Search Results

Search found 8161 results on 327 pages for 'django queries'.

Page 182/327 | < Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >

  • Sql Server Express Profiler

    - by csharp-source.net
    Sql Server Express Profiler is a profiler for MS SQL Server 2005 Express . SQL Server Express Edition Profiler provides the most of functionality standard profiler does, such as choosing events to profile, setting filters, etc. But it doesn't provide professional tools for profiling sql queries. This project is a .NET WinForms Application and in future AJAX-enabled web site which provides functionality of Microsoft SQL Profiler.

    Read the article

  • #DAX Query Plan in SQL Server 2012 #Tabular

    - by Marco Russo (SQLBI)
    The SQL Server Profiler provides you many information regarding the internal behavior of DAX queries sent to a BISM Tabular model. Similar to MDX, also in DAX there is a Formula Engine (FE) and a Storage Engine (SE). The SE is usually handled by Vertipaq (unless you are using DirectQuery mode) and Vertipaq SE Query classes of events gives you a SQL-like syntax that represents the query sent to the storage engine. Another interesting class of events is the DAX Query Plan , which contains a couple...(read more)

    Read the article

  • SQLAuthority News – Download Whitepaper – SQL Server Analysis Services to Hive

    - by pinaldave
    The SQL Server Analysis Service is a very interesting subject and I always have enjoyed learning about it. You can read my earlier article over here. Big Data is my new interest and I have been exploring it recently. During this weekend this blog post caught my attention and I enjoyed reading it. Big Data is the next big thing. The growth is predicted to be 60% per year till 2016. There is no single solution to the growing need of the big data available in the market right now as well there is no one solution in the business intelligence eco-system available as well. However, the need of the solution is ever increasing. I am personally Klout user. You can see my Klout profile over. I do understand what Klout is trying to achieve – a single place to measure the influence of the person. However, it works a bit mysteriously. There are plenty of social media available currently in the internet world. The biggest problem all the social media faces is that everybody opens an account but hardly people logs back in. To overcome this issue and have returned visitors Klout has come up with the system where visitors can give 5/10 K+ to other users in a particular area. Looking at all the activities Klout is doing it is indeed big consumer of the Big Data as well it is early adopter of the big data and Hadoop based system.  Klout has to 1 trillion rows of data to be analyzed as well have nearly thousand terabyte warehouse. Hive the language used for Big Data supports Ad-Hoc Queries using HiveQL there are always better solutions. The alternate solution would be using SQL Server Analysis Services (SSAS) along with HiveQL. As there is no direct method to achieve there are few common workarounds already in place. A new ODBC driver from Klout has broken through the limitation and SQL Server Relation Engine can be used as an intermediate stage before SSAS. In this white paper the same solutions have been discussed in the depth. The white paper discusses following important concepts. The Klout Big Data solution Big Data Analytics based on Analysis Services Hadoop/Hive and Analysis Services integration Limitations of direct connectivity Pass-through queries to linked servers Best practices and lessons learned This white paper discussed all the important concepts which have enabled Klout to go go to the next level with all the offerings as well helped efficiency by offering a few out of the box solutions. I personally enjoy reading this white paper and I encourage all of you to do so. SQL Server Analysis Services to Hive Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, T SQL, Technology

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • Good SEO Depends on Your Use of Good Keywords

    In SEO, keywords are of highest significance. Keywords are words or phrases that search engines use in order to correspond internet pages with search queries. It is vital to improve your web site with strategic keywords in order to maximise aimed at traffic. You'll use keywords in both your on-page and off-page optimization.

    Read the article

  • SQL Azure Database Size Calculator

    - by kaleidoscope
    A neat trick on how to measure your database size in SQL Azure.  Here are the exact queries you can run to do it: Select Sum (reserved_page_count) * 8.0 / 1024 From sys.dm_db_partition_stats GO Select sys.objects.name, sum (reserved_page_count) * 8.0 / 1024 From sys.dm_db_partition_stats, sys.objects Where sys.dm_db_partition_stats.object_id = sys.objects.object_id Group by sys.objects.name The first one will give you the size of your database in MB and the second one will do the same, but break it out for each object in your database. http://www.azurejournal.com/2010/03/sql-azure-database-size-calculator/   Ritesh, D

    Read the article

  • Slow in the Application but Fast in SQL Server Management Studio - from Erland

    - by Greg Low
    Our MVP buddy Erland Sommarskog doesn't post articles that often but when he does, you should read them. His latest post is here: http://www.sommarskog.se/query-plan-mysteries.html It talks about why a query might be slow when sent from an application but fast when you execute it in SSMS. But it covers way more than that. There is a great deal of good info on how queries are executed and query plans generated. Highly recommended!...(read more)

    Read the article

  • More on PHP and Oracle 11gR2 Improvements to Client Result Caching

    - by christopher.jones
    Oracle 11.2 brought several improvements to Client Result Caching. CRC is way for the results of queries to be cached in the database client process for reuse.  In an Oracle OpenWorld presentation "Best Practices for Developing Performant Application" my colleague Luxi Chidambaran had a (non-PHP generated) graph for the Niles benchmark that shows a DB CPU reduction up to 600% and response times up to 22% faster when using CRC. Sometimes CRC is called the "Consistent Client Cache" because Oracle automatically invalidates the cache if table data is changed.  This makes it easy to use without needing application logic rewrites. There are a few simple database settings to turn on and tune CRC, so management is also easy. PHP OCI8 as a "client" of the database can use CRC.  The cache is per-process, so plan carefully before caching large data sets.  Tables that are candidates for caching are look-up tables where the network transfer cost dominates. CRC is really easy in 11.2 - I'll get to that in a moment.  It was also pretty easy in Oracle 11.1 but it needed some tiny application changes.  In PHP it was used like: $s = oci_parse($c, "select /*+ result_cache */ * from employees"); oci_execute($s, OCI_NO_AUTO_COMMIT); // Use OCI_DEFAULT in OCI8 <= 1.3 oci_fetch_all($s, $res); I blogged about this in the past.  The query had to include a specific hint that you wanted the results cached, and you needed to turn off auto committing during execution either with the OCI_DEFAULT flag or its new, better-named alias OCI_NO_AUTO_COMMIT.  The no-commit flag rule didn't seem reasonable to me because most people wouldn't be specific about the commit state for a query. Now in Oracle 11.2, DBAs can now nominate tables for caching, either with CREATE TABLE or ALTER TABLE.  That means you don't need the query hint anymore.  As well, the no-commit flag requirement has been lifted.  Your code can now look like: $s = oci_parse($c, "select * from employees"); oci_execute($s); oci_fetch_all($s, $res); Since your code probably already looks like this, your DBA can find the top queries in the database and simply tune the system by turning on CRC in the database and issuing an ALTER TABLE statement for candidate tables.  Voila. Another CRC improvement in Oracle 11.2 is that it works with DRCP connection pooling. There is some fine print about what is and isn't cached, check the Oracle manuals for details.  If you're using 11.1 or non-DRCP "dedicated servers" then make sure you use oci_pconnect() persistent connections.  Also in PHP don't bind strings in the query, although binding as SQLT_INT is OK.

    Read the article

  • SQL SERVER Subquery or Join Various Options SQL Server Engine knows the Best

    This is followup post of my earlier article SQL SERVER Convert IN to EXISTS Performance Talk, after reading all the comments I have received I felt that I could write more on the same subject to clear few things out. First let us run following four queries, all of them are giving exactly [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • What does the impression and ctr means in google webmaster

    - by KoolKabin
    I am checking google webmaster tools. I entered the search queries section. There i found alot keywords and their impression and ctr etc. I clicked on one of the query keyword there it shows the keyword and position in search result, but when i go to google.com and type the specified keyword it shows no impressions too... how do i measure find my site's impression on google.com my site: http://www.trekkingandtoursnepal.com keyword: trekking nepal

    Read the article

  • Getting Started with Columnstore Index in SQL Server 2014 – Part 1

    Column Store Index, which improves performance of data warehouse queries several folds, was first introduced in SQL Server 2012. In this article series Arshad Ali talks about how you can get started with using enhanced columnstore index features in SQL Server 2014 and do some performance tests to understand the benefits. Deployment Manager 2 is now free!The new version includes tons of new features and we've launched a completely free Starter Edition! Get Deployment Manager here

    Read the article

  • Synonyms made easy

    The Custom Search team is always working to provide more relevant results, and improving user queries is a big part of that goal. We've shown you how to...

    Read the article

  • Managing Data Growth in SQL Server

    'Help, my database ate my disk drives!'. Many DBAs spend most of their time dealing with variations of the problem of database processes consuming too much disk space. This happens because of errors such as incorrect configurations for recovery models, data growth for large objects and queries that overtax TempDB resources. Rodney describes, with some feeling, the errors that can lead to this sort of crisis for the working DBA, and their solution.

    Read the article

  • Getting Started with Columnstored Index in SQL Server 2014 – Part 2

    Column Store Index, which improves performance of data warehouse queries several folds, was first introduced in SQL Server 2012. Though it had several limitations, now SQL Server 2014 enhances the columnstore index and overcomes several of the earlier limitations. In this article, Arshad Ali discusses how you can get started using the enhanced columnstore index feature in SQL Server 2014 and do some performance tests.

    Read the article

  • Warming up with GWB ...

    - by lavanyadeepak
    Warming up with GWB ... I had been wishing to blog @GWB for a while but each time I try to register something or other preempted me away from it. On Saturday last I was little free and hence just thought I would sit and register for the same. Thanks to Jeff for helping me in setting up my account and starting to blog at GWB... I would endeavor to support through this platform active troubleshooting tips, problems and solutions to realtime business queries.

    Read the article

  • Getting Started with the New Column Store Index of SQL Server 2012

    Column Store Index, a new feature in SQL Server 2012, improves performance of data warehouse queries several folds. Arshad Ali shows you how to create column store index, and how to use index query hint to include or exclude a column store index. Schedule Azure backupsRed Gate’s Cloud Services makes it simple to create and schedule backups of your SQL Azure databases to Azure blob storage or Amazon S3. Try it for free today.

    Read the article

  • Using IIS Logs for Performance Testing with Visual Studio

    - by Tarun Arora
    In this blog post I’ll show you how you can play back the IIS Logs in Visual Studio to automatically generate the web performance tests. You can also download the sample solution I am demo-ing in the blog post. Introduction Performance testing is as important for new websites as it is for evolving websites. If you already have your website running in production you could mine the information available in IIS logs to analyse the dense zones (most used pages) and performance test those pages rather than wasting time testing & tuning the least used pages in your application. What are IIS Logs To help with server use and analysis, IIS is integrated with several types of log files. These log file formats provide information on a range of websites and specific statistics, including Internet Protocol (IP) addresses, user information and site visits as well as dates, times and queries. If you are using IIS 7 and above you will find the log files in the following directory C:\Interpub\Logs\ Walkthrough 1. Download and Install Log Parser from the Microsoft download Centre. You should see the LogParser.dll in the install folder, the default install location is C:\Program Files (x86)\Log Parser 2.2. LogParser.dll gives us a library to query the iis log files programmatically. By the way if you haven’t used Log Parser in the past, it is a is a powerful, versatile tool that provides universal query access to text-based data such as log files, XML files and CSV files, as well as key data sources on the Windows operating system such as the Event Log, the Registry, the file system, and Active Directory. More details… 2. Create a new test project in Visual Studio. Let’s call it IISLogsToWebPerfTestDemo.   3.  Delete the UnitTest1.cs class that gets created by default. Right click the solution and add a project of type class library, name it, IISLogsToWebPerfTestEngine. Delete the default class Program.cs that gets created with the project. 4. Under the IISLogsToWebPerfTestEngine project add a reference to Microsoft.VisualStudio.QualityTools.WebTestFramework – c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies\Microsoft.VisualStudio.QualityTools.WebTestFramework.dll LogParser also called MSUtil - c:\users\tarora\documents\visual studio 2010\Projects\IisLogsToWebPerfTest\IisLogsToWebPerfTestEngine\obj\Debug\Interop.MSUtil.dll 5. Right click IISLogsToWebPerfTestEngine project and add a new classes – IISLogReader.cs The IISLogReader class queries the iis logs using the log parser. using System; using System.Collections.Generic; using System.Text; using MSUtil; using LogQuery = MSUtil.LogQueryClassClass; using IISLogInputFormat = MSUtil.COMIISW3CInputContextClassClass; using LogRecordSet = MSUtil.ILogRecordset; using Microsoft.VisualStudio.TestTools.WebTesting; using System.Diagnostics; namespace IisLogsToWebPerfTestEngine { // By making use of log parser it is possible to query the iis log using select queries public class IISLogReader { private string _iisLogPath; public IISLogReader(string iisLogPath) { _iisLogPath = iisLogPath; } public IEnumerable<WebTestRequest> GetRequests() { LogQuery logQuery = new LogQuery(); IISLogInputFormat iisInputFormat = new IISLogInputFormat(); // currently these columns give us suffient information to construct the web test requests string query = @"SELECT s-ip, s-port, cs-method, cs-uri-stem, cs-uri-query FROM " + _iisLogPath; LogRecordSet recordSet = logQuery.Execute(query, iisInputFormat); // Apply a bit of transformation while (!recordSet.atEnd()) { ILogRecord record = recordSet.getRecord(); if (record.getValueEx("cs-method").ToString() == "GET") { string server = record.getValueEx("s-ip").ToString(); string path = record.getValueEx("cs-uri-stem").ToString(); string querystring = record.getValueEx("cs-uri-query").ToString(); StringBuilder urlBuilder = new StringBuilder(); urlBuilder.Append("http://"); urlBuilder.Append(server); urlBuilder.Append(path); if (!String.IsNullOrEmpty(querystring)) { urlBuilder.Append("?"); urlBuilder.Append(querystring); } // You could make substitutions by introducing parameterized web tests. WebTestRequest request = new WebTestRequest(urlBuilder.ToString()); Debug.WriteLine(request.UrlWithQueryString); yield return request; } recordSet.moveNext(); } Console.WriteLine(" That's it! Closing the reader"); recordSet.close(); } } }   6. Connect the dots by adding the project reference ‘IisLogsToWebPerfTestEngine’ to ‘IisLogsToWebPerfTest’. Right click the ‘IisLogsToWebPerfTest’ project and add a new class ‘WebTest1Coded.cs’ The WebTest1Coded.cs inherits from the WebTest class. By overriding the GetRequestMethod we can inject the log files to the IISLogReader class which uses Log parser to query the log file and extract the web requests to generate the web test request which is yielded back for play back when the test is run. namespace IisLogsToWebPerfTest { using System; using System.Collections.Generic; using System.Text; using Microsoft.VisualStudio.TestTools.WebTesting; using Microsoft.VisualStudio.TestTools.WebTesting.Rules; using IisLogsToWebPerfTestEngine; // This class is a coded web performance test implementation, that simply passes // the path of the iis logs to the IisLogReader class which does the heavy // lifting of reading the contents of the log file and converting them to tests. // You could have multiple such classes that inherit from WebTest and implement // GetRequestEnumerator Method and pass differnt log files for different tests. public class WebTest1Coded : WebTest { public WebTest1Coded() { this.PreAuthenticate = true; } public override IEnumerator<WebTestRequest> GetRequestEnumerator() { // substitute the highlighted path with the path of the iis log file IISLogReader reader = new IISLogReader(@"C:\Demo\iisLog1.log"); foreach (WebTestRequest request in reader.GetRequests()) { yield return request; } } } }   7. Its time to fire the test off and see the iis log playback as a web performance test. From the Test menu choose Test View Window you should be able to see the WebTest1Coded test show up. Highlight the test and press Run selection (you can also debug the test in case you face any failures during test execution). 8. Optionally you can create a Load Test by keeping ‘WebTest1Coded’ as the base test. Conclusion You have just helped your testing team, you now have become the coolest developer in your organization! Jokes apart, log parser and web performance test together allow you to save a lot of time by not having to worry about what to test or even worrying about how to record the test. If you haven’t already, download the solution from here. You can take this to the next level by using LogParser to extract the log files as part of an end of day batch to a database. See the usage trends by user this solution over a longer term and have your tests consume the web requests now stored in the database to generate the web performance tests. If you like the post, don’t forget to share … Keep RocKiNg!

    Read the article

  • Do you know your DNS server?

    - by John Paul Cook
    If you don’t know your DNS server is valid, you need to find out before July 9. The FBI found rogue DNS servers and replaced them with clean, safe DNS servers to protect the public. These safe, clean servers will be turned off on July 9, 2012. If your computer was compromised to use the rogue servers, it will stop resolving DNS queries on July 9 when the clean servers are turned off. The FBI has provided full technical details at http://www.fbi.gov/news/stories/2011/november/malware_110911/DNS-changer-malware.pdf...(read more)

    Read the article

  • Using Full Text Search in SQL Server 2008

    Introduction SQL Server 2008 Full-Text Search feature can be used by application developers to execute full-text search queries against character based data residing in  a SQL Server table. To use full text search the developer must create a full-text ... [Read Full Article]

    Read the article

  • SQL Server Indexed Views

    Views can be an effective tool for speeding up your selects and simplifying complex queries. Learn what indexed views are, where you might want to use them, how to create them, and what constraints exist with their use.

    Read the article

  • Resource Governor

    If you suffer from runaway queries, if you have several database applications with unpredictable fluctuation in workload, or if you need to ensure that workloads get the memory or CPU they need according to certain priorities, then you need Resource Governer, and you need Roy Ernest's clear explanation of the technology. Get Smart with SQL Backup Pro Powerful centralised management, encryption and more.SQL Backup Pro was the smartest kid at school Discover why.

    Read the article

  • WordPress - Emergency Access Without Admin Accounts

    In some cases, when you need to do something in a WordPress website, but all you have is only access to WordPress database and FTP, and you cannot get the admin password from the database because it's decrypted. All changes you have to make via some low level MySQL queries, it's hard and easy mistaken. Joost de Valk has written a script for emergency access to WordPress dashboard by changing admin password or creating new user.

    Read the article

< Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >