Search Results

Search found 16948 results on 678 pages for 'static analysis'.

Page 178/678 | < Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • MvcExtensions – Bootstrapping

    - by kazimanzurrashid
    When you create a new ASP.NET MVC application you will find that the global.asax contains the following lines: namespace MvcApplication1 { // Note: For instructions on enabling IIS6 or IIS7 classic mode, // visit http://go.microsoft.com/?LinkId=9394801 public class MvcApplication : System.Web.HttpApplication { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults ); } protected void Application_Start() { AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes); } } } As the application grows, there are quite a lot of plumbing code gets into the global.asax which quickly becomes a design smell. Lets take a quick look at the code of one of the open source project that I recently visited: public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute("Default","{controller}/{action}/{id}", new { controller = "Home", action = "Index", id = "" }); } protected override void OnApplicationStarted() { Error += OnError; EndRequest += OnEndRequest; var settings = new SparkSettings() .AddNamespace("System") .AddNamespace("System.Collections.Generic") .AddNamespace("System.Web.Mvc") .AddNamespace("System.Web.Mvc.Html") .AddNamespace("MvcContrib.FluentHtml") .AddNamespace("********") .AddNamespace("********.Web") .SetPageBaseType("ApplicationViewPage") .SetAutomaticEncoding(true); #if DEBUG settings.SetDebug(true); #endif var viewFactory = new SparkViewFactory(settings); ViewEngines.Engines.Add(viewFactory); #if !DEBUG PrecompileViews(viewFactory); #endif RegisterAllControllersIn("********.Web"); log4net.Config.XmlConfigurator.Configure(); RegisterRoutes(RouteTable.Routes); Factory.Load(new Components.WebDependencies()); ModelBinders.Binders.DefaultBinder = new Binders.GenericBinderResolver(Factory.TryGet<IModelBinder>); ValidatorConfiguration.Initialize("********"); HtmlValidationExtensions.Initialize(ValidatorConfiguration.Rules); } private void OnEndRequest(object sender, System.EventArgs e) { if (((HttpApplication)sender).Context.Handler is MvcHandler) { CreateKernel().Get<ISessionSource>().Close(); } } private void OnError(object sender, System.EventArgs e) { CreateKernel().Get<ISessionSource>().Close(); } protected override IKernel CreateKernel() { return Factory.Kernel; } private static void PrecompileViews(SparkViewFactory viewFactory) { var batch = new SparkBatchDescriptor(); batch.For<HomeController>().For<ManageController>(); viewFactory.Precompile(batch); } As you can see there are quite a few of things going on in the above code, Registering the ViewEngine, Compiling the Views, Registering the Routes/Controllers/Model Binders, Settings up Logger, Validations and as you can imagine the more it becomes complex the more things will get added in the application start. One of the goal of the MVCExtensions is to reduce the above design smell. Instead of writing all the plumbing code in the application start, it contains BootstrapperTask to register individual services. Out of the box, it contains BootstrapperTask to register Controllers, Controller Factory, Action Invoker, Action Filters, Model Binders, Model Metadata/Validation Providers, ValueProvideraFactory, ViewEngines etc and it is intelligent enough to automatically detect the above types and register into the ASP.NET MVC Framework. Other than the built-in tasks you can create your own custom task which will be automatically executed when the application starts. When the BootstrapperTasks are in action you will find the global.asax pretty much clean like the following: public class MvcApplication : UnityMvcApplication { public void ErrorLog_Filtering(object sender, ExceptionFilterEventArgs e) { Check.Argument.IsNotNull(e, "e"); HttpException exception = e.Exception.GetBaseException() as HttpException; if ((exception != null) && (exception.GetHttpCode() == (int)HttpStatusCode.NotFound)) { e.Dismiss(); } } } The above code is taken from my another open source project Shrinkr, as you can see the global.asax is longer cluttered with any plumbing code. One special thing you have noticed that it is inherited from the UnityMvcApplication rather than regular HttpApplication. There are separate version of this class for each IoC Container like NinjectMvcApplication, StructureMapMvcApplication etc. Other than executing the built-in tasks, the Shrinkr also has few custom tasks which gets executed when the application starts. For example, when the application starts, we want to ensure that the default users (which is specified in the web.config) are created. The following is the custom task that is used to create those default users: public class CreateDefaultUsers : BootstrapperTask { protected override TaskContinuation ExecuteCore(IServiceLocator serviceLocator) { IUserRepository userRepository = serviceLocator.GetInstance<IUserRepository>(); IUnitOfWork unitOfWork = serviceLocator.GetInstance<IUnitOfWork>(); IEnumerable<User> users = serviceLocator.GetInstance<Settings>().DefaultUsers; bool shouldCommit = false; foreach (User user in users) { if (userRepository.GetByName(user.Name) == null) { user.AllowApiAccess(ApiSetting.InfiniteLimit); userRepository.Add(user); shouldCommit = true; } } if (shouldCommit) { unitOfWork.Commit(); } return TaskContinuation.Continue; } } There are several other Tasks in the Shrinkr that we are also using which you will find in that project. To create a custom bootstrapping task you have create a new class which either implements the IBootstrapperTask interface or inherits from the abstract BootstrapperTask class, I would recommend to start with the BootstrapperTask as it already has the required code that you have to write in case if you choose the IBootstrapperTask interface. As you can see in the above code we are overriding the ExecuteCore to create the default users, the MVCExtensions is responsible for populating the  ServiceLocator prior calling this method and in this method we are using the service locator to get the dependencies that are required to create the users (I will cover the custom dependencies registration in the next post). Once the users are created, we are returning a special enum, TaskContinuation as the return value, the TaskContinuation can have three values Continue (default), Skip and Break. The reason behind of having this enum is, in some  special cases you might want to skip the next task in the chain or break the complete chain depending upon the currently running task, in those cases you will use the other two values instead of the Continue. The last thing I want to cover in the bootstrapping task is the Order. By default all the built-in tasks as well as newly created task order is set to the DefaultOrder(a static property), in some special cases you might want to execute it before/after all the other tasks, in those cases you will assign the Order in the Task constructor. For Example, in Shrinkr, we want to run few background services when the all the tasks are executed, so we assigned the order as DefaultOrder + 1. Here is the code of that Task: public class ConfigureBackgroundServices : BootstrapperTask { private IEnumerable<IBackgroundService> backgroundServices; public ConfigureBackgroundServices() { Order = DefaultOrder + 1; } protected override TaskContinuation ExecuteCore(IServiceLocator serviceLocator) { backgroundServices = serviceLocator.GetAllInstances<IBackgroundService>().ToList(); backgroundServices.Each(service => service.Start()); return TaskContinuation.Continue; } protected override void DisposeCore() { backgroundServices.Each(service => service.Stop()); } } That’s it for today, in the next post I will cover the custom service registration, so stay tuned.

    Read the article

  • Microsoft TypeScript : A Typed Superset of JavaScript

    - by shiju
    JavaScript is gradually becoming a ubiquitous programming language for the web, and the popularity of JavaScript is increasing day by day. Earlier, JavaScript was just a language for browser. But now, we can write JavaScript apps for browser, server and mobile. With the advent of Node.js, you can build scalable, high performance apps on the server with JavaScript. But many developers, especially developers who are working with static type languages, are hating the JavaScript language due to the lack of structuring and the maintainability problems of JavaScript. Microsoft TypeScript is trying to solve some problems of JavaScript when we are building scalable JavaScript apps. Microsoft TypeScript TypeScript is Microsoft's solution for writing scalable JavaScript programs with the help of Static Types, Interfaces, Modules and Classes along with greater tooling support. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. This would be more productive for developers who are coming from static type languages. You can write scalable JavaScript  apps in TypeScript with more productive and more maintainable manner, and later you can compiles to plain JavaScript which will be run on any browser and any OS. TypeScript will work with browser based JavaScript apps and JavaScript apps that following CommonJS specification. You can use TypeScript for building HTML 5 apps, Node.JS apps, WinRT apps. TypeScript is providing better tooling support with Visual Studio, Sublime Text, Vi, Emacs. Microsoft has open sourced its TypeScript languages on CodePlex at http://typescript.codeplex.com/    Install TypeScript You can install TypeScript compiler as a Node.js package via the NPM or you can install as a Visual Studio 2012 plug-in which will enable you better tooling support within the Visual Studio IDE. Since TypeScript is distributed as a Node.JS package, and it can be installed on other OS such as Linux and MacOS. The following command will install TypeScript compiler via an npm package for node.js npm install –g typescript TypeScript provides a Visual Studio 2012 plug-in as MSI file which will install TypeScript and also provides great tooling support within the Visual Studio, that lets the developers to write TypeScript apps with greater productivity and better maintainability. You can download the Visual Studio plug-in from here Building JavaScript  apps with TypeScript You can write typed version of JavaScript programs with TypeScript and then compiles it to plain JavaScript code. The beauty of the TypeScript is that it is already JavaScript and normal JavaScript programs are valid TypeScript programs, which means that you can write normal  JavaScript code and can use typed version of JavaScript whenever you want. TypeScript files are using extension .ts and this will be compiled using a compiler named tsc. The following is a sample program written in  TypeScript greeter.ts 1: class Greeter { 2: greeting: string; 3: constructor (message: string) { 4: this.greeting = message; 5: } 6: greet() { 7: return "Hello, " + this.greeting; 8: } 9: } 10:   11: var greeter = new Greeter("world"); 12:   13: var button = document.createElement('button') 14: button.innerText = "Say Hello" 15: button.onclick = function() { 16: alert(greeter.greet()) 17: } 18:   19: document.body.appendChild(button) .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above program is compiling with the TypeScript compiler as shown in the below picture The TypeScript compiler will generate a JavaScript file after compiling the TypeScript program. If your TypeScript programs having any reference to other TypeScript files, it will automatically generate JavaScript files for the each referenced files. The following code block shows the compiled version of plain JavaScript  for the above greeter.ts greeter.js 1: var Greeter = (function () { 2: function Greeter(message) { 3: this.greeting = message; 4: } 5: Greeter.prototype.greet = function () { 6: return "Hello, " + this.greeting; 7: }; 8: return Greeter; 9: })(); 10: var greeter = new Greeter("world"); 11: var button = document.createElement('button'); 12: button.innerText = "Say Hello"; 13: button.onclick = function () { 14: alert(greeter.greet()); 15: }; 16: document.body.appendChild(button); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Tooling Support with Visual Studio TypeScript is providing a plug-in for Visual Studio which will provide an excellent support for writing TypeScript  programs within the Visual Studio. The following screen shot shows the Visual Studio template for TypeScript apps   The following are the few screen shots of Visual Studio IDE for TypeScript apps. Summary TypeScript is Microsoft's solution for writing scalable JavaScript apps which will solve lot of problems involved in larger JavaScript apps. I hope that this solution will attract lot of developers who are really looking for writing maintainable structured code in JavaScript, without losing any productivity. TypeScript lets developers to write JavaScript apps with the help of Static Types, Interfaces, Modules and Classes and also providing better productivity. I am a passionate developer on Node.JS and would definitely try to use TypeScript for building Node.JS apps on the Windows Azure cloud. I am really excited about to writing Node.JS apps by using TypeScript, from my favorite development IDE Visual Studio. You can follow me on twitter at @shijucv

    Read the article

  • Solaris 10 branded zone VM Templates for Solaris 11 on OTN

    - by jsavit
    Early this year I wrote the article Ours Goes To 11 which describes the ability to import Solaris 10 systems into a "Solaris 10 branded zone" under Oracle Solaris 11. I did this using Solaris 11 Express, and the capability remains in Solaris 11 with only slight changes. This important tool lets you painlessly inhaling a Solaris Container from Solaris 10 or entire Solaris 10 systems ("the global zone") into virtualized environments on a Solaris 11 OS. Just recently, Oracle provided Oracle VM Templates for Oracle Solaris 10 Zones to let you create Solaris 10 branded zones for Solaris 11 even if you don't currently have access to install media or a running Solaris 10 system. To use this, just download the Oracle VM Template for Oracle Solaris Zone 10 from OTN at http://www.oracle.com/technetwork/server-storage/solaris11/downloads/virtual-machines-1355605.html. This page contains images of Oracle Solaris 10 8/11 (the recent update to Solaris 10) in SPARC and x86 formats suitable for creating branded zones. The same page also has a VirtualBox image you can download for a complete Solaris 10 install in a guest virtual machine you can run on any host OS that supports VirtualBox. Both sets of downloads provide a quick - and extremely easy - way to set up a virtual Solaris 10 environment. In the case of the Oracle VM Templates, they illustrate several advanced features of Solaris 11. To start, just go to the above link, download the template for the hardware platform (SPARC or x86) you want, and download the README file also linked from that page. Install prerequisites The README file tells you to install the prerequisite Solaris 11 package that implements the Solaris 10 brand. Then you can install instances of zones with that brand. # pkg install pkg:/system/zones/brand/brand-solaris10 Packages to install: 1 Create boot environment: No Create backup boot environment: Yes DOWNLOAD PKGS FILES XFER (MB) Completed 1/1 44/44 0.4/0.4 PHASE ACTIONS Install Phase 74/74 PHASE ITEMS Package State Update Phase 1/1 Image State Update Phase 2/2 That took only a few minutes, and didn't require a reboot. Install the Solaris 10 zone Now it's time to run the downloaded template file. First make it executable via the chmod command, of course. I found that (unlike stated in the README) there was no need to rename the downloaded file to remove the .bin. When you run it you provide several parameters to describe the zone configuration: -a IP address - the IP address and optional netmask for the zone. This is the only mandatory parameter. -z zonename - the name of the zone you would like to create. -i interface - the package will create an exclusive-IP zone using a virtual NIC (vnic) based on this physical interface. In my case, I have a NIC called rge0. -p PATH - specifies the path in which you want the zoneroot to be placed. In my case, I have a ZFS dataset mounted at /zones, and this will create a zoneroot at /zones/s10u10. Kicking it off, you will see a copyright message, and then messages showing progress building the zone, which only takes a few minutes. # ./solaris-10u10-x86.bin -p /zones -a 192.168.1.100 -i rge0 -z s10u10 ... ... Checking disk-space for extraction Ok Extracting in /export/home/CDimages/s10zone/bootimage.ihaqvh ... 100% [===============================] Checking data integrity Ok Checking platform compatibility The host and the image do not have the same Solaris release: host Solaris release: 5.11 image Solaris release: 5.10 Will create a Solaris 10 branded zone. Warning: could not find a defaultrouter Zone won't have any defaultrouter configured IMAGE: ./solaris-10u10-x86.bin ZONE: s10u10 ZONEPATH: /zones/s10u10 INTERFACE: rge0 VNIC: vnicZBI13379 MAC ADDR: 2:8:20:5c:1a:cc IP ADDR: 192.168.1.100 NETMASK: 255.255.255.0 DEFROUTER: NONE TIMEZONE: US/Arizona Checking disk-space for installation Ok Installing in /zones/s10u10 ... 100% [===============================] Using a static exclusive-IP Attaching s10u10 Booting s10u10 Waiting for boot to complete booting... booting... booting... Zone s10u10 booted The zone's root password has been set using the root password of the local host. You can change the zone's root password to further harden the security of the zone: being root, log into the zone from the local host with the command 'zlogin s10u10'. Once logged in, change the root password with the command 'passwd'. The nifty part in my opinion (besides being so easy), is that the zone was created as an exclusive-IP zone on a virtual NIC. This network configuration lets you enforce traffic isolation from other zones, enforce network Quality of Service, and even let the zone set its own characteristics like IP address and packet size. Independence of the zone's network characteristics from the global zone is one of the enhancements in Solaris 10 that make it easier to consolidate zones while preserving their autonomy, yet provide control in a consolidated environment. Let's see what the virtual network environment looks like by issuing commands from the Solaris 11 global zone. First I'll use Old School ifconfig, and then I'll use the new ipadm and dladm commands. # ifconfig -a4 lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 rge0: flags=1004943<UP,BROADCAST,RUNNING,PROMISC,MULTICAST,DHCP,IPv4> mtu 1500 index 2 inet 192.168.1.3 netmask ffffff00 broadcast 192.168.1.255 ether 0:14:d1:18:ac:bc vboxnet0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 3 inet 192.168.56.1 netmask ffffff00 broadcast 192.168.56.255 ether 8:0:27:f8:62:1c # dladm show-phys LINK MEDIA STATE SPEED DUPLEX DEVICE yge0 Ethernet unknown 0 unknown yge0 yge1 Ethernet unknown 0 unknown yge1 rge0 Ethernet up 1000 full rge0 vboxnet0 Ethernet up 1000 full vboxnet0 # dladm show-link LINK CLASS MTU STATE OVER yge0 phys 1500 unknown -- yge1 phys 1500 unknown -- rge0 phys 1500 up -- vboxnet0 phys 1500 up -- vnicZBI13379 vnic 1500 up rge0 s10u10/vnicZBI13379 vnic 1500 up rge0 s10u10/net0 vnic 1500 up rge0 # dladm show-vnic LINK OVER SPEED MACADDRESS MACADDRTYPE VID vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/net0 rge0 1000 2:8:20:9d:d0:79 random 0 # ipadm show-addr ADDROBJ TYPE STATE ADDR lo0/v4 static ok 127.0.0.1/8 rge0/_a dhcp ok 192.168.1.3/24 vboxnet0/_a static ok 192.168.56.1/24 lo0/v6 static ok ::1/128 Log into the zone The install step already booted the zone, so lets log into it. Notice how you have to be appropriately privileged to log into a zone. This is my home system so I'm being a bit cavalier, but in a production environment you can give granular control of who can login to which zones. Voila! a Solaris 10 environment under a Solaris 11 kernel. Notice the output from the uname -a and ifconfig commands, and output from a ping to a nearby host. $ zlogin s10u10 zlogin: You lack sufficient privilege to run this command (all privs required) savit@home:~$ sudo zlogin s10u10 Password: [Connected to zone 's10u10' pts/5] Oracle Corporation SunOS 5.10 Generic Patch January 2005 # uname -a SunOS s10u10 5.10 Generic_Virtual i86pc i386 i86pc # ifconfig -a4 lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc # bash bash-3.2# ifconfig -a lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc bash-3.2# ping 192.168.1.2 192.168.1.2 is alive For fun, I configured Apache (setting its configuration file in /etc/apache2) and brought it up. Easy - took just a few minutes. bash-3.2# svcs apache2 STATE STIME FMRI disabled 12:38:46 svc:/network/http:apache2 bash-3.2# svcadm enable apache2 Summary In just a few minutes, I built a functioning virtual Solaris 10 environment under by Solaris 11 system. It was... easy! While I can still do it the manual way (creating and using a system archive), this is a low-effort way to create a Solaris 10 zone on Solaris 11.

    Read the article

  • Dynamic Types and DynamicObject References in C#

    - by Rick Strahl
    I've been working a bit with C# custom dynamic types for several customers recently and I've seen some confusion in understanding how dynamic types are referenced. This discussion specifically centers around types that implement IDynamicMetaObjectProvider or subclass from DynamicObject as opposed to arbitrary type casts of standard .NET types. IDynamicMetaObjectProvider types  are treated special when they are cast to the dynamic type. Assume for a second that I've created my own implementation of a custom dynamic type called DynamicFoo which is about as simple of a dynamic class that I can think of:public class DynamicFoo : DynamicObject { Dictionary<string, object> properties = new Dictionary<string, object>(); public string Bar { get; set; } public DateTime Entered { get; set; } public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; if (!properties.ContainsKey(binder.Name)) return false; result = properties[binder.Name]; return true; } public override bool TrySetMember(SetMemberBinder binder, object value) { properties[binder.Name] = value; return true; } } This class has an internal dictionary member and I'm exposing this dictionary member through a dynamic by implementing DynamicObject. This implementation exposes the properties dictionary so the dictionary keys can be referenced like properties (foo.NewProperty = "Cool!"). I override TryGetMember() and TrySetMember() which are fired at runtime every time you access a 'property' on a dynamic instance of this DynamicFoo type. Strong Typing and Dynamic Casting I now can instantiate and use DynamicFoo in a couple of different ways: Strong TypingDynamicFoo fooExplicit = new DynamicFoo(); var fooVar = new DynamicFoo(); These two commands are essentially identical and use strong typing. The compiler generates identical code for both of them. The var statement is merely a compiler directive to infer the type of fooVar at compile time and so the type of fooExplicit is DynamicFoo, just like fooExplicit. This is very static - nothing dynamic about it - and it completely ignores the IDynamicMetaObjectProvider implementation of my class above as it's never used. Using either of these I can access the native properties:DynamicFoo fooExplicit = new DynamicFoo();// static typing assignmentsfooVar.Bar = "Barred!"; fooExplicit.Entered = DateTime.Now; // echo back static values Console.WriteLine(fooVar.Bar); Console.WriteLine(fooExplicit.Entered); but I have no access whatsoever to the properties dictionary. Basically this creates a strongly typed instance of the type with access only to the strongly typed interface. You get no dynamic behavior at all. The IDynamicMetaObjectProvider features don't kick in until you cast the type to dynamic. If I try to access a non-existing property on fooExplicit I get a compilation error that tells me that the property doesn't exist. Again, it's clearly and utterly non-dynamic. Dynamicdynamic fooDynamic = new DynamicFoo(); fooDynamic on the other hand is created as a dynamic type and it's a completely different beast. I can also create a dynamic by simply casting any type to dynamic like this:DynamicFoo fooExplicit = new DynamicFoo(); dynamic fooDynamic = fooExplicit; Note that dynamic typically doesn't require an explicit cast as the compiler automatically performs the cast so there's no need to use as dynamic. Dynamic functionality works at runtime and allows for the dynamic wrapper to look up and call members dynamically. A dynamic type will look for members to access or call in two places: Using the strongly typed members of the object Using theIDynamicMetaObjectProvider Interface methods to access members So rather than statically linking and calling a method or retrieving a property, the dynamic type looks up - at runtime  - where the value actually comes from. It's essentially late-binding which allows runtime determination what action to take when a member is accessed at runtime *if* the member you are accessing does not exist on the object. Class members are checked first before IDynamicMetaObjectProvider interface methods are kick in. All of the following works with the dynamic type:dynamic fooDynamic = new DynamicFoo(); // dynamic typing assignments fooDynamic.NewProperty = "Something new!"; fooDynamic.LastAccess = DateTime.Now; // dynamic assigning static properties fooDynamic.Bar = "dynamic barred"; fooDynamic.Entered = DateTime.Now; // echo back dynamic values Console.WriteLine(fooDynamic.NewProperty); Console.WriteLine(fooDynamic.LastAccess); Console.WriteLine(fooDynamic.Bar); Console.WriteLine(fooDynamic.Entered); The dynamic type can access the native class properties (Bar and Entered) and create and read new ones (NewProperty,LastAccess) all using a single type instance which is pretty cool. As you can see it's pretty easy to create an extensible type this way that can dynamically add members at runtime dynamically. The Alter Ego of IDynamicObject The key point here is that all three statements - explicit, var and dynamic - declare a new DynamicFoo(), but the dynamic declaration results in completely different behavior than the first two simply because the type has been cast to dynamic. Dynamic binding means that the type loses its typical strong typing, compile time features. You can see this easily in the Visual Studio code editor. As soon as you assign a value to a dynamic you lose Intellisense and you see which means there's no Intellisense and no compiler type checking on any members you apply to this instance. If you're new to the dynamic type it might seem really confusing that a single type can behave differently depending on how it is cast, but that's exactly what happens when you use a type that implements IDynamicMetaObjectProvider. Declare the type as its strong type name and you only get to access the native instance members of the type. Declare or cast it to dynamic and you get dynamic behavior which accesses native members plus it uses IDynamicMetaObjectProvider implementation to handle any missing member definitions by running custom code. You can easily cast objects back and forth between dynamic and the original type:dynamic fooDynamic = new DynamicFoo(); fooDynamic.NewProperty = "New Property Value"; DynamicFoo foo = fooDynamic; foo.Bar = "Barred"; Here the code starts out with a dynamic cast and a dynamic assignment. The code then casts back the value to the DynamicFoo. Notice that when casting from dynamic to DynamicFoo and back we typically do not have to specify the cast explicitly - the compiler can induce the type so I don't need to specify as dynamic or as DynamicFoo. Moral of the Story This easy interchange between dynamic and the underlying type is actually super useful, because it allows you to create extensible objects that can expose non-member data stores and expose them as an object interface. You can create an object that hosts a number of strongly typed properties and then cast the object to dynamic and add additional dynamic properties to the same type at runtime. You can easily switch back and forth between the strongly typed instance to access the well-known strongly typed properties and to dynamic for the dynamic properties added at runtime. Keep in mind that dynamic object access has quite a bit of overhead and is definitely slower than strongly typed binding, so if you're accessing the strongly typed parts of your objects you definitely want to use a strongly typed reference. Reserve dynamic for the dynamic members to optimize your code. The real beauty of dynamic is that with very little effort you can build expandable objects or objects that expose different data stores to an object interface. I'll have more on this in my next post when I create a customized and extensible Expando object based on DynamicObject.© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Maintaining shared service in ASP.NET MVC Application

    - by kazimanzurrashid
    Depending on the application sometimes we have to maintain some shared service throughout our application. Let’s say you are developing a multi-blog supported blog engine where both the controller and view must know the currently visiting blog, it’s setting , user information and url generation service. In this post, I will show you how you can handle this kind of case in most convenient way. First, let see the most basic way, we can create our PostController in the following way: public class PostController : Controller { public PostController(dependencies...) { } public ActionResult Index(string blogName, int? page) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublished(blog.Id, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetPublishedCount(blog.Id); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new IndexViewModel(urlResolver, user, blog, posts, count, page)); } public ActionResult Archive(string blogName, int? page, ArchiveDate archiveDate) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindArchived(blog.Id, archiveDate, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetArchivedCount(blog.Id, archiveDate); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new ArchiveViewModel(urlResolver, user, blog, posts, count, page, achiveDate)); } public ActionResult Tag(string blogName, string tagSlug, int? page) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } TagInfo tag = tagService.FindBySlug(blog.Id, tagSlug); if (tag == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublishedByTag(blog.Id, tag.Id, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetPublishedCountByTag(tag.Id); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new TagViewModel(urlResolver, user, blog, posts, count, page, tag)); } } As you can see the above code heavily depends upon the current blog and the blog retrieval code is duplicated in all of the action methods, once the blog is retrieved the same blog is passed in the view model. Other than the blog the view also needs the current user and url resolver to render it properly. One way to remove the duplicate blog retrieval code is to create a custom model binder which converts the blog from a blog name and use the blog a parameter in the action methods instead of the string blog name, but it only helps the first half in the above scenario, the action methods still have to pass the blog, user and url resolver etc in the view model. Now lets try to improve the the above code, first lets create a new class which would contain the shared services, lets name it as BlogContext: public class BlogContext { public BlogInfo Blog { get; set; } public UserInfo User { get; set; } public IUrlResolver UrlResolver { get; set; } } Next, we will create an interface, IContextAwareService: public interface IContextAwareService { BlogContext Context { get; set; } } The idea is, whoever needs these shared services needs to implement this interface, in our case both the controller and the view model, now we will create an action filter which will be responsible for populating the context: public class PopulateBlogContextAttribute : FilterAttribute, IActionFilter { private static string blogNameRouteParameter = "blogName"; private readonly IBlogService blogService; private readonly IUserService userService; private readonly BlogContext context; public PopulateBlogContextAttribute(IBlogService blogService, IUserService userService, IUrlResolver urlResolver) { Invariant.IsNotNull(blogService, "blogService"); Invariant.IsNotNull(userService, "userService"); Invariant.IsNotNull(urlResolver, "urlResolver"); this.blogService = blogService; this.userService = userService; context = new BlogContext { UrlResolver = urlResolver }; } public static string BlogNameRouteParameter { [DebuggerStepThrough] get { return blogNameRouteParameter; } [DebuggerStepThrough] set { blogNameRouteParameter = value; } } public void OnActionExecuting(ActionExecutingContext filterContext) { string blogName = (string) filterContext.Controller.ValueProvider.GetValue(BlogNameRouteParameter).ConvertTo(typeof(string), Culture.Current); if (!string.IsNullOrWhiteSpace(blogName)) { context.Blog = blogService.FindByName(blogName); } if (context.Blog == null) { filterContext.Result = new NotFoundResult(); return; } if (filterContext.HttpContext.User.Identity.IsAuthenticated) { context.User = userService.FindByName(filterContext.HttpContext.User.Identity.Name); } IContextAwareService controller = filterContext.Controller as IContextAwareService; if (controller != null) { controller.Context = context; } } public void OnActionExecuted(ActionExecutedContext filterContext) { Invariant.IsNotNull(filterContext, "filterContext"); if ((filterContext.Exception == null) || filterContext.ExceptionHandled) { IContextAwareService model = filterContext.Controller.ViewData.Model as IContextAwareService; if (model != null) { model.Context = context; } } } } As you can see we are populating the context in the OnActionExecuting, which executes just before the controllers action methods executes, so by the time our action methods executes the context is already populated, next we are are assigning the same context in the view model in OnActionExecuted method which executes just after we set the  model and return the view in our action methods. Now, lets change the view models so that it implements this interface: public class IndexViewModel : IContextAwareService { // More Codes } public class ArchiveViewModel : IContextAwareService { // More Codes } public class TagViewModel : IContextAwareService { // More Codes } and the controller: public class PostController : Controller, IContextAwareService { public PostController(dependencies...) { } public BlogContext Context { get; set; } public ActionResult Index(int? page) { IEnumerable<PostInfo> posts = postService.FindPublished(Context.Blog.Id, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetPublishedCount(Context.Blog.Id); return View(new IndexViewModel(posts, count, page)); } public ActionResult Archive(int? page, ArchiveDate archiveDate) { IEnumerable<PostInfo> posts = postService.FindArchived(Context.Blog.Id, archiveDate, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetArchivedCount(Context.Blog.Id, archiveDate); return View(new ArchiveViewModel(posts, count, page, achiveDate)); } public ActionResult Tag(string blogName, string tagSlug, int? page) { TagInfo tag = tagService.FindBySlug(Context.Blog.Id, tagSlug); if (tag == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublishedByTag(Context.Blog.Id, tag.Id, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetPublishedCountByTag(tag.Id); return View(new TagViewModel(posts, count, page, tag)); } } Now, the last thing where we have to glue everything, I will be using the AspNetMvcExtensibility to register the action filter (as there is no better way to inject the dependencies in action filters). public class RegisterFilters : RegisterFiltersBase { private static readonly Type controllerType = typeof(Controller); private static readonly Type contextAwareType = typeof(IContextAwareService); protected override void Register(IFilterRegistry registry) { TypeCatalog controllers = new TypeCatalogBuilder() .Add(GetType().Assembly) .Include(type => controllerType.IsAssignableFrom(type) && contextAwareType.IsAssignableFrom(type)); registry.Register<PopulateBlogContextAttribute>(controllers); } } Thoughts and Comments?

    Read the article

  • Improving WIF&rsquo;s Claims-based Authorization - Part 2

    - by Your DisplayName here!
    In the last post I showed you how to take control over the invocation of ClaimsAuthorizationManager. Then you have complete freedom over the claim types, the amount of claims and the values. In addition I added two attributes that invoke the authorization manager using an “application claim type”. This way it is very easy to distinguish between authorization calls that originate from WIF’s per-request authorization and the ones from “within” you application. The attribute comes in two flavours: a CAS attribute (invoked by the CLR) and an ASP.NET MVC attribute (for MVC controllers, invoke by the MVC plumbing). Both also feature static methods to easily call them using the application claim types. The CAS attribute is part of Thinktecture.IdentityModel on Codeplex (or via NuGet: Install-Package Thinktecture.IdentityModel). If you really want to see that code ;) There is also a sample included in the Codeplex donwload. The MVC attribute is currently used in Thinktecture.IdentityServer – and I don’t currently plan to make it part of the library project since I don’t want to add a dependency on MVC for now. You can find the code below – and I will write about its usage in a follow-up post. public class ClaimsAuthorize : AuthorizeAttribute {     private string _resource;     private string _action;     private string[] _additionalResources;     /// <summary>     /// Default action claim type.     /// </summary>     public const string ActionType = "http://application/claims/authorization/action";     /// <summary>     /// Default resource claim type     /// </summary>     public const string ResourceType = "http://application/claims/authorization/resource";     /// <summary>     /// Additional resource claim type     /// </summary>     public const string AdditionalResourceType = "http://application/claims/authorization/additionalresource"          public ClaimsAuthorize(string action, string resource, params string[] additionalResources)     {         _action = action;         _resource = resource;         _additionalResources = additionalResources;     }     public static bool CheckAccess(       string action, string resource, params string[] additionalResources)     {         return CheckAccess(             Thread.CurrentPrincipal as IClaimsPrincipal,             action,             resource,             additionalResources);     }     public static bool CheckAccess(       IClaimsPrincipal principal, string action, string resource, params string[] additionalResources)     {         var context = CreateAuthorizationContext(             principal,             action,             resource,             additionalResources);         return ClaimsAuthorization.CheckAccess(context);     }     protected override bool AuthorizeCore(HttpContextBase httpContext)     {         return CheckAccess(_action, _resource, _additionalResources);     }     private static WIF.AuthorizationContext CreateAuthorizationContext(       IClaimsPrincipal principal, string action, string resource, params string[] additionalResources)     {         var actionClaims = new Collection<Claim>         {             new Claim(ActionType, action)         };         var resourceClaims = new Collection<Claim>         {             new Claim(ResourceType, resource)         };         if (additionalResources != null && additionalResources.Length > 0)         {             additionalResources.ToList().ForEach(ar => resourceClaims.Add(               new Claim(AdditionalResourceType, ar)));         }         return new WIF.AuthorizationContext(             principal,             resourceClaims,             actionClaims);     } }

    Read the article

  • asp.net C# Webcam api error

    - by Eyla
    Greeting, I'm tring to use webcam api with asp.net and C#. I included all the library and reverince I needed for that. the original code I'm use was for windows application and I'm trying to convert it to asp.net web application. I have start capturing button when I click it, it should start capturing but it gives me an error. the error at this line: hHwnd = capCreateCaptureWindowA(iDevice.ToString(), (WS_VISIBLE | WS_CHILD), 0, 0, 640, 480, picCapture.Handle.ToInt32(), 0); and the error message is: Error 1 'System.Web.UI.WebControls.Image' does not contain a definition for 'Handle' and no extension method 'Handle' accepting a first argument of type 'System.Web.UI.WebControls.Image' could be found (are you missing a using directive or an assembly reference?) C:\Users\Ali\Documents\Visual Studio 2008\Projects\Conference\Conference\Conference1.aspx.cs 63 117 Conference Please advice!! ................................................ here is the complete code ........................................... using System; using System.Collections; using System.Drawing; using System.ComponentModel; using System.Windows.Forms; using System.Configuration; using System.Data; using System.Linq; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.HtmlControls; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Xml.Linq; using System.Runtime.InteropServices; using System.Drawing.Imaging; using System.Net; using System.Net.Sockets; using System.Threading; using System.IO; namespace Conference { public partial class Conference1 : System.Web.UI.Page { #region WebCam API const short WM_CAP = 1024; const int WM_CAP_DRIVER_CONNECT = WM_CAP + 10; const int WM_CAP_DRIVER_DISCONNECT = WM_CAP + 11; const int WM_CAP_EDIT_COPY = WM_CAP + 30; const int WM_CAP_SET_PREVIEW = WM_CAP + 50; const int WM_CAP_SET_PREVIEWRATE = WM_CAP + 52; const int WM_CAP_SET_SCALE = WM_CAP + 53; const int WS_CHILD = 1073741824; const int WS_VISIBLE = 268435456; const short SWP_NOMOVE = 2; const short SWP_NOSIZE = 1; const short SWP_NOZORDER = 4; const short HWND_BOTTOM = 1; int iDevice = 0; int hHwnd; [System.Runtime.InteropServices.DllImport("user32", EntryPoint = "SendMessageA")] static extern int SendMessage(int hwnd, int wMsg, int wParam, [MarshalAs(UnmanagedType.AsAny)] object lParam); [System.Runtime.InteropServices.DllImport("user32", EntryPoint = "SetWindowPos")] static extern int SetWindowPos(int hwnd, int hWndInsertAfter, int x, int y, int cx, int cy, int wFlags); [System.Runtime.InteropServices.DllImport("user32")] static extern bool DestroyWindow(int hndw); [System.Runtime.InteropServices.DllImport("avicap32.dll")] static extern int capCreateCaptureWindowA(string lpszWindowName, int dwStyle, int x, int y, int nWidth, short nHeight, int hWndParent, int nID); [System.Runtime.InteropServices.DllImport("avicap32.dll")] static extern bool capGetDriverDescriptionA(short wDriver, string lpszName, int cbName, string lpszVer, int cbVer); private void OpenPreviewWindow() { int iHeight = 320; int iWidth = 200; // // Open Preview window in picturebox // hHwnd = capCreateCaptureWindowA(iDevice.ToString(), (WS_VISIBLE | WS_CHILD), 0, 0, 640, 480, picCapture.Handle.ToInt32(), 0); // // Connect to device // if (SendMessage(hHwnd, WM_CAP_DRIVER_CONNECT, iDevice, 0) == 1) { // // Set the preview scale // SendMessage(hHwnd, WM_CAP_SET_SCALE, 1, 0); // // Set the preview rate in milliseconds // SendMessage(hHwnd, WM_CAP_SET_PREVIEWRATE, 66, 0); // // Start previewing the image from the camera // SendMessage(hHwnd, WM_CAP_SET_PREVIEW, 1, 0); // // Resize window to fit in picturebox // SetWindowPos(hHwnd, HWND_BOTTOM, 0, 0, iWidth, iHeight, (SWP_NOMOVE | SWP_NOZORDER)); } else { // // Error connecting to device close window // DestroyWindow(hHwnd); } } private void ClosePreviewWindow() { // // Disconnect from device // SendMessage(hHwnd, WM_CAP_DRIVER_DISCONNECT, iDevice, 0); // // close window // DestroyWindow(hHwnd); } #endregion protected void Page_Load(object sender, EventArgs e) { } protected void btnStart_Click(object sender, EventArgs e) { int iDevice = int.Parse(device_number_textBox.Text); OpenPreviewWindow(); } } }

    Read the article

  • Mocking the Unmockable: Using Microsoft Moles with Gallio

    - by Thomas Weller
    Usual opensource mocking frameworks (like e.g. Moq or Rhino.Mocks) can mock only interfaces and virtual methods. In contrary to that, Microsoft’s Moles framework can ‘mock’ virtually anything, in that it uses runtime instrumentation to inject callbacks in the method MSIL bodies of the moled methods. Therefore, it is possible to detour any .NET method, including non-virtual/static methods in sealed types. This can be extremely helpful when dealing e.g. with code that calls into the .NET framework, some third-party or legacy stuff etc… Some useful collected resources (links to website, documentation material and some videos) can be found in my toolbox on Delicious under this link: http://delicious.com/thomasweller/toolbox+moles A Gallio extension for Moles Originally, Moles is a part of Microsoft’s Pex framework and thus integrates best with Visual Studio Unit Tests (MSTest). However, the Moles sample download contains some additional assemblies to also support other unit test frameworks. They provide a Moled attribute to ease the usage of mole types with the respective framework (there are extensions for NUnit, xUnit.net and MbUnit v2 included with the samples). As there is no such extension for the Gallio platform, I did the few required lines myself – the resulting Gallio.Moles.dll is included with the sample download. With this little assembly in place, it is possible to use Moles with Gallio like that: [Test, Moled] public void SomeTest() {     ... What you can do with it Moles can be very helpful, if you need to ‘mock’ something other than a virtual or interface-implementing method. This might be the case when dealing with some third-party component, legacy code, or if you want to ‘mock’ the .NET framework itself. Generally, you need to announce each moled type that you want to use in a test with the MoledType attribute on assembly level. For example: [assembly: MoledType(typeof(System.IO.File))] Below are some typical use cases for Moles. For a more detailed overview (incl. naming conventions and an instruction on how to create the required moles assemblies), please refer to the reference material above.  Detouring the .NET framework Imagine that you want to test a method similar to the one below, which internally calls some framework method:   public void ReadFileContent(string fileName) {     this.FileContent = System.IO.File.ReadAllText(fileName); } Using a mole, you would replace the call to the File.ReadAllText(string) method with a runtime delegate like so: [Test, Moled] [Description("This 'mocks' the System.IO.File class with a custom delegate.")] public void ReadFileContentWithMoles() {     // arrange ('mock' the FileSystem with a delegate)     System.IO.Moles.MFile.ReadAllTextString = (fname => fname == FileName ? FileContent : "WrongFileName");       // act     var testTarget = new TestTarget.TestTarget();     testTarget.ReadFileContent(FileName);       // assert     Assert.AreEqual(FileContent, testTarget.FileContent); } Detouring static methods and/or classes A static method like the below… public static string StaticMethod(int x, int y) {     return string.Format("{0}{1}", x, y); } … can be ‘mocked’ with the following: [Test, Moled] public void StaticMethodWithMoles() {     MStaticClass.StaticMethodInt32Int32 = ((x, y) => "uups");       var result = StaticClass.StaticMethod(1, 2);       Assert.AreEqual("uups", result); } Detouring constructors You can do this delegate thing even with a class’ constructor. The syntax for this is not all  too intuitive, because you have to setup the internal state of the mole, but generally it works like a charm. For example, to replace this c’tor… public class ClassWithCtor {     public int Value { get; private set; }       public ClassWithCtor(int someValue)     {         this.Value = someValue;     } } … you would do the following: [Test, Moled] public void ConstructorTestWithMoles() {     MClassWithCtor.ConstructorInt32 =            ((@class, @value) => new MClassWithCtor(@class) {ValueGet = () => 99});       var classWithCtor = new ClassWithCtor(3);       Assert.AreEqual(99, classWithCtor.Value); } Detouring abstract base classes You can also use this approach to ‘mock’ abstract base classes of a class that you call in your test. Assumed that you have something like that: public abstract class AbstractBaseClass {     public virtual string SaySomething()     {         return "Hello from base.";     } }      public class ChildClass : AbstractBaseClass {     public override string SaySomething()     {         return string.Format(             "Hello from child. Base says: '{0}'",             base.SaySomething());     } } Then you would set up the child’s underlying base class like this: [Test, Moled] public void AbstractBaseClassTestWithMoles() {     ChildClass child = new ChildClass();     new MAbstractBaseClass(child)         {                 SaySomething = () => "Leave me alone!"         }         .InstanceBehavior = MoleBehaviors.Fallthrough;       var hello = child.SaySomething();       Assert.AreEqual("Hello from child. Base says: 'Leave me alone!'", hello); } Setting the moles behavior to a value of  MoleBehaviors.Fallthrough causes the ‘original’ method to be called if a respective delegate is not provided explicitly – here it causes the ChildClass’ override of the SaySomething() method to be called. There are some more possible scenarios, where the Moles framework could be of much help (e.g. it’s also possible to detour interface implementations like IEnumerable<T> and such…). One other possibility that comes to my mind (because I’m currently dealing with that), is to replace calls from repository classes to the ADO.NET Entity Framework O/R mapper with delegates to isolate the repository classes from the underlying database, which otherwise would not be possible… Usage Since Moles relies on runtime instrumentation, mole types must be run under the Pex profiler. This only works from inside Visual Studio if you write your tests with MSTest (Visual Studio Unit Test). While other unit test frameworks generally can be used with Moles, they require the respective tests to be run via command line, executed through the moles.runner.exe tool. A typical test execution would be similar to this: moles.runner.exe <mytests.dll> /runner:<myframework.console.exe> /args:/<myargs> So, the moled test can be run through tools like NCover or a scripting tool like MSBuild (which makes them easy to run in a Continuous Integration environment), but they are somewhat unhandy to run in the usual TDD workflow (which I described in some detail here). To make this a bit more fluent, I wrote a ReSharper live template to generate the respective command line for the test (it is also included in the sample download – moled_cmd.xml). - This is just a quick-and-dirty ‘solution’. Maybe it makes sense to write an extra Gallio adapter plugin (similar to the many others that are already provided) and include it with the Gallio download package, if  there’s sufficient demand for it. As of now, the only way to run tests with the Moles framework from within Visual Studio is by using them with MSTest. From the command line, anything with a managed console runner can be used (provided that the appropriate extension is in place)… A typical Gallio/Moles command line (as generated by the mentioned R#-template) looks like that: "%ProgramFiles%\Microsoft Moles\bin\moles.runner.exe" /runner:"%ProgramFiles%\Gallio\bin\Gallio.Echo.exe" "Gallio.Moles.Demo.dll" /args:/r:IsolatedAppDomain /args:/filter:"ExactType:TestFixture and Member:ReadFileContentWithMoles" -- Note: When using the command line with Echo (Gallio’s console runner), be sure to always include the IsolatedAppDomain option, otherwise the tests won’t use the instrumentation callbacks! -- License issues As I already said, the free mocking frameworks can mock only interfaces and virtual methods. if you want to mock other things, you need the Typemock Isolator tool for that, which comes with license costs (Although these ‘costs’ are ridiculously low compared to the value that such a tool can bring to a software project, spending money often is a considerable gateway hurdle in real life...).  The Moles framework also is not totally free, but comes with the same license conditions as the (closely related) Pex framework: It is free for academic/non-commercial use only, to use it in a ‘real’ software project requires an MSDN Subscription (from VS2010pro on). The demo solution The sample solution (VS 2008) can be downloaded from here. It contains the Gallio.Moles.dll which provides the here described Moled attribute, the above mentioned R#-template (moled_cmd.xml) and a test fixture containing the above described use case scenarios. To run it, you need the Gallio framework (download) and Microsoft Moles (download) being installed in the default locations. Happy testing…

    Read the article

  • The last MVVM you'll ever need?

    - by Nuri Halperin
    As my MVC projects mature and grow, the need to have some omnipresent, ambient model properties quickly emerge. The application no longer has only one dynamic pieced of data on the page: A sidebar with a shopping cart, some news flash on the side – pretty common stuff. The rub is that a controller is invoked in context of a single intended request. The rest of the data, even though it could be just as dynamic, is expected to appear on it's own. There are many solutions to this scenario. MVVM prescribes creating elaborate objects which expose your new data as a property on some uber-object with more properties exposing the "side show" ambient data. The reason I don't love this approach is because it forces fairly acute awareness of the view, and soon enough you have many MVVM objects laying around, and views have to start doing null-checks in order to ensure you really supplied all the values before binding to them. Ick. Just as unattractive is the ViewData dictionary. It's not strongly typed, and in both this and the MVVM approach someone has to populate these properties – n'est pas? Where does that live? With MVC2, we get the formerly-futures  feature Html.RenderAction(). The feature allows you plant a line in a view, of the format: <% Html.RenderAction("SessionInterest", "Session"); %> While this syntax looks very clean, I can't help being bothered by it. MVC was touting a very strong separation of concerns, the Model taking on the role of the business logic, the controller handling route and performing minimal view-choosing operations and the views strictly focused on rendering out angled-bracket tags. The RenderAction() syntax has the view calling some controller and invoking it inline with it's runtime rendering. This – to my taste – embeds too much  knowledge of controllers into the view's code – which was allegedly forbidden.  The one way flow "Controller Receive Data –> Controller invoke Model –> Controller select view –> Controller Hand data to view" now gets a "View calls controller and gets it's own data" which is not so one-way anymore. Ick. I toyed with some other solutions a bit, including some base controllers, special view classes etc. My current favorite though is making use of the ExpandoObject and dynamic features with C# 4.0. If you follow Phil Haack or read a bit from David Heyden you can see the general picture emerging. The game changer is that using the new dynamic syntax, one can sprout properties on an object and make use of them in the view. Well that beats having a bunch of uni-purpose MVVM's any day! Rather than statically exposed properties, we'll just use the capability of adding members at runtime. Armed with new ideas and syntax, I went to work: First, I created a factory method to enrich the focuse object: public static class ModelExtension { public static dynamic Decorate(this Controller controller, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = CodeCampBL.SessoinInterest(); result.TagUsage = CodeCampBL.TagUsage(); return result; } } This gives me a nice fluent way to have the controller add the rest of the ambient "side show" items (SessionInterest, TagUsage in this demo) and expose them all as the Model: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); dynamic result = this.Decorate(data); return View(result); } So now what remains is that my view knows to expect a dynamic object (rather than statically typed) so that the ASP.NET page compiler won't barf: <%@ Page Language="C#" Title="Ambient Demo" MasterPageFile="~/Views/Shared/Ambient.Master" Inherits="System.Web.Mvc.ViewPage<dynamic>" %> Notice the generic ViewPage<dynamic>. It doesn't work otherwise. In the page itself, Model.Value property contains the main data returned from the controller. The nice thing about this, is that the master page (Ambient.Master) also inherits from the generic ViewMasterPage<dynamic>. So rather than the page worrying about all this ambient stuff, the side bars and panels for ambient data all reside in a master page, and can be rendered using the RenderPartial() syntax: <% Html.RenderPartial("TagCloud", Model.SessionInterest as Dictionary<string, int>); %> Note here that a cast is necessary. This is because although dynamic is magic, it can't figure out what type this property is, and wants you to give it a type so its binder can figure out the right property to bind to at runtime. I use as, you can cast if you like. So there we go – no violation of MVC, no explosion of MVVM models and voila – right? Well, I could not let this go without a tweak or two more. The first thing to improve, is that some views may not need all the properties. In that case, it would be a waste of resources to populate every property. The solution to this is simple: rather than exposing properties, I change d the factory method to expose lambdas - Func<T> really. So only if and when a view accesses a member of the dynamic object does it load the data. public static class ModelExtension { // take two.. lazy loading! public static dynamic LazyDecorate(this Controller c, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = new Func<Dictionary<string, int>>(() => CodeCampBL.SessoinInterest()); result.TagUsage = new Func<Dictionary<string, int>>(() => CodeCampBL.TagUsage()); return result; } } Now that lazy loading is in place, there's really no reason not to hook up all and any possible ambient property. Go nuts! Add them all in – they won't get invoked unless used. This now requires changing the signature of usage on the ambient properties methods –adding some parenthesis to the master view: <% Html.RenderPartial("TagCloud", Model.SessionInterest() as Dictionary<string, int>); %> And, of course, the controller needs to call LazyDecorate() rather than the old Decorate(). The final touch is to introduce a convenience method to the my Controller class , so that the tedium of calling Decorate() everywhere goes away. This is done quite simply by adding a bunch of methods, matching View(object), View(string,object) signatures of the Controller class: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); return AmbientView(data); } //these methods can reside in a base controller for the solution: public ViewResult AmbientView(dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(result); } public ViewResult AmbientView(string viewName, dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(viewName, result); } The call to AmbientView now replaces any call the View() that requires the ambient data. DRY sattisfied, lazy loading and no need to replace core pieces of the MVC pipeline. I call this a good MVC day. Enjoy!

    Read the article

  • Multiple Components in a JTree Node Renderer & Node Editor

    - by Samad Lotia
    I am attempting to create a JTree where a node has several components: a JPanel that holds a JCheckBox, followed by a JLabel, then a JComboBox. I have attached the code at the bottom if one wishes to run it. Fortunately the JTree correctly renders the components. However when I click on the JComboBox, the node disappears; if I click on the JCheckBox, it works fine. It seems that I am doing something wrong with how the TreeCellEditor is being set up. How could I resolve this issue? Am I going beyond the capabilities of JTree? Here's a quick overview of the code I have posted below. The class EntityListDialog merely creates the user interface. It is not useful to understand it other than the createTree method. Node is the data structure that holds information about each node in the JTree. All Nodes have a name, but samples may be null or an empty array. This should be evident by looking at EntityListDialog's createTree method. The name is used as the text of the JCheckBox. If samples is non-empty, it is used as the contents of the JCheckBox. NodeWithSamplesRenderer renders Nodes whose samples are non-empty. It creates the complicated user interface with the JPanel consisting of the JCheckBox and the JComboBox. NodeWithoutSamplesRenderer creates just a JCheckBox when samples is empty. RendererDispatcher decides whether to use a NodeWithSamplesRenderer or a NodeWithoutSamplesRenderer. This entirely depends on whether Node has a non-empty samples member or not. It essentially functions as a means for the NodeWith*SamplesRenderer to plug into the JTree. Code listing: import java.awt.*; import java.awt.event.*; import java.util.*; import javax.swing.*; import javax.swing.tree.*; public class EntityListDialog { final JDialog dialog; final JTree entitiesTree; public EntityListDialog() { dialog = new JDialog((Frame) null, "Test"); entitiesTree = createTree(); JScrollPane entitiesTreeScrollPane = new JScrollPane(entitiesTree); JCheckBox pathwaysCheckBox = new JCheckBox("Do additional searches"); JButton sendButton = new JButton("Send"); JButton cancelButton = new JButton("Cancel"); JButton selectAllButton = new JButton("All"); JButton deselectAllButton = new JButton("None"); dialog.getContentPane().setLayout(new GridBagLayout()); GridBagConstraints c = new GridBagConstraints(); JPanel selectPanel = new JPanel(new FlowLayout(FlowLayout.LEFT)); selectPanel.add(new JLabel("Select: ")); selectPanel.add(selectAllButton); selectPanel.add(deselectAllButton); c.gridx = 0; c.gridy = 0; c.weightx = 1.0; c.weighty = 0.0; c.fill = GridBagConstraints.HORIZONTAL; dialog.getContentPane().add(selectPanel, c); c.gridx = 0; c.gridy = 1; c.weightx = 1.0; c.weighty = 1.0; c.fill = GridBagConstraints.BOTH; c.insets = new Insets(0, 5, 0, 5); dialog.getContentPane().add(entitiesTreeScrollPane, c); c.gridx = 0; c.gridy = 2; c.weightx = 1.0; c.weighty = 0.0; c.insets = new Insets(0, 0, 0, 0); c.fill = GridBagConstraints.HORIZONTAL; dialog.getContentPane().add(pathwaysCheckBox, c); JPanel buttonsPanel = new JPanel(new FlowLayout(FlowLayout.RIGHT)); buttonsPanel.add(sendButton); buttonsPanel.add(cancelButton); c.gridx = 0; c.gridy = 3; c.weightx = 1.0; c.weighty = 0.0; c.fill = GridBagConstraints.HORIZONTAL; dialog.getContentPane().add(buttonsPanel, c); dialog.pack(); dialog.setVisible(true); } public static void main(String[] args) { EntityListDialog dialog = new EntityListDialog(); } private static JTree createTree() { DefaultMutableTreeNode root = new DefaultMutableTreeNode( new Node("All Entities")); root.add(new DefaultMutableTreeNode( new Node("Entity 1", "Sample A", "Sample B", "Sample C"))); root.add(new DefaultMutableTreeNode( new Node("Entity 2", "Sample D", "Sample E", "Sample F"))); root.add(new DefaultMutableTreeNode( new Node("Entity 3", "Sample G", "Sample H", "Sample I"))); JTree tree = new JTree(root); RendererDispatcher rendererDispatcher = new RendererDispatcher(tree); tree.setCellRenderer(rendererDispatcher); tree.setCellEditor(rendererDispatcher); tree.setEditable(true); return tree; } } class Node { final String name; final String[] samples; boolean selected; int selectedSampleIndex; public Node(String name, String... samples) { this.name = name; this.selected = false; this.samples = samples; if (samples == null) { this.selectedSampleIndex = -1; } else { this.selectedSampleIndex = 0; } } public boolean isSelected() { return selected; } public void setSelected(boolean selected) { this.selected = selected; } public String toString() { return name; } public int getSelectedSampleIndex() { return selectedSampleIndex; } public void setSelectedSampleIndex(int selectedSampleIndex) { this.selectedSampleIndex = selectedSampleIndex; } public String[] getSamples() { return samples; } } interface Renderer { public void setForeground(final Color foreground); public void setBackground(final Color background); public void setFont(final Font font); public void setEnabled(final boolean enabled); public Component getComponent(); public Object getContents(); } class NodeWithSamplesRenderer implements Renderer { final DefaultComboBoxModel comboBoxModel = new DefaultComboBoxModel(); final JPanel panel = new JPanel(); final JCheckBox checkBox = new JCheckBox(); final JLabel label = new JLabel(" Samples: "); final JComboBox comboBox = new JComboBox(comboBoxModel); final JComponent components[] = {panel, checkBox, comboBox, label}; public NodeWithSamplesRenderer() { Boolean drawFocus = (Boolean) UIManager.get("Tree.drawsFocusBorderAroundIcon"); if (drawFocus != null) { checkBox.setFocusPainted(drawFocus.booleanValue()); } for (int i = 0; i < components.length; i++) { components[i].setOpaque(true); } panel.add(checkBox); panel.add(label); panel.add(comboBox); } public void setForeground(final Color foreground) { for (int i = 0; i < components.length; i++) { components[i].setForeground(foreground); } } public void setBackground(final Color background) { for (int i = 0; i < components.length; i++) { components[i].setBackground(background); } } public void setFont(final Font font) { for (int i = 0; i < components.length; i++) { components[i].setFont(font); } } public void setEnabled(final boolean enabled) { for (int i = 0; i < components.length; i++) { components[i].setEnabled(enabled); } } public void setContents(Node node) { checkBox.setText(node.toString()); comboBoxModel.removeAllElements(); for (int i = 0; i < node.getSamples().length; i++) { comboBoxModel.addElement(node.getSamples()[i]); } } public Object getContents() { String title = checkBox.getText(); String[] samples = new String[comboBoxModel.getSize()]; for (int i = 0; i < comboBoxModel.getSize(); i++) { samples[i] = comboBoxModel.getElementAt(i).toString(); } Node node = new Node(title, samples); node.setSelected(checkBox.isSelected()); node.setSelectedSampleIndex(comboBoxModel.getIndexOf(comboBoxModel.getSelectedItem())); return node; } public Component getComponent() { return panel; } } class NodeWithoutSamplesRenderer implements Renderer { final JCheckBox checkBox = new JCheckBox(); public NodeWithoutSamplesRenderer() { Boolean drawFocus = (Boolean) UIManager.get("Tree.drawsFocusBorderAroundIcon"); if (drawFocus != null) { checkBox.setFocusPainted(drawFocus.booleanValue()); } } public void setForeground(final Color foreground) { checkBox.setForeground(foreground); } public void setBackground(final Color background) { checkBox.setBackground(background); } public void setFont(final Font font) { checkBox.setFont(font); } public void setEnabled(final boolean enabled) { checkBox.setEnabled(enabled); } public void setContents(Node node) { checkBox.setText(node.toString()); } public Object getContents() { String title = checkBox.getText(); Node node = new Node(title); node.setSelected(checkBox.isSelected()); return node; } public Component getComponent() { return checkBox; } } class NoNodeRenderer implements Renderer { final JLabel label = new JLabel(); public void setForeground(final Color foreground) { label.setForeground(foreground); } public void setBackground(final Color background) { label.setBackground(background); } public void setFont(final Font font) { label.setFont(font); } public void setEnabled(final boolean enabled) { label.setEnabled(enabled); } public void setContents(String text) { label.setText(text); } public Object getContents() { return label.getText(); } public Component getComponent() { return label; } } class RendererDispatcher extends AbstractCellEditor implements TreeCellRenderer, TreeCellEditor { final static Color selectionForeground = UIManager.getColor("Tree.selectionForeground"); final static Color selectionBackground = UIManager.getColor("Tree.selectionBackground"); final static Color textForeground = UIManager.getColor("Tree.textForeground"); final static Color textBackground = UIManager.getColor("Tree.textBackground"); final JTree tree; final NodeWithSamplesRenderer nodeWithSamplesRenderer = new NodeWithSamplesRenderer(); final NodeWithoutSamplesRenderer nodeWithoutSamplesRenderer = new NodeWithoutSamplesRenderer(); final NoNodeRenderer noNodeRenderer = new NoNodeRenderer(); final Renderer[] renderers = { nodeWithSamplesRenderer, nodeWithoutSamplesRenderer, noNodeRenderer }; Renderer renderer = null; public RendererDispatcher(JTree tree) { this.tree = tree; Font font = UIManager.getFont("Tree.font"); if (font != null) { for (int i = 0; i < renderers.length; i++) { renderers[i].setFont(font); } } } public Component getTreeCellRendererComponent(JTree tree, Object value, boolean selected, boolean expanded, boolean leaf, int row, boolean hasFocus) { final Node node = extractNode(value); if (node == null) { renderer = noNodeRenderer; noNodeRenderer.setContents(tree.convertValueToText( value, selected, expanded, leaf, row, false)); } else { if (node.getSamples() == null || node.getSamples().length == 0) { renderer = nodeWithoutSamplesRenderer; nodeWithoutSamplesRenderer.setContents(node); } else { renderer = nodeWithSamplesRenderer; nodeWithSamplesRenderer.setContents(node); } } renderer.setEnabled(tree.isEnabled()); if (selected) { renderer.setForeground(selectionForeground); renderer.setBackground(selectionBackground); } else { renderer.setForeground(textForeground); renderer.setBackground(textBackground); } renderer.getComponent().repaint(); renderer.getComponent().invalidate(); renderer.getComponent().validate(); return renderer.getComponent(); } public Component getTreeCellEditorComponent( JTree tree, Object value, boolean selected, boolean expanded, boolean leaf, int row) { return getTreeCellRendererComponent( tree, value, true, expanded, leaf, row, true); } public Object getCellEditorValue() { return renderer.getContents(); } public boolean isCellEditable(final EventObject event) { if (!(event instanceof MouseEvent)) { return false; } final MouseEvent mouseEvent = (MouseEvent) event; final TreePath path = tree.getPathForLocation( mouseEvent.getX(), mouseEvent.getY()); if (path == null) { return false; } Object node = path.getLastPathComponent(); if (node == null || (!(node instanceof DefaultMutableTreeNode))) { return false; } DefaultMutableTreeNode treeNode = (DefaultMutableTreeNode) node; Object userObject = treeNode.getUserObject(); return (userObject instanceof Node); } private static Node extractNode(Object value) { if ((value != null) && (value instanceof DefaultMutableTreeNode)) { DefaultMutableTreeNode node = (DefaultMutableTreeNode) value; Object userObject = node.getUserObject(); if ((userObject != null) && (userObject instanceof Node)) { return (Node) userObject; } } return null; } }

    Read the article

  • New Features in ASP.NET Web API 2 - Part I

    - by dwahlin
    I’m a big fan of ASP.NET Web API. It provides a quick yet powerful way to build RESTful HTTP services that can easily be consumed by a variety of clients. While it’s simple to get started using, it has a wealth of features such as filters, formatters, and message handlers that can be used to extend it when needed. In this post I’m going to provide a quick walk-through of some of the key new features in version 2. I’ll focus on some two of my favorite features that are related to routing and HTTP responses and cover additional features in a future post.   Attribute Routing Routing has been a core feature of Web API since it’s initial release and something that’s built into new Web API projects out-of-the-box. However, there are a few scenarios where defining routes can be challenging such as nested routes (more on that in a moment) and any situation where a lot of custom routes have to be defined. For this example, let’s assume that you’d like to define the following nested route:   /customers/1/orders   This type of route would select a customer with an Id of 1 and then return all of their orders. Defining this type of route in the standard WebApiConfig class is certainly possible, but it isn’t the easiest thing to do for people who don’t understand routing well. Here’s an example of how the route shown above could be defined:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "CustomerOrdersApiGet", routeTemplate: "api/customers/{custID}/orders", defaults: new { custID = 0, controller = "Customers", action = "Orders" } ); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); GlobalConfiguration.Configuration.Formatters.Insert(0, new JsonpFormatter()); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   With attribute based routing, defining these types of nested routes is greatly simplified. To get started you first need to make a call to the new MapHttpAttributeRoutes() method in the standard WebApiConfig class (or a custom class that you may have created that defines your routes) as shown next:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { // Allow for attribute based routes config.MapHttpAttributeRoutes(); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); } } Once attribute based routes are configured, you can apply the Route attribute to one or more controller actions. Here’s an example:   [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; }   This example maps the custId route parameter to the custId parameter in the Orders() method and also ensures that the route parameter is typed as an integer. The Orders() method can be called using the following route: /customers/2/orders   While this is extremely easy to use and gets the job done, it doesn’t include the default “api” string on the front of the route that you might be used to seeing. You could add “api” in front of the route and make it “api/customers/{custId:int}/orders” but then you’d have to repeat that across other attribute-based routes as well. To simply this type of task you can add the RoutePrefix attribute above the controller class as shown next so that “api” (or whatever the custom starting point of your route is) is applied to all attribute routes: [RoutePrefix("api")] public class CustomersController : ApiController { [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; } }   There’s much more that you can do with attribute-based routing in ASP.NET. Check out the following post by Mike Wasson for more details.   Returning Responses with IHttpActionResult The first version of Web API provided a way to return custom HttpResponseMessage objects which were pretty easy to use overall. However, Web API 2 now wraps some of the functionality available in version 1 to simplify the process even more. A new interface named IHttpActionResult (similar to ActionResult in ASP.NET MVC) has been introduced which can be used as the return type for Web API controller actions. To return a custom response you can use new helper methods exposed through ApiController such as: Ok NotFound Exception Unauthorized BadRequest Conflict Redirect InvalidModelState Here’s an example of how IHttpActionResult and the helper methods can be used to cleanup code. This is the typical way to return a custom HTTP response in version 1:   public HttpResponseMessage Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { return new HttpResponseMessage(HttpStatusCode.OK); } else { throw new HttpResponseException(HttpStatusCode.NotFound); } } With version 2 we can replace HttpResponseMessage with IHttpActionResult and simplify the code quite a bit:   public IHttpActionResult Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { //return new HttpResponseMessage(HttpStatusCode.OK); return Ok(); } else { //throw new HttpResponseException(HttpStatusCode.NotFound); return NotFound(); } } You can also cleanup post (insert) operations as well using the helper methods. Here’s a version 1 post action:   public HttpResponseMessage Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { var msg = new HttpResponseMessage(HttpStatusCode.Created); msg.Headers.Location = new Uri(Request.RequestUri + newCust.ID.ToString()); return msg; } else { throw new HttpResponseException(HttpStatusCode.Conflict); } } This is what the code looks like in version 2:   public IHttpActionResult Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { return Created<Customer>(Request.RequestUri + newCust.ID.ToString(), newCust); } else { return Conflict(); } } More details on IHttpActionResult and the different helper methods provided by the ApiController base class can be found here. Conclusion Although there are several additional features available in Web API 2 that I could cover (CORS support for example), this post focused on two of my favorites features. If you have .NET 4.5.1 available then I definitely recommend checking the new features out. Additional articles that cover features in ASP.NET Web API 2 can be found here.

    Read the article

  • Dynamic Code for type casting Generic Types 'generically' in C#

    - by Rick Strahl
    C# is a strongly typed language and while that's a fundamental feature of the language there are more and more situations where dynamic types make a lot of sense. I've written quite a bit about how I use dynamic for creating new type extensions: Dynamic Types and DynamicObject References in C# Creating a dynamic, extensible C# Expando Object Creating a dynamic DataReader for dynamic Property Access Today I want to point out an example of a much simpler usage for dynamic that I use occasionally to get around potential static typing issues in C# code especially those concerning generic types. TypeCasting Generics Generic types have been around since .NET 2.0 I've run into a number of situations in the past - especially with generic types that don't implement specific interfaces that can be cast to - where I've been unable to properly cast an object when it's passed to a method or assigned to a property. Granted often this can be a sign of bad design, but in at least some situations the code that needs to be integrated is not under my control so I have to make due with what's available or the parent object is too complex or intermingled to be easily refactored to a new usage scenario. Here's an example that I ran into in my own RazorHosting library - so I have really no excuse, but I also don't see another clean way around it in this case. A Generic Example Imagine I've implemented a generic type like this: public class RazorEngine<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase, new() You can now happily instantiate new generic versions of this type with custom template bases or even a non-generic version which is implemented like this: public class RazorEngine : RazorEngine<RazorTemplateBase> { public RazorEngine() : base() { } } To instantiate one: var engine = new RazorEngine<MyCustomRazorTemplate>(); Now imagine that the template class receives a reference to the engine when it's instantiated. This code is fired as part of the Engine pipeline when it gets ready to execute the template. It instantiates the template and assigns itself to the template: var template = new TBaseTemplateType() { Engine = this } The problem here is that possibly many variations of RazorEngine<T> can be passed. I can have RazorTemplateBase, RazorFolderHostTemplateBase, CustomRazorTemplateBase etc. as generic parameters and the Engine property has to reflect that somehow. So, how would I cast that? My first inclination was to use an interface on the engine class and then cast to the interface.  Generally that works, but unfortunately here the engine class is generic and has a few members that require the template type in the member signatures. So while I certainly can implement an interface: public interface IRazorEngine<TBaseTemplateType> it doesn't really help for passing this generically templated object to the template class - I still can't cast it if multiple differently typed versions of the generic type could be passed. I have the exact same issue in that I can't specify a 'generic' generic parameter, since there's no underlying base type that's common. In light of this I decided on using object and the following syntax for the property (and the same would be true for a method parameter): public class RazorTemplateBase :MarshalByRefObject,IDisposable { public object Engine {get;set; } } Now because the Engine property is a non-typed object, when I need to do something with this value, I still have no way to cast it explicitly. What I really would need is: public RazorEngine<> Engine { get; set; } but that's not possible. Dynamic to the Rescue Luckily with the dynamic type this sort of thing can be mitigated fairly easily. For example here's a method that uses the Engine property and uses the well known class interface by simply casting the plain object reference to dynamic and then firing away on the properties and methods of the base template class that are common to all templates:/// <summary> /// Allows rendering a dynamic template from a string template /// passing in a model. This is like rendering a partial /// but providing the input as a /// </summary> public virtual string RenderTemplate(string template,object model) { if (template == null) return string.Empty; // if there's no template markup if(!template.Contains("@")) return template; // use dynamic to get around generic type casting dynamic engine = Engine; string result = engine.RenderTemplate(template, model); if (result == null) throw new ApplicationException("RenderTemplate failed: " + engine.ErrorMessage); return result; } Prior to .NET 4.0  I would have had to use Reflection for this sort of thing which would have a been a heck of a lot more verbose, but dynamic makes this so much easier and cleaner and in this case at least the overhead is negliable since it's a single dynamic operation on an otherwise very complex operation call. Dynamic as  a Bailout Sometimes this sort of thing often reeks of a design flaw, and I agree that in hindsight this could have been designed differently. But as is often the case this particular scenario wasn't planned for originally and removing the generic signatures from the base type would break a ton of other code in the framework. Given the existing fairly complex engine design, refactoring an interface to remove generic types just to make this particular code work would have been overkill. Instead dynamic provides a nice and simple and relatively clean solution. Now if there were many other places where this occurs I would probably consider reworking the code to make this cleaner but given this isolated instance and relatively low profile operation use of dynamic seems a valid choice for me. This solution really works anywhere where you might end up with an inheritance structure that doesn't have a common base or interface that is sufficient. In the example above I know what I'm getting but there's no common base type that I can cast to. All that said, it's a good idea to think about use of dynamic before you rush in. In many situations there are alternatives that can still work with static typing. Dynamic definitely has some overhead compared to direct static access of objects, so if possible we should definitely stick to static typing. In the example above the application already uses dynamics extensively for dynamic page page templating and passing models around so introducing dynamics here has very little additional overhead. The operation itself also fires of a fairly resource heavy operation where the overhead of a couple of dynamic member accesses are not a performance issue. So, what's your experience with dynamic as a bailout mechanism? © Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How do I set up MVP for a Winforms solution?

    - by JonWillis
    Question moved from Stackoverflow - http://stackoverflow.com/questions/4971048/how-do-i-set-up-mvp-for-a-winforms-solution I have used MVP and MVC in the past, and I prefer MVP as it controls the flow of execution so much better in my opinion. I have created my infrastructure (datastore/repository classes) and use them without issue when hard coding sample data, so now I am moving onto the GUI and preparing my MVP. Section A I have seen MVP using the view as the entry point, that is in the views constructor method it creates the presenter, which in turn creates the model, wiring up events as needed. I have also seen the presenter as the entry point, where a view, model and presenter are created, this presenter is then given a view and model object in its constructor to wire up the events. As in 2, but the model is not passed to the presenter. Instead the model is a static class where methods are called and responses returned directly. Section B In terms of keeping the view and model in sync I have seen. Whenever a value in the view in changed, i.e. TextChanged event in .Net/C#. This fires a DataChangedEvent which is passed through into the model, to keep it in sync at all times. And where the model changes, i.e. a background event it listens to, then the view is updated via the same idea of raising a DataChangedEvent. When a user wants to commit changes a SaveEvent it fires, passing through into the model to make the save. In this case the model mimics the view's data and processes actions. Similar to #b1, however the view does not sync with the model all the time. Instead when the user wants to commit changes, SaveEvent is fired and the presenter grabs the latest details and passes them into the model. in this case the model does not know about the views data until it is required to act upon it, in which case it is passed all the needed details. Section C Displaying of business objects in the view, i.e. a object (MyClass) not primitive data (int, double) The view has property fields for all its data that it will display as domain/business objects. Such as view.Animals exposes a IEnumerable<IAnimal> property, even though the view processes these into Nodes in a TreeView. Then for the selected animal it would expose SelectedAnimal as IAnimal property. The view has no knowledge of domain objects, it exposes property for primitive/framework (.Net/Java) included objects types only. In this instance the presenter will pass an adapter object the domain object, the adapter will then translate a given business object into the controls visible on the view. In this instance the adapter must have access to the actual controls on the view, not just any view so becomes more tightly coupled. Section D Multiple views used to create a single control. i.e. You have a complex view with a simple model like saving objects of different types. You could have a menu system at the side with each click on an item the appropriate controls are shown. You create one huge view, that contains all of the individual controls which are exposed via the views interface. You have several views. You have one view for the menu and a blank panel. This view creates the other views required but does not display them (visible = false), this view also implements the interface for each view it contains (i.e. child views) so it can expose to one presenter. The blank panel is filled with other views (Controls.Add(myview)) and ((myview.visible = true). The events raised in these "child"-views are handled by the parent view which in turn pass the event to the presenter, and visa versa for supplying events back down to child elements. Each view, be it the main parent or smaller child views are each wired into there own presenter and model. You can literately just drop a view control into an existing form and it will have the functionality ready, just needs wiring into a presenter behind the scenes. Section E Should everything have an interface, now based on how the MVP is done in the above examples will affect this answer as they might not be cross-compatible. Everything has an interface, the View, Presenter and Model. Each of these then obviously has a concrete implementation. Even if you only have one concrete view, model and presenter. The View and Model have an interface. This allows the views and models to differ. The presenter creates/is given view and model objects and it just serves to pass messages between them. Only the View has an interface. The Model has static methods and is not created, thus no need for an interface. If you want a different model, the presenter calls a different set of static class methods. Being static the Model has no link to the presenter. Personal thoughts From all the different variations I have presented (most I have probably used in some form) of which I am sure there are more. I prefer A3 as keeping business logic reusable outside just MVP, B2 for less data duplication and less events being fired. C1 for not adding in another class, sure it puts a small amount of non unit testable logic into a view (how a domain object is visualised) but this could be code reviewed, or simply viewed in the application. If the logic was complex I would agree to an adapter class but not in all cases. For section D, i feel D1 creates a view that is too big atleast for a menu example. I have used D2 and D3 before. Problem with D2 is you end up having to write lots of code to route events to and from the presenter to the correct child view, and its not drag/drop compatible, each new control needs more wiring in to support the single presenter. D3 is my prefered choice but adds in yet more classes as presenters and models to deal with the view, even if the view happens to be very simple or has no need to be reused. i think a mixture of D2 and D3 is best based on circumstances. As to section E, I think everything having an interface could be overkill I already do it for domain/business objects and often see no advantage in the "design" by doing so, but it does help in mocking objects in tests. Personally I would see E2 as a classic solution, although have seen E3 used in 2 projects I have worked on previously. Question Am I implementing MVP correctly? Is there a right way of going about it? I've read Martin Fowler's work that has variations, and I remember when I first started doing MVC, I understood the concept, but could not originally work out where is the entry point, everything has its own function but what controls and creates the original set of MVC objects.

    Read the article

  • Parallel LINQ - PLINQ

    - by nmarun
    Turns out now with .net 4.0 we can run a query like a multi-threaded application. Say you want to query a collection of objects and return only those that meet certain conditions. Until now, we basically had one ‘control’ that iterated over all the objects in the collection, checked the condition on each object and returned if it passed. We obviously agree that if we can ‘break’ this task into smaller ones, assign each task to a different ‘control’ and ask all the controls to do their job - in-parallel, the time taken the finish the entire task will be much lower. Welcome to PLINQ. Let’s take some examples. I have the following method that uses our good ol’ LINQ. 1: private static void Linq(int lowerLimit, int upperLimit) 2: { 3: // populate an array with int values from lowerLimit to the upperLimit 4: var source = Enumerable.Range(lowerLimit, upperLimit); 5:  6: // Start a timer 7: Stopwatch stopwatch = new Stopwatch(); 8: stopwatch.Start(); 9:  10: // set the expectation => build the expression tree 11: var evenNumbers =   from num in source 12: where IsDivisibleBy(num, 2) 13: select num; 14: 15: // iterate over and print the returned items 16: foreach (var number in evenNumbers) 17: { 18: Console.WriteLine(string.Format("** {0}", number)); 19: } 20:  21: stopwatch.Stop(); 22:  23: // check the metrics 24: Console.WriteLine(String.Format("Elapsed {0}ms", stopwatch.ElapsedMilliseconds)); 25: } I’ve added comments for the major steps, but the only thing I want to talk about here is the IsDivisibleBy() method. I know I could have just included the logic directly in the where clause. I called a method to add ‘delay’ to the execution of the query - to simulate a loooooooooong operation (will be easier to compare the results). 1: private static bool IsDivisibleBy(int number, int divisor) 2: { 3: // iterate over some database query 4: // to add time to the execution of this method; 5: // the TableB has around 10 records 6: for (int i = 0; i < 10; i++) 7: { 8: DataClasses1DataContext dataContext = new DataClasses1DataContext(); 9: var query = from b in dataContext.TableBs select b; 10: 11: foreach (var row in query) 12: { 13: // Do NOTHING (wish my job was like this) 14: } 15: } 16:  17: return number % divisor == 0; 18: } Now, let’s look at how to modify this to PLINQ. 1: private static void Plinq(int lowerLimit, int upperLimit) 2: { 3: // populate an array with int values from lowerLimit to the upperLimit 4: var source = Enumerable.Range(lowerLimit, upperLimit); 5:  6: // Start a timer 7: Stopwatch stopwatch = new Stopwatch(); 8: stopwatch.Start(); 9:  10: // set the expectation => build the expression tree 11: var evenNumbers = from num in source.AsParallel() 12: where IsDivisibleBy(num, 2) 13: select num; 14:  15: // iterate over and print the returned items 16: foreach (var number in evenNumbers) 17: { 18: Console.WriteLine(string.Format("** {0}", number)); 19: } 20:  21: stopwatch.Stop(); 22:  23: // check the metrics 24: Console.WriteLine(String.Format("Elapsed {0}ms", stopwatch.ElapsedMilliseconds)); 25: } That’s it, this is now in PLINQ format. Oh and if you haven’t found the difference, look line 11 a little more closely. You’ll see an extension method ‘AsParallel()’ added to the ‘source’ variable. Couldn’t be more simpler right? So this is going to improve the performance for us. Let’s test it. So in my Main method of the Console application that I’m working on, I make a call to both. 1: static void Main(string[] args) 2: { 3: // set lower and upper limits 4: int lowerLimit = 1; 5: int upperLimit = 20; 6: // call the methods 7: Console.WriteLine("Calling Linq() method"); 8: Linq(lowerLimit, upperLimit); 9: 10: Console.WriteLine(); 11: Console.WriteLine("Calling Plinq() method"); 12: Plinq(lowerLimit, upperLimit); 13:  14: Console.ReadLine(); // just so I get enough time to read the output 15: } YMMV, but here are the results that I got:    It’s quite obvious from the above results that the Plinq() method is taking considerably less time than the Linq() version. I’m sure you’ve already noticed that the output of the Plinq() method is not in order. That’s because, each of the ‘control’s we sent to fetch the results, reported with values as and when they obtained them. This is something about parallel LINQ that one needs to remember – the collection cannot be guaranteed to be undisturbed. This could be counted as a negative about PLINQ (emphasize ‘could’). Nevertheless, if we want the collection to be sorted, we can use a SortedSet (.net 4.0) or build our own custom ‘sorter’. Either way we go, there’s a good chance we’ll end up with a better performance using PLINQ. And there’s another negative of PLINQ (depending on how you see it). This is regarding the CPU cycles. See the usage for Linq() method (used ResourceMonitor): I have dual CPU’s and see the height of the peak in the bottom two blocks and now compare to what happens when I run the Plinq() method. The difference is obvious. Higher usage, but for a shorter duration (width of the peak). Both these points make sense in both cases. Linq() runs for a longer time, but uses less resources whereas Plinq() runs for a shorter time and consumes more resources. Even after knowing all these, I’m still inclined towards PLINQ. PLINQ rocks! (no hard feelings LINQ)

    Read the article

  • Webcam api error when accessed from ASP.NET Server-side code

    - by Eyla
    I'm tring to use webcam api with asp.net and C#. I included all the library and references I needed for that. the original code I'm use was for windows application and I'm trying to convert it to asp.net web application. I have start capturing button when I click it, it should start capturing but it gives me an error. the error at this line: hHwnd = capCreateCaptureWindowA(iDevice.ToString(), (WS_VISIBLE | WS_CHILD), 0, 0, 640, 480, picCapture.Handle.ToInt32(), 0); and the error message is: Error 1 'System.Web.UI.WebControls.Image' does not contain a definition for 'Handle' and no extension method 'Handle' accepting a first argument of type 'System.Web.UI.WebControls.Image' could be found (are you missing a using directive or an assembly reference?) C:\Users\Ali\Documents\Visual Studio 2008\Projects\Conference\Conference\Conference1.aspx.cs 63 117 Conference Please advice!! ................................................ here is the complete code ........................................... using System; using System.Collections; using System.Drawing; using System.ComponentModel; using System.Windows.Forms; using System.Configuration; using System.Data; using System.Linq; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.HtmlControls; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Xml.Linq; using System.Runtime.InteropServices; using System.Drawing.Imaging; using System.Net; using System.Net.Sockets; using System.Threading; using System.IO; namespace Conference { public partial class Conference1 : System.Web.UI.Page { #region WebCam API const short WM_CAP = 1024; const int WM_CAP_DRIVER_CONNECT = WM_CAP + 10; const int WM_CAP_DRIVER_DISCONNECT = WM_CAP + 11; const int WM_CAP_EDIT_COPY = WM_CAP + 30; const int WM_CAP_SET_PREVIEW = WM_CAP + 50; const int WM_CAP_SET_PREVIEWRATE = WM_CAP + 52; const int WM_CAP_SET_SCALE = WM_CAP + 53; const int WS_CHILD = 1073741824; const int WS_VISIBLE = 268435456; const short SWP_NOMOVE = 2; const short SWP_NOSIZE = 1; const short SWP_NOZORDER = 4; const short HWND_BOTTOM = 1; int iDevice = 0; int hHwnd; [System.Runtime.InteropServices.DllImport("user32", EntryPoint = "SendMessageA")] static extern int SendMessage(int hwnd, int wMsg, int wParam, [MarshalAs(UnmanagedType.AsAny)] object lParam); [System.Runtime.InteropServices.DllImport("user32", EntryPoint = "SetWindowPos")] static extern int SetWindowPos(int hwnd, int hWndInsertAfter, int x, int y, int cx, int cy, int wFlags); [System.Runtime.InteropServices.DllImport("user32")] static extern bool DestroyWindow(int hndw); [System.Runtime.InteropServices.DllImport("avicap32.dll")] static extern int capCreateCaptureWindowA(string lpszWindowName, int dwStyle, int x, int y, int nWidth, short nHeight, int hWndParent, int nID); [System.Runtime.InteropServices.DllImport("avicap32.dll")] static extern bool capGetDriverDescriptionA(short wDriver, string lpszName, int cbName, string lpszVer, int cbVer); private void OpenPreviewWindow() { int iHeight = 320; int iWidth = 200; // // Open Preview window in picturebox // hHwnd = capCreateCaptureWindowA(iDevice.ToString(), (WS_VISIBLE | WS_CHILD), 0, 0, 640, 480, picCapture.Handle.ToInt32(), 0); // // Connect to device // if (SendMessage(hHwnd, WM_CAP_DRIVER_CONNECT, iDevice, 0) == 1) { // // Set the preview scale // SendMessage(hHwnd, WM_CAP_SET_SCALE, 1, 0); // // Set the preview rate in milliseconds // SendMessage(hHwnd, WM_CAP_SET_PREVIEWRATE, 66, 0); // // Start previewing the image from the camera // SendMessage(hHwnd, WM_CAP_SET_PREVIEW, 1, 0); // // Resize window to fit in picturebox // SetWindowPos(hHwnd, HWND_BOTTOM, 0, 0, iWidth, iHeight, (SWP_NOMOVE | SWP_NOZORDER)); } else { // // Error connecting to device close window // DestroyWindow(hHwnd); } } private void ClosePreviewWindow() { // // Disconnect from device // SendMessage(hHwnd, WM_CAP_DRIVER_DISCONNECT, iDevice, 0); // // close window // DestroyWindow(hHwnd); } #endregion protected void Page_Load(object sender, EventArgs e) { } protected void btnStart_Click(object sender, EventArgs e) { int iDevice = int.Parse(device_number_textBox.Text); OpenPreviewWindow(); } } }

    Read the article

  • Hibernate unknown entity (not missing @Entity or import javax.persistence.Entity )

    - by david99world
    I've got a really simple class... import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.GenerationType; import javax.persistence.Id; import javax.persistence.Table; @Entity @Table(name = "users") public class User { @Column(name = "firstName") private String firstName; @Column(name = "lastName") private String lastName; @Column(name = "email") private String email; @Id @GeneratedValue(strategy=GenerationType.AUTO) @Column(name = "id") private long id; public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } public long getId() { return id; } public void setId(long id) { this.id = id; } } I call it using... public class Main { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub HibernateUtil.buildSessionFactory(); Session session = HibernateUtil.getSessionFactory().getCurrentSession(); session.beginTransaction(); User u = new User(); u.setEmail("[email protected]"); u.setFirstName("David"); u.setLastName("Gray"); session.save(u); session.getTransaction().commit(); System.out.println("Record committed"); session.close(); } } I keep getting... Exception in thread "main" org.hibernate.MappingException: Unknown entity: org.assessme.com.entity.User at org.hibernate.internal.SessionFactoryImpl.getEntityPersister(SessionFactoryImpl.java:1172) at org.hibernate.internal.SessionImpl.getEntityPersister(SessionImpl.java:1316) at org.hibernate.event.internal.AbstractSaveEventListener.saveWithGeneratedId(AbstractSaveEventListener.java:117) at org.hibernate.event.internal.DefaultSaveOrUpdateEventListener.saveWithGeneratedOrRequestedId(DefaultSaveOrUpdateEventListener.java:204) at org.hibernate.event.internal.DefaultSaveEventListener.saveWithGeneratedOrRequestedId(DefaultSaveEventListener.java:55) at org.hibernate.event.internal.DefaultSaveOrUpdateEventListener.entityIsTransient(DefaultSaveOrUpdateEventListener.java:189) at org.hibernate.event.internal.DefaultSaveEventListener.performSaveOrUpdate(DefaultSaveEventListener.java:49) at org.hibernate.event.internal.DefaultSaveOrUpdateEventListener.onSaveOrUpdate(DefaultSaveOrUpdateEventListener.java:90) at org.hibernate.internal.SessionImpl.fireSave(SessionImpl.java:670) at org.hibernate.internal.SessionImpl.save(SessionImpl.java:662) at org.hibernate.internal.SessionImpl.save(SessionImpl.java:658) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:601) at org.hibernate.context.internal.ThreadLocalSessionContext$TransactionProtectionWrapper.invoke(ThreadLocalSessionContext.java:352) at $Proxy4.save(Unknown Source) at Main.main(Main.java:20) hibernateUtil is... import org.hibernate.SessionFactory; import org.hibernate.cfg.Configuration; import org.hibernate.service.ServiceRegistry; import org.hibernate.service.ServiceRegistryBuilder; public class HibernateUtil { private static SessionFactory sessionFactory; private static ServiceRegistry serviceRegistry; public static SessionFactory buildSessionFactory() { try { // Create the SessionFactory from hibernate.cfg.xml Configuration configuration = new Configuration(); configuration.configure(); serviceRegistry = new ServiceRegistryBuilder().applySettings(configuration.getProperties()).buildServiceRegistry(); return new Configuration().configure().buildSessionFactory(serviceRegistry); } catch (Throwable ex) { // Make sure you log the exception, as it might be swallowed System.err.println("Initial SessionFactory creation failed." + ex); throw new ExceptionInInitializerError(ex); } } public static SessionFactory getSessionFactory() { sessionFactory = new Configuration().configure().buildSessionFactory(serviceRegistry); return sessionFactory; } } does anyone have any ideas as I've looked at so many duplicates but the resolutions don't appear to work for me. hibernate.cfg.xml shown below... <?xml version='1.0' encoding='utf-8'?> <!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"> <hibernate-configuration> <session-factory> <!-- Database connection settings --> <property name="connection.driver_class">com.mysql.jdbc.Driver</property> <property name="connection.url">jdbc:mysql://localhost/ssme</property> <property name="connection.username">root</property> <property name="connection.password">mypassword</property> <!-- JDBC connection pool (use the built-in) --> <property name="connection.pool_size">1</property> <!-- SQL dialect --> <property name="dialect">org.hibernate.dialect.MySQLDialect</property> <!-- Enable Hibernate's automatic session context management --> <property name="current_session_context_class">thread</property> <!-- Disable the second-level cache --> <property name="cache.provider_class">org.hibernate.cache.NoCacheProvider</property> <!-- Echo all executed SQL to stdout --> <property name="show_sql">true</property> <!-- Drop and re-create the database schema on startup --> <property name="hbm2ddl.auto">update</property> </session-factory> </hibernate-configuration>

    Read the article

  • Applications: How to create a custom dialog box for Windows Mobile 6 (native)

    - by TechTwaddle
    Ashraf, on the MSDN forum, asks, “Is there a way to make a default choice for the messagebox that happens after a period of time if the user doesn't choose (Clicked ) Yes or No buttons.” To elaborate, the requirement is to show a message box to the user with certain options to select, and if the user does not respond within a predefined time limit (say 8 seconds) then the message box must dismiss itself and select a default option. Now such a functionality is not available with the MessageBox() api, you will have to write your own custom dialog box. Surely, creating a dialog box is quite a simple task using the DialogBox() api, and we have been creating full screen dialog boxes all the while. So how will this custom message box be any different? It’s not much different from a regular dialog box except for a few changes in its properties. First, it has a title bar but no buttons on the title bar (no ‘x’ or ‘ok’ button on the title bar), it doesn’t occupy full screen and it contains the controls that you put into it, thus justifying the title ‘custom’. So in this post we create a custom dialog box with two buttons, ‘Black’ and ‘White’. The user is given 8 seconds to select one of those colours, if the user doesn’t make a selection in 8 seconds, the default option ‘Black’ is selected. Before going into the implementation here is a video of how the dialog box works; Custom dialog box To start off, add a new dialog resource into your application, size it appropriately and add whatever controls you need to the dialog. In my case, I added two static text labels and two buttons, as below; Now we need to write up the window procedure for this dialog, here is the complete function; BOOL CALLBACK CustomDialogProc(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM lParam) {     int wmID, wmEvent;     PAINTSTRUCT ps;     HDC hdc;     static int timeCount = 0;     switch(uMessage)     {         case WM_INITDIALOG:             {                 SHINITDLGINFO shidi;                 memset(&shidi, 0, sizeof(shidi));                 shidi.dwMask = SHIDIM_FLAGS;                 //shidi.dwFlags = SHIDIF_DONEBUTTON | SHIDIF_SIPDOWN | SHIDIF_SIZEDLGFULLSCREEN | SHIDIF_EMPTYMENU;                 shidi.dwFlags = SHIDIF_SIPDOWN | SHIDIF_EMPTYMENU;                 shidi.hDlg = hDlg;                 SHInitDialog(&shidi);                 SHDoneButton(hDlg, SHDB_HIDE);                 timeCount = 0;                 SetWindowText(GetDlgItem(hDlg, IDC_STATIC_TIME_REMAINING), L"Time remaining: 8 second(s)");                 SetTimer(hDlg, MY_TIMER, 1000, NULL);             }             return TRUE;         case WM_COMMAND:             {                 wmID = LOWORD(wParam);                 wmEvent = HIWORD(wParam);                 switch(wmID)                 {                     case IDC_BUTTON_BLACK:                         KillTimer(hDlg, MY_TIMER);                         EndDialog(hDlg, IDC_BUTTON_BLACK);                         break;                     case IDC_BUTTON_WHITE:                         KillTimer(hDlg, MY_TIMER);                         EndDialog(hDlg, IDC_BUTTON_WHITE);                         break;                 }             }             break;         case WM_TIMER:             {                 if (wParam == MY_TIMER)                 {                     WCHAR wszText[128];                     memset(&wszText, 0, sizeof(wszText));                     timeCount++;                     //8 seconds are over, dismiss the dialog, select def value                     if (timeCount >= 8)                     {                         KillTimer(hDlg, MY_TIMER);                         EndDialog(hDlg, IDC_BUTTON_BLACK_DEF);                     }                     wsprintf(wszText, L"Time remaining: %d second(s)", 8-timeCount);                     SetWindowText(GetDlgItem(hDlg, IDC_STATIC_TIME_REMAINING), wszText);                     UpdateWindow(GetDlgItem(hDlg, IDC_STATIC_TIME_REMAINING));                 }             }             break;         case WM_PAINT:             {                 hdc = BeginPaint(hDlg, &ps);                 EndPaint(hDlg, &ps);             }             break;     }     return FALSE; } The MSDN documentation mentions that you need to specify the flag WS_NONAVDONEBUTTON, but I got an error saying that the value could not be found, so we can ignore this for now. Next up, while calling SHInitDialog() for your custom dialog, make sure that you don’t specify SHDIF_DONEBUTTON in the dwFlags member of the SHINITDIALOG structure, this member makes the ‘ok’ button appear on the dialog title bar. Finally, we need to call SHDoneButton() with SHDB_HIDE flag to, well, hide the Done button. The ‘Done’ button is the same as the ‘ok’ button, so this step might seem redundant, and the dialog works fine without calling SHDoneButton() too, but it’s better to stick with the documentation (; So you can see that we have followed all these steps above, under WM_INITDIALOG. We also setup a few things like a variable to keep track of the time, and setting off a one second timer. Every time the timer fires, we receive a WM_TIMER message. We then update the static label displaying the amount of time left to the user. If 8 seconds go by without the user selecting any option, we kill the timer and end the dialog with IDC_BUTTON_BLACK_DEF. This is just a #define’d integer value, make sure it’s unique. You’ll see why this is important. If the user makes a selection, either Black or White, we kill the timer and end the dialog with corresponding selection the user made, that is, either IDC_BUTTON_BLACK or IDC_BUTTON_WHITE. Ok, so now our custom dialog is ready to be used. I invoke the custom dialog from a menu entry in the main windows as below, case IDM_MENU_CUSTOMDLG:     {         int ret = DialogBox(g_hInst, MAKEINTRESOURCE(IDD_CUSTOM_DIALOG), hWnd, CustomDialogProc);         switch(ret)         {             case IDC_BUTTON_BLACK_DEF:                 SetWindowText(g_hStaticSelection, L"You Selected: Black (default)");                 break;             case IDC_BUTTON_BLACK:                 SetWindowText(g_hStaticSelection, L"You Selected: Black");                 break;             case IDC_BUTTON_WHITE:                 SetWindowText(g_hStaticSelection, L"You Selected: White");                 break;         }         UpdateWindow(g_hStaticSelection);     }     break; So you see why ending the dialog with the corresponding value was important, that’s what the DialogBox() api returns with. And in the main window I update a static text label to show which option was selected. I cranked this out in about an hour, and unfortunately don’t have time for a managed C# version. That will have to be another post, if I manage to get it working that is (;

    Read the article

  • WPF Lookless Control Events

    - by Scott
    I have the following class: public class LooklessControl : Control { public List<int> IntList { get; private set; } public int CurrentInt { get; private set; } private int _index = 0; static LooklessControl() { DefaultStyleKeyProperty.OverrideMetadata(typeof(LooklessControl), new FrameworkPropertyMetadata(typeof(LooklessControl))); } public LooklessControl() { IntList = new List<int>(); for (int i = 0; i < 10; i++) { IntList.Add(i); } CurrentInt = IntList[_index]; } public static readonly RoutedCommand NextItemCommand = new RoutedCommand("NextItemCommand", typeof(LooklessControl)); private void ExecutedNextItemCommand(object sender, ExecutedRoutedEventArgs e) { NextItemHandler(); } private void CanExecuteNextItemCommand(object sender, CanExecuteRoutedEventArgs e) { e.CanExecute = true; } public static readonly RoutedCommand PrevItemCommand = new RoutedCommand("PrevItemCommand", typeof(LooklessControl)); private void ExecutedPrevItemCommand(ExecutedRoutedEventArgs e) { PrevItemHandler(); } private void CanExecutePrevItemCommand(object sender, CanExecuteRoutedEventArgs e) { e.CanExecute = true; } public static readonly RoutedEvent NextItemEvent = EventManager.RegisterRoutedEvent("NextItemEvent", RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(LooklessControl)); public event RoutedEventHandler NextItem { add { AddHandler(NextItemEvent, value); } remove { RemoveHandler(NextItemEvent, value); } } private void RaiseNextItemEvent() { RoutedEventArgs args = new RoutedEventArgs(LooklessControl.NextItemEvent); RaiseEvent(args); } public static readonly RoutedEvent PrevItemEvent = EventManager.RegisterRoutedEvent("PrevItemEvent", RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(LooklessControl)); public event RoutedEventHandler PrevItem { add { AddHandler(PrevItemEvent, value); } remove { RemoveHandler(PrevItemEvent, value); } } private void RaisePrevItemEvent() { RoutedEventArgs args = new RoutedEventArgs(LooklessControl.PrevItemEvent); RaiseEvent(args); } private void NextItemHandler() { _index++; if (_index == IntList.Count) { _index = 0; } CurrentInt = IntList[_index]; RaiseNextItemEvent(); } private void PrevItemHandler() { _index--; if (_index == 0) { _index = IntList.Count - 1; } CurrentInt = IntList[_index]; RaisePrevItemEvent(); } } The class has a default style, in Generic.xaml, that looks like this: <Style x:Key="{x:Type local:LooklessControl}" TargetType="{x:Type local:LooklessControl}"> <Setter Property="Height" Value="200"/> <Setter Property="Width" Value="90"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type local:LooklessControl}"> <Border BorderBrush="Black" BorderThickness="1" Padding="2"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="20"/> <RowDefinition Height="*"/> </Grid.RowDefinitions> <Rectangle Grid.Row="0" Fill="LightGray"/> <Rectangle Grid.Row="1" Fill="Gainsboro"/> <Grid Grid.Row="0"> <Grid.ColumnDefinitions> <ColumnDefinition Width="10"/> <ColumnDefinition Width="*"/> <ColumnDefinition Width="10"/> </Grid.ColumnDefinitions> <Path Grid.Column="0" x:Name="pathLeftArrow" Data="M0,0.5 L1,1 1,0Z" Width="6" Height="14" Stretch="Fill" HorizontalAlignment="Center" Fill="SlateBlue"/> <TextBlock Grid.Column="1" Name="textBlock" Text="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=CurrentInt}" HorizontalAlignment="Center" VerticalAlignment="Center" FontFamily="Junction" FontSize="13"/> <Path Grid.Column="2" x:Name="pathRightArrow" Data="M0,0 L1,0.5 0,1Z" Width="6" Height="14" Stretch="Fill" HorizontalAlignment="Center" Fill="SlateBlue"/> </Grid> <ListBox Grid.Row="1" HorizontalContentAlignment="Center" VerticalContentAlignment="Center" Background="Transparent" ItemsSource="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=IntList}"/> </Grid> </Border> </ControlTemplate> </Setter.Value> </Setter> </Style> How do I make it so that when the user clicks on pathLeftArrow it fires LooklessControl.PrevItemCommand, or or they click on pathRightArrow and it fires LooklessControl.NextItemCommand, or they click on an item in the ListBox and LooklessControl is notified of the newly selected item? In other words, without adding x:Class to the top of Generic.xaml and thus creating a code-behind file for it, which I assume you wouldn't want to do, how do you handle events for elements in your xaml that don't have a Command property (which is just about everything other than a Button)? Should LooklessControl have it's own XAML file (much like what you get when you create a new UserControl) associated with it that Generic.xaml just pulls in as a MergedDictionar as its default template? Or is there some other acknowledged way to do what I'm trying to do?

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Get Application Title from Windows Phone

    - by psheriff
    In a Windows Phone application that I am currently developing I needed to be able to retrieve the Application Title of the phone application. You can set the Deployment Title in the Properties of your Windows Phone Application, however getting to this value programmatically can be a little tricky. This article assumes that you have Visual Studio 2010 and the Windows Phone tools installed along with it. The Windows Phone tools must be downloaded separately and installed with Visual Studio2010. You may also download the free Visual Studio2010 Express for Windows Phone developer environment. The WMAppManifest.xml File First off you need to understand that when you set the Deployment Title in the Properties windows of your Windows Phone application, this title actually gets stored into an XML file located under the \Properties folder of your application. This XML file is named WMAppManifest.xml. A portion of this file is shown in the following listing. <?xml version="1.0" encoding="utf-8"?><Deployment  http://schemas.microsoft.com/windowsphone/2009/deployment"http://schemas.microsoft.com/windowsphone/2009/deployment"  AppPlatformVersion="7.0">  <App xmlns=""       ProductID="{71d20842-9acc-4f2f-b0e0-8ef79842ea53}"       Title="Mobile Time Track"       RuntimeType="Silverlight"       Version="1.0.0.0"       Genre="apps.normal"       Author="PDSA, Inc."       Description="Mobile Time Track"       Publisher="PDSA, Inc."> ... ...  </App></Deployment> Notice the “Title” attribute in the <App> element in the above XML document. This is the value that gets set when you modify the Deployment Title in your Properties Window of your Phone project. The only value you can set from the Properties Window is the Title. All of the other attributes you see here must be set by going into the XML file and modifying them directly. Note that this information duplicates some of the information that you can also set from the Assembly Information… button in the Properties Window. Why Microsoft did not just use that information, I don’t know. Reading Attributes from WMAppManifest I searched all over the namespaces and classes within the Windows Phone DLLs and could not find a way to read the attributes within the <App> element. Thus, I had to resort to good old fashioned XML processing. First off I created a WinPhoneCommon class and added two static methods as shown in the snippet below: public class WinPhoneCommon{  /// <summary>  /// Returns the Application Title   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application title</returns>  public static string GetApplicationTitle()  {    return GetWinPhoneAttribute("Title");  }   /// <summary>  /// Returns the Application Description   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application description</returns>  public static string GetApplicationDescription()  {    return GetWinPhoneAttribute("Description");  }   ... GetWinPhoneAttribute method here ...} In your Windows Phone application you can now simply call WinPhoneCommon.GetApplicationTitle() or WinPhone.GetApplicationDescription() to retrieve the Title or Description properties from the WMAppManifest.xml file respectively. You notice that each of these methods makes a call to the GetWinPhoneAttribute method. This method is shown in the following code snippet: /// <summary>/// Gets an attribute from the Windows Phone WMAppManifest.xml file/// To use this method, add a reference to the System.Xml.Linq DLL/// </summary>/// <param name="attributeName">The attribute to read</param>/// <returns>The Attribute's Value</returns>private static string GetWinPhoneAttribute(string attributeName){  string ret = string.Empty;   try  {    XElement xe = XElement.Load("WMAppManifest.xml");    var attr = (from manifest in xe.Descendants("App")                select manifest).SingleOrDefault();    if (attr != null)      ret = attr.Attribute(attributeName).Value;  }  catch  {    // Ignore errors in case this method is called    // from design time in VS.NET  }   return ret;} I love using the new LINQ to XML classes contained in the System.Xml.Linq.dll. When I did a Bing search the only samples I found for reading attribute information from WMAppManifest.xml used either an XmlReader or XmlReaderSettings objects. These are fine and work, but involve a little extra code. Instead of using these, I added a reference to the System.Xml.Linq.dll, then added two using statements to the top of the WinPhoneCommon class: using System.Linq;using System.Xml.Linq; Now, with just a few lines of LINQ to XML code you can read to the App element and extract the appropriate attribute that you pass into the GetWinPhoneAttribute method. Notice that I added a little bit of exception handling code in this method. I ignore the exception in case you call this method in the Loaded event of a user control. In design-time you cannot access the WMAppManifest file and thus an exception would be thrown. Summary In this article you learned how to retrieve the attributes from the WMAppManifest.xml file. I use this technique to grab information that I would otherwise have to hard-code in my application. Getting the Title or Description for your Windows Phone application is easy with just a little bit of LINQ to XML code. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "Get Application Title from Windows Phone" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.  

    Read the article

  • XmlSerializer throws exception when serializing dynamically loaded type

    - by Dr. Sbaitso
    Hi I'm trying to use the System.Xml.Serialization.XmlSerializer to serialize a dynamically loaded (and compiled class). If I build the class in question into the main assembly, everything works as expected. But if I compile and load the class from an dynamically loaded assembly, the XmlSerializer throws an exception. What am I doing wrong? I've created the following .NET 3.5 C# application to reproduce the issue: using System; using System.Collections.Generic; using System.Xml.Serialization; using System.Text; using System.Reflection; using System.CodeDom.Compiler; using Microsoft.CSharp; public class StaticallyBuiltClass { public class Item { public string Name { get; set; } public int Value { get; set; } } private List<Item> values = new List<Item>(); public List<Item> Values { get { return values; } set { values = value; } } } static class Program { static void Main() { RunStaticTest(); RunDynamicTest(); } static void RunStaticTest() { Console.WriteLine("-------------------------------------"); Console.WriteLine(" Serializing StaticallyBuiltClass..."); Console.WriteLine("-------------------------------------"); var stat = new StaticallyBuiltClass(); Serialize(stat.GetType(), stat); Console.WriteLine(); } static void RunDynamicTest() { Console.WriteLine("-------------------------------------"); Console.WriteLine(" Serializing DynamicallyBuiltClass..."); Console.WriteLine("-------------------------------------"); CSharpCodeProvider csProvider = new CSharpCodeProvider(new Dictionary<string, string> { { "CompilerVersion", "v3.5" } }); CompilerParameters csParams = new System.CodeDom.Compiler.CompilerParameters(); csParams.GenerateInMemory = true; csParams.GenerateExecutable = false; csParams.ReferencedAssemblies.Add("System.dll"); csParams.CompilerOptions = "/target:library"; StringBuilder classDef = new StringBuilder(); classDef.AppendLine("using System;"); classDef.AppendLine("using System.Collections.Generic;"); classDef.AppendLine(""); classDef.AppendLine("public class DynamicallyBuiltClass"); classDef.AppendLine("{"); classDef.AppendLine(" public class Item"); classDef.AppendLine(" {"); classDef.AppendLine(" public string Name { get; set; }"); classDef.AppendLine(" public int Value { get; set; }"); classDef.AppendLine(" }"); classDef.AppendLine(" private List<Item> values = new List<Item>();"); classDef.AppendLine(" public List<Item> Values { get { return values; } set { values = value; } }"); classDef.AppendLine("}"); CompilerResults res = csProvider.CompileAssemblyFromSource(csParams, new string[] { classDef.ToString() }); foreach (var line in res.Output) { Console.WriteLine(line); } Assembly asm = res.CompiledAssembly; if (asm != null) { Type t = asm.GetType("DynamicallyBuiltClass"); object o = t.InvokeMember("", BindingFlags.CreateInstance, null, null, null); Serialize(t, o); } Console.WriteLine(); } static void Serialize(Type type, object o) { var serializer = new XmlSerializer(type); try { serializer.Serialize(Console.Out, o); } catch(Exception ex) { Console.WriteLine("Exception caught while serializing " + type.ToString()); Exception e = ex; while (e != null) { Console.WriteLine(e.Message); e = e.InnerException; Console.Write("Inner: "); } Console.WriteLine("null"); Console.WriteLine(); Console.WriteLine("Stack trace:"); Console.WriteLine(ex.StackTrace); } } } which generates the following output: ------------------------------------- Serializing StaticallyBuiltClass... ------------------------------------- <?xml version="1.0" encoding="IBM437"?> <StaticallyBuiltClass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Values /> </StaticallyBuiltClass> ------------------------------------- Serializing DynamicallyBuiltClass... ------------------------------------- Exception caught while serializing DynamicallyBuiltClass There was an error generating the XML document. Inner: The type initializer for 'Microsoft.Xml.Serialization.GeneratedAssembly.XmlSerializationWriterDynamicallyBuiltClass' threw an exception. Inner: Object reference not set to an instance of an object. Inner: null Stack trace: at System.Xml.Serialization.XmlSerializer.Serialize(XmlWriter xmlWriter, Object o, XmlSerializerNamespaces namespaces, String encodingStyle, String id) at System.Xml.Serialization.XmlSerializer.Serialize(TextWriter textWriter, Object o, XmlSerializerNamespaces namespaces) at System.Xml.Serialization.XmlSerializer.Serialize(TextWriter textWriter, Object o) at Program.Serialize(Type type, Object o) in c:\dev\SerTest\SerTest\Program.cs:line 100 Edit: Removed some extraneous referenced assemblies

    Read the article

  • Using only alphanumeric characters(a-z) inside toCharArray

    - by Aaron
    Below you will find me using toCharArray in order to send a string to array. I then MOVE the value of the letter using a for statement... for(i = 0; i < letter.length; i++){ letter[i] += (shiftCode); System.out.print(letter[i]); } However, when I use shiftCode to move the value such as... a shifted by -1; I get a symbol @. Is there a way to send the string to shiftCode or tell shiftCode to ONLY use letters? I need it to see my text, like "aaron", and when I use the for statement iterate through a-z only and ignore all symbols and numbers. I THINK it is as simple as... letter=codeWord.toCharArray(a,z); But trying different forms of that and googling it didn't give me any results. Perhaps it has to do with regex or something? Below you will find a complete copy of my program; it works exactly how I want it to do; but it iterates through letters and symbols. I also tried finding instructions online for toCharArray but if there exists any arguments I can't locate them. My program... import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /* * Aaron L. Jones * CS219 * AaronJonesProg3 * * This program is designed to - * Work as a Ceasar Cipher */ /** * * Aaron Jones */ public class AaronJonesProg3 { static String codeWord; static int shiftCode; static int i; static char[] letter; /** * @param args the command line arguments */ public static void main(String[] args) throws IOException { // Instantiating that Buffer Class // We are going to use this to read data from the user; in buffer // For performance related reasons BufferedReader reader; // Building the reader variable here // Just a basic input buffer (Holds things for us) reader = new BufferedReader(new InputStreamReader(System.in)); // Java speaks to us here / We get it to query our user System.out.print("Please enter text to encrypt: "); // Try to get their input here try { // Get their codeword using the reader codeWord = reader.readLine(); // Make that input upper case codeWord = codeWord.toUpperCase(); // Cut the white space out codeWord = codeWord.replaceAll("\\s",""); // Make it all a character array letter = codeWord.toCharArray(); } // If they messed up the input we let them know here and end the prog. catch(Throwable t) { System.out.println(t.toString()); System.out.println("You broke it. But you impressed me because" + "I don't know how you did it!"); } // Java Speaks / Lets get their desired shift value System.out.print("Please enter the shift value: "); // Try for their input try { // We get their number here shiftCode = Integer.parseInt(reader.readLine()); } // Again; if the user broke it. We let them know. catch(java.lang.NumberFormatException ioe) { System.out.println(ioe.toString()); System.out.println("How did you break this? Use a number next time!"); } for(i = 0; i < letter.length; i++){ letter[i] += (shiftCode); System.out.print(letter[i]); } System.out.println(); /**************************************************************** **************************************************************** ***************************************************************/ // Java speaks to us here / We get it to query our user System.out.print("Please enter text to decrypt: "); // Try to get their input here try { // Get their codeword using the reader codeWord = reader.readLine(); // Make that input upper case codeWord = codeWord.toUpperCase(); // Cut the white space out codeWord = codeWord.replaceAll("\\s",""); // Make it all a character array letter = codeWord.toCharArray(); } // If they messed up the input we let them know here and end the prog. catch(Throwable t) { System.out.println(t.toString()); System.out.println("You broke it. But you impressed me because" + "I don't know how you did it!"); } // Java Speaks / Lets get their desired shift value System.out.print("Please enter the shift value: "); // Try for their input try { // We get their number here shiftCode = Integer.parseInt(reader.readLine()); } // Again; if the user broke it. We let them know. catch(java.lang.NumberFormatException ioe) { System.out.println(ioe.toString()); System.out.println("How did you break this? Use a number next time!"); } for(i = 0; i < letter.length; i++){ letter[i] += (shiftCode); System.out.print(letter[i]); } System.out.println(); } }

    Read the article

  • No persister for: <ClassName> issue with Fluent NHibernate

    - by Amit
    I have following code: //AutoMapConfig.cs using System; using FluentNHibernate.Automapping; namespace SimpleFNH.AutoMap { public class AutoMapConfig : DefaultAutomappingConfiguration { public override bool ShouldMap(Type type) { return type.Namespace == "Examples.FirstAutomappedProject.Entities"; } } } //CascadeConvention.cs using FluentNHibernate.Conventions; using FluentNHibernate.Conventions.Instances; namespace SimpleFNH.AutoMap { public class CascadeConvention : IReferenceConvention, IHasManyConvention, IHasManyToManyConvention { public void Apply(IManyToOneInstance instance) { instance.Cascade.All(); } public void Apply(IOneToManyCollectionInstance instance) { instance.Cascade.All(); } public void Apply(IManyToManyCollectionInstance instance) { instance.Cascade.All(); } } } //Item.cs namespace SimpleFNH.Entities { public class Item { public virtual long ID { get; set; } public virtual string ItemName { get; set; } public virtual string Description { get; set; } public virtual OrderItem OrderItem { get; set; } } } //OrderItem.cs namespace SimpleFNH.Entities { public class OrderItem { public virtual long ID { get; set; } public virtual int Quantity { get; set; } public virtual Item Item { get; set; } public virtual ProductOrder ProductOrder { get; set; } public virtual void AddItem(Item item) { item.OrderItem = this; } } } using System; using System.Collections.Generic; //ProductOrder.cs namespace SimpleFNH.Entities { public class ProductOrder { public virtual long ID { get; set; } public virtual DateTime OrderDate { get; set; } public virtual string CustomerName { get; set; } public virtual IList<OrderItem> OrderItems { get; set; } public ProductOrder() { OrderItems = new List<OrderItem>(); } public virtual void AddOrderItems(params OrderItem[] items) { foreach (var item in items) { OrderItems.Add(item); item.ProductOrder = this; } } } } //NHibernateRepo.cs using FluentNHibernate.Cfg; using FluentNHibernate.Cfg.Db; using NHibernate; using NHibernate.Criterion; using NHibernate.Tool.hbm2ddl; namespace SimpleFNH.Repository { public class NHibernateRepo { private static ISessionFactory _sessionFactory; private static ISessionFactory SessionFactory { get { if (_sessionFactory == null) InitializeSessionFactory(); return _sessionFactory; } } private static void InitializeSessionFactory() { _sessionFactory = Fluently.Configure().Database( MsSqlConfiguration.MsSql2008.ConnectionString( @"server=Amit-PC\SQLEXPRESS;database=SimpleFNH;Trusted_Connection=True;").ShowSql()). Mappings(m => m.FluentMappings.AddFromAssemblyOf<Order>()).ExposeConfiguration( cfg => new SchemaExport(cfg).Create(true, true)).BuildSessionFactory(); } public static ISession OpenSession() { return SessionFactory.OpenSession(); } } } //Program.cs using System; using System.Collections.Generic; using System.Linq; using SimpleFNH.Entities; using SimpleFNH.Repository; namespace SimpleFNH { class Program { static void Main(string[] args) { using (var session = NHibernateRepo.OpenSession()) { using (var transaction = session.BeginTransaction()) { var item1 = new Item { ItemName = "item 1", Description = "test 1" }; var item2 = new Item { ItemName = "item 2", Description = "test 2" }; var item3 = new Item { ItemName = "item 3", Description = "test 3" }; var orderItem1 = new OrderItem { Item = item1, Quantity = 2 }; var orderItem2 = new OrderItem { Item = item2, Quantity = 4 }; var orderItem3 = new OrderItem { Item = item3, Quantity = 5 }; var productOrder = new ProductOrder { CustomerName = "Amit", OrderDate = DateTime.Now, OrderItems = new List<OrderItem> { orderItem1, orderItem2, orderItem3 } }; productOrder.AddOrderItems(orderItem1, orderItem2, orderItem3); session.Save(productOrder); transaction.Commit(); } } using (var session = NHibernateRepo.OpenSession()) { // retreive all stores and display them using (session.BeginTransaction()) { var orders = session.CreateCriteria(typeof(ProductOrder)) .List<ProductOrder>(); foreach (var item in orders) { Console.WriteLine(item.OrderItems.First().Quantity); } } } } } } I tried many variations to get it working but i get an error saying No persister for: SimpleFNH.Entities.ProductOrder Can someone help me get it working? I wanted to create a simple program which will set a pattern for my bigger project but it is taking quite a lot of time than expected. It would be rally helpful if you can explain in simple terms on any template/pattern that i can use to get fluent nHibernate working. The above code uses auto mapping, which i tried after i tried with fluent mapping.

    Read the article

  • &lt;%: %&gt;, HtmlEncode, IHtmlString and MvcHtmlString

    - by Shaun
    One of my colleague and friend, Robin is playing and struggling with the ASP.NET MVC 2 on a project these days while I’m struggling with a annoying client. Since it’s his first time to use ASP.NET MVC he was meetings with a lot of problem and I was very happy to share my experience to him. Yesterday he asked me when he attempted to insert a <br /> element into his page he found that the page was rendered like this which is bad. He found his <br /> was shown as a part of the string rather than creating a new line. After checked a bit in his code I found that it’s because he utilized a new ASP.NET markup supported in .NET 4.0 – “<%: %>”. If you have been using ASP.NET MVC 1 or in .NET 3.5 world it would be very common that using <%= %> to show something on the page from the backend code. But when you do it you must ensure that the string that are going to be displayed should be Html-safe, which means all the Html markups must be encoded. Otherwise this might cause an XSS (cross-site scripting) problem. So that you’d better use the code like this below to display anything on the page. In .NET 4.0 Microsoft introduced a new markup to solve this problem which is <%: %>. It will encode the content automatically so that you will no need to check and verify your code manually for the XSS issue mentioned below. But this also means that it will encode all things, include the Html element you want to be rendered. So I changed his code like this and it worked well. After helped him solved this problem and finished a spreadsheet for my boring project I considered a bit more on the <%: %>. Since it will encode all thing why it renders correctly when we use “<%: Html.TextBox(“name”) %>” to show a text box? As you know the Html.TextBox will render a “<input name="name" id="name" type="text"/>” element on the page. If <%: %> will encode everything it should not display a text box. So I dig into the source code of the MVC and found some comments in the class MvcHtmlString. 1: // In ASP.NET 4, a new syntax <%: %> is being introduced in WebForms pages, where <%: expression %> is equivalent to 2: // <%= HttpUtility.HtmlEncode(expression) %>. The intent of this is to reduce common causes of XSS vulnerabilities 3: // in WebForms pages (WebForms views in the case of MVC). This involves the addition of an interface 4: // System.Web.IHtmlString and a static method overload System.Web.HttpUtility::HtmlEncode(object). The interface 5: // definition is roughly: 6: // public interface IHtmlString { 7: // string ToHtmlString(); 8: // } 9: // And the HtmlEncode(object) logic is roughly: 10: // - If the input argument is an IHtmlString, return argument.ToHtmlString(), 11: // - Otherwise, return HtmlEncode(Convert.ToString(argument)). 12: // 13: // Unfortunately this has the effect that calling <%: Html.SomeHelper() %> in an MVC application running on .NET 4 14: // will end up encoding output that is already HTML-safe. As a result, we're changing out HTML helpers to return 15: // MvcHtmlString where appropriate. <%= Html.SomeHelper() %> will continue to work in both .NET 3.5 and .NET 4, but 16: // changing the return types to MvcHtmlString has the added benefit that <%: Html.SomeHelper() %> will also work 17: // properly in .NET 4 rather than resulting in a double-encoded output. MVC developers in .NET 4 will then be able 18: // to use the <%: %> syntax almost everywhere instead of having to remember where to use <%= %> and where to use 19: // <%: %>. This should help developers craft more secure web applications by default. 20: // 21: // To create an MvcHtmlString, use the static Create() method instead of calling the protected constructor. The comment said the encoding rule of the <%: %> would be: If the type of the content is IHtmlString it will NOT encode since the IHtmlString indicates that it’s Html-safe. Otherwise it will use HtmlEncode to encode the content. If we check the return type of the Html.TextBox method we will find that it’s MvcHtmlString, which was implemented the IHtmlString interface dynamically. That is the reason why the “<input name="name" id="name" type="text"/>” was not encoded by <%: %>. So if we want to tell ASP.NET MVC, or I should say the ASP.NET runtime that the content is Html-safe and no need, or should not be encoded we can convert the content into IHtmlString. So another resolution would be like this. Also we can create an extension method as well for better developing experience. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6:  7: namespace ShaunXu.Blogs.IHtmlStringIssue 8: { 9: public static class Helpers 10: { 11: public static MvcHtmlString IsHtmlSafe(this string content) 12: { 13: return MvcHtmlString.Create(content); 14: } 15: } 16: } Then the view would be like this. And the page rendered correctly.         Summary In this post I explained a bit about the new markup in .NET 4.0 – <%: %> and its usage. I also explained a bit about how to control the page content, whether it should be encoded or not. We can see the ASP.NET MVC gives us more points to control the web pages.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

< Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >