entry') ?> id="post-<?php the_ID(); ?>"> <?php if($settings['cpress_excerpt_or_content_top_story_newsbox'] == "content") { the_content(); ?><a href="<?php the_permalink(); ?>" title="<?php the_title_attribute(); ?>"><span class="read_more"><?php echo $settings['cpress_more_text']; ?></span></a> <?php } else { the_excerpt(); ?><a href="<?php the_permalink(); ?>" title="<?php the_title_attribute(); ?>"><span class="read_more"><?php echo $settings['cpress_more_text']; ?></span></a> <?php }?> </div><!--/topStoryentry--> <div class="topStory_meta"><?php cpress_show_post_meta(); ?></div> <?php endwhile; wp_reset_query(); ?> <?php if(!$settings['cpress_hide_top_story_more_stories']) { ?> <!--More Top Stories--><div id="moreTopStories"> <?php $category_link = get_category_link(''.$settings['cpress_top_story_category'].''); ?> <?php if (have_posts()) : ?> <?php query_posts( array( 'cat' => ''.$settings['cpress_top_story_category'].'', 'posts_per_page' => ''.$settings['cpress_number_of_more_top_stories'].'', 'post__not_in' => $do_not_duplicate ) ); ?> <h4 class="moreStories"> <?php if($settings['cpress_make_top_story_more_stories_link']) { ?> <a href="<?php echo $category_link; ?>" title="<?php echo strip_tags($settings['cpress_top_story_more_stories_text']);?>"><?php echo strip_tags($settings['cpress_top_story_more_stories_text']);?></a><?php } else { echo strip_tags($settings['cpress_top_story_more_stories_text']); } ?> </h4> <ul> <?php while( have_posts() ) : the_post(); $do_not_duplicate[] = $post->ID; ?> <li><h2 class="mediumHeadline"><a href="<?php the_permalink() ?>" rel="bookmark" title="Permanent Link to <?php the_title_attribute(); ?>"><?php the_title(); ?></a></h2> <?php if(!$settings['cpress_hide_more_top_stories_excerpt']) { ?> <div <?php post_class('moreTopStory_postExcerpt') ?> id="post-<?php the_ID(); ?>"><?php if($settings['cpress_excerpt_or_content_top_story_newsbox'] == "content") { the_content(); ?><a href="<?php the_permalink(); ?>" title="<?php the_title_attribute(); ?>"><span class="read_more"><?php echo $settings['cpress_more_text']; ?></span></a> <?php } else { the_excerpt(); ?> <a href="<?php the_permalink(); ?>" title="<?php the_title_attribute(); ?>"><span class="read_more"><?php echo $settings['cpress_more_text']; ?></span></a> <?php }?> </div><?php } ?> <div class="moreTopStory_postMeta"><?php cpress_show_post_meta(); ?></div> </li> <?php endwhile; wp_reset_query(); ?> </ul> <?php endif;?> </div><!--/moreTopStories--> <?php } ?> <?php echo(var_dump($do_not_duplicate)); ?> </div><!--/TOP STORY--> <?php endif; ?> And here is the code that includes the newsboxes onto the front page. This is the code I'm trying to put into a function to avoid duplicating it 6 times on one page. function cpress_show_templatebitsf($tbit_num, $tbit_option) { global $tbit_path; global $shortname; $settings = get_option($shortname.'_options'); //display the templatebits (usually these will be sidebars) for ($i=1; $i<=$tbit_num; $i++) { $tbit = strip_tags($settings[$tbit_option .$i]); if($tbit !="") { include_once(TEMPLATEPATH . $tbit_path. $tbit.'.php'); } //if }//for loop unset($tbit_option); } I hope this makes sense. It's kind of a complex thing to explain but I've tried many things to fix it and have had no luck. I'm stumped. I'm hoping it's just some little thing I'm overlooking because it seems like it shouldn't be such a problem.

    Read the article

  • Visualising a 'Smarties' lid using XAML (WPF/Silverlight, Visual Studio/Blend)

    - by Mr. Disappointment
    Hi folks, First off, to clarify something in the title which could well be ambiguous/misleading, I'd like to inform you of my definition of 'Smarties', as I know often products are available all over - only under a different alias. Smarties are a candy product in the UK, little chocolate drops covered in a crispy shell which are distributed in a card tube, this tube used to have a plastic lid/top with an individual letter on the underside (they've taken a more economical approach as of late), the lid/top of the old-style tube is the main element of this question. Familiarisation Link Lid View Link Okay, now with the seller-type pitch out of the way (no, I don't work for Nestlé ;)), hopefully the question is becoming rather clear. Essentially, I'd like to recreate one of these lids using XAML, ultimately to be utilised in a Silverlight web application. That is, I'd like to result in a reusable control, of which the following is true: It looks like a Smarties lid. The colour can be specified. The letter can be specified. The control can be rotated to display either side. The second two seem trivial, but we must bare in mind that the background colour specified will almost, if not always, be the same as the foreground, leaving a visibility issue where the character content is concerned; as for the rotation, I'm hoping this kind of functionality is reasonably available, and acceptable to implement. So, to put this out there, consider a control named SmartiesLid which derives from ToggleButton (appropriate?) and further plotted out using a style in a resource dictionary which applies to it, as follows: <Style TargetType="local:SmartiesLid"> <Setter Property="Background" Value="Red"/> <Setter Property="Foreground" Value="Red"/> <Setter Property="VerticalContentAlignment" Value="Center"/> <Setter Property="HorizontalContentAlignment" Value="Center"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="local:SmartiesLid"> <Grid x:Name="LayoutRoot"> <Grid.ColumnDefinitions> <ColumnDefinition Width=".05*"/> <ColumnDefinition/> <ColumnDefinition/> <ColumnDefinition Width=".05*"/> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height=".05*"/> <RowDefinition/> <RowDefinition/> <RowDefinition Height=".05*"/> <RowDefinition Height=".1*"/> </Grid.RowDefinitions> <Ellipse Grid.RowSpan="4" Grid.ColumnSpan="4" Fill="{TemplateBinding Background}" Stroke="Transparent"/> <Ellipse Grid.RowSpan="2" Grid.ColumnSpan="2" Grid.Column="1" Grid.Row="1" Fill="{TemplateBinding Background}" Stroke="Transparent"> <Ellipse.Effect> <DropShadowEffect Direction="280" ShadowDepth="6" BlurRadius="6"/> </Ellipse.Effect> </Ellipse> <TextBlock Grid.RowSpan="2" Grid.ColumnSpan="2" Grid.Column="1" Grid.Row="1" Name="LetterTextBlock" Text="{TemplateBinding Content}" Foreground="{TemplateBinding Foreground}" FontSize="190" HorizontalAlignment="Center" VerticalAlignment="Center"> </TextBlock> <!-- <Path Stretch="Fill" Grid.Row="3" Grid.RowSpan="2" Grid.Column="1" Grid.ColumnSpan="2" Fill="Black" Data="..."> How to craw the lid 'tab'? </Path> --> </Grid> <ControlTemplate.Resources> <TranslateTransform x:Key="IndentTransform" X="10" /> <RotateTransform x:Key="RotateTransform" Angle="0" /> <Storyboard x:Key="MouseOver"> </Storyboard> <Storyboard x:Key="MouseLeave"> </Storyboard> </ControlTemplate.Resources> <ControlTemplate.Triggers> <Trigger Property="IsMouseOver" Value="true"> <Trigger.EnterActions> <BeginStoryboard Storyboard="{StaticResource MouseOver}"/> </Trigger.EnterActions> <Trigger.ExitActions> <BeginStoryboard Storyboard="{StaticResource MouseLeave}"/> </Trigger.ExitActions> </Trigger> <Trigger Property="IsPressed" Value="true"> <Setter TargetName="LayoutRoot" Property="RenderTransform" Value="{StaticResource IndentTransform}"/> </Trigger> <Trigger Property="IsChecked" Value="true"> <Setter TargetName="LayoutRoot" Property="RenderTransform" Value="{StaticResource RotateTransform}"/> </Trigger> <Trigger Property="IsEnabled" Value="False"> <Setter Property="Foreground" Value="Gray"/> <Setter Property="Opacity" Value="0.5"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> With this in mind, can anyone give input on, in decreasing order of my incompetence in an area: Designing the overall look and feel of the damn thing (I'm no designer, and while I could hack away at this single control for days and potentially get something relatively useful, it's always a gamble). The particular barrier for me here is 'pathing' the tab of the lid, as you will see in the XAML as an element commented out. Should Path be used, or would it be more appropriate to transform a rectangle with rounded corners, or any specific suggestions? Bevelling the individually displayed letter; as detailed above, when the colour of both the foreground and background are the same then this will be invisible if no effects are applied, also for a decent level of realism I'd like to be able to apply such an effect/s. So far use of DropShadow and Balder3DEngine have fulfilled my requirements for graphics in XAML, how achievable is a bevel effect? Rotating the control on mouse-click, that is, showing the opposing face. Is this going to be possible using a style and XAML only for the design? Or is it that ugliness may rear it's head in the form of code-behind to show/hide embedded controls? Should the faces be separate controls and later somehow combined? Allowing the control to size dynamically. I'm supposing I will be able to convert a solid, absolute layout to a nice generic one when I actually have the former in place. Obviously this entails sizing the centralised letter and the lid 'tab', but that's it really, other than keeping the aspect ratio equal (since the ellipses grow nicely with the grid). Any suggestions to approaching this would be greatly appreciated, particularly with a dynamically growing font - I've done that before in a web-imaging scenario using code and System.Drawing, and wouldn't like to approach it in even a similar way. By the way, the reason I specify both WPF and Silverlight is that, from my current knowledge, the inputs being written targeting either of these will be fairly transferable for similar output by the other, albeit not without alterations in either scenario. The resulting application is in fact destined to be written in Silverlight, however, so I don't fancy inviting anything from WPF which will guarantee my only being able to convert 90% of it. I'll go give this little project a start, maybe in Blend(?), hopefully can catch up with some advice shortly. Thanks, Mr. D EDIT: Next question, ought this to be broken up into separate questions? :/

    Read the article

  • Hide/Show some HTML table cells individually and align the remaining cells as they belong to the same row [closed]

    - by Brian
    [Edited at the resquest of admins] The best way I can explain my problem is showning an example. I have the table that you can see on the link below (since I can't post images...), that ha a table head (blue) and four rows, whose cells are green and white in color. I just want the white cells to hide/show alternately by clicking on green cells, which would remain always visible as parent cells. After hiding white cells, the green ones should be aligned into the same row, as they would fit like tetris bricks. That's all, I think more clear is impossible. http://i.stack.imgur.com/3n3In.jpg (follow the link to see the image explanation) The table code: <table class="columns" cellspacing="0" border="0"> <tr> <td class="left" rowspan="2"> <div style="text-align:center;"></div> </td> </tr><tr><td class="middle"> <div id="detail_table_source" style="display:none"></div> <br> <table id="detail_table" class="detail"> <colgroup> <col style="width:20px;"> <col style="width:40px;"> <col style="width:70px;"> <col style="width:20px;"> </colgroup> <thead> <tr> <th width="88">Blahhh</th> <th width="211">BLAHH</th> <th width="229">BLAHH</th> </tr> </thead> <tbody> <tr class="parent" id="row123" style="cursor: pointer; " title="Click to expand/collapse"> <td bgcolor="#A6A4CC">Blahhh</td> <td bgcolor="#A6A4CC">blah blah </td> <td bgcolor="#A6A4CC">Blahh</td> </tr> <tr class="child-row123" style="display: none; "> <td rowspan="3" bgcolor="#5B5B5B">&nbsp;</td> <td>blah blah </td> <td>blah blah</td> </tr> <tr class="child-row123" style="display: none; "> <td>blah blah</td> <td>blah blah</td> </tr> <tr class="child-row123" style="display: none; "> <td>blah blah</td> <td>blah blah</td> </tr> <tr> <td bgcolor="#6B7A94" class="parent" id="row456" style="cursor: pointer; " title="Click to expand/collapse"><strong>Blahh</strong></td> <td bgcolor="#FFFFFF" class="child-cell456" style="display: none; ">blah blah</td> <td bgcolor="#FFFFFF" class="child-cell456" style="display: none; ">blah blah</td> </tr> <tr> <td rowspan="4" valign="top" bgcolor="#5B5B5B" class="child-row456" style="display: none; ">&nbsp;</td> <td bgcolor="#6B7A94" class="parent" id="cell456" style="cursor: pointer; " title="Click to expand/collapse">blah blah</td> <td bgcolor="#6B7A94" class="parent" id="cell456" style="cursor: pointer; " title="Click to expand/collapse">blah blah</td> </tr> <tr> <td class="child-cell456" style="display: none; ">blah blah</td> <td class="child-cell456" style="display: none; ">blah blah</td> </tr> <tr> <td class="child-cell456" style="display: none; ">blah blah</td> <td class="child-cell456" style="display: none; ">blah blah</td> </tr> </tbody> </table> The script to hide/show whole rows (this works because it is copied from another example): <script language="javascript"> $(function() { $('tr.parent') .css("cursor","pointer") .attr("title","Click to expand/collapse") .click(function(){ $(this).siblings('.child-'+this.id).toggle(); }); $('tr[@class^=child-]').hide().children('td'); }); </script> And the failed attempt at expanding/hiding individual cells: <script language="javascript"> $(function() { $('td.parent') .css("cursor","pointer") .attr("title","Click to expand/collapse") .click(function(){ $(this).siblings('.child-'+this.id).toggle(); }); $('td[@class^=child-]').hide().children('td'); }); </script>

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • OpenVPN - Windows 8 to Windows 2008 Server, not connecting

    - by niico
    I have followed this tutorial about setting up an OpenVPN Server on Windows Server - and a client on Windows (in this case Windows 8). The server appears to be running fine - but it is not connecting with this error: Mon Jul 22 19:09:04 2013 Warning: cannot open --log file: C:\Program Files\OpenVPN\log\my-laptop.log: Access is denied. (errno=5) Mon Jul 22 19:09:04 2013 OpenVPN 2.3.2 x86_64-w64-mingw32 [SSL (OpenSSL)] [LZO] [PKCS11] [eurephia] [IPv6] built on Jun 3 2013 Mon Jul 22 19:09:04 2013 MANAGEMENT: TCP Socket listening on [AF_INET]127.0.0.1:25340 Mon Jul 22 19:09:04 2013 Need hold release from management interface, waiting... Mon Jul 22 19:09:05 2013 MANAGEMENT: Client connected from [AF_INET]127.0.0.1:25340 Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'state on' Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'log all on' Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'hold off' Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'hold release' Mon Jul 22 19:09:05 2013 Socket Buffers: R=[65536->65536] S=[65536->65536] Mon Jul 22 19:09:05 2013 UDPv4 link local: [undef] Mon Jul 22 19:09:05 2013 UDPv4 link remote: [AF_INET]66.666.66.666:9999 Mon Jul 22 19:09:05 2013 MANAGEMENT: >STATE:1374494945,WAIT,,, Mon Jul 22 19:10:05 2013 TLS Error: TLS key negotiation failed to occur within 60 seconds (check your network connectivity) Mon Jul 22 19:10:05 2013 TLS Error: TLS handshake failed Mon Jul 22 19:10:05 2013 SIGUSR1[soft,tls-error] received, process restarting Mon Jul 22 19:10:05 2013 MANAGEMENT: >STATE:1374495005,RECONNECTING,tls-error,, Mon Jul 22 19:10:05 2013 Restart pause, 2 second(s) Note I have changed the IP and port no (it uses a non-standard port for security reasons). That port is open on the hardware firewall. The server logs are showing a connection attempt from my client: TLS: Initial packet from [AF_INET]118.68.xx.xx:65011, sid=081af4ed xxxxxxxx Mon Jul 22 14:19:15 2013 118.68.xx.xx:65011 TLS Error: TLS key negotiation failed to occur within 60 seconds (check your network connectivity) How can I problem solve this & find the problem? Thx Update - Client config file: ############################################## # Sample client-side OpenVPN 2.0 config file # # for connecting to multi-client server. # # # # This configuration can be used by multiple # # clients, however each client should have # # its own cert and key files. # # # # On Windows, you might want to rename this # # file so it has a .ovpn extension # ############################################## # Specify that we are a client and that we # will be pulling certain config file directives # from the server. client # Use the same setting as you are using on # the server. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. ;dev tap dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel # if you have more than one. On XP SP2, # you may need to disable the firewall # for the TAP adapter. ;dev-node MyTap # Are we connecting to a TCP or # UDP server? Use the same setting as # on the server. ;proto tcp proto udp # The hostname/IP and port of the server. # You can have multiple remote entries # to load balance between the servers. remote 00.00.00.00 1194 ;remote 00.00.00.00 9999 ;remote my-server-2 1194 # Choose a random host from the remote # list for load-balancing. Otherwise # try hosts in the order specified. ;remote-random # Keep trying indefinitely to resolve the # host name of the OpenVPN server. Very useful # on machines which are not permanently connected # to the internet such as laptops. resolv-retry infinite # Most clients don't need to bind to # a specific local port number. nobind # Downgrade privileges after initialization (non-Windows only) ;user nobody ;group nobody # Try to preserve some state across restarts. persist-key persist-tun # If you are connecting through an # HTTP proxy to reach the actual OpenVPN # server, put the proxy server/IP and # port number here. See the man page # if your proxy server requires # authentication. ;http-proxy-retry # retry on connection failures ;http-proxy [proxy server] [proxy port #] # Wireless networks often produce a lot # of duplicate packets. Set this flag # to silence duplicate packet warnings. ;mute-replay-warnings # SSL/TLS parms. # See the server config file for more # description. It's best to use # a separate .crt/.key file pair # for each client. A single ca # file can be used for all clients. ca "C:\\Program Files\\OpenVPN\\config\\ca.crt" cert "C:\\Program Files\\OpenVPN\\config\\my-laptop.crt" key "C:\\Program Files\\OpenVPN\\config\\my-laptop.key" # Verify server certificate by checking # that the certicate has the nsCertType # field set to "server". This is an # important precaution to protect against # a potential attack discussed here: # http://openvpn.net/howto.html#mitm # # To use this feature, you will need to generate # your server certificates with the nsCertType # field set to "server". The build-key-server # script in the easy-rsa folder will do this. ns-cert-type server # If a tls-auth key is used on the server # then every client must also have the key. ;tls-auth ta.key 1 # Select a cryptographic cipher. # If the cipher option is used on the server # then you must also specify it here. ;cipher x # Enable compression on the VPN link. # Don't enable this unless it is also # enabled in the server config file. comp-lzo # Set log file verbosity. verb 3 # Silence repeating messages ;mute 20 Server config file: ################################################# # Sample OpenVPN 2.0 config file for # # multi-client server. # # # # This file is for the server side # # of a many-clients <-> one-server # # OpenVPN configuration. # # # # OpenVPN also supports # # single-machine <-> single-machine # # configurations (See the Examples page # # on the web site for more info). # # # # This config should work on Windows # # or Linux/BSD systems. Remember on # # Windows to quote pathnames and use # # double backslashes, e.g.: # # "C:\\Program Files\\OpenVPN\\config\\foo.key" # # # # Comments are preceded with '#' or ';' # ################################################# # Which local IP address should OpenVPN # listen on? (optional) ;local 00.00.00.00 # Which TCP/UDP port should OpenVPN listen on? # If you want to run multiple OpenVPN instances # on the same machine, use a different port # number for each one. You will need to # open up this port on your firewall. std 1194 port 1194 # TCP or UDP server? ;proto tcp proto udp # "dev tun" will create a routed IP tunnel, # "dev tap" will create an ethernet tunnel. # Use "dev tap0" if you are ethernet bridging # and have precreated a tap0 virtual interface # and bridged it with your ethernet interface. # If you want to control access policies # over the VPN, you must create firewall # rules for the the TUN/TAP interface. # On non-Windows systems, you can give # an explicit unit number, such as tun0. # On Windows, use "dev-node" for this. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. ;dev tap dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel if you # have more than one. On XP SP2 or higher, # you may need to selectively disable the # Windows firewall for the TAP adapter. # Non-Windows systems usually don't need this. ;dev-node MyTap # SSL/TLS root certificate (ca), certificate # (cert), and private key (key). Each client # and the server must have their own cert and # key file. The server and all clients will # use the same ca file. # # See the "easy-rsa" directory for a series # of scripts for generating RSA certificates # and private keys. Remember to use # a unique Common Name for the server # and each of the client certificates. # # Any X509 key management system can be used. # OpenVPN can also use a PKCS #12 formatted key file # (see "pkcs12" directive in man page). ca "C:\\Program Files\\OpenVPN\\config\\ca.crt" cert "C:\\Program Files\\OpenVPN\\config\\server.crt" key "C:\\Program Files\\OpenVPN\\config\\server.key" # Diffie hellman parameters. # Generate your own with: # openssl dhparam -out dh1024.pem 1024 # Substitute 2048 for 1024 if you are using # 2048 bit keys. dh "C:\\Program Files\\OpenVPN\\config\\dh2048.pem" # Configure server mode and supply a VPN subnet # for OpenVPN to draw client addresses from. # The server will take 10.8.0.1 for itself, # the rest will be made available to clients. # Each client will be able to reach the server # on 10.8.0.1. Comment this line out if you are # ethernet bridging. See the man page for more info. server 10.8.0.0 255.255.255.0 # Maintain a record of client <-> virtual IP address # associations in this file. If OpenVPN goes down or # is restarted, reconnecting clients can be assigned # the same virtual IP address from the pool that was # previously assigned. ifconfig-pool-persist ipp.txt # Configure server mode for ethernet bridging. # You must first use your OS's bridging capability # to bridge the TAP interface with the ethernet # NIC interface. Then you must manually set the # IP/netmask on the bridge interface, here we # assume 10.8.0.4/255.255.255.0. Finally we # must set aside an IP range in this subnet # (start=10.8.0.50 end=10.8.0.100) to allocate # to connecting clients. Leave this line commented # out unless you are ethernet bridging. ;server-bridge 10.8.0.4 255.255.255.0 10.8.0.50 10.8.0.100 # Configure server mode for ethernet bridging # using a DHCP-proxy, where clients talk # to the OpenVPN server-side DHCP server # to receive their IP address allocation # and DNS server addresses. You must first use # your OS's bridging capability to bridge the TAP # interface with the ethernet NIC interface. # Note: this mode only works on clients (such as # Windows), where the client-side TAP adapter is # bound to a DHCP client. ;server-bridge # Push routes to the client to allow it # to reach other private subnets behind # the server. Remember that these # private subnets will also need # to know to route the OpenVPN client # address pool (10.8.0.0/255.255.255.0) # back to the OpenVPN server. ;push "route 192.168.10.0 255.255.255.0" ;push "route 192.168.20.0 255.255.255.0" # To assign specific IP addresses to specific # clients or if a connecting client has a private # subnet behind it that should also have VPN access, # use the subdirectory "ccd" for client-specific # configuration files (see man page for more info). # EXAMPLE: Suppose the client # having the certificate common name "Thelonious" # also has a small subnet behind his connecting # machine, such as 192.168.40.128/255.255.255.248. # First, uncomment out these lines: ;client-config-dir ccd ;route 192.168.40.128 255.255.255.248 # Then create a file ccd/Thelonious with this line: # iroute 192.168.40.128 255.255.255.248 # This will allow Thelonious' private subnet to # access the VPN. This example will only work # if you are routing, not bridging, i.e. you are # using "dev tun" and "server" directives. # EXAMPLE: Suppose you want to give # Thelonious a fixed VPN IP address of 10.9.0.1. # First uncomment out these lines: ;client-config-dir ccd ;route 10.9.0.0 255.255.255.252 # Then add this line to ccd/Thelonious: # ifconfig-push 10.9.0.1 10.9.0.2 # Suppose that you want to enable different # firewall access policies for different groups # of clients. There are two methods: # (1) Run multiple OpenVPN daemons, one for each # group, and firewall the TUN/TAP interface # for each group/daemon appropriately. # (2) (Advanced) Create a script to dynamically # modify the firewall in response to access # from different clients. See man # page for more info on learn-address script. ;learn-address ./script # If enabled, this directive will configure # all clients to redirect their default # network gateway through the VPN, causing # all IP traffic such as web browsing and # and DNS lookups to go through the VPN # (The OpenVPN server machine may need to NAT # or bridge the TUN/TAP interface to the internet # in order for this to work properly). ;push "redirect-gateway def1 bypass-dhcp" # Certain Windows-specific network settings # can be pushed to clients, such as DNS # or WINS server addresses. CAVEAT: # http://openvpn.net/faq.html#dhcpcaveats # The addresses below refer to the public # DNS servers provided by opendns.com. ;push "dhcp-option DNS 208.67.222.222" ;push "dhcp-option DNS 208.67.220.220" # Uncomment this directive to allow differenta # clients to be able to "see" each other. # By default, clients will only see the server. # To force clients to only see the server, you # will also need to appropriately firewall the # server's TUN/TAP interface. ;client-to-client # Uncomment this directive if multiple clients # might connect with the same certificate/key # files or common names. This is recommended # only for testing purposes. For production use, # each client should have its own certificate/key # pair. # # IF YOU HAVE NOT GENERATED INDIVIDUAL # CERTIFICATE/KEY PAIRS FOR EACH CLIENT, # EACH HAVING ITS OWN UNIQUE "COMMON NAME", # UNCOMMENT THIS LINE OUT. ;duplicate-cn # The keepalive directive causes ping-like # messages to be sent back and forth over # the link so that each side knows when # the other side has gone down. # Ping every 10 seconds, assume that remote # peer is down if no ping received during # a 120 second time period. keepalive 10 120 # For extra security beyond that provided # by SSL/TLS, create an "HMAC firewall" # to help block DoS attacks and UDP port flooding. # # Generate with: # openvpn --genkey --secret ta.key # # The server and each client must have # a copy of this key. # The second parameter should be '0' # on the server and '1' on the clients. ;tls-auth ta.key 0 # This file is secret # Select a cryptographic cipher. # This config item must be copied to # the client config file as well. ;cipher BF-CBC # Blowfish (default) ;cipher AES-128-CBC # AES ;cipher DES-EDE3-CBC # Triple-DES # Enable compression on the VPN link. # If you enable it here, you must also # enable it in the client config file. comp-lzo # The maximum number of concurrently connected # clients we want to allow. ;max-clients 100 # It's a good idea to reduce the OpenVPN # daemon's privileges after initialization. # # You can uncomment this out on # non-Windows systems. ;user nobody ;group nobody # The persist options will try to avoid # accessing certain resources on restart # that may no longer be accessible because # of the privilege downgrade. persist-key persist-tun # Output a short status file showing # current connections, truncated # and rewritten every minute. status openvpn-status.log # By default, log messages will go to the syslog (or # on Windows, if running as a service, they will go to # the "\Program Files\OpenVPN\log" directory). # Use log or log-append to override this default. # "log" will truncate the log file on OpenVPN startup, # while "log-append" will append to it. Use one # or the other (but not both). ;log openvpn.log ;log-append openvpn.log # Set the appropriate level of log # file verbosity. # # 0 is silent, except for fatal errors # 4 is reasonable for general usage # 5 and 6 can help to debug connection problems # 9 is extremely verbose verb 3 # Silence repeating messages. At most 20 # sequential messages of the same message # category will be output to the log. ;mute 20 I have changed IP's for security

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Wicket, Spring and Hibernate - Testing with Unitils - Error: Table not found in statement [select re

    - by John
    Hi there. I've been following a tutorial and a sample application, namely 5 Days of Wicket - Writing the tests: http://www.mysticcoders.com/blog/2009/03/10/5-days-of-wicket-writing-the-tests/ I've set up my own little project with a simple shoutbox that saves messages to a database. I then wanted to set up a couple of tests that would make sure that if a message is stored in the database, the retrieved object would contain the exact same data. Upon running mvn test all my tests fail. The exception has been pasted in the first code box underneath. I've noticed that even though my unitils.properties says to use the 'hdqldb'-dialect, this message is still output in the console window when starting the tests: INFO - Dialect - Using dialect: org.hibernate.dialect.PostgreSQLDialect. I've added the entire dump from the console as well at the bottom of this post (which goes on for miles and miles :-)). Upon running mvn test all my tests fail, and the exception is: Caused by: java.sql.SQLException: Table not found in statement [select relname from pg_class] at org.hsqldb.jdbc.Util.sqlException(Unknown Source) at org.hsqldb.jdbc.jdbcStatement.fetchResult(Unknown Source) at org.hsqldb.jdbc.jdbcStatement.executeQuery(Unknown Source) at org.apache.commons.dbcp.DelegatingStatement.executeQuery(DelegatingStatement.java:188) at org.hibernate.tool.hbm2ddl.DatabaseMetadata.initSequences(DatabaseMetadata.java:151) at org.hibernate.tool.hbm2ddl.DatabaseMetadata.(DatabaseMetadata.java:69) at org.hibernate.tool.hbm2ddl.DatabaseMetadata.(DatabaseMetadata.java:62) at org.springframework.orm.hibernate3.LocalSessionFactoryBean$3.doInHibernate(LocalSessionFactoryBean.java:958) at org.springframework.orm.hibernate3.HibernateTemplate.doExecute(HibernateTemplate.java:419) ... 49 more I've set up my unitils.properties file like so: database.driverClassName=org.hsqldb.jdbcDriver database.url=jdbc:hsqldb:mem:PUBLIC database.userName=sa database.password= database.dialect=hsqldb database.schemaNames=PUBLIC My abstract IntegrationTest class: @SpringApplicationContext({"/com/upbeat/shoutbox/spring/applicationContext.xml", "applicationContext-test.xml"}) public abstract class AbstractIntegrationTest extends UnitilsJUnit4 { private ApplicationContext applicationContext; } applicationContext-test.xml: <?xml version="1.0" encoding="UTF-8"? <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd" <bean id="dataSource" class="org.unitils.database.UnitilsDataSourceFactoryBean"/ </beans and finally, one of the test classes: package com.upbeat.shoutbox.web; import org.apache.wicket.spring.injection.annot.test.AnnotApplicationContextMock; import org.apache.wicket.util.tester.WicketTester; import org.junit.Before; import org.junit.Test; import org.unitils.spring.annotation.SpringBeanByType; import com.upbeat.shoutbox.HomePage; import com.upbeat.shoutbox.integrations.AbstractIntegrationTest; import com.upbeat.shoutbox.persistence.ShoutItemDao; import com.upbeat.shoutbox.services.ShoutService; public class TestHomePage extends AbstractIntegrationTest { @SpringBeanByType private ShoutService svc; @SpringBeanByType private ShoutItemDao dao; protected WicketTester tester; @Before public void setUp() { AnnotApplicationContextMock appctx = new AnnotApplicationContextMock(); appctx.putBean("shoutItemDao", dao); appctx.putBean("shoutService", svc); tester = new WicketTester(); } @Test public void testRenderMyPage() { //start and render the test page tester.startPage(HomePage.class); //assert rendered page class tester.assertRenderedPage(HomePage.class); //assert rendered label component tester.assertLabel("message", "If you see this message wicket is properly configured and running"); } } Dump from console when running mvn test: [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] Building shoutbox [INFO] task-segment: [test] [INFO] ------------------------------------------------------------------------ [INFO] [resources:resources {execution: default-resources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. build is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 3 resources [INFO] Copying 4 resources [INFO] [compiler:compile {execution: default-compile}] [INFO] Nothing to compile - all classes are up to date [INFO] [resources:testResources {execution: default-testResources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. build is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 2 resources [INFO] [compiler:testCompile {execution: default-testCompile}] [INFO] Nothing to compile - all classes are up to date [INFO] [surefire:test {execution: default-test}] [INFO] Surefire report directory: F:\Projects\shoutbox\target\surefire-reports INFO - ConfigurationLoader - Loaded main configuration file unitils-default.properties from classpath. INFO - ConfigurationLoader - Loaded custom configuration file unitils.properties from classpath. INFO - ConfigurationLoader - No local configuration file unitils-local.properties found. ------------------------------------------------------- T E S T S ------------------------------------------------------- Running com.upbeat.shoutbox.web.TestViewShoutsPage Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.02 sec INFO - Version - Hibernate Annotations 3.4.0.GA INFO - Environment - Hibernate 3.3.0.SP1 INFO - Environment - hibernate.properties not found INFO - Environment - Bytecode provider name : javassist INFO - Environment - using JDK 1.4 java.sql.Timestamp handling INFO - Version - Hibernate Commons Annotations 3.1.0.GA INFO - AnnotationBinder - Binding entity from annotated class: com.upbeat.shoutbox.models.ShoutItem INFO - QueryBinder - Binding Named query: item.getById = from ShoutItem item where item.id = :id INFO - QueryBinder - Binding Named query: item.find = from ShoutItem item order by item.timestamp desc INFO - QueryBinder - Binding Named query: item.count = select count(item) from ShoutItem item INFO - EntityBinder - Bind entity com.upbeat.shoutbox.models.ShoutItem on table SHOUT_ITEMS INFO - AnnotationConfiguration - Hibernate Validator not found: ignoring INFO - notationSessionFactoryBean - Building new Hibernate SessionFactory INFO - earchEventListenerRegister - Unable to find org.hibernate.search.event.FullTextIndexEventListener on the classpath. Hibernate Search is not enabled. INFO - ConnectionProviderFactory - Initializing connection provider: org.springframework.orm.hibernate3.LocalDataSourceConnectionProvider INFO - SettingsFactory - RDBMS: HSQL Database Engine, version: 1.8.0 INFO - SettingsFactory - JDBC driver: HSQL Database Engine Driver, version: 1.8.0 INFO - Dialect - Using dialect: org.hibernate.dialect.PostgreSQLDialect INFO - TransactionFactoryFactory - Transaction strategy: org.springframework.orm.hibernate3.SpringTransactionFactory INFO - actionManagerLookupFactory - No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) INFO - SettingsFactory - Automatic flush during beforeCompletion(): disabled INFO - SettingsFactory - Automatic session close at end of transaction: disabled INFO - SettingsFactory - JDBC batch size: 1000 INFO - SettingsFactory - JDBC batch updates for versioned data: disabled INFO - SettingsFactory - Scrollable result sets: enabled INFO - SettingsFactory - JDBC3 getGeneratedKeys(): disabled INFO - SettingsFactory - Connection release mode: auto INFO - SettingsFactory - Default batch fetch size: 1 INFO - SettingsFactory - Generate SQL with comments: disabled INFO - SettingsFactory - Order SQL updates by primary key: disabled INFO - SettingsFactory - Order SQL inserts for batching: disabled INFO - SettingsFactory - Query translator: org.hibernate.hql.ast.ASTQueryTranslatorFactory INFO - ASTQueryTranslatorFactory - Using ASTQueryTranslatorFactory INFO - SettingsFactory - Query language substitutions: {} INFO - SettingsFactory - JPA-QL strict compliance: disabled INFO - SettingsFactory - Second-level cache: enabled INFO - SettingsFactory - Query cache: enabled INFO - SettingsFactory - Cache region factory : org.hibernate.cache.impl.bridge.RegionFactoryCacheProviderBridge INFO - FactoryCacheProviderBridge - Cache provider: org.hibernate.cache.HashtableCacheProvider INFO - SettingsFactory - Optimize cache for minimal puts: disabled INFO - SettingsFactory - Structured second-level cache entries: disabled INFO - SettingsFactory - Query cache factory: org.hibernate.cache.StandardQueryCacheFactory INFO - SettingsFactory - Echoing all SQL to stdout INFO - SettingsFactory - Statistics: disabled INFO - SettingsFactory - Deleted entity synthetic identifier rollback: disabled INFO - SettingsFactory - Default entity-mode: pojo INFO - SettingsFactory - Named query checking : enabled INFO - SessionFactoryImpl - building session factory INFO - essionFactoryObjectFactory - Not binding factory to JNDI, no JNDI name configured INFO - UpdateTimestampsCache - starting update timestamps cache at region: org.hibernate.cache.UpdateTimestampsCache INFO - StandardQueryCache - starting query cache at region: org.hibernate.cache.StandardQueryCache INFO - notationSessionFactoryBean - Updating database schema for Hibernate SessionFactory INFO - Dialect - Using dialect: org.hibernate.dialect.PostgreSQLDialect INFO - XmlBeanDefinitionReader - Loading XML bean definitions from class path resource [org/springframework/jdbc/support/sql-error-codes.xml] INFO - SQLErrorCodesFactory - SQLErrorCodes loaded: [DB2, Derby, H2, HSQL, Informix, MS-SQL, MySQL, Oracle, PostgreSQL, Sybase] INFO - DefaultListableBeanFactory - Destroying singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@3e0ebb: defining beans [propertyConfigurer,dataSource,sessionFactory,shoutService,shoutItemDao,wicketApplication,org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,transactionManager]; root of factory hierarchy INFO - sPathXmlApplicationContext - Refreshing org.springframework.context.support.ClassPathXmlApplicationContext@a8e586: display name [org.springframework.context.support.ClassPathXmlApplicationContext@a8e586]; startup date [Tue May 04 18:19:58 CEST 2010]; root of context hierarchy INFO - XmlBeanDefinitionReader - Loading XML bean definitions from class path resource [com/upbeat/shoutbox/spring/applicationContext.xml] INFO - XmlBeanDefinitionReader - Loading XML bean definitions from class path resource [applicationContext-test.xml] INFO - DefaultListableBeanFactory - Overriding bean definition for bean 'dataSource': replacing [Generic bean: class [org.apache.commons.dbcp.BasicDataSource]; scope=singleton; abstract=false; lazyInit=false; autowireMode=0; dependencyCheck=0; autowireCandidate=true; primary=false; factoryBeanName=null; factoryMethodName=null; initMethodName=null; destroyMethodName=close; defined in class path resource [com/upbeat/shoutbox/spring/applicationContext.xml]] with [Generic bean: class [org.unitils.database.UnitilsDataSourceFactoryBean]; scope=singleton; abstract=false; lazyInit=false; autowireMode=0; dependencyCheck=0; autowireCandidate=true; primary=false; factoryBeanName=null; factoryMethodName=null; initMethodName=null; destroyMethodName=null; defined in class path resource [applicationContext-test.xml]] INFO - sPathXmlApplicationContext - Bean factory for application context [org.springframework.context.support.ClassPathXmlApplicationContext@a8e586]: org.springframework.beans.factory.support.DefaultListableBeanFactory@5dfaf1 INFO - pertyPlaceholderConfigurer - Loading properties file from class path resource [application.properties] INFO - DefaultListableBeanFactory - Pre-instantiating singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@5dfaf1: defining beans [propertyConfigurer,dataSource,sessionFactory,shoutService,shoutItemDao,wicketApplication,org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,transactionManager]; root of factory hierarchy INFO - AnnotationBinder - Binding entity from annotated class: com.upbeat.shoutbox.models.ShoutItem INFO - QueryBinder - Binding Named query: item.getById = from ShoutItem item where item.id = :id INFO - QueryBinder - Binding Named query: item.find = from ShoutItem item order by item.timestamp desc INFO - QueryBinder - Binding Named query: item.count = select count(item) from ShoutItem item INFO - EntityBinder - Bind entity com.upbeat.shoutbox.models.ShoutItem on table SHOUT_ITEMS INFO - AnnotationConfiguration - Hibernate Validator not found: ignoring INFO - notationSessionFactoryBean - Building new Hibernate SessionFactory INFO - earchEventListenerRegister - Unable to find org.hibernate.search.event.FullTextIndexEventListener on the classpath. Hibernate Search is not enabled. INFO - ConnectionProviderFactory - Initializing connection provider: org.springframework.orm.hibernate3.LocalDataSourceConnectionProvider INFO - SettingsFactory - RDBMS: HSQL Database Engine, version: 1.8.0 INFO - SettingsFactory - JDBC driver: HSQL Database Engine Driver, version: 1.8.0 INFO - Dialect - Using dialect: org.hibernate.dialect.PostgreSQLDialect INFO - TransactionFactoryFactory - Transaction strategy: org.springframework.orm.hibernate3.SpringTransactionFactory INFO - actionManagerLookupFactory - No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) INFO - SettingsFactory - Automatic flush during beforeCompletion(): disabled INFO - SettingsFactory - Automatic session close at end of transaction: disabled INFO - SettingsFactory - JDBC batch size: 1000 INFO - SettingsFactory - JDBC batch updates for versioned data: disabled INFO - SettingsFactory - Scrollable result sets: enabled INFO - SettingsFactory - JDBC3 getGeneratedKeys(): disabled INFO - SettingsFactory - Connection release mode: auto INFO - SettingsFactory - Default batch fetch size: 1 INFO - SettingsFactory - Generate SQL with comments: disabled INFO - SettingsFactory - Order SQL updates by primary key: disabled INFO - SettingsFactory - Order SQL inserts for batching: disabled INFO - SettingsFactory - Query translator: org.hibernate.hql.ast.ASTQueryTranslatorFactory INFO - ASTQueryTranslatorFactory - Using ASTQueryTranslatorFactory INFO - SettingsFactory - Query language substitutions: {} INFO - SettingsFactory - JPA-QL strict compliance: disabled INFO - SettingsFactory - Second-level cache: enabled INFO - SettingsFactory - Query cache: enabled INFO - SettingsFactory - Cache region factory : org.hibernate.cache.impl.bridge.RegionFactoryCacheProviderBridge INFO - FactoryCacheProviderBridge - Cache provider: org.hibernate.cache.HashtableCacheProvider INFO - SettingsFactory - Optimize cache for minimal puts: disabled INFO - SettingsFactory - Structured second-level cache entries: disabled INFO - SettingsFactory - Query cache factory: org.hibernate.cache.StandardQueryCacheFactory INFO - SettingsFactory - Echoing all SQL to stdout INFO - SettingsFactory - Statistics: disabled INFO - SettingsFactory - Deleted entity synthetic identifier rollback: disabled INFO - SettingsFactory - Default entity-mode: pojo INFO - SettingsFactory - Named query checking : enabled INFO - SessionFactoryImpl - building session factory INFO - essionFactoryObjectFactory - Not binding factory to JNDI, no JNDI name configured INFO - UpdateTimestampsCache - starting update timestamps cache at region: org.hibernate.cache.UpdateTimestampsCache INFO - StandardQueryCache - starting query cache at region: org.hibernate.cache.StandardQueryCache INFO - notationSessionFactoryBean - Updating database schema for Hibernate SessionFactory INFO - Dialect - Using dialect: org.hibernate.dialect.PostgreSQLDialect INFO - DefaultListableBeanFactory - Destroying singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@5dfaf1: defining beans [propertyConfigurer,dataSource,sessionFactory,shoutService,shoutItemDao,wicketApplication,org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,transactionManager]; root of factory hierarchy Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 1.34 sec <<< FAILURE! Running com.upbeat.shoutbox.integrations.ShoutItemIntegrationTest Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0 sec <<< FAILURE! Running com.upbeat.shoutbox.mocks.ShoutServiceTest Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.01 sec <<< FAILURE! Results : Tests in error: initializationError(com.upbeat.shoutbox.web.TestViewShoutsPage) testRenderMyPage(com.upbeat.shoutbox.web.TestHomePage) initializationError(com.upbeat.shoutbox.integrations.ShoutItemIntegrationTest) initializationError(com.upbeat.shoutbox.mocks.ShoutServiceTest) Tests run: 4, Failures: 0, Errors: 4, Skipped: 0 [INFO] ------------------------------------------------------------------------ [ERROR] BUILD FAILURE [INFO] ------------------------------------------------------------------------ [INFO] There are test failures. Please refer to F:\Projects\shoutbox\target\surefire-reports for the individual test results. [INFO] ------------------------------------------------------------------------ [INFO] For more information, run Maven with the -e switch [INFO] ------------------------------------------------------------------------ [INFO] Total time: 3 seconds [INFO] Finished at: Tue May 04 18:19:58 CEST 2010 [INFO] Final Memory: 13M/31M [INFO] ------------------------------------------------------------------------ Any help is greatly appreciated.

    Read the article

  • jQuery hover menu not disappearing

    - by Nathan Loding
    I have a basic menu using some nested UL's, which is pretty standard I think. When hovering over an LI from the "root" menu, I want the UL within that LI to display. Move the mouse off or to another LI, it shows that submenu. Move down to the submenu and it stays while you hover over each element. I had it working with a simple jQuery.hover() set, but then I ran into issues. When on a page, the "root" menu item is given a class of 'current-page' and if that class exists, I want it to display that submenu statically after a mouseout. Hope I explained that well enough. I just tossed a variable into the hover functions so on the mouseout it ran a .show() on the current-page's submenu. Easy. Except that when I move the mouse between the individual LI's of the submenu, it changes back to the current-page submenu. So I attempted to add a timer element based on another question here. That made things worse -- now the submenus just don't disappear. Here's my CSS, markup, and JS ... how the heck do I make this work properly? Markup: <div id="menu"> <div id="navbar"> <ul id="firstmenu"> <li> <a href="http://localhost/site/pageone">page one</a> <ul class="submenu"> <li><a href="http://localhost/site/pageone/subone">subone</a></li> <li><a href="http://localhost/site/pageone/subtwo">subtwo</a></li> <li><a href="http://localhost/site/pageone/subthree">subthree</a></li> <li><a href="http://localhost/site/pageone/subfour">subfour</a></li> <li><a href="http://localhost/site/pageone/subfive">subfive</a></li> </ul> </li> <li> <a href="http://localhost/site/pagetwo">barely there</a> <ul class="submenu"> <li><a href="http://localhost/site/pageone/subone">subone</a></li> <li><a href="http://localhost/site/pageone/subtwo">subtwo</a></li> <li><a href="http://localhost/site/pageone/subthree">subthree</a></li> <li><a href="http://localhost/site/pageone/subfour">subfour</a></li> <li><a href="http://localhost/site/pageone/subfive">subfive</a></li> </ul> </li> <li class="current-page"> <a href="http://localhost/site/pagetwo">kith & kin</a> <ul class="submenu"> <li><a href="http://localhost/site/pageone/subone">subone</a></li> <li><a href="http://localhost/site/pageone/subtwo">subtwo</a></li> <li><a href="http://localhost/site/pageone/subthree">subthree</a></li> <li><a href="http://localhost/site/pageone/subfour">subfour</a></li> <li><a href="http://localhost/site/pageone/subfive">subfive</a></li> </ul> </li> <li> <a href="http://localhost/site/pagethree">focal point</a> <ul class="submenu"> <li><a href="http://localhost/site/pageone/subone">subone</a></li> <li><a href="http://localhost/site/pageone/subtwo">subtwo</a></li> <li><a href="http://localhost/site/pageone/subthree">subthree</a></li> <li><a href="http://localhost/site/pageone/subfour">subfour</a></li> <li><a href="http://localhost/site/pageone/subfive">subfive</a></li> </ul> </li> <li> <a href="http://localhost/site/pagefour">products</a> <ul class="submenu"> <li><a href="http://localhost/site/pageone/subone">subone</a></li> <li><a href="http://localhost/site/pageone/subtwo">subtwo</a></li> <li><a href="http://localhost/site/pageone/subthree">subthree</a></li> <li><a href="http://localhost/site/pageone/subfour">subfour</a></li> <li><a href="http://localhost/site/pageone/subfive">subfive</a></li> </ul> </li> <li> <a href="http://localhost/site/pagefive">clients</a> </li> </ul> </div></div> And here's the CSS: #navbar { margin: 0; padding: 0; border: 0; text-align: center; } #firstmenu { margin: 6px auto 0 auto; font-size: 16px; list-style-type: none; letter-spacing: -1px; } #firstmenu li { display: inline; position:relative; overflow: hidden; text-align: center; margin-right: 10px; padding: 5px 15px; } #firstmenu a { text-decoration: none; outline: none; color: black; font-weight: 700; width: 75px; cursor: pointer; } .current-page { color: white; background: url(../images/down_arrow.png) bottom center no-repeat; } .current-page a { color: white; border-bottom: 1px solid black; } #firstmenu .current-page a { color: white; } #firstmenu li.hover { color: white; background: url(../images/down_arrow.png) bottom center no-repeat; } #firstmenu li.hover a { color: white; border-bottom: 1px solid black; } #firstmenu li ul li.hover { color: white; background: none; } #firstmenu li ul li.hover a { color: white; border-bottom: none; text-decoration: underline; } #firstmenu li ul { width: 900px; color: white; font-size: .8em; margin-top: 3px; padding: 5px; position: absolute; display: none; } #firstmenu li ul li { list-style: none; display: inline; width: auto; } #firstmenu li ul li a { color: white; font-weight: normal; border: none; } .sub-current-page { font-weight: bold; text-decoration: underline; } #firstmenu li ul li.sub-current-page a { font-weight: bold; } And lastly, my not-at-all-working JS (this is in a $(document).ready(), of course): // Initialize some variables var hideSubmenuTimer = null; var current_page; $('.current-page ul:first').show(); // Prep the menu $('#firstmenu li').hover(function() { // Clear the timeout if it exists if(hideSubmenuTimer) { clearTimeout(hideSubmenuTimer); } // Check if there's a current-page class set if($('li.current-page').length > 0) { current_page = $('li.current-page'); } else { current_page = false; } // If there's a current-page class, hide it if(current_page) { current_page.children('ul:first').hide(); } // Show the new submenu $(this).addClass('hover').children('ul:first').show(); }, function(){ // Just in case var self = this; // Clear the timeout if it exists if(hideSubmenuTimer) { clearTimeout(hideSubmenuTimer); } // Check if there's a current-page class set if($('li.current-page').length > 0) { current_page = $('li.current-page'); } else { current_page = false; } // Set a timeout on hiding the submenu hideSubmenuTimer = setTimeout(function() { // Hide the old submenu $(self).removeClass('hover').children('ul').hide(); // If there's a current-page class, show it if(current_page) { current_page.children('ul:first').show(); current_page.css('color', 'white'); } }, 500); }); So what am I doing so wrong? As a side note, I'm using the $('.current-page ul:first').show() because if I gave .current-page any "display" setting in the CSS, it positioned it really weirdly on the page.

    Read the article

  • How do I send automated e-mails from Drupal using Messaging and Notifications?

    - by Adrian
    I am working on a Notifications plugin, and after starting to write my notes down about how to do this, decided to just post them here. Please feel free to come make modifications and changes. Eventually I hope to post this on the Drupal handbook as well. Thanks. --Adrian Sending automated e-mails from Drupal using Messaging and Notifications To implement a notifications plugin, you must implement the following functions: Use hook_messaging, hook_token_list and hook_token_values to create the messages that will be sent. Use hook_notifications to create the subscription types Add code to fire events (eg in hook_nodeapi) Add all UI elements to allow users to subscribe/unsubscribe Understanding Messaging The Messaging module is used to compose messages that can be delivered using various formats, such as simple mail, HTML mail, Twitter updates, etc. These formats are called "send methods." The backend details do not concern us here; what is important are the following concepts: TOKENS: tokens are provided by the "tokens" module. They allow you to write keywords in square brackets, [like-this], that can be replaced by any arbitrary value. Note: the token groups you create must match the keys you add to the $events-objects[$key] array. MESSAGE KEYS: A key is a part of a message, such as the greetings line. Keys can be different for each send method. For example, a plaintext mail's greeting might be "Hi, [user]," while an HTML greeing might be "Hi, [user]," and Twitter's might just be "[user-firstname]: ". Keys can have any arbitrary name. Keys are very simple and only have a machine-readable name and a user-readable description, the latter of which is only seen by admins. MESSAGE GROUPS: A group is a bunch of keys that often, but not always, might be used together to make up a complete message. For example, a generic group might include keys for a greeting, body, closing and footer. Groups can also be "subclassed" by selecting a "fallback" group that will supply any keys that are missing. Groups are also associated with modules; I'm not sure what these are used for. Understanding Notifications The Notifications module revolves around the following concepts: SUBSCRIPTIONS: Notifications plugins may define one or more types of subscriptions. For example, notifications_content defines subscriptions for: Threads (users are notified whenever a node or its comments change) Content types (users are notified whenever a node of a certain type is created or is changed) Users (users are notified whenever another user is changed) Subscriptions refer to both the user who's subscribed, how often they wish to be notified, the send method (for Messaging) and what's being subscribed to. This last part is defined in two steps. Firstly, a plugin defines several "subscription fields" (through a hook_notifications op of the same name), and secondly, "subscription types" (also an op) defines which fields apply to each type of subscription. For example, notifications_content defines the fields "nid," "author" and "type," and the subscriptions "thread" (nid), "nodetype" (type), "author" (author) and "typeauthor" (type and author), the latter referring to something like "any STORY by JOE." Fields are used to link events to subscriptions; an event must match all fields of a subscription (for all normal subscriptions) to be delivered to the recipient. The $subscriptions object is defined in subsequent sections. Notifications prefers that you don't create these objects yourself, preferring you to call the notifications_get_link() function to create a link that users may click on, but you can also use notifications_save_subscription and notifications_delete_subscription to do it yourself. EVENTS: An event is something that users may be notified about. Plugins create the $event object then call notifications_event($event). This either sends out notifications immediately, queues them to send out later, or both. Events include the type of thing that's changed (eg 'node', 'user'), the ID of the thing that's changed (eg $node-nid, $user-uid) and what's happened to it (eg 'create'). These are, respectively, $event-type, $event-oid (object ID) and $event-action. Warning: notifications_content_nodeapi also adds a $event-node field, referring to the node itself and not just $event-oid = $node-nid. This is not used anywhere in the core notifications module; however, when the $event is passed back to the 'query' op (see below), we assume the node is still present. Events do not refer to the user they will be referred to; instead, Notifications makes the connection between subscriptions and events, using the subscriptions' fields. MATCHING EVENTS TO SUBSCRIPTIONS: An event matches a subscription if it has the same type as the event (eg "node") and if the event matches all the correct fields. This second step is determined by the "query" hook op, which is called with the $event object as a parameter. The query op is responsible for giving Notifications a value for all the fields defined by the plugin. For example, notifications_content defines the 'nid', 'type' and 'author' fields, so its query op looks like this (ignore the case where $event_or_user = 'user' for now): $event_or_user = $arg0; $event_type = $arg1; $event_or_object = $arg2; if ($event_or_user == 'event' && $event_type == 'node' && ($node = $event_or_object->node) || $event_or_user == 'user' && $event_type == 'node' && ($node = $event_or_object)) { $query[]['fields'] = array( 'nid' => $node->nid, 'type' => $node->type, 'author' => $node->uid, ); return $query; After extracting the $node from the $event, we set $query[]['fields'] to a dictionary defining, for this event, all the fields defined by the module. As you can tell from the presence of the $query object, there's way more you can do with this op, but they are not covered here. DIGESTING AND DEDUPING: Understanding the relationship between Messaging and Notifications Usually, the name of a message group doesn't matter, but when being used with Notifications, the names must follow very strict patterns. Firstly, they must start with the name "notifications," and then are followed by either "event" or "digest," depending on whether the message group is being used to represent either a single event or a group of events. For 'events,' the third part of the name is the "type," which we get from Notification's $event-type (eg: notifications_content uses 'node'). The last part of the name is the operation being performed, which comes from Notification's $event-action. For example: notifications-event-node-comment might refer to the message group used when someone comments on a node notifications-event-user-update to a user who's updated their profile Hyphens cannot appear anywhere other than to separate the parts of these words. For 'digest' messages, the third and fourth part of the name come from hook_notification's "event types" callback, specifically this line: $types[] = array( 'type' => 'node', 'action' => 'insert', ... 'digest' => array('node', 'type'), ); $types[] = array( 'type' => 'node', 'action' => 'update', ... 'digest' => array('node', 'nid'), ); In this case, the first event type (node insertion) will be digested with the notifications-digest-node-type message template providing the header and footer, likely saying something like "the following [type] was created." The second event type (node update) will be digested with the notifications-digest-node-nid message template. Data Structure and Callback Reference $event The $event object has the following members: $event-type: The type of event. Must match the type in hook_notification::"event types". {notifications_event} $event-action: The action the event describes. Most events are sorted by [$event-type][$event-action]. {notifications_event}. $event-object[$object_type]: All objects relevant to the event. For example, $event-object['node'] might be the node that the event describes. $object_type can come from the 'event types' hook (see below). The main purpose appears to be to be passed to token_replace_multiple as the second parameter. $event-object[$event-type] is assumed to exist in the short digest processing functions, but this doesn't appear to be used anywhere. Not saved in the database; loaded by hook_notifications::"event load" $event-oid: apparently unused. The id of the primary object relevant to this event (eg the node's nid). $event-module: apparently unused $event-params[$key]: Mainly a place for plugins to save random data. The main module will serialize the contents of this array but does not use it in any way. However, notifications_ui appears to do something weird with it, possibly by using subscriptions' fields as keys into this array. I'm not sure why though. hook_notifications op 'subscription types': returns an array of subscription types provided by the plugin, in the form $key = array(...) with the following members: event_type: this subscription can only match events whose $event-type has this value. Stored in the database as notifications.event_type for every individual subscription. Apparently, this can be overiden in code but I wouldn't try it (see notifications_save_subscription). fields: an unkeyed array of fields that must be matched by an event (in addition to the event_type) for it to match this subscription. Each element of this array must be a key of the array returned by op 'subscription fields' which in turn must be used by op 'query' to actually perform the matching. title: user-readable title for their subscriptions page (eg the 'type' column in user/%uid/notifications/subscriptions) description: a user-readable description. page callback: used to add a supplementary page at user/%uid/notifications/blah. This and the following are used by notifications_ui as a part of hook_menu_alter. Appears to be partially deprecated. user page: user/%uid/notifications/blah. op 'event types': returns an array of event types, with each event type being an array with the following members: type: this will match $event-type action: this will match $event-action digest: an array with two ordered (non-keyed) elements, "type" and "field." 'type' is used as an index into $event-objects. 'field' is also used to group events like so: $event-objects[$type]-$field. For example, 'field' might be 'nid' - if the object is a node, the digest lines will be grouped by node ID. Finally, both are used to find the correct Messaging template; see discussion above. description: used on the admin "Notifications-Events" page name: unused, use Messaging instead line: deprecated, use Messaging instead Other Stuff This is an example of the main query that inserts an event into the queue: INSERT INTO {notifications_queue} (uid, destination, sid, module, eid, send_interval, send_method, cron, created, conditions) SELECT DISTINCT s.uid, s.destination, s.sid, s.module, %d, // event ID s.send_interval, s.send_method, s.cron, %d, // time of the event s.conditions FROM {notifications} s INNER JOIN {notifications_fields} f ON s.sid = f.sid WHERE (s.status = 1) AND (s.event_type = '%s') // subscription type AND (s.send_interval >= 0) AND (s.uid <> %d) AND ( (f.field = '%s' AND f.intval IN (%d)) // everything from 'query' op OR (f.field = '%s' AND f.intval = %d) OR (f.field = '%s' AND f.value = '%s') OR (f.field = '%s' AND f.intval = %d)) GROUP BY s.uid, s.destination, s.sid, s.module, s.send_interval, s.send_method, s.cron, s.conditions HAVING s.conditions = count(f.sid)

    Read the article

  • Accelerated C++, problem 5-6 (copying values from inside a vector to the front)

    - by Darel
    Hello, I'm working through the exercises in Accelerated C++ and I'm stuck on question 5-6. Here's the problem description: (somewhat abbreviated, I've removed extraneous info.) 5-6. Write the extract_fails function so that it copies the records for the passing students to the beginning of students, and then uses the resize function to remove the extra elements from the end of students. (students is a vector of student structures. student structures contain an individual student's name and grades.) More specifically, I'm having trouble getting the vector.insert function to properly copy the passing student structures to the start of the vector students. Here's the extract_fails function as I have it so far (note it doesn't resize the vector yet, as directed by the problem description; that should be trivial once I get past my current issue.) // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } The code compiles and runs, but the students vector isn't adding any student structures to its front. My program's output displays that the students vector is unchanged. Here's my complete source code, followed by a sample input file (I redirect input from the console by typing " < grades" after the compiled program name at the command prompt.) #include <iostream> #include <string> #include <algorithm> // to get the declaration of `sort' #include <stdexcept> // to get the declaration of `domain_error' #include <vector> // to get the declaration of `vector' //driver program for grade partitioning examples using std::cin; using std::cout; using std::endl; using std::string; using std::domain_error; using std::sort; using std::vector; using std::max; using std::istream; struct Student_info { std::string name; double midterm, final; std::vector<double> homework; }; bool compare(const Student_info&, const Student_info&); std::istream& read(std::istream&, Student_info&); std::istream& read_hw(std::istream&, std::vector<double>&); double median(std::vector<double>); double grade(double, double, double); double grade(double, double, const std::vector<double>&); double grade(const Student_info&); bool fgrade(const Student_info&); void extract_fails(vector<Student_info>& v); int main() { vector<Student_info> vs; Student_info s; string::size_type maxlen = 0; while (read(cin, s)) { maxlen = max(maxlen, s.name.size()); vs.push_back(s); } sort(vs.begin(), vs.end(), compare); extract_fails(vs); // display the new, modified vector - it should be larger than // the input vector, due to some student structures being // added to the front of the vector. cout << "count: " << vs.size() << endl << endl; vector<Student_info>::iterator it = vs.begin(); while (it != vs.end()) cout << it++->name << endl; return 0; } // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } bool compare(const Student_info& x, const Student_info& y) { return x.name < y.name; } istream& read(istream& is, Student_info& s) { // read and store the student's name and midterm and final exam grades is >> s.name >> s.midterm >> s.final; read_hw(is, s.homework); // read and store all the student's homework grades return is; } // read homework grades from an input stream into a `vector<double>' istream& read_hw(istream& in, vector<double>& hw) { if (in) { // get rid of previous contents hw.clear(); // read homework grades double x; while (in >> x) hw.push_back(x); // clear the stream so that input will work for the next student in.clear(); } return in; } // compute the median of a `vector<double>' // note that calling this function copies the entire argument `vector' double median(vector<double> vec) { typedef vector<double>::size_type vec_sz; vec_sz size = vec.size(); if (size == 0) throw domain_error("median of an empty vector"); sort(vec.begin(), vec.end()); vec_sz mid = size/2; return size % 2 == 0 ? (vec[mid] + vec[mid-1]) / 2 : vec[mid]; } // compute a student's overall grade from midterm and final exam grades and homework grade double grade(double midterm, double final, double homework) { return 0.2 * midterm + 0.4 * final + 0.4 * homework; } // compute a student's overall grade from midterm and final exam grades // and vector of homework grades. // this function does not copy its argument, because `median' does so for us. double grade(double midterm, double final, const vector<double>& hw) { if (hw.size() == 0) throw domain_error("student has done no homework"); return grade(midterm, final, median(hw)); } double grade(const Student_info& s) { return grade(s.midterm, s.final, s.homework); } // predicate to determine whether a student failed bool fgrade(const Student_info& s) { return grade(s) < 60; } Sample input file: Moo 100 100 100 100 100 100 100 100 Fail1 45 55 65 80 90 70 65 60 Moore 75 85 77 59 0 85 75 89 Norman 57 78 73 66 78 70 88 89 Olson 89 86 70 90 55 73 80 84 Peerson 47 70 82 73 50 87 73 71 Baker 67 72 73 40 0 78 55 70 Davis 77 70 82 65 70 77 83 81 Edwards 77 72 73 80 90 93 75 90 Fail2 55 55 65 50 55 60 65 60 Thanks to anyone who takes the time to look at this!

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

< Previous Page | 174 175 176 177 178 179  | Next Page >