Search Results

Search found 2372 results on 95 pages for 'identify'.

Page 18/95 | < Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >

  • Identifying the view selected in a ContextMenu (Android)

    - by Casebash
    In Android, onContextItemSelected has a single MenuItem argument and so it isn't clear how to identify the view selected. MenuItem.getMenuInfo provides access to Contextmenu.ContextMenuInfo, but while both known subclasses provide access to the target view, there does not appear to be an accessor on the interface. One alternative is to save the View provided in onCreateContextMenu in a private class variable which relies on onCreateContextMenu not being called again in the activity before onContextItemSelected. Another is to use the id of the View for the itemId argument of ContextMenu.add. If we do this, we would then need to identify the option selected from the context menu by using its (possibly internationalised) title. What is the best method for identifying the View selected in onContextSelected?

    Read the article

  • Selecting Element followed by text with Selenium WebDriver

    - by Andrew
    I am using Selenium WebDriver and the Python bindings to automate some monotonous WordPress tasks, and it has been pretty straightforward up until this point. I am trying to select a checkbox, but the only way that I can identify it is by the text following it. Here is the relevant portion of HTML: <li id="product_cat-52"> <label class="selectit"> <input value="52" type="checkbox" name="tax_input[product_cat][]" id="in-product_cat-52"> polishpottery </label> </li> The only information that I have in my script to identify this checkbox is the string "polishpottery". Is there any way to select that checkbox knowing only the text that follows?

    Read the article

  • How to manage different form contexts of same form element in single DOM tree

    - by nimp
    Hi, As my question title could be bit unclear to you (I tried best), following is what I'm exactly trying to do. I'm having a form element (say a user_info form), where such form elements will be generated for different users by java script and displayed in different js tabs (example: dojo tabs). once form elements are generated, later I need to react on user actions performed on different html elements defined inside user_info form. In this case I need to identify what is the context (in which user_info form element) in which user is working on. The simplest example would be how to retrieve form id of the form in which user actions are being performed. According to my understanding, I can not simply retrieve from by form id, because now DOM tree contains duplicate form instances of the same from element. So, IS there anyway, I could identify form context based on the user actions on its input elements. Thank You.

    Read the article

  • process incoming mail and parse out original text

    - by florin
    I have inherited a rails forum (Rails 2.3.2 I think) that alerts people of new posts/replies for the forums or threads they are watching. To make it easier for people to answer to threads I would like to enable reply-to-post, similar to basecamp and a bunch of other forums and tools out there. I would add a separator text (like "----add your reply above this line-----") in the original email. I need to: - process incoming email - extract the new text (above the separator line) - ideally strip out text like "on ... [email protected] wrote:" that is automatically added by some mail clients - identify the thread this email is referring to (either using the incoming address or the subject line) - identify the sender - post the content as new reply Any suggestions on how to get started? Any good plugins for this? I've seen many mentioning Mailman and Fetcher, are there any other and which one is the best for this little feature? Thanks!

    Read the article

  • How to check whether your code environment on Windows or on Linux or other OS

    - by justjoe
    hi, right now, i code custom wordpress theme and testing it in xampp windows XP on apache server. But as long as i concern, there's no wp build-in function to identify the code environment. Is there's any PHP build-in function to identify such thing ? for the record, what i want to code need to read a directory. in my apache (in windows), the path will be c:/xampp/htdocs where apache on linux will be \somepath\somepath\ so, is there any code solution to know what is the OS environment without i have to compare the path ? i hope it will also work on other OS with other webserver then APACHE such as IIS

    Read the article

  • lexers / parsers for (un) structured text documents

    - by wilson32
    There are lots of parsers and lexers for scripts (i.e. structured computer languages). But I'm looking for one which can break a (almost) non-structured text document into larger sections e.g. chapters, paragraphs, etc. It's relatively easy for a person to identify them: where the Table of Contents, acknowledgements, or where the main body starts and it is possible to build rule based systems to identify some of these (such as paragraphs). I don't expect it to be perfect, but does any one know of such a broad 'block based' lexer / parser? Or could you point me in the direction of literature which may help?

    Read the article

  • Count the number of objects in an Image

    - by kunjaan
    I am investigating the possibility of image processing to identify certain objects and also count them in an image. I will be given a picture and I need to identify the number of boxes present in that image. Does anybody have any experience with any Machine Vision/ Image Processing libraries like ImageJ, Fiji, JAI, jMagick ,Java Vision Toolkit? Which do you think is best suited for the job? What do you guys suggest? If the APIs can be used from Java, it would be better. Thank you. Edit: I am dealing with warehouse brown boxes. Yes I am talking about regular photos. The source is usually a mobile phone picture.

    Read the article

  • How can I use computer vision to find a shape in an image?

    - by Ryan
    I have a simple photograph that may or may not include a logo image. I'm trying to identify whether a picture includes the logo shape or not. The logo (rectangular shape with a few extra features) could be of various sizes and could have multiple occurrences. I'd like to use Computer Vision techniques to identify the location of these logo occurrences. Can someone point me in the right direction (algorithm, technique?) that can be used to achieve this goal? I'm quite a novice to Computer Vision so any direction would be very appreciative. Thanks!

    Read the article

  • How to add attributes to a HTML element in a valid way?

    - by Click Upvote
    I want to be able to add an attribute to a HTML element to be able to identify what its referring to. E.g if I have a list of names and a checkbox next to each name, like this: <div id="users"> Bob smith <input type=checkbox /> </div> And when a checkbox is clicked and the event handler function for it is called, I want to be able to identify which user was selected/unselected. Ideally I'm looking for something like this: <input type=checkbox data-userId = "xxx" /> Then when its clicked: function handleClick() { var userId = $(this).attr('data-userId'); } However I'm looking to do this in a way that won't break my HTML validation, and would still be valid HTML and work in all browsers. Any suggestions?

    Read the article

  • checkbox dynamic create for jquery

    - by user1397840
    How do i create multiple checkbox for jquery to identify it? example i have a html page with this is call new.html <div id =new> <input type=checkbox"></div> at create.html i want to use jquery to load multiple checkbox <div id=load> <div> $("#load).load(new.html) so if i use a for loop to loop 10times to create 10 checkbox, how do i identify each checkbox uniquely? for(var i = 0;i<10;i++){ $("#load).load(new.html)}

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Naming PowerPoint Components With A VSTO Add-In

    - by Tim Murphy
    Note: Cross posted from Coding The Document. Permalink Sometimes in order to work with Open XML we need a little help from other tools.  In this post I am going to describe  a fairly simple solution for marking up PowerPoint presentations so that they can be used as templates and processed using the Open XML SDK. Add-ins are tools which it can be hard to find information on.  I am going to up the obscurity by adding a Ribbon button.  For my example I am using Visual Studio 2008 and creating a PowerPoint 2007 Add-in project.  To that add a Ribbon Visual Designer.  The new ribbon by default will show up on the Add-in tab. Add a button to the ribbon.  Also add a WinForm to collect a new name for the object selected.  Make sure to set the OK button’s DialogResult to OK. In the ribbon button click event add the following code. ObjectNameForm dialog = new ObjectNameForm(); Selection selection = Globals.ThisAddIn.Application.ActiveWindow.Selection;   dialog.objectName = selection.ShapeRange.Name;   if (dialog.ShowDialog() == DialogResult.OK) { selection.ShapeRange.Name = dialog.objectName; } This code will first read the current Name attribute of the Shape object.  If the user clicks OK on the dialog it save the string value back to the same place. Once it is done you can retrieve identify the control through Open XML via the NonVisualDisplayProperties objects.  The only problem is that this object is a child of several different classes.  This means that there isn’t just one way to retrieve the value.  Below are a couple of pieces of code to identify the container that you have named. The first example is if you are naming placeholders in a layout slide. foreach(var slideMasterPart in slideMasterParts) { var layoutParts = slideMasterPart.SlideLayoutParts; foreach(SlideLayoutPart slideLayoutPart in layoutParts) { foreach (assmPresentation.Shape shape in slideLayoutPart.SlideLayout.CommonSlideData.ShapeTree.Descendants<assmPresentation.Shape>()) { var slideMasterProperties = from p in shape.Descendants<assmPresentation.NonVisualDrawingProperties>() where p.Name == TokenText.Text select p;   if (slideMasterProperties.Count() > 0) tokenFound = true; } } } The second example allows you to find charts that you have named with the add-in. foreach(var slidePart in slideParts) { foreach(assmPresentation.Shape slideShape in slidePart.Slide.CommonSlideData.ShapeTree.Descendants<assmPresentation.Shape>()) { var slideProperties = from g in slidePart.Slide.Descendants<GraphicFrame>() where g.NonVisualGraphicFrameProperties.NonVisualDrawingProperties.Name == TokenText.Text select g;   if(slideProperties.Count() > 0) { tokenFound = true; } } } Together the combination of Open XML and VSTO add-ins make a powerful combination in creating a process for maintaining a template and generating documents from the template.

    Read the article

  • Introducing AutoVue Document Print Service

    - by celine.beck
    We recently announced the availability of our new AutoVue Document Print Service products. For more information, please read the article entitled Print Any Document Type with AutoVue Document Print Services that was posted on our blog. The AutoVue Document Print Service products help address a trivial, yet very common challenge: printing and batch printing documents. The AutoVue Document Print Service is a Web-Services based interface, which allows developers to complement their print server solutions by leveraging AutoVue's printing capabilities within broader enterprise applications like Asset Lifecycle Management, Product Lifecycle Management, Enterprise Content Management solutions, etc. This means that you can leverage the AutoVue Document Print Service products as part of your printing solution to automate the printing of virtually any document type required in any business process. Clients that consume AutoVue's Document Print Service can be written in any language (for example Java or .NET) as long as they understand Web Services Description Language (WSDL) and communicate using Simple Object Access Protocol (SOAP). The print solution consists of three main components, as described in the diagram below: a print server (not included in the AutoVue Document Print Service offering) that will interact with your application to identify the files that need to be printed, the printer to send each file, as well as the print options needed for each file (paper size, page orientation, etc), and collate the print job requests. The print server will also take care of calling the AutoVue Document Print Service to perform the actual printing. The AutoVue Document Print Services send files to a printer for printing. The AutoVue Document Print Service products leverage AutoVue's format- and platform agnostic technology to let you print/batch virtually any type of files, without requiring the authoring application installed on your machine. and Printers As shown above, you can trigger printing from your application either programmatically through automated business processes or manually through human interaction. If documents that need to be printed from your application are stored inside a content repository/Document Management System (DMS) such as Oracle Universal Content Management System (UCM), then the Print Server will need to identify the list of documents and pass the ID of each document to the AutoVue DPS to print. In this case, AutoVue DPS leverages the AutoVue VueLink integration (note: AutoVue VueLink integrations are pre-packaged AutoVue integrations with most common enterprise systems. Check our Website for more information on the subject) to fetch documents out of the document management system for printing. In lieu of the AutoVue VueLink integration, you can also leverage the AutoVue Integration Software Development Kit (iSDK) to build your own connector. If the documents you need to print from your application are not stored in a content management system, the Print Server will need to ensure that files are made available to the AutoVue Document Print Service. The Print Server could for example fetch the files out of your application or an extension to the application could be developed to fetch the files and make them available to the AutoVue DPS. More information on methods to pass on file information to the AutoVue Document Print Service products can be found in the AutoVue Document Print Service Overview documentation available on the Oracle Technology Network. Related article: Any Document Type with AutoVue Document Print Services

    Read the article

  • PERT shows relationships between defined tasks in a project without taking into consideration a time line

    The program evaluation and review technique (PERT) shows relationships between defined tasks in a project without taking into consideration a time line. This chart is an excellent way to identify dependencies of tasks based on other tasks. This chart allows project managers to identify the critical path of a project to minimize any time delays to the project. According to Craig Borysowich in his article “Pros & Cons of the PERT/CPM Method stated the following advantages and disadvantages: “PERT/CPM has the following advantages: A PERT/CPM chart explicitly defines and makes visible dependencies (precedence relationships) between the WBS elements, PERT/CPM facilitates identification of the critical path and makes this visible, PERT/CPM facilitates identification of early start, late start, and slack for each activity, PERT/CPM provides for potentially reduced project duration due to better understanding of dependencies leading to improved overlapping of activities and tasks where feasible.  PERT/CPM has the following disadvantages: There can be potentially hundreds or thousands of activities and individual dependency relationships, The network charts tend to be large and unwieldy requiring several pages to print and requiring special size paper, The lack of a timeframe on most PERT/CPM charts makes it harder to show status although colors can help (e.g., specific color for completed nodes), When the PERT/CPM charts become unwieldy, they are no longer used to manage the project.” (Borysowich, 2008) Traditionally PERT charts are used in the initial planning of a project like in a project that is utilizing the waterfall approach. Once the chart was created then project managers could further analyze this data to determine the earliest start time for each stage in the project. This is important because this information can be used to help forecast resource needs during a project and where in the project. However, the agile environment can approach this differently because of their constant need to be in contact with the client and the other stakeholders.  The PERT chart can also be used during project iteration to determine what is to be worked on next, such as a prioritized To-Do list a wife would give her husband at the start of a weekend. In my personal opinion, the COTS-centric environment would not really change how a company uses a PERT chart in their day to day work. The only thing I can is that there would be less tasks to include in the chart because the functionally milestones are already completed when the components are purchased. References: http://www.netmba.com/operations/project/pert/ http://web2.concordia.ca/Quality/tools/20pertchart.pdf http://it.toolbox.com/blogs/enterprise-solutions/pros-cons-of-the-pertcpm-method-22221

    Read the article

  • Reinventing the Wheel – Automating Data Consistency Checks with Powershell

    - by Jonathan Kehayias
    When I started in my current position at the beginning of the year, one of the first things that I did was to schedule a sit down with the various teams of Analysts that exist in our organization to find out more about their systems.  One thing I am always interested in is the manual processes that people do routinely that might be able to be automated.   A couple of the analyst mentioned that they routinely run queries in their systems to identify issues so that they can proactively...(read more)

    Read the article

  • SQL Monitor’s data repository

    - by Chris Lambrou
    As one of the developers of SQL Monitor, I often get requests passed on by our support people from customers who are looking to dip into SQL Monitor’s own data repository, in order to pull out bits of information that they’re interested in. Since there’s clearly interest out there in playing around directly with the data repository, I thought I’d write some blog posts to start to describe how it all works. The hardest part for me is knowing where to begin, since the schema of the data repository is pretty big. Hmmm… I guess it’s tricky for anyone to write anything but the most trivial of queries against the data repository without understanding the hierarchy of monitored objects, so perhaps my first post should start there. I always imagine that whenever a customer fires up SSMS and starts to explore their SQL Monitor data repository database, they become immediately bewildered by the schema – that was certainly my experience when I did so for the first time. The following query shows the number of different object types in the data repository schema: SELECT type_desc, COUNT(*) AS [count] FROM sys.objects GROUP BY type_desc ORDER BY type_desc;  type_desccount 1DEFAULT_CONSTRAINT63 2FOREIGN_KEY_CONSTRAINT181 3INTERNAL_TABLE3 4PRIMARY_KEY_CONSTRAINT190 5SERVICE_QUEUE3 6SQL_INLINE_TABLE_VALUED_FUNCTION381 7SQL_SCALAR_FUNCTION2 8SQL_STORED_PROCEDURE100 9SYSTEM_TABLE41 10UNIQUE_CONSTRAINT54 11USER_TABLE193 12VIEW124 With 193 tables, 124 views, 100 stored procedures and 381 table valued functions, that’s quite a hefty schema, and when you browse through it using SSMS, it can be a bit daunting at first. So, where to begin? Well, let’s narrow things down a bit and only look at the tables belonging to the data schema. That’s where all of the collected monitoring data is stored by SQL Monitor. The following query gives us the names of those tables: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' ORDER BY sch.name, obj.name; This query still returns 110 tables. I won’t show them all here, but let’s have a look at the first few of them:  name 1data.Cluster_Keys 2data.Cluster_Machine_ClockSkew_UnstableSamples 3data.Cluster_Machine_Cluster_StableSamples 4data.Cluster_Machine_Keys 5data.Cluster_Machine_LogicalDisk_Capacity_StableSamples 6data.Cluster_Machine_LogicalDisk_Keys 7data.Cluster_Machine_LogicalDisk_Sightings 8data.Cluster_Machine_LogicalDisk_UnstableSamples 9data.Cluster_Machine_LogicalDisk_Volume_StableSamples 10data.Cluster_Machine_Memory_Capacity_StableSamples 11data.Cluster_Machine_Memory_UnstableSamples 12data.Cluster_Machine_Network_Capacity_StableSamples 13data.Cluster_Machine_Network_Keys 14data.Cluster_Machine_Network_Sightings 15data.Cluster_Machine_Network_UnstableSamples 16data.Cluster_Machine_OperatingSystem_StableSamples 17data.Cluster_Machine_Ping_UnstableSamples 18data.Cluster_Machine_Process_Instances 19data.Cluster_Machine_Process_Keys 20data.Cluster_Machine_Process_Owner_Instances 21data.Cluster_Machine_Process_Sightings 22data.Cluster_Machine_Process_UnstableSamples 23… There are two things I want to draw your attention to: The table names describe a hierarchy of the different types of object that are monitored by SQL Monitor (e.g. clusters, machines and disks). For each object type in the hierarchy, there are multiple tables, ending in the suffixes _Keys, _Sightings, _StableSamples and _UnstableSamples. Not every object type has a table for every suffix, but the _Keys suffix is especially important and a _Keys table does indeed exist for every object type. In fact, if we limit the query to return only those tables ending in _Keys, we reveal the full object hierarchy: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' AND obj.name LIKE '%_Keys' ORDER BY sch.name, obj.name;  name 1data.Cluster_Keys 2data.Cluster_Machine_Keys 3data.Cluster_Machine_LogicalDisk_Keys 4data.Cluster_Machine_Network_Keys 5data.Cluster_Machine_Process_Keys 6data.Cluster_Machine_Services_Keys 7data.Cluster_ResourceGroup_Keys 8data.Cluster_ResourceGroup_Resource_Keys 9data.Cluster_SqlServer_Agent_Job_History_Keys 10data.Cluster_SqlServer_Agent_Job_Keys 11data.Cluster_SqlServer_Database_BackupType_Backup_Keys 12data.Cluster_SqlServer_Database_BackupType_Keys 13data.Cluster_SqlServer_Database_CustomMetric_Keys 14data.Cluster_SqlServer_Database_File_Keys 15data.Cluster_SqlServer_Database_Keys 16data.Cluster_SqlServer_Database_Table_Index_Keys 17data.Cluster_SqlServer_Database_Table_Keys 18data.Cluster_SqlServer_Error_Keys 19data.Cluster_SqlServer_Keys 20data.Cluster_SqlServer_Services_Keys 21data.Cluster_SqlServer_SqlProcess_Keys 22data.Cluster_SqlServer_TopQueries_Keys 23data.Cluster_SqlServer_Trace_Keys 24data.Group_Keys The full object type hierarchy looks like this: Cluster Machine LogicalDisk Network Process Services ResourceGroup Resource SqlServer Agent Job History Database BackupType Backup CustomMetric File Table Index Error Services SqlProcess TopQueries Trace Group Okay, but what about the individual objects themselves represented at each level in this hierarchy? Well that’s what the _Keys tables are for. This is probably best illustrated by way of a simple example – how can I query my own data repository to find the databases on my own PC for which monitoring data has been collected? Like this: SELECT clstr._Name AS cluster_name, srvr._Name AS instance_name, db._Name AS database_name FROM data.Cluster_SqlServer_Database_Keys db JOIN data.Cluster_SqlServer_Keys srvr ON db.ParentId = srvr.Id -- Note here how the parent of a Database is a Server JOIN data.Cluster_Keys clstr ON srvr.ParentId = clstr.Id -- Note here how the parent of a Server is a Cluster WHERE clstr._Name = 'dev-chrisl2' -- This is the hostname of my own PC ORDER BY clstr._Name, srvr._Name, db._Name;  cluster_nameinstance_namedatabase_name 1dev-chrisl2SqlMonitorData 2dev-chrisl2master 3dev-chrisl2model 4dev-chrisl2msdb 5dev-chrisl2mssqlsystemresource 6dev-chrisl2tempdb 7dev-chrisl2sql2005SqlMonitorData 8dev-chrisl2sql2005TestDatabase 9dev-chrisl2sql2005master 10dev-chrisl2sql2005model 11dev-chrisl2sql2005msdb 12dev-chrisl2sql2005mssqlsystemresource 13dev-chrisl2sql2005tempdb 14dev-chrisl2sql2008SqlMonitorData 15dev-chrisl2sql2008master 16dev-chrisl2sql2008model 17dev-chrisl2sql2008msdb 18dev-chrisl2sql2008mssqlsystemresource 19dev-chrisl2sql2008tempdb These results show that I have three SQL Server instances on my machine (a default instance, one named sql2005 and one named sql2008), and each instance has the usual set of system databases, along with a database named SqlMonitorData. Basically, this is where I test SQL Monitor on different versions of SQL Server, when I’m developing. There are a few important things we can learn from this query: Each _Keys table has a column named Id. This is the primary key. Each _Keys table has a column named ParentId. A foreign key relationship is defined between each _Keys table and its parent _Keys table in the hierarchy. There are two exceptions to this, Cluster_Keys and Group_Keys, because clusters and groups live at the root level of the object hierarchy. Each _Keys table has a column named _Name. This is used to uniquely identify objects in the table within the scope of the same shared parent object. Actually, that last item isn’t always true. In some cases, the _Name column is actually called something else. For example, the data.Cluster_Machine_Services_Keys table has a column named _ServiceName instead of _Name (sorry for the inconsistency). In other cases, a name isn’t sufficient to uniquely identify an object. For example, right now my PC has multiple processes running, all sharing the same name, Chrome (one for each tab open in my web-browser). In such cases, multiple columns are used to uniquely identify an object within the scope of the same shared parent object. Well, that’s it for now. I’ve given you enough information for you to explore the _Keys tables to see how objects are stored in your own data repositories. In a future post, I’ll try to explain how monitoring data is stored for each object, using the _StableSamples and _UnstableSamples tables. If you have any questions about this post, or suggestions for future posts, just submit them in the comments section below.

    Read the article

  • Reinventing the Wheel – Automating Data Consistency Checks with Powershell

    - by Jonathan Kehayias
    When I started in my current position at the beginning of the year, one of the first things that I did was to schedule a sit down with the various teams of Analysts that exist in our organization to find out more about their systems.  One thing I am always interested in is the manual processes that people do routinely that might be able to be automated.   A couple of the analyst mentioned that they routinely run queries in their systems to identify issues so that they can proactively...(read more)

    Read the article

  • Five Things To Which SQL Server Should Say "Goodbye and Good Riddance"

    - by Adam Machanic
    I was tagged by master blogger Aaron Bertrand and asked to identify five things that should be removed from SQL Server. Easy enough, or so I thought... 1) Tempdb . But I should qualify that a bit. Tempdb is absolutely necessary for SQL Server to properly function, but in its current state is easily the number one bottleneck in the majority of SQL Server instances. Many other DBMS vendors abandoned the "monolithic, instance-scoped temporary data space" years ago, yet SQL Server soldiers on, putting...(read more)

    Read the article

  • SQL SERVER – DMV – sys.dm_os_waiting_tasks and sys.dm_exec_requests – Wait Type – Day 4 of 28

    - by pinaldave
    Previously, we covered the DMV sys.dm_os_wait_stats, and also saw how it can be useful to identify the major resource bottleneck. However, at the same time, we discussed that this is only useful when we are looking at an instance-level picture. Quite often we want to know about the processes going in our server at the given instant. Here is the query for the same. This DMV is written taking the following into consideration: we want to analyze the queries that are currently running or which have recently ran and their plan is still in the cache. SELECT dm_ws.wait_duration_ms, dm_ws.wait_type, dm_es.status, dm_t.TEXT, dm_qp.query_plan, dm_ws.session_ID, dm_es.cpu_time, dm_es.memory_usage, dm_es.logical_reads, dm_es.total_elapsed_time, dm_es.program_name, DB_NAME(dm_r.database_id) DatabaseName, -- Optional columns dm_ws.blocking_session_id, dm_r.wait_resource, dm_es.login_name, dm_r.command, dm_r.last_wait_type FROM sys.dm_os_waiting_tasks dm_ws INNER JOIN sys.dm_exec_requests dm_r ON dm_ws.session_id = dm_r.session_id INNER JOIN sys.dm_exec_sessions dm_es ON dm_es.session_id = dm_r.session_id CROSS APPLY sys.dm_exec_sql_text (dm_r.sql_handle) dm_t CROSS APPLY sys.dm_exec_query_plan (dm_r.plan_handle) dm_qp WHERE dm_es.is_user_process = 1 GO You can change CROSS APPLY to OUTER APPLY if you want to see all the details which are omitted because of the plan cache. Let us analyze the result of the above query and see how it can be helpful to identify the query and the kind of wait type it creates. Click to Enlarage The above query will return various columns. There are various columns that provide very important details. e.g. wait_duration_ms – it indicates current wait for the query that executes at that point of time. wait_type – it indicates the current wait type for the query text – indicates the query text query_plan – when clicked on the same, it will display the query plans There are many other important information like CPU_time, memory_usage, and logical_reads, which can be read from the query as well. In future posts on this series, we will see how once identified wait type we can attempt to reduce the same. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • TSQL Challenge 28 - SELECT TOP N articles from each category from a SQL Server 2000 database

    The challenge is to write a query that returns the articles to be displayed in the home page of the website. N number of articles from each category is to be selected where N is configured in the Categories table. Each category should select the most recent N articles. ArticleID can be used to identify the most recent articles. An article with a higher number indicates a more recent article.

    Read the article

  • SQL SERVER – Various Leap Year Logics

    - by pinaldave
    Earlier I wrote one article on Leap Year and created one video about Leap Year. My point of view was to demonstrate how we can use SQL Server 2012 features to identify Leap year. How ever during the conversation I had some really good conversation. Here are updates for those who have missed reading the excellent comments on the blog. Incorrect Logic There are so many people still think Leap Year is the event which is consistently happening at every four year and the way to find it is divide the year with 4 and if the remainder is 0. That year is leap year. Well, it is not correct. Comment by David Bridge Check out this excerpt from wikipedia page http://en.wikipedia.org/wiki/Leap_year “most years that are evenly divisible by 4 are leap years…” “…Some exceptions to this rule are required since the duration of a solar year is slightly less than 365.25 days. Years that are evenly divisible by 100 are not leap years, unless they are also evenly divisible by 400, in which case they are leap years. For example, 1600 and 2000 were leap years, but 1700, 1800 and 1900 were not. Similarly, 2100, 2200, 2300, 2500, 2600, 2700, 2900 and 3000 will not be leap years, but 2400 and 2800 will be.” If you use logic of divide by 4 and remainder is 0 to find leap year, you will may end up with inaccurate result. The correct way to identify the year is to figure out the days of February and if the count is 29, the year is for sure leap year. Valid Alternate Solutions Comment by sainswor99insworth IIF((@Year%4=0 AND @Year%100 != 0) OR @Year%400=0, 1,0) Comment by Madhivanan Madhivanan has written a blog post about an year ago where he listed multiple ways to find leap year. Comment by Jayan DECLARE @year INT SET @year = 2012 IF (((@year % 4 = 0) AND (@year % 100 != 0)) OR (@year % 400 = 0)) PRINT ’1' ELSE print ’0' Comment by David DECLARE @Year INT = 2012 SELECT ISDATE('2/29/' + CAST(@Year AS CHAR(4))) Comment by David Bridge Incidentally – Another approach would be to take one day off March 1st and see if it is 29. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL DateTime, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • High Performance Storage Systems for SQL Server

    Rod Colledge turns his pessimistic mindset to storage systems, and describes the best way to configure the storage systems of SQL Servers for both performance and reliability. Even Rod gets a glint in his eye when he then goes on to describe the dazzling speed of solid-state storage, though he is quick to identify the risks.

    Read the article

  • Simple tips to design a Customer Journey Map

    - by Isabel F. Peñuelas
    “A model can abstract to a level that is comprehensible to humans, without getting lost in details.” -The Unified Modeling Language Reference Manual. Inception using Post-it, StoryBoards, Lego or Mindmaping Techniques The first step in a Customer Experience project is to describe customer interactions creating a customer journey map. Modeling is never easy, so to succeed on this effort, it is very convenient that your CX´s team have some “abstract thinking” skills. Besides is very helpful to consult a Business Service Design offered by an Interactive Agency to lead your inception process. Initially, you may start by a free discussion using post-it cards; storyboards; even lego or any other brainstorming technique you like. This will help you to get your mind into the path followed by the customer to purchase your product or to consume any business service you actually offer to your customers, or plan to offer in the near future. (from www.servicedesigntools.org) Colorful Mind Maps are very useful to document and share meeting ideas. Some Mind Maps software providers as ThinkBuzzan provide trial versions, and you will find more mindmapping options on this post by Mashable. Finally to produce a quick one, I do recommend Wise, an entirely online mindmaping service. On my view the best results in terms of communication will always come for an artistic hand-made drawing. Customer Experience Mind Map Example Making your first Customer Journey Map To add some more formalization to your thoughts, there is a wide offering for designing Customer Journey Maps. A Customer Map can be represented as an oriented graph in which another follows each step. The one below is the most simple Customer Journey you can draw. Nothing more than a couple of pictures, numbers and lines to design the customer steps sequence in the purchase process. Very simple Customer Journey for Social Mobile Shopping There are a lot of Customer Journey templates much more sophisticated available  in the Web using a variety of styles, as per example this one with a focus on underlining emotional experience, or this other worksheet template. Representing different interaction devices on the vertical axis, and touchpoints / requirements and existing gaps horizontally  is today´s most common format for Customer Journeys. From Customer Journey Maps to CX Technology Adoption Plans Once you have your map ready, you can start to identify the IT infrastructure requirements for your CXProject. By analyzing customer problems and improvement opportunities with maps, you will then identify the technology gaps and the new investment requirements in your IT infrastructure. Deeping step by step from the more abstract to the more concrete is the best guarantee to take the right IT investment decisions.  ¡Remember to keep your initial customer journey safe on your pocket in every one of your CX´s project meetings- that´s you map to success!

    Read the article

  • Identifying languages used by particular industries

    - by user66146
    I am new to programming and I don't know the differences between the major languages. I desperately want to get into the gaming industry because I have so many stories I want to tell and so many experiences I want to create. I currently do 3D modeling/animation, so any similarities would be helpful. What steps should I take to investigate an industry (gaming) and the companies within that industry? How do I identify what programming languages they use, so I can study them?

    Read the article

  • SQL SERVER – Detecting guest User Permissions – guest User Access Status

    - by pinaldave
    Earlier I wrote the blog post SQL SERVER – Disable Guest Account – Serious Security Issue, and I got many comments asking questions related to the guest user. Here are the comments of Manoj: 1) How do we know if the uest user is enabled or disabled? 2) What is the default for guest user in SQL Server? Default settings for guest user When SQL Server is installed by default, the guest user is disabled for security reasons. If the guest user is not properly configured, it can create a major security issue. You can read more about this here. Identify guest user status There are multiple ways to identify guest user status: Using SQL Server Management Studio (SSMS) You can expand the database node >> Security >> Users. If you see the RED arrow pointing downward, it means that the guest user is disabled. Using sys.sysusers Here is a simple script. If you notice column dbaccess as 1, it means that the guest user is enabled and has access to the database. SELECT name, hasdbaccess FROM sys.sysusers WHERE name = 'guest' Using sys.database_principals and sys.server_permissions This script is valid in SQL Server 2005 and a later version. This is my default method recently. SELECT name, permission_name, state_desc FROM sys.database_principals dp INNER JOIN sys.server_permissions sp ON dp.principal_id = sp.grantee_principal_id WHERE name = 'guest' AND permission_name = 'CONNECT' Using sp_helprotect Just run the following stored procedure which will give you all the permissions associated with the user. sp_helprotect @username = 'guest' Disable Guest Account REVOKE CONNECT FROM guest Additionally, the guest account cannot be disabled in master and tempdb; it is always enabled. There is a special need for this. Let me ask a question back at you: In which scenario do you think this will be useful to keep the guest, and what will the additional configuration go along with the scenario? Note: Special mention to Imran Mohammed for being always there when users need help. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Security, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >