Search Results

Search found 25792 results on 1032 pages for 'map edit'.

Page 181/1032 | < Previous Page | 177 178 179 180 181 182 183 184 185 186 187 188  | Next Page >

  • One UI for two business objects

    - by JC
    I have an order edit and quote edit screen that are very similar. I want to try to avoid code like this: if (order is Order) SetupScreenForOrder(); if (order is Quote) SetupScreenForQuote(); But maintaining two screens is not good either. If I create some common interface between a Quote and Order then how do you deal with fields like OrderNumber or QuoteDate? What's the best way to handle this?

    Read the article

  • How to set message when I get Exception

    - by user1748932
    public class XMLParser { // constructor public XMLParser() { } public String getXmlFromUrl(String url) { String responseBody = null; getset d1 = new getset(); String d = d1.getData(); // text String y = d1.getYear(); // year String c = d1.getCircular(); String p = d1.getPage(); List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(); nameValuePairs.add(new BasicNameValuePair("YearID", y)); nameValuePairs.add(new BasicNameValuePair("CircularNo", c)); nameValuePairs.add(new BasicNameValuePair("SearchText", d)); nameValuePairs.add(new BasicNameValuePair("pagenumber", p)); try { HttpClient httpclient = new DefaultHttpClient(); HttpPost httppost = new HttpPost(url); httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs)); HttpResponse response = httpclient.execute(httppost); HttpEntity entity = response.getEntity(); responseBody = EntityUtils.toString(entity); } catch (UnsupportedEncodingException e) { e.printStackTrace(); } catch (ClientProtocolException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } // return XML return responseBody; } public Document getDomElement(String xml) { Document doc = null; DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); try { DocumentBuilder db = dbf.newDocumentBuilder(); InputSource is = new InputSource(); is.setCharacterStream(new StringReader(xml)); doc = db.parse(is); } catch (ParserConfigurationException e) { Log.e("Error: ", e.getMessage()); return null; } catch (SAXException e) { Log.e("Error: ", e.getMessage()); // i m getting Exception here return null; } catch (IOException e) { Log.e("Error: ", e.getMessage()); return null; } return doc; } /** * Getting node value * * @param elem * element */ public final String getElementValue(Node elem) { Node child; if (elem != null) { if (elem.hasChildNodes()) { for (child = elem.getFirstChild(); child != null; child = child .getNextSibling()) { if (child.getNodeType() == Node.TEXT_NODE) { return child.getNodeValue(); } } } } return ""; } /** * Getting node value * * @param Element * node * @param key * string * */ public String getValue(Element item, String str) { NodeList n = item.getElementsByTagName(str); return this.getElementValue(n.item(0)); } } I am getting Exception in this class for parsing data. I want print this message in another class which extends from Activity. Can you please tell me how? I tried much but not able to do.. public class AndroidXMLParsingActivity extends Activity { public int currentPage = 1; public ListView lisView1; static final String KEY_ITEM = "docdetails"; static final String KEY_NAME = "heading"; public Button btnNext; public Button btnPre; public static String url = "http://dev.taxmann.com/TaxmannService/TaxmannService.asmx/GetNotificationList"; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); // listView1 lisView1 = (ListView) findViewById(R.id.listView1); // Next btnNext = (Button) findViewById(R.id.btnNext); // Perform action on click btnNext.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { currentPage = currentPage + 1; ShowData(); } }); // Previous btnPre = (Button) findViewById(R.id.btnPre); // Perform action on click btnPre.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { currentPage = currentPage - 1; ShowData(); } }); ShowData(); } public void ShowData() { XMLParser parser = new XMLParser(); String xml = parser.getXmlFromUrl(url); // getting XML Document doc = parser.getDomElement(xml); // getting DOM element NodeList nl = doc.getElementsByTagName(KEY_ITEM); int displayPerPage = 5; // Per Page int TotalRows = nl.getLength(); int indexRowStart = ((displayPerPage * currentPage) - displayPerPage); int TotalPage = 0; if (TotalRows <= displayPerPage) { TotalPage = 1; } else if ((TotalRows % displayPerPage) == 0) { TotalPage = (TotalRows / displayPerPage); } else { TotalPage = (TotalRows / displayPerPage) + 1; // 7 TotalPage = (int) TotalPage; // 7 } int indexRowEnd = displayPerPage * currentPage; // 5 if (indexRowEnd > TotalRows) { indexRowEnd = TotalRows; } // Disabled Button Next if (currentPage >= TotalPage) { btnNext.setEnabled(false); } else { btnNext.setEnabled(true); } // Disabled Button Previos if (currentPage <= 1) { btnPre.setEnabled(false); } else { btnPre.setEnabled(true); } // Load Data from Index int RowID = 1; ArrayList<HashMap<String, String>> menuItems = new ArrayList<HashMap<String, String>>(); HashMap<String, String> map; // RowID if (currentPage > 1) { RowID = (displayPerPage * (currentPage - 1)) + 1; } for (int i = indexRowStart; i < indexRowEnd; i++) { Element e = (Element) nl.item(i); // adding each child node to HashMap key => value map = new HashMap<String, String>(); map.put("RowID", String.valueOf(RowID)); map.put(KEY_NAME, parser.getValue(e, KEY_NAME)); // adding HashList to ArrayList menuItems.add(map); RowID = RowID + 1; } SimpleAdapter sAdap; sAdap = new SimpleAdapter(AndroidXMLParsingActivity.this, menuItems, R.layout.list_item, new String[] { "RowID", KEY_NAME }, new int[] { R.id.ColRowID, R.id.ColName }); lisView1.setAdapter(sAdap); } } This my class where I want to Print that message

    Read the article

  • Is there any open source/freeware TSO/ISP clone for PC?

    - by mawg
    Free as in beer. I can live without the source code. About 10 years ago I saw a commercial product. Is there anything free now? I found Gispf on SourceFOrge, but there are no downloads. Otherwise I Can't find a thing. Edit: I'd prefer something approaching the whole system, but could manage to live with the editor Edit" TSI is "the old Time-Sharing Option on IBM mainframes"

    Read the article

  • Cannot get variable.replace working properly.

    - by chrissygormley
    Hello, I am trying to replace a string with a new string in a python file and write the new string permanently to it. When I run the below script it removes part of the string and not all of it. The string in the file is: self.id = "027FC8EBC2D1" And the script I have to replace the string is: def edit(): o = open("test.py","r+") #open for line in open("test.py"): line = line.replace("027FC8EBC2D1","NewValue") o.write(line) o.close() edit() Thanks for any help.

    Read the article

  • Single entity with single view or two views in mvc3 vs2010?

    - by user2905798
    I have the following entity model public class Employee { public int Employee ID{get;set;} public string employeename{get;set;} public datetime employeeDOb{get;set;} public datetime? employeeDateOfJoin{get;set;} public string empFamilyname{get;set;} public datetime empFamilyDob{get;set;} } here I have to design a view for collecting employee information and employee family information. Since I am working on already available data, where in empFamilyDob was not mandatory. But now it is being made mandatory, the previous data doesn't contain EmpFamilyDob. So naturally I have added this new property EmpFamilyDob to the Model and made it required through DataAnnotations. Now there are two set of views to be developed. 1. A view which simply allows to collect the employee information without employee family information. i.e, empFamilyName and EmpFamilyDob.--This view is used by the Hr section to insert empplyee details Since the empFamilyname and EmpFamilyDob being now made mandatory, some other section will edit the data and update the EmpFamilyName and EmpFamilyDob as and when the information about employee family details are received. I have action controller for CreateNew and Edit Which is being generated by using the default model. There are two user actions being performed. 1.When the user clicks the Create new -- he will be able to update only the Employee information 2.As and when the other section receives the employee family details they update the familyname and family date of birth. i.e, EmployeeFamilyname and EmployeFamilyDob. While creating new record the uses should be able to update employee information only and while editing the information he should be able to update the employeefamily information. Since I have a single view with most of these fields as required and not allowing null , How can I achieve this in a sincle view? I have recorrected the model like this public class Employee { public int Employee ID{get;set;} public string employeename{get;set;} public datetime employeeDOb{get;set;} public datetime? employeeDateOfJoin{get;set;} public string empFamilyname{get;set;} public datetime? empFamilyDob{get;set;} } Now by default I hope the createnew action would insert null value for empFamilyname(string datatype) and empFamilyDob . In the Edit action the user should be made to enter empFamilyname and empFamilyDob(mandatory). As there is every chance that the user might edit other information about the employee(like employeeDob) I don't want to go for partial views. Can you help me out with some illustration. Thanks in advance

    Read the article

  • Will the error be displayed?

    - by user281180
    I have an ajax post and in the controller I return nothing. In case there is a failure will the error message displayed with the follwoing code? [AcceptVerbs(HttpVerbs.Post)] public void Edit(Model model) { model.Save(); } $.ajax({ type: "POST", url: '<%=Url.Action("Edit","test") %>', data: JSON.stringify(data), contentType: "application/json; charset=utf-8", dataType: "html", success: function() { }, error: function(request, status, error) { alert("Error: " & request.responseText); } });

    Read the article

  • Add Your Own Domain to Your WordPress.com Blog

    - by Matthew Guay
    Now that you’ve got a nice blog on WordPress.com, why not get your own domain to brand your site?  Here’s how you can easily register a new domain or move your existing domain to your WordPress site. By default, your free WordPress address is yourblog’sname.wordpress.com.  But whether this is a personal or a company blog, it can be nice to have your own domain to really brand your site and make it your own.  Or, if you already have another website and want to use WordPress as a blog for it, you could even add blog.yoursite.com or any other subdomain. Adding a domain to your WordPress.com is a paid upgrade; registering and mapping a new domain to your account costs $14.97 a year, while mapping a domain you already own to your WordPress blog costs $9.97 a year. Getting Started Login to your blog’s dashboard, click the arrow beside Upgrades in the sidebar, and select Domains. Enter the domain or subdomain you want to add to your site in the text box, and click Add domain to blog.   If you entered a new domain you want to register, WordPress will make sure the domain is available and then present you a registration form to register the domain.  Enter your information, and then click Register Domain.   Or, if you enter a domain that’s already registered, you will see the following prompt. If this domain is a domain you own, you can map it to WordPress.com.  Login to your domain registrar account and switch your nameserver to: NS1.WORDPRESS.COM NS2.WORDPRESS.COM NS3.WORDPRESS.COM Your DNS settings page for your domain may be different, depending on your registrar.  Here’s how our domain settings looked. Alternately, if you’re wanting to map a subdomain, such as blog.yoursite.com to your WordPress blog, create the following CNAME record on your domain register.  You may have to contact your domain registrar’s support to do this.  Substitute your subdomain, domain, and blog name when creating the record. subdomain.yourdomain.com. IN CNAME yourblog.wordpress.com. Once your settings are correct, click Try Again in your WordPress dashboard.  The DNS settings may take a while to update, but once WordPress can tell your DNS settings point to it, you will see the following confirmation screen.  Click Map Domain to add this domain to your WordPress blog. Now you’re ready to pay for your domain mapping or registration.  Depending on your purchase, the information and price shown may be different.  Here we’re mapping a domain we already have registered, so it costs $9.97.  Select your method of payment, enter your payment information or signin with your Paypal account, and continue as usual. Once your purchase is finished, you’ll be returned to the Domains page on WordPress.  Try going to your new domain, and make sure it opens your blog.  If it works, then click the bullet beside the new domain, and click Update Primary Domain.  Now, when people visit your WordPress site, they’ll see your new domain in the address bar.  You can still access your blog from your old yourname.wordpress.com address, but it will redirect to you new domain. Conclusion Having a personalized domain is a great way to make your blog more professional, while still taking advantage of the ease of use that WordPress.com offers.  And, if you have your own domain, you can easily move to your site traffic to a different hosting provider in the future if you need to.  The process is slightly complicated, but for $15/year we found this one of the best upgrades you could do to your WordPress.com blog. If you want to see an example of a site created with Wordpress, check out Matthew’s tech site techinch.com. And, if you’re just getting started with WordPress, check out our series on how to Start your WordPress.com blog, Personalize it, and Easily Post Content to it from anywhere. Similar Articles Productive Geek Tips Add Social Bookmarking (Digg This!) Links to your Wordpress BlogHow-To Geek SoftwareHow To Start Your Own Professional Blog with WordPressDisable Logon to Windows Computers When Not Connected to a DomainMake a Backup Copy of your Production Wordpress Blog on Ubuntu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Use ILovePDF To Split and Merge PDF Files TimeToMeet is a Simple Online Meeting Planning Tool Easily Create More Bookmark Toolbars in Firefox Filevo is a Cool File Hosting & Sharing Site Get a free copy of WinUtilities Pro 2010 World Cup Schedule

    Read the article

  • Complete Guide to Networking Windows 7 with XP and Vista

    - by Mysticgeek
    Since there are three versions of Windows out in the field these days, chances are you need to share data between them. Today we show how to get each version to be share files and printers with one another. In a perfect world, getting your computers with different Microsoft operating systems to network would be as easy as clicking a button. With the Windows 7 Homegroup feature, it’s almost that easy. However, getting all three of them to communicate with each other can be a bit of a challenge. Today we’ve put together a guide that will help you share files and printers in whatever scenario of the three versions you might encounter on your home network. Sharing Between Windows 7 and XP The most common scenario you’re probably going to run into is sharing between Windows 7 and XP.  Essentially you’ll want to make sure both machines are part of the same workgroup, set up the correct sharing settings, and making sure network discovery is enabled on Windows 7. The biggest problem you may run into is finding the correct printer drivers for both versions of Windows. Share Files and Printers Between Windows 7 & XP  Map a Network Drive Another method of sharing data between XP and Windows 7 is mapping a network drive. If you don’t need to share a printer and only want to share a drive, then you can just map an XP drive to Windows 7. Although it might sound complicated, the process is not bad. The trickiest part is making sure you add the appropriate local user. This will allow you to share the contents of an XP drive to your Windows 7 computer. Map a Network Drive from XP to Windows 7 Sharing between Vista and Windows 7 Another scenario you might run into is having to share files and printers between a Vista and Windows 7 machine. The process is a bit easier than sharing between XP and Windows 7, but takes a bit of work. The Homegroup feature isn’t compatible with Vista, so we need to go through a few different steps. Depending on what your printer is, sharing it should be easier as Vista and Windows 7 do a much better job of automatically locating the drivers. How to Share Files and Printers Between Windows 7 and Vista Sharing between Vista and XP When Windows Vista came out, hardware requirements were intensive, drivers weren’t ready, and sharing between them was complicated due to the new Vista structure. The sharing process is pretty straight-forward if you’re not using password protection…as you just need to drop what you want to share into the Vista Public folder. On the other hand, sharing with password protection becomes a bit more difficult. Basically you need to add a user and set up sharing on the XP machine. But once again, we have a complete tutorial for that situation. Share Files and Folders Between Vista and XP Machines Sharing Between Windows 7 with Homegroup If you have one or more Windows 7 machine, sharing files and devices becomes extremely easy with the Homegroup feature. It’s as simple as creating a Homegroup on on machine then joining the other to it. It allows you to stream media, control what data is shared, and can also be password protected. If you don’t want to make your Windows 7 machines part of the same Homegroup, you can still share files through the Public Folder, and setup a printer to be shared as well.   Use the Homegroup Feature in Windows 7 to Share Printers and Files Create a Homegroup & Join a New Computer To It Change which Files are Shared in a Homegroup Windows Home Server If you want an ultimate setup that creates a centralized location to share files between all systems on your home network, regardless of the operating system, then set up a Windows Home Server. It allows you to centralize your important documents and digital media files on one box and provides easy access to data and the ability to stream media to other machines on your network. Not only that, but it provides easy backup of all your machines to the server, in case disaster strikes. How to Install and Setup Windows Home Server How to Manage Shared Folders on Windows Home Server Conclusion The biggest annoyance is dealing with printers that have a different set of drivers for each OS. There is no real easy way to solve this problem. Our best advice is to try to connect it to one machine, and if the drivers won’t work, hook it up to the other computer and see if that works. Each printer manufacturer is different, and Windows doesn’t always automatically install the correct drivers for the device. We hope this guide helps you share your data between whichever Microsoft OS scenario you might run into! Here are some other articles that will help you accomplish your home networking needs: Share a Printer on a Home Network from Vista or XP to Windows 7 How to Share a Folder the XP Way in Windows Vista Similar Articles Productive Geek Tips Delete Wrong AutoComplete Entries in Windows Vista MailSvchost Viewer Shows Exactly What Each svchost.exe Instance is DoingFixing "BOOTMGR is missing" Error While Trying to Boot Windows VistaShow Hidden Files and Folders in Windows 7 or VistaAdd Color Coding to Windows 7 Media Center Program Guide TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Icelandic Volcano Webcams Open Multiple Links At One Go NachoFoto Searches Images in Real-time Office 2010 Product Guides Google Maps Place marks – Pizza, Guns or Strip Clubs Monitor Applications With Kiwi

    Read the article

  • Blending the Sketchflow Action

    - by GeekAgilistMercenary
    Started a new Sketchflow Prototype in Expression Blend recently and documented each of the steps.  This blog entry covers some of those steps, which are the basic elements of any prototype.  I will have more information regarding design, prototype creation, and the process of the initial phases for development in the future.  For now, I hope you enjoy this short walk through.  Also, be sure to check out my last quick entry on Sketchflow. I started off with a Sketchflow Project, just like I did in my previous entry (more specifics in that entry about how to manipulate and build out the Sketchflow Map). Once I created the project I setup the following Sketchflow Map. The CoreNavigation is a ComponentScreen setup solely for the page navigation at the top of the screen.  The XAML markup in case you want to create a Component Screen with the same design is included below. <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" xmlns:i="clr-namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity" xmlns:pb="clr-namespace:Microsoft.Expression.Prototyping.Behavior;assembly=Microsoft.Expression.Prototyping.Interactivity" x:Class="RapidPrototypeSketchScreens.CoreNavigation" d:DesignWidth="624" d:DesignHeight="49" Height="49" Width="624">   <Grid x:Name="LayoutRoot"> <TextBlock HorizontalAlignment="Stretch" Margin="307,3,0,0" Style="{StaticResource TitleCenter-Sketch}" Text="Aütøchart Scorecards" TextWrapping="Wrap"> <i:Interaction.Triggers> <i:EventTrigger EventName="MouseLeftButtonDown"> <pb:NavigateToScreenAction TargetScreen="RapidPrototypeSketchScreens.Screen_1"/> </i:EventTrigger> </i:Interaction.Triggers> </TextBlock> <Button HorizontalAlignment="Left" Margin="164,8,0,11" Style="{StaticResource Button-Sketch}" Width="144" Content="Scorecard"> <i:Interaction.Triggers> <i:EventTrigger EventName="Click"> <pb:NavigateToScreenAction TargetScreen="RapidPrototypeSketchScreens.Screen_1_2"/> </i:EventTrigger> </i:Interaction.Triggers> </Button> <Button HorizontalAlignment="Left" Margin="8,8,0,11" Style="{StaticResource Button-Sketch}" Width="152" Content="Standard Reports"> <i:Interaction.Triggers> <i:EventTrigger EventName="Click"> <pb:NavigateToScreenAction TargetScreen="RapidPrototypeSketchScreens.Screen_1_1"/> </i:EventTrigger> </i:Interaction.Triggers> </Button> </Grid> </UserControl> Now that the CoreNavigation Component Screen is done I built out each of the others.  In each of those screens I included the CoreNavigation Screen (all those little green lines in the image) as the top navigation.  In order to do that, as I created each of the pages I would hover over the CoreNavigation Object in the Sketchflow Map.  When the utilities drawer (the small menu that pops down under a node when you hover over it) shows click on the third little icon and drag it onto the page node you want a navigation screen on. Once I created all the screens I setup the navigation by opening up each screen and right clicking on the objects that needed to point to somewhere else in the prototype. Once I was done with the main page, my Home Navigation Page, it looked something like this in the Expression Blend Designer. I fleshed out each of the additional screens.  Once I was done I wanted to try out the deployment package.  The way to deploy a Sketchflow Prototype is to merely click on File –> Package SketchFlow Project and a prompt will appear.  In the prompt enter what you want the package to be called. I like to see the files generated afterwards too, so I checked the box to see that.  When Expression Blend is done generating everything you’ll have a directory like the one shown below, with all the needed files for deployment. Now these files can be copied or moved to any location for viewing.  One can even copy them (such as via FTP) to a server location to share with others.  Once they are deployed and you run the "TestPage.html" the other features of the Sketchflow Package are available. In the image below I have tagged a few sections to show the Sketchflow Player Features.  To the top left is the navigation, which provides a clearly defined area of movement in a list.  To the center right is the actual prototype application.  I have placed lists of things and made edits.  On the left hand side is the highlight feature, which is available in the Feedback section of the lower left.  On the right hand list I underlined the Autochart with an orange marker, and marked out two list items with a red marker. In the lower left hand side in the Feedback section is also an area to type in your feedback.  This can be useful for time based feedback, when you post this somewhere and want people to provide subsequent follow up feedback. Overall lots of great features, that enable some fairly rapid prototyping with customers.  Once one is familiar with the steps and parts of this Sketchflow Prototype Capabilities it is easy to step through an application without even stopping.  It really is that easy.  So get hold of Expression Blend 3 and get ramped up on Sketchflow, it will pay off in the design phases to do so! Original Entry

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • Getting Started Building Windows 8 Store Apps with XAML/C#

    - by dwahlin
    Technology is fun isn’t it? As soon as you think you’ve figured out where things are heading a new technology comes onto the scene, changes things up, and offers new opportunities. One of the new technologies I’ve been spending quite a bit of time with lately is Windows 8 store applications. I posted my thoughts about Windows 8 during the BUILD conference in 2011 and still feel excited about the opportunity there. Time will tell how well it ends up being accepted by consumers but I’m hopeful that it’ll take off. I currently have two Windows 8 store application concepts I’m working on with one being built in XAML/C# and another in HTML/JavaScript. I really like that Microsoft supports both options since it caters to a variety of developers and makes it easy to get started regardless if you’re a desktop developer or Web developer. Here’s a quick look at how the technologies are organized in Windows 8: In this post I’ll focus on the basics of Windows 8 store XAML/C# apps by looking at features, files, and code provided by Visual Studio projects. To get started building these types of apps you’ll definitely need to have some knowledge of XAML and C#. Let’s get started by looking at the Windows 8 store project types available in Visual Studio 2012.   Windows 8 Store XAML/C# Project Types When you open Visual Studio 2012 you’ll see a new entry under C# named Windows Store. It includes 6 different project types as shown next.   The Blank App project provides initial starter code and a single page whereas the Grid App and Split App templates provide quite a bit more code as well as multiple pages for your application. The other projects available can be be used to create a class library project that runs in Windows 8 store apps, a WinRT component such as a custom control, and a unit test library project respectively. If you’re building an application that displays data in groups using the “tile” concept then the Grid App or Split App project templates are a good place to start. An example of the initial screens generated by each project is shown next: Grid App Split View App   When a user clicks a tile in a Grid App they can view details about the tile data. With a Split View app groups/categories are shown and when the user clicks on a group they can see a list of all the different items and then drill-down into them:   For the remainder of this post I’ll focus on functionality provided by the Blank App project since it provides a simple way to get started learning the fundamentals of building Windows 8 store apps.   Blank App Project Walkthrough The Blank App project is a great place to start since it’s simple and lets you focus on the basics. In this post I’ll focus on what it provides you out of the box and cover additional details in future posts. Once you have the basics down you can move to the other project types if you need the functionality they provide. The Blank App project template does exactly what it says – you get an empty project with a few starter files added to help get you going. This is a good option if you’ll be building an app that doesn’t fit into the grid layout view that you see a lot of Windows 8 store apps following (such as on the Windows 8 start screen). I ended up starting with the Blank App project template for the app I’m currently working on since I’m not displaying data/image tiles (something the Grid App project does well) or drilling down into lists of data (functionality that the Split App project provides). The Blank App project provides images for the tiles and splash screen (you’ll definitely want to change these), a StandardStyles.xaml resource dictionary that includes a lot of helpful styles such as buttons for the AppBar (a special type of menu in Windows 8 store apps), an App.xaml file, and the app’s main page which is named MainPage.xaml. It also adds a Package.appxmanifest that is used to define functionality that your app requires, app information used in the store, plus more. The App.xaml, App.xaml.cs and StandardStyles.xaml Files The App.xaml file handles loading a resource dictionary named StandardStyles.xaml which has several key styles used throughout the application: <Application x:Class="BlankApp.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="using:BlankApp"> <Application.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <!-- Styles that define common aspects of the platform look and feel Required by Visual Studio project and item templates --> <ResourceDictionary Source="Common/StandardStyles.xaml"/> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Application.Resources> </Application>   StandardStyles.xaml has style definitions for different text styles and AppBar buttons. If you scroll down toward the middle of the file you’ll see that many AppBar button styles are included such as one for an edit icon. Button styles like this can be used to quickly and easily add icons/buttons into your application without having to be an expert in design. <Style x:Key="EditAppBarButtonStyle" TargetType="ButtonBase" BasedOn="{StaticResource AppBarButtonStyle}"> <Setter Property="AutomationProperties.AutomationId" Value="EditAppBarButton"/> <Setter Property="AutomationProperties.Name" Value="Edit"/> <Setter Property="Content" Value="&#xE104;"/> </Style> Switching over to App.xaml.cs, it includes some code to help get you started. An OnLaunched() method is added to handle creating a Frame that child pages such as MainPage.xaml can be loaded into. The Frame has the same overall purpose as the one found in WPF and Silverlight applications - it’s used to navigate between pages in an application. /// <summary> /// Invoked when the application is launched normally by the end user. Other entry points /// will be used when the application is launched to open a specific file, to display /// search results, and so forth. /// </summary> /// <param name="args">Details about the launch request and process.</param> protected override void OnLaunched(LaunchActivatedEventArgs args) { Frame rootFrame = Window.Current.Content as Frame; // Do not repeat app initialization when the Window already has content, // just ensure that the window is active if (rootFrame == null) { // Create a Frame to act as the navigation context and navigate to the first page rootFrame = new Frame(); if (args.PreviousExecutionState == ApplicationExecutionState.Terminated) { //TODO: Load state from previously suspended application } // Place the frame in the current Window Window.Current.Content = rootFrame; } if (rootFrame.Content == null) { // When the navigation stack isn't restored navigate to the first page, // configuring the new page by passing required information as a navigation // parameter if (!rootFrame.Navigate(typeof(MainPage), args.Arguments)) { throw new Exception("Failed to create initial page"); } } // Ensure the current window is active Window.Current.Activate(); }   Notice that in addition to creating a Frame the code also checks to see if the app was previously terminated so that you can load any state/data that the user may need when the app is launched again. If you’re new to the lifecycle of Windows 8 store apps the following image shows how an app can be running, suspended, and terminated.   If the user switches from an app they’re running the app will be suspended in memory. The app may stay suspended or may be terminated depending on how much memory the OS thinks it needs so it’s important to save state in case the application is ultimately terminated and has to be started fresh. Although I won’t cover saving application state here, additional information can be found at http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465099.aspx. Another method in App.xaml.cs named OnSuspending() is also included in App.xaml.cs that can be used to store state as the user switches to another application:   /// <summary> /// Invoked when application execution is being suspended. Application state is saved /// without knowing whether the application will be terminated or resumed with the contents /// of memory still intact. /// </summary> /// <param name="sender">The source of the suspend request.</param> /// <param name="e">Details about the suspend request.</param> private void OnSuspending(object sender, SuspendingEventArgs e) { var deferral = e.SuspendingOperation.GetDeferral(); //TODO: Save application state and stop any background activity deferral.Complete(); } The MainPage.xaml and MainPage.xaml.cs Files The Blank App project adds a file named MainPage.xaml that acts as the initial screen for the application. It doesn’t include anything aside from an empty <Grid> XAML element in it. The code-behind class named MainPage.xaml.cs includes a constructor as well as a method named OnNavigatedTo() that is called once the page is displayed in the frame.   /// <summary> /// An empty page that can be used on its own or navigated to within a Frame. /// </summary> public sealed partial class MainPage : Page { public MainPage() { this.InitializeComponent(); } /// <summary> /// Invoked when this page is about to be displayed in a Frame. /// </summary> /// <param name="e">Event data that describes how this page was reached. The Parameter /// property is typically used to configure the page.</param> protected override void OnNavigatedTo(NavigationEventArgs e) { } }   If you’re experienced with XAML you can switch to Design mode and start dragging and dropping XAML controls from the ToolBox in Visual Studio. If you prefer to type XAML you can do that as well in the XAML editor or while in split mode. Many of the controls available in WPF and Silverlight are included such as Canvas, Grid, StackPanel, and Border for layout. Standard input controls are also included such as TextBox, CheckBox, PasswordBox, RadioButton, ComboBox, ListBox, and more. MediaElement is available for rendering video or playing audio files. Some of the “common” XAML controls included out of the box are shown next:   Although XAML/C# Windows 8 store apps don’t include all of the functionality available in Silverlight 5, the core functionality required to build store apps is there with additional functionality available in open source projects such as Callisto (started by Microsoft’s Tim Heuer), Q42.WinRT, and others. Standard XAML data binding can be used to bind C# objects to controls, converters can be used to manipulate data during the data binding process, and custom styles and templates can be applied to controls to modify them. Although Visual Studio 2012 doesn’t support visually creating styles or templates, Expression Blend 5 handles that very well. To get started building the initial screen of a Windows 8 app you can start adding controls as mentioned earlier. Simply place them inside of the <Grid> element that’s included. You can arrange controls in a stacked manner using the StackPanel control, add a border around controls using the Border control, arrange controls in columns and rows using the Grid control, or absolutely position controls using the Canvas control. One of the controls that may be new to you is the AppBar. It can be used to add menu/toolbar functionality into a store app and keep the app clean and focused. You can place an AppBar at the top or bottom of the screen. A user on a touch device can swipe up to display the bottom AppBar or right-click when using a mouse. An example of defining an AppBar that contains an Edit button is shown next. The EditAppBarButtonStyle is available in the StandardStyles.xaml file mentioned earlier. <Page.BottomAppBar> <AppBar x:Name="ApplicationAppBar" Padding="10,0,10,0" AutomationProperties.Name="Bottom App Bar"> <Grid> <StackPanel x:Name="RightPanel" Orientation="Horizontal" Grid.Column="1" HorizontalAlignment="Right"> <Button x:Name="Edit" Style="{StaticResource EditAppBarButtonStyle}" Tag="Edit" /> </StackPanel> </Grid> </AppBar> </Page.BottomAppBar> Like standard XAML controls, the <Button> control in the AppBar can be wired to an event handler method in the MainPage.Xaml.cs file or even bound to a ViewModel object using “commanding” if your app follows the Model-View-ViewModel (MVVM) pattern (check out the MVVM Light package available through NuGet if you’re using MVVM with Windows 8 store apps). The AppBar can be used to navigate to different screens, show and hide controls, display dialogs, show settings screens, and more.   The Package.appxmanifest File The Package.appxmanifest file contains configuration details about your Windows 8 store app. By double-clicking it in Visual Studio you can define the splash screen image, small and wide logo images used for tiles on the start screen, orientation information, and more. You can also define what capabilities the app has such as if it uses the Internet, supports geolocation functionality, requires a microphone or webcam, etc. App declarations such as background processes, file picker functionality, and sharing can also be defined Finally, information about how the app is packaged for deployment to the store can also be defined. Summary If you already have some experience working with XAML technologies you’ll find that getting started building Windows 8 applications is pretty straightforward. Many of the controls available in Silverlight and WPF are available making it easy to get started without having to relearn a lot of new technologies. In the next post in this series I’ll discuss additional features that can be used in your Windows 8 store apps.

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • ASP.NET MVC 3 Hosting :: How to Deploy Web Apps Using ASP.NET MVC 3, Razor and EF Code First - Part I

    - by mbridge
    First, you can download the source code from http://efmvc.codeplex.com. The following frameworks will be used for this step by step tutorial. public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } } Expense Class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } }    Define Domain Model Let’s create domain model for our simple web application Category Class We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First. public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     } RepositoryBasse – Generic Repository class protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } } DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work public interface IUnitOfWork {     void Commit(); } UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } } The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>. public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext. public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } } Let’s create controller factory for Unity in the ASP.NET MVC 3 application.                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   } Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies. private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); } In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity. protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); } Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        } Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>         }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div> We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Category.cshtml @model MyFinance.Domain.Category <div class="editor-label"> @Html.LabelFor(model => model.Name) </div> <div class="editor-field"> @Html.EditorFor(model => model.Name) @Html.ValidationMessageFor(model => model.Name) </div> <div class="editor-label"> @Html.LabelFor(model => model.Description) </div> <div class="editor-field"> @Html.EditorFor(model => model.Description) @Html.ValidationMessageFor(model => model.Description) </div> Let’s create view page for insert Category information @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.     @{     Layout = "~/Views/Shared/_Layout.cshtml"; } Tomorrow, we will cotinue the second part of this article. :)

    Read the article

  • Introducing Microsoft SQL Server 2008 R2 - Business Intelligence Samples

    - by smisner
    On April 14, 2010, Microsoft Press (blog | twitter) released my latest book, co-authored with Ross Mistry (twitter), as a free ebook download - Introducing Microsoft SQL Server 2008 R2. As the title implies, this ebook is an introduction to the latest SQL Server release. Although you'll find a comprehensive review of the product's features in this book, you will not find the step-by-step details that are typical in my other books. For those readers who are interested in a more interactive learning experience, I have created two samples file for download: IntroSQLServer2008R2Samples project Sales Analysis workbook Here's a recap of the business intelligence chapters and the samples I used to generate the screen shots by chapter: Chapter 6: Scalable Data Warehousing covers a new edition of SQL Server, Parallel Data Warehouse. Understandably, Microsoft did not ship me the software and hardware to set up my own Parallel Data Warehouse environment for testing purposes and consequently you won't see any screenshots in this chapter. I received a lot of information and a lot of help from the product team during the development of this chapter to ensure its technical accuracy. Chapter 7: Master Data Services is a new component in SQL Server. After you install Master Data Services (MDS), which is a separate installation from SQL Server although it's found on the same media, you can install sample models to explore (which is what I did to create screenshots for the book). To do this, you deploying packages found at \Program Files\Microsoft SQL Server\Master Data Services\Samples\Packages. You will first need to use the Configuration Manager (in the Microsoft SQL Server 2008 R2\Master Data Services program group) to create a database and a Web application for MDS. Then when you launch the application, you'll see a Getting Started page which has a Deploy Sample Data link that you can use to deploy any of the sample packages. Chapter 8: Complex Event Processing is an introduction to another new component, StreamInsight. This topic was way too large to cover in-depth in a single chapter, so I focused on information such as architecture, development models, and an overview of the key sections of code you'll need to develop for your own applications. StreamInsight is an engine that operates on data in-flight and as such has no user interface that I could include in the book as screenshots. The November CTP version of SQL Server 2008 R2 included code samples as part of the installation, but these are not the official samples that will eventually be available in Codeplex. At the time of this writing, the samples are not yet published. Chapter 9: Reporting Services Enhancements provides an overview of all the changes to Reporting Services in SQL Server 2008 R2, and there are many! In previous posts, I shared more details than you'll find in the book about new functions (Lookup, MultiLookup, and LookupSet), properties for page numbering, and the new global variable RenderFormat. I will confess that I didn't use actual data in the book for my discussion on the Lookup functions, but I did create real reports for the blog posts and will upload those separately. For the other screenshots and examples in the book, I have created the IntroSQLServer2008R2Samples project for you to download. To preview these reports in Business Intelligence Development Studio, you must have the AdventureWorksDW2008R2 database installed, and you must download and install SQL Server 2008 R2. For the map report, you must execute the PopulationData.sql script that I included in the samples file to add a table to the AdventureWorksDW2008R2 database. The IntroSQLServer2008R2Samples project includes the following files: 01_AggregateOfAggregates.rdl to illustrate the use of embedded aggregate functions 02_RenderFormatAndPaging.rdl to illustrate the use of page break properties (Disabled, ResetPageNumber), the PageName property, and the RenderFormat global variable 03_DataSynchronization.rdl to illustrate the use of the DomainScope property 04_TextboxOrientation.rdl to illustrate the use of the WritingMode property 05_DataBar.rdl 06_Sparklines.rdl 07_Indicators.rdl 08_Map.rdl to illustrate a simple analytical map that uses color to show population counts by state PopulationData.sql to provide the data necessary for the map report Chapter 10: Self-Service Analysis with PowerPivot introduces two new components to the Microsoft BI stack, PowerPivot for Excel and PowerPivot for SharePoint, which you can learn more about at the PowerPivot site. To produce the screenshots for this chapter, I created the Sales Analysis workbook which you can download (although you must have Excel 2010 and the PowerPivot for Excel add-in installed to explore it fully). It's a rather simple workbook because space in the book did not permit a complete exploration of all the wonderful things you can do with PowerPivot. I used a tutorial that was available with the CTP version as a basis for the report so it might look familiar if you've already started learning about PowerPivot. In future posts, I'll continue exploring the new features in greater detail. If there's any special requests, please let me know! Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Optimizing collision engine bottleneck

    - by Vittorio Romeo
    Foreword: I'm aware that optimizing this bottleneck is not a necessity - the engine is already very fast. I, however, for fun and educational purposes, would love to find a way to make the engine even faster. I'm creating a general-purpose C++ 2D collision detection/response engine, with an emphasis on flexibility and speed. Here's a very basic diagram of its architecture: Basically, the main class is World, which owns (manages memory) of a ResolverBase*, a SpatialBase* and a vector<Body*>. SpatialBase is a pure virtual class which deals with broad-phase collision detection. ResolverBase is a pure virtual class which deals with collision resolution. The bodies communicate to the World::SpatialBase* with SpatialInfo objects, owned by the bodies themselves. There currenly is one spatial class: Grid : SpatialBase, which is a basic fixed 2D grid. It has it's own info class, GridInfo : SpatialInfo. Here's how its architecture looks: The Grid class owns a 2D array of Cell*. The Cell class contains two collection of (not owned) Body*: a vector<Body*> which contains all the bodies that are in the cell, and a map<int, vector<Body*>> which contains all the bodies that are in the cell, divided in groups. Bodies, in fact, have a groupId int that is used for collision groups. GridInfo objects also contain non-owning pointers to the cells the body is in. As I previously said, the engine is based on groups. Body::getGroups() returns a vector<int> of all the groups the body is part of. Body::getGroupsToCheck() returns a vector<int> of all the groups the body has to check collision against. Bodies can occupy more than a single cell. GridInfo always stores non-owning pointers to the occupied cells. After the bodies move, collision detection happens. We assume that all bodies are axis-aligned bounding boxes. How broad-phase collision detection works: Part 1: spatial info update For each Body body: Top-leftmost occupied cell and bottom-rightmost occupied cells are calculated. If they differ from the previous cells, body.gridInfo.cells is cleared, and filled with all the cells the body occupies (2D for loop from the top-leftmost cell to the bottom-rightmost cell). body is now guaranteed to know what cells it occupies. For a performance boost, it stores a pointer to every map<int, vector<Body*>> of every cell it occupies where the int is a group of body->getGroupsToCheck(). These pointers get stored in gridInfo->queries, which is simply a vector<map<int, vector<Body*>>*>. body is now guaranteed to have a pointer to every vector<Body*> of bodies of groups it needs to check collision against. These pointers are stored in gridInfo->queries. Part 2: actual collision checks For each Body body: body clears and fills a vector<Body*> bodiesToCheck, which contains all the bodies it needs to check against. Duplicates are avoided (bodies can belong to more than one group) by checking if bodiesToCheck already contains the body we're trying to add. const vector<Body*>& GridInfo::getBodiesToCheck() { bodiesToCheck.clear(); for(const auto& q : queries) for(const auto& b : *q) if(!contains(bodiesToCheck, b)) bodiesToCheck.push_back(b); return bodiesToCheck; } The GridInfo::getBodiesToCheck() method IS THE BOTTLENECK. The bodiesToCheck vector must be filled for every body update because bodies could have moved meanwhile. It also needs to prevent duplicate collision checks. The contains function simply checks if the vector already contains a body with std::find. Collision is checked and resolved for every body in bodiesToCheck. That's it. So, I've been trying to optimize this broad-phase collision detection for quite a while now. Every time I try something else than the current architecture/setup, something doesn't go as planned or I make assumption about the simulation that later are proven to be false. My question is: how can I optimize the broad-phase of my collision engine maintaining the grouped bodies approach? Is there some kind of magic C++ optimization that can be applied here? Can the architecture be redesigned in order to allow for more performance? Actual implementation: SSVSCollsion Body.h, Body.cpp World.h, World.cpp Grid.h, Grid.cpp Cell.h, Cell.cpp GridInfo.h, GridInfo.cpp

    Read the article

  • Code Structure / Level Design: Plants vs Zombies game level dissection

    - by lalan
    Hi Friends, I am interested in learning the class structure of Plants vs Zombies, particularly level design; for those who haven't played it - this video contains nice play-through: http://www.youtube.com/watch?v=89DfdOIJ4xw. How would I go ahead and design the code, mostly structure & classes, which allows for maximum flexibility & clean development? I am familiar with data driven design concepts, and would use events to handle most of dynamic behavior. Dissection at macro level: (Once every Level) Load tilemap, props, etc -- basically build the map (Once every Level) Camera Movement - might consider it as short cut-scene (Once every Level) Show Enemies you'll face during present level (Once every Level) Unit Selection Window/Panel - selection of defensive plants (Once every Level) Camera Movement - might consider it as short cut-scene (Once every Level) HUD Creation - based on unit selection (Level Loop) Enemy creation - based on types of zombies allowed (Level Loop) Sun/Resource generation (Level Loop) Show messages like 'huge wave of zombies coming', 'final wave' (Level Loop) Other unique events - Spawn gifts, money, tombstones, etc (Once every Level) Unlock new plant Potential game scripts: a) Level definitions: Level_1_1.xml, Level_1_2.xml, etc. Level_1_1.xml :: Sample script <map> <tilemap>tilemapFrontLawn</tilemap> <SpawnPoints> tiles where particular type of zombies (land vs water) may spawn</spawnPoints> <props> position, entity array -- lawnmower, </props> </map> <zombies> <... list of zombies who gonna attack by ids...> </zombies> <plants> <... list by plants which are available for defense by ids...> </plants> <progression> <ZombieWave name='first wave' spawnScript='zombieLightWave.lua' unlock='null'> <startMessages time=1.5>Ready</startMessages> <endMessages time=1.5>Huge wave of zombies incoming</endMessages> </ZombieWave> </progression> b) Entities definitions: .xmls containing zombies, plants, sun, lawnmower, coins, etc description. Potential classes: //LevelManager - Based on the level under play, it will load level script. Few of the // functions it may have: class LevelManager { public: bool load(string levelFileName); bool enter(); bool update(float deltatime); bool exit(); private: LevelData* mLevelData; } // LevelData - Contains the details of level loaded by LevelManager. class LevelData { private: string file; // array of camera,dialog,attackwaves, etc in active level LevelCutSceneCamera** mArrayCutSceneCamera; LevelCutSceneDialog** mArrayCutSceneDialog; LevelAttackWave** mArrayAttackWave; .... // which camera,dialog,attackwave is active in level uint mCursorCutSceneCamera; uint mCursorCutSceneDialog; uint mCursorAttackWave; public: // based on cursor, get the next camera,dialog,attackwave,etc in active level // return false/true based on failure/success bool nextCutSceneCamera(LevelCutSceneCamera**); bool nextCutSceneDialog(LevelCutSceneDialog**); } // LevelUnderPlay- LevelManager class LevelUnderPlay { private: LevelCutSceneCamera* mCutSceneCamera; LevelCutSceneDialog* mCutSceneDialog; LevelAttackWave* mAttackWave; Entities** mSelectedPlants; Entities** mAllowedZombies; bool isCutSceneCameraActive; public: bool enter(); bool update(float deltatime); bool exit(); } I am totally confused.. :( Does it make sense of using class composition (have flat class hierarchy) for managing levels. Is it a good idea to just add/remove/update sprites (or any drawable stuff) to current scene from LevelManager or LevelUnderPlay? If I want to make non-linear level design, how should I go ahead? Perhaps I would need a LevelProgression class, which would decide what to do based on decision tree. Any suggestions would be appreciated very much. Thank for your time, lalan

    Read the article

  • RTS Voxel Engine using LWJGL - Textures glitching

    - by Dieter Hubau
    I'm currently working on an RTS game engine using voxels. I have implemented a basic chunk manager using an Octree of Octrees which contains my voxels (simple square blocks, as in Minecraft). I'm using a Voronoi-based terrain generation to get a simplistic yet relatively realistic heightmap. I have no problem showing a 256*256*256 grid of voxels with a decent framerate (250), because of frustum culling, face culling and only rendering visible blocks. For example, in a random voxel grid of 256*256*256 I generally only render 100k-120k faces, not counting frustum culling. Frustum culling is only called every 100ms, since calling it every frame seemed a bit overkill. Now I have reached the stage of texturing and I'm experiencing some problems: Some experienced people might already see the problem, but if we zoom in, you can see the glitches more clearly: All the seams between my blocks are glitching and kind of 'overlapping' or something. It's much more visible when you're moving around. I'm using a single, simple texture map to draw on my cubes, where each texture is 16*16 pixels big: I have added black edges around the textures to get a kind of cellshaded look, I think it's cool. The texture map has 256 textures of each 16*16 pixels, meaning the total size of my texture map is 256*256 pixels. The code to update the ChunkManager: public void update(ChunkManager chunkManager) { for (Octree<Cube> chunk : chunks) { if (chunk.getId() < 0) { // generate an id for the chunk to be able to call it later chunk.setId(glGenLists(1)); } glNewList(chunk.getId(), GL_COMPILE); glBegin(GL_QUADS); faces += renderChunk(chunk); glEnd(); glEndList(); } } Where my renderChunk method is: private int renderChunk(Octree<Cube> node) { // keep track of the number of visible faces in this chunk int faces = 0; if (!node.isEmpty()) { if (node.isLeaf()) { faces += renderItem(node); } List<Octree<Cube>> children = node.getChildren(); if (children != null && !children.isEmpty()) { for (Octree<Cube> child : children) { faces += renderChunk(child); } } return faces; } Where my renderItem method is the following: private int renderItem(Octree<Cube> node) { Cube cube = node.getItem(-1, -1, -1); int faces = 0; float x = node.getPosition().x; float y = node.getPosition().y; float z = node.getPosition().z; float size = cube.getSize(); Vector3f point1 = new Vector3f(-size + x, -size + y, size + z); Vector3f point2 = new Vector3f(-size + x, size + y, size + z); Vector3f point3 = new Vector3f(size + x, size + y, size + z); Vector3f point4 = new Vector3f(size + x, -size + y, size + z); Vector3f point5 = new Vector3f(-size + x, -size + y, -size + z); Vector3f point6 = new Vector3f(-size + x, size + y, -size + z); Vector3f point7 = new Vector3f(size + x, size + y, -size + z); Vector3f point8 = new Vector3f(size + x, -size + y, -size + z); TextureCoordinates tc = textureManager.getTextureCoordinates(cube.getCubeType()); // front face if (cube.isVisible(CubeSide.FRONT)) { faces++; glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point1.x, point1.y, point1.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point4.x, point4.y, point4.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point3.x, point3.y, point3.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point2.x, point2.y, point2.z); } // back face if (cube.isVisible(CubeSide.BACK)) { faces++; glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point5.x, point5.y, point5.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point6.x, point6.y, point6.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point7.x, point7.y, point7.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point8.x, point8.y, point8.z); } // left face if (cube.isVisible(CubeSide.SIDE_LEFT)) { faces++; glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point5.x, point5.y, point5.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point1.x, point1.y, point1.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point2.x, point2.y, point2.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point6.x, point6.y, point6.z); } // ETC ETC return faces; } When all this is done, I simply render my lists every frame, like this: public void render(ChunkManager chunkManager) { glBindTexture(GL_TEXTURE_2D, textureManager.getCubeTextureId()); // load all chunks from the tree List<Octree<Cube>> chunks = chunkManager.getTree().getAllItems(); for (Octree<Cube> chunk : chunks) { if (frustum.cubeInFrustum(chunk.getPosition(), chunk.getSize() / 2)) { glCallList(chunk.getId()); } } } I don't know if anyone is willing to go through all of this code or maybe you can spot the problem right away, but that is basically the problem, and I can't find a solution :-) Thanks for reading and any help is appreciated!

    Read the article

  • Camera Projection back Into 3D world, offset error

    - by Anthony
    I'm using XNA to simulate a robot in a 3D world and then do image analysis on what the camera sees. I have my camera looking down in front of the direction that the robot is going, and I have the robot detecting white pixels. I'm trying to take the white pixels that it finds and project them back into the 3D world so that I can see if it is actually detecting the correct pixels. I almost have it working, but there is an offset between where the white is in in the World and were I put my orange triangles (which represent what the robot things is white). /// <summary> /// Takes a bool map of and makes vertex positions based on the map. /// </summary> /// <param name="c"> The bool map</param> private void ProjectBoolMapOnGroundAnthony2(bool[,] c) { float triangleSize = 0.04f; // Point of interest in World W cordinate system. Vector3 pointOfInterest_W = Vector3.Zero; // Point of interest in Robot Cordinate system R Vector3 pointOfInterest_R = Vector3.Zero; // alpha is the angle from the robot camera to where it is looking in the center. //double alpha = Math.Atan(1.8f / 1); /// Matrix representation of the view determined by the position, target, and updirection. Matrix View = ((SimulationMain)Game).mainRobot.robotCameraView.View; /// Matrix representation of the view determined by the angle of the field of view (Pi/4), aspectRatio, nearest plane visible (1), and farthest plane visible (1200) Matrix Projection = ((SimulationMain)Game).mainRobot.robotCameraView.Projection; /// Matrix representing how the real world cordinates differ from that of the rendering by the camera. Matrix World = ((SimulationMain)Game).mainRobot.robotCameraView.World; Plane groundPlan = new Plane(Vector3.UnitZ, 0.0f); for (int x = 0; x < this.screenWidth; x++) { for (int y = 0; y < this.screenHeight; ) { if (c[x, y] == true && this.count1D < 62000) { int j = 1; Vector3 nearPlanePoint = Game.GraphicsDevice.Viewport.Unproject(new Vector3(x, y, 0), Projection, View, World); Vector3 farPlanePoint = Game.GraphicsDevice.Viewport.Unproject(new Vector3(x, y, 1), Projection, View, World); //Vector3 pointOfInterest_W = Vector3.in Ray ray = new Ray(nearPlanePoint, farPlanePoint); pointOfInterest_W = ray.Position + ray.Direction * (float) ray.Intersects(groundPlan); this.vertexArray2[this.count1D + 0].Position.X = pointOfInterest_W.X - triangleSize; this.vertexArray2[this.count1D + 0].Position.Y = pointOfInterest_W.Y - triangleSize * j; this.vertexArray2[this.count1D + 0].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 0].Color = Color.DarkOrange; // Put another vertex a the position but +1 in the X direction triangleSize //this.vertexArray2[this.count1D + 1].Position.X = pointOnGroud.X + 3; //this.vertexArray2[this.count1D + 1].Position.Y = pointOnGroud.Y + j; this.vertexArray2[this.count1D + 1].Position.X = pointOfInterest_W.X; this.vertexArray2[this.count1D + 1].Position.Y = pointOfInterest_W.Y + triangleSize * j; this.vertexArray2[this.count1D + 1].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 1].Color = Color.Red; // Put another vertex a the position but +1 in the X direction //this.vertexArray2[this.count1D + 0].Position.X = pointOnGroud.X; //this.vertexArray2[this.count1D + 0].Position.Y = pointOnGroud.Y + 3 + j; this.vertexArray2[this.count1D + 2].Position.X = pointOfInterest_W.X + triangleSize; this.vertexArray2[this.count1D + 2].Position.Y = pointOfInterest_W.Y - triangleSize * j; this.vertexArray2[this.count1D + 2].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 2].Color = Color.Orange; this.count1D += 3; y += j; } else { y++; } } } } The world is a grass texture with lines on it. The world plane is normal at (0,0,1). Any ideas on why there is an offset? Any Ideas? Thanks for the help, Anthony G.

    Read the article

  • Normal maps red in OpenGL?

    - by KaiserJohaan
    I am using Assimp to import 3d models, and FreeImage to parse textures. The problem I am having is that the normal maps are actually red rather than blue when I try to render them as normal diffuse textures. http://i42.tinypic.com/289ing3.png When I open the images in a image-viewing program they do indeed show up as blue. Heres when I create the texture; OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } Here is my fragment shader. You can see I just commented out the normal-map parsing and treated the normal map texture as the diffuse texture to display it and illustrate the problem. As for the rest of the code it interacts as expected with the diffuse textures so I dont see a obvious problem there. "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Why is this? does normal-map textures need some sort of special treatment in opengl?

    Read the article

  • Simple Project Templates

    - by Geertjan
    The NetBeans sources include a module named "simple.project.templates": In the module sources, Tim Boudreau turns out to be the author of the code, so I asked him what it was all about, and if he could provide some usage code. His response, from approximately this time last year because it's been sitting in my inbox for a while, is below. Sure - though I think the javadoc in it is fairly complete.  I wrote it because I needed to create a bunch of project templates for Javacard, and all of the ways that is usually done were grotesque and complicated.  I figured we already have the ability to create files from templates, and we already have the ability to do substitutions in templates, so why not have a single file that defines the project as a list of file templates to create (with substitutions in the names) and some definitions of what should be in project properties. You can also add files to the project programmatically if you want.Basically, a template for an entire project is a .properties file.  Any line which doesn't have the prefix 'pp.' or 'pvp.' is treated as the definition of one file which should be created in the new project.  Any such line where the key ends in * means that file should be opened once the new project is created.  So, for example, in the nodejs module, the definition looks like: {{projectName}}.js*=Templates/javascript/HelloWorld.js .npmignore=node_hidden_templates/npmignore So, the first line means:  - Create a file with the same name as the project, using the HelloWorld template    - I.e. the left side of the line is the relative path of the file to create, and the right side is the path in the system filesystem for the template to use       - If the template is not one you normally want users to see, just register it in the system filesystem somewhere other than Templates/ (but remember to set the attribute that marks it as a template)  - Include that file in the set of files which should be opened in the editor once the new project is created. To actually create a project, first you just create a new ProjectCreator: ProjectCreator gen = new ProjectCreator( parentFolderOfNewProject ); Now, if you want to programmatically generate any files, in addition to those defined in the template, you can: gen.add (new FileCreator("nbproject", "project.xml", false) {     public DataObject create (FileObject project, Map<String,String> substitutions) throws IOException {          ...     } }); Then pass the FileObject for the project template (the properties file) to the ProjectCreator's createProject method (hmm, maybe it should be the string path to the project template instead, to save the caller trouble looking up the FileObject for the template).  That method looks like this: public final GeneratedProject createProject(final ProgressHandle handle, final String name, final FileObject template, final Map<String, String> substitutions) throws IOException { The name parameter should be the directory name for the new project;  the map is the strings you gathered in the wizard which should be used for substitutions.  createProject should be called on a background thread (i.e. use a ProgressInstantiatingIterator for the wizard iterator and just pass in the ProgressHandle you are given). The return value is a GeneratedProject object, which is just a holder for the created project directory and the set of DataObjects which should be opened when the wizard finishes. I'd love to see simple.project.templates moved out of the javacard cluster, as it is really useful and much simpler than any of the stuff currently done for generating projects.  It would also be possible to do much richer tools for creating projects in apisupport - i.e. choose (or create in the wizard) the templates you want to use, generate a skeleton wizard with a UI for all the properties you'd like to substitute, etc. Here is a partial project template from Javacard - for example usage, see org.netbeans.modules.javacard.wizard.ProjectWizardIterator in javacard.project (or the much simpler one in contrib/nodejs). #This properties file describes what to create when a project template is#instantiated.  The keys are paths on disk relative to the project root. #The values are paths to the templates to use for those files in the system#filesystem.  Any string inside {{ and }}'s will be substituted using properties#gathered in the template wizard.#Special key prefixes are #  pp. - indicates an entry for nbproject/project.properties#  pvp. - indicates an entry for nbproject/private/private.properties #File templates, in format [path-in-project=path-to-template]META-INF/javacard.xml=org-netbeans-modules-javacard/templates/javacard.xmlMETA-INF/MANIFEST.MF=org-netbeans-modules-javacard/templates/EAP_MANIFEST.MF APPLET-INF/applet.xml=org-netbeans-modules-javacard/templates/applet.xmlscripts/{{classnamelowercase}}.scr=org-netbeans-modules-javacard/templates/test.scrsrc/{{packagepath}}/{{classname}}.java*=Templates/javacard/ExtendedApplet.java nbproject/deployment.xml=org-netbeans-modules-javacard/templates/deployment.xml#project.properties contentspp.display.name={{projectname}}pp.platform.active={{activeplatform}} pp.active.device={{activedevice}}pp.includes=**pp.excludes= I will be using the above info in an upcoming blog entry and provide step by step instructions showing how to use them. However, anyone else out there should have enough info from the above to get started yourself!

    Read the article

< Previous Page | 177 178 179 180 181 182 183 184 185 186 187 188  | Next Page >