Search Results

Search found 4603 results on 185 pages for 'lower bound'.

Page 182/185 | < Previous Page | 178 179 180 181 182 183 184 185  | Next Page >

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Fed Authentication Methods in OIF / IdP

    - by Damien Carru
    This article is a continuation of my previous entry where I explained how OIF/IdP leverages OAM to authenticate users at runtime: OIF/IdP internally forwards the user to OAM and indicates which Authentication Scheme should be used to challenge the user if needed OAM determine if the user should be challenged (user already authenticated, session timed out or not, session authentication level equal or higher than the level of the authentication scheme specified by OIF/IdP…) After identifying the user, OAM internally forwards the user back to OIF/IdP OIF/IdP can resume its operation In this article, I will discuss how OIF/IdP can be configured to map Federation Authentication Methods to OAM Authentication Schemes: When processing an Authn Request, where the SP requests a specific Federation Authentication Method with which the user should be challenged When sending an Assertion, where OIF/IdP sets the Federation Authentication Method in the Assertion Enjoy the reading! Overview The various Federation protocols support mechanisms allowing the partners to exchange information on: How the user should be challenged, when the SP/RP makes a request How the user was challenged, when the IdP/OP issues an SSO response When a remote SP partner redirects the user to OIF/IdP for Federation SSO, the message might contain data requesting how the user should be challenged by the IdP: this is treated as the Requested Federation Authentication Method. OIF/IdP will need to map that Requested Federation Authentication Method to a local Authentication Scheme, and then invoke OAM for user authentication/challenge with the mapped Authentication Scheme. OAM would authenticate the user if necessary with the scheme specified by OIF/IdP. Similarly, when an IdP issues an SSO response, most of the time it will need to include an identifier representing how the user was challenged: this is treated as the Federation Authentication Method. When OIF/IdP issues an Assertion, it will evaluate the Authentication Scheme with which OAM identified the user: If the Authentication Scheme can be mapped to a Federation Authentication Method, then OIF/IdP will use the result of that mapping in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled If the Authentication Scheme cannot be mapped, then OIF/IdP will set the Federation Authentication Method as the Authentication Scheme name in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled Mappings In OIF/IdP, the mapping between Federation Authentication Methods and Authentication Schemes has the following rules: One Federation Authentication Method can be mapped to several Authentication Schemes In a Federation Authentication Method <-> Authentication Schemes mapping, a single Authentication Scheme is marked as the default scheme that will be used to authenticate a user, if the SP/RP partner requests the user to be authenticated via a specific Federation Authentication Method An Authentication Scheme can be mapped to a single Federation Authentication Method Let’s examine the following example and the various use cases, based on the SAML 2.0 protocol: Mappings defined as: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport mapped to LDAPScheme, marked as the default scheme used for authentication BasicScheme urn:oasis:names:tc:SAML:2.0:ac:classes:X509 mapped to X509Scheme, marked as the default scheme used for authentication Use cases: SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:X509 as the RequestedAuthnContext: OIF/IdP will authenticate the use with X509Scheme since it is the default scheme mapped for that method. SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the RequestedAuthnContext: OIF/IdP will authenticate the use with LDAPScheme since it is the default scheme mapped for that method, not the BasicScheme SP did not request any specific methods, and user was authenticated with BasisScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with LDAPScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with BasisSessionlessScheme: OIF/IdP will issue an Assertion with BasisSessionlessScheme as the FederationAuthenticationMethod, since that scheme could not be mapped to any Federation Authentication Method (in this case, the administrator would need to correct that and create a mapping) Configuration Mapping Federation Authentication Methods to OAM Authentication Schemes is protocol dependent, since the methods are defined in the various protocols (SAML 2.0, SAML 1.1, OpenID 2.0). As such, the WLST commands to set those mappings will involve: Either the SP Partner Profile and affect all Partners referencing that profile, which do not override the Federation Authentication Method to OAM Authentication Scheme mappings Or the SP Partner entry, which will only affect the SP Partner It is important to note that if an SP Partner is configured to define one or more Federation Authentication Method to OAM Authentication Scheme mappings, then all the mappings defined in the SP Partner Profile will be ignored. Authentication Schemes As discussed in the previous article, during Federation SSO, OIF/IdP will internally forward the user to OAM for authentication/verification and specify which Authentication Scheme to use. OAM will determine if a user needs to be challenged: If the user is not authenticated yet If the user is authenticated but the session timed out If the user is authenticated, but the authentication scheme level of the original authentication is lower than the level of the authentication scheme requested by OIF/IdP So even though an SP requests a specific Federation Authentication Method to be used to challenge the user, if that method is mapped to an Authentication Scheme and that at runtime OAM deems that the user does not need to be challenged with that scheme (because the user is already authenticated, session did not time out, and the session authn level is equal or higher than the one for the specified Authentication Scheme), the flow won’t result in a challenge operation. Protocols SAML 2.0 The SAML 2.0 specifications define the following Federation Authentication Methods for SAML 2.0 flows: urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard urn:oasis:names:tc:SAML:2.0:ac:classes:Password urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword urn:oasis:names:tc:SAML:2.0:ac:classes:X509 urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient urn:oasis:names:tc:SAML:2.0:ac:classes:PGP urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken Out of the box, OIF/IdP has the following mappings for the SAML 2.0 protocol: Only urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml20-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 2.0 An example of an AuthnRequest message sent by an SP to an IdP with the SP requesting a specific Federation Authentication Method to be used to challenge the user would be: <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" Destination="https://idp.com/oamfed/idp/samlv20" ID="id-8bWn-A9o4aoMl3Nhx1DuPOOjawc-" IssueInstant="2014-03-21T20:51:11Z" Version="2.0">  <saml:Issuer ...>https://acme.com/sp</saml:Issuer>  <samlp:NameIDPolicy AllowCreate="false" Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>  <samlp:RequestedAuthnContext Comparison="minimum">    <saml:AuthnContextClassRef xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">      urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport </saml:AuthnContextClassRef>  </samlp:RequestedAuthnContext></samlp:AuthnRequest> An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                    urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> An administrator would be able to specify a mapping between a SAML 2.0 Federation Authentication Method and one or more OAM Authentication Schemes SAML 1.1 The SAML 1.1 specifications define the following Federation Authentication Methods for SAML 1.1 flows: urn:oasis:names:tc:SAML:1.0:am:unspecified urn:oasis:names:tc:SAML:1.0:am:HardwareToken urn:oasis:names:tc:SAML:1.0:am:password urn:oasis:names:tc:SAML:1.0:am:X509-PKI urn:ietf:rfc:2246 urn:oasis:names:tc:SAML:1.0:am:PGP urn:oasis:names:tc:SAML:1.0:am:SPKI urn:ietf:rfc:3075 urn:oasis:names:tc:SAML:1.0:am:XKMS urn:ietf:rfc:1510 urn:ietf:rfc:2945 Out of the box, OIF/IdP has the following mappings for the SAML 1.1 protocol: Only urn:oasis:names:tc:SAML:1.0:am:password is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml11-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 1.1 An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameID ...>[email protected]</saml:NameID>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Note: SAML 1.1 does not define an AuthnRequest message. An administrator would be able to specify a mapping between a SAML 1.1 Federation Authentication Method and one or more OAM Authentication Schemes OpenID 2.0 The OpenID 2.0 PAPE specifications define the following Federation Authentication Methods for OpenID 2.0 flows: http://schemas.openid.net/pape/policies/2007/06/phishing-resistant http://schemas.openid.net/pape/policies/2007/06/multi-factor http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical Out of the box, OIF/IdP does not define any mappings for the OpenID 2.0 Federation Authentication Methods. For OpenID 2.0, the configuration will involve mapping a list of OpenID 2.0 policies to a list of Authentication Schemes. An example of an OpenID 2.0 Request message sent by an SP/RP to an IdP/OP would be: https://idp.com/openid?openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=checkid_setup&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.realm=https%3A%2F%2Facme.com%2Fopenid&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_request&openid.ax.type.attr0=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.if_available=attr0&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.max_auth_age=0 An example of an Open ID 2.0 SSO Response issued by an IdP/OP would be: https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=http%3A%2F%2Fschemas.openid.net%2Fpape%2Fpolicies%2F2007%2F06%2Fphishing-resistant&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D In the next article, I will provide examples on how to configure OIF/IdP for the various protocols, to map OAM Authentication Schemes to Federation Authentication Methods.Cheers,Damien Carru

    Read the article

  • Help with Collision Resolution?

    - by Milo
    I'm trying to learn about physics by trying to make a simplified GTA 2 clone. My only problem is collision resolution. Everything else works great. I have a rigid body class and from there cars and a wheel class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private OBB2D predictionRect = new OBB2D(new Vector2D(), 1.0f, 1.0f, 0.0f); private float mass; private Vector2D deltaVec = new Vector2D(); private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); predictionRect.set(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); rectChanged(); } public void setPredictionLocation(Vector2D position, float angle) { getPredictionRect().set(position, getWidth(), getHeight(), angle); } public void setPredictionCenter(Vector2D center) { getPredictionRect().moveTo(center); } public void setPredictionAngle(float angle) { predictionRect.setAngle(angle); } public Vector2D getPosition() { return getRect().getCenter(); } public OBB2D getPredictionRect() { return predictionRect; } @Override public void update(float timeStep) { doUpdate(false,timeStep); } public void doUpdate(boolean prediction, float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); if(prediction) { Vector2D velocity = Vector2D.add(this.velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setPredictionCenter(c); //forces = new Vector2D(0,0); //clear forces } else { velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); deltaVec.x = v.x - c.x; deltaVec.y = v.y - c.y; deltaVec.normalize(); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; } //angular float angAcc = torque / inertia; if(prediction) { float angularVelocity = this.angularVelocity + angAcc * timeStep; setPredictionAngle(getAngle() + angularVelocity * timeStep); //torque = 0; //clear torque } else { angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } } public void updatePrediction(float timeStep) { doUpdate(true, timeStep); } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } public Vector2D getDeltaVec() { return deltaVec; } } Vehicle public class Wheel { private Vector2D forwardVec; private Vector2D sideVec; private float wheelTorque; private float wheelSpeed; private float wheelInertia; private float wheelRadius; private Vector2D position = new Vector2D(); public Wheel(Vector2D position, float radius) { this.position = position; setSteeringAngle(0); wheelSpeed = 0; wheelRadius = radius; wheelInertia = (radius * radius) * 1.1f; } public void setSteeringAngle(float newAngle) { Matrix mat = new Matrix(); float []vecArray = new float[4]; //forward Vector vecArray[0] = 0; vecArray[1] = 1; //side Vector vecArray[2] = -1; vecArray[3] = 0; mat.postRotate(newAngle / (float)Math.PI * 180.0f); mat.mapVectors(vecArray); forwardVec = new Vector2D(vecArray[0], vecArray[1]); sideVec = new Vector2D(vecArray[2], vecArray[3]); } public void addTransmissionTorque(float newValue) { wheelTorque += newValue; } public float getWheelSpeed() { return wheelSpeed; } public Vector2D getAnchorPoint() { return position; } public Vector2D calculateForce(Vector2D relativeGroundSpeed, float timeStep, boolean prediction) { //calculate speed of tire patch at ground Vector2D patchSpeed = Vector2D.scalarMultiply(Vector2D.scalarMultiply( Vector2D.negative(forwardVec), wheelSpeed), wheelRadius); //get velocity difference between ground and patch Vector2D velDifference = Vector2D.add(relativeGroundSpeed , patchSpeed); //project ground speed onto side axis Float forwardMag = new Float(0.0f); Vector2D sideVel = velDifference.project(sideVec); Vector2D forwardVel = velDifference.project(forwardVec, forwardMag); //calculate super fake friction forces //calculate response force Vector2D responseForce = Vector2D.scalarMultiply(Vector2D.negative(sideVel), 2.0f); responseForce = Vector2D.subtract(responseForce, forwardVel); float topSpeed = 500.0f; //calculate torque on wheel wheelTorque += forwardMag * wheelRadius; //integrate total torque into wheel wheelSpeed += wheelTorque / wheelInertia * timeStep; //top speed limit (kind of a hack) if(wheelSpeed > topSpeed) { wheelSpeed = topSpeed; } //clear our transmission torque accumulator wheelTorque = 0; //return force acting on body return responseForce; } public void setTransmissionTorque(float newValue) { wheelTorque = newValue; } public float getTransmissionTourque() { return wheelTorque; } public void setWheelSpeed(float speed) { wheelSpeed = speed; } } //our vehicle object public class Vehicle extends RigidBody { private Wheel [] wheels = new Wheel[4]; private boolean throttled = false; public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //front wheels wheels[0] = new Wheel(new Vector2D(halfSize.x, halfSize.y), 0.45f); wheels[1] = new Wheel(new Vector2D(-halfSize.x, halfSize.y), 0.45f); //rear wheels wheels[2] = new Wheel(new Vector2D(halfSize.x, -halfSize.y), 0.75f); wheels[3] = new Wheel(new Vector2D(-halfSize.x, -halfSize.y), 0.75f); super.initialize(halfSize, mass, bitmap); } public void setSteering(float steering) { float steeringLock = 0.13f; //apply steering angle to front wheels wheels[0].setSteeringAngle(steering * steeringLock); wheels[1].setSteeringAngle(steering * steeringLock); } public void setThrottle(float throttle, boolean allWheel) { float torque = 85.0f; throttled = true; //apply transmission torque to back wheels if (allWheel) { wheels[0].addTransmissionTorque(throttle * torque); wheels[1].addTransmissionTorque(throttle * torque); } wheels[2].addTransmissionTorque(throttle * torque); wheels[3].addTransmissionTorque(throttle * torque); } public void setBrakes(float brakes) { float brakeTorque = 15.0f; //apply brake torque opposing wheel vel for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); wheel.addTransmissionTorque(-wheelVel * brakeTorque * brakes); } } public void doUpdate(float timeStep, boolean prediction) { for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); //apply negative force to naturally slow down car if(!throttled && !prediction) wheel.addTransmissionTorque(-wheelVel * 0.11f); Vector2D worldWheelOffset = relativeToWorld(wheel.getAnchorPoint()); Vector2D worldGroundVel = pointVelocity(worldWheelOffset); Vector2D relativeGroundSpeed = worldToRelative(worldGroundVel); Vector2D relativeResponseForce = wheel.calculateForce(relativeGroundSpeed, timeStep,prediction); Vector2D worldResponseForce = relativeToWorld(relativeResponseForce); applyForce(worldResponseForce, worldWheelOffset); } //no throttling yet this frame throttled = false; if(prediction) { super.updatePrediction(timeStep); } else { super.update(timeStep); } } @Override public void update(float timeStep) { doUpdate(timeStep,false); } public void updatePrediction(float timeStep) { doUpdate(timeStep,true); } public void inverseThrottle() { float scalar = 0.2f; for(Wheel wheel : wheels) { wheel.setTransmissionTorque(-wheel.getTransmissionTourque() * scalar); wheel.setWheelSpeed(-wheel.getWheelSpeed() * 0.1f); } } } And my big hack collision resolution: private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_STEAL_CAR)) { vehicle.setThrottle(-1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); //vehicle.update(16.6666666f / 1000.0f); boolean colided = false; vehicle.updatePrediction(16.66666f / 1000.0f); List<Entity> buildings = world.queryStaticSolid(vehicle,vehicle.getPredictionRect()); if(buildings.size() > 0) { colided = true; } if(!colided) { vehicle.update(16.66f / 1000.0f); } else { Vector2D delta = vehicle.getDeltaVec(); vehicle.setVelocity(Vector2D.negative(vehicle.getVelocity().multiply(0.2f)). add(delta.multiply(-1.0f))); vehicle.inverseThrottle(); } } Here is OBB public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } }; What I do is when I predict a hit on the car, I force it back. It does not work that well and seems like a bad idea. What could I do to have more proper collision resolution. Such that if I hit a wall I will never get stuck in it and if I hit the side of a wall I can steer my way out of it. Thanks I found this nice ppt. It talks about pulling objects apart and calculating new velocities. How could I calc new velocities in my case? http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fcoitweb.uncc.edu%2F~tbarnes2%2FGameDesignFall05%2FSlides%2FCh4.2-CollDet.ppt&ei=x4ucULy5M6-N0QGRy4D4Cg&usg=AFQjCNG7FVDXWRdLv8_-T5qnFyYld53cTQ&cad=rja

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • Virtual host is not working in Ubuntu 14 VPS using XAMPP 1.8.3

    - by viral4ever
    I am using XAMPP as server in ubuntu 14.04 VPS of digitalocean. I tried to setup virtual hosts. But it is not working and I am getting 403 error of access denied. I changed files too. My files with changes are /opt/lampp/etc/httpd.conf # # This is the main Apache HTTP server configuration file. It contains the # configuration directives that give the server its instructions. # See <URL:http://httpd.apache.org/docs/trunk/> for detailed information. # In particular, see # <URL:http://httpd.apache.org/docs/trunk/mod/directives.html> # for a discussion of each configuration directive. # # Do NOT simply read the instructions in here without understanding # what they do. They're here only as hints or reminders. If you are unsure # consult the online docs. You have been warned. # # Configuration and logfile names: If the filenames you specify for many # of the server's control files begin with "/" (or "drive:/" for Win32), the # server will use that explicit path. If the filenames do *not* begin # with "/", the value of ServerRoot is prepended -- so 'log/access_log' # with ServerRoot set to '/www' will be interpreted by the # server as '/www/log/access_log', where as '/log/access_log' will be # interpreted as '/log/access_log'. # # ServerRoot: The top of the directory tree under which the server's # configuration, error, and log files are kept. # # Do not add a slash at the end of the directory path. If you point # ServerRoot at a non-local disk, be sure to specify a local disk on the # Mutex directive, if file-based mutexes are used. If you wish to share the # same ServerRoot for multiple httpd daemons, you will need to change at # least PidFile. # ServerRoot "/opt/lampp" # # Mutex: Allows you to set the mutex mechanism and mutex file directory # for individual mutexes, or change the global defaults # # Uncomment and change the directory if mutexes are file-based and the default # mutex file directory is not on a local disk or is not appropriate for some # other reason. # # Mutex default:logs # # Listen: Allows you to bind Apache to specific IP addresses and/or # ports, instead of the default. See also the <VirtualHost> # directive. # # Change this to Listen on specific IP addresses as shown below to # prevent Apache from glomming onto all bound IP addresses. # #Listen 12.34.56.78:80 Listen 80 # # Dynamic Shared Object (DSO) Support # # To be able to use the functionality of a module which was built as a DSO you # have to place corresponding `LoadModule' lines at this location so the # directives contained in it are actually available _before_ they are used. # Statically compiled modules (those listed by `httpd -l') do not need # to be loaded here. # # Example: # LoadModule foo_module modules/mod_foo.so # LoadModule authn_file_module modules/mod_authn_file.so LoadModule authn_dbm_module modules/mod_authn_dbm.so LoadModule authn_anon_module modules/mod_authn_anon.so LoadModule authn_dbd_module modules/mod_authn_dbd.so LoadModule authn_socache_module modules/mod_authn_socache.so LoadModule authn_core_module modules/mod_authn_core.so LoadModule authz_host_module modules/mod_authz_host.so LoadModule authz_groupfile_module modules/mod_authz_groupfile.so LoadModule authz_user_module modules/mod_authz_user.so LoadModule authz_dbm_module modules/mod_authz_dbm.so LoadModule authz_owner_module modules/mod_authz_owner.so LoadModule authz_dbd_module modules/mod_authz_dbd.so LoadModule authz_core_module modules/mod_authz_core.so LoadModule authnz_ldap_module modules/mod_authnz_ldap.so LoadModule access_compat_module modules/mod_access_compat.so LoadModule auth_basic_module modules/mod_auth_basic.so LoadModule auth_form_module modules/mod_auth_form.so LoadModule auth_digest_module modules/mod_auth_digest.so LoadModule allowmethods_module modules/mod_allowmethods.so LoadModule file_cache_module modules/mod_file_cache.so LoadModule cache_module modules/mod_cache.so LoadModule cache_disk_module modules/mod_cache_disk.so LoadModule socache_shmcb_module modules/mod_socache_shmcb.so LoadModule socache_dbm_module modules/mod_socache_dbm.so LoadModule socache_memcache_module modules/mod_socache_memcache.so LoadModule dbd_module modules/mod_dbd.so LoadModule bucketeer_module modules/mod_bucketeer.so LoadModule dumpio_module modules/mod_dumpio.so LoadModule echo_module modules/mod_echo.so LoadModule case_filter_module modules/mod_case_filter.so LoadModule case_filter_in_module modules/mod_case_filter_in.so LoadModule buffer_module modules/mod_buffer.so LoadModule ratelimit_module modules/mod_ratelimit.so LoadModule reqtimeout_module modules/mod_reqtimeout.so LoadModule ext_filter_module modules/mod_ext_filter.so LoadModule request_module modules/mod_request.so LoadModule include_module modules/mod_include.so LoadModule filter_module modules/mod_filter.so LoadModule substitute_module modules/mod_substitute.so LoadModule sed_module modules/mod_sed.so LoadModule charset_lite_module modules/mod_charset_lite.so LoadModule deflate_module modules/mod_deflate.so LoadModule mime_module modules/mod_mime.so LoadModule ldap_module modules/mod_ldap.so LoadModule log_config_module modules/mod_log_config.so LoadModule log_debug_module modules/mod_log_debug.so LoadModule logio_module modules/mod_logio.so LoadModule env_module modules/mod_env.so LoadModule mime_magic_module modules/mod_mime_magic.so LoadModule cern_meta_module modules/mod_cern_meta.so LoadModule expires_module modules/mod_expires.so LoadModule headers_module modules/mod_headers.so LoadModule usertrack_module modules/mod_usertrack.so LoadModule unique_id_module modules/mod_unique_id.so LoadModule setenvif_module modules/mod_setenvif.so LoadModule version_module modules/mod_version.so LoadModule remoteip_module modules/mod_remoteip.so LoadModule proxy_module modules/mod_proxy.so LoadModule proxy_connect_module modules/mod_proxy_connect.so LoadModule proxy_ftp_module modules/mod_proxy_ftp.so LoadModule proxy_http_module modules/mod_proxy_http.so LoadModule proxy_fcgi_module modules/mod_proxy_fcgi.so LoadModule proxy_scgi_module modules/mod_proxy_scgi.so LoadModule proxy_ajp_module modules/mod_proxy_ajp.so LoadModule proxy_balancer_module modules/mod_proxy_balancer.so LoadModule proxy_express_module modules/mod_proxy_express.so LoadModule session_module modules/mod_session.so LoadModule session_cookie_module modules/mod_session_cookie.so LoadModule session_dbd_module modules/mod_session_dbd.so LoadModule slotmem_shm_module modules/mod_slotmem_shm.so LoadModule ssl_module modules/mod_ssl.so LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so LoadModule lbmethod_bytraffic_module modules/mod_lbmethod_bytraffic.so LoadModule lbmethod_bybusyness_module modules/mod_lbmethod_bybusyness.so LoadModule lbmethod_heartbeat_module modules/mod_lbmethod_heartbeat.so LoadModule unixd_module modules/mod_unixd.so LoadModule dav_module modules/mod_dav.so LoadModule status_module modules/mod_status.so LoadModule autoindex_module modules/mod_autoindex.so LoadModule info_module modules/mod_info.so LoadModule suexec_module modules/mod_suexec.so LoadModule cgi_module modules/mod_cgi.so LoadModule cgid_module modules/mod_cgid.so LoadModule dav_fs_module modules/mod_dav_fs.so LoadModule vhost_alias_module modules/mod_vhost_alias.so LoadModule negotiation_module modules/mod_negotiation.so LoadModule dir_module modules/mod_dir.so LoadModule actions_module modules/mod_actions.so LoadModule speling_module modules/mod_speling.so LoadModule userdir_module modules/mod_userdir.so LoadModule alias_module modules/mod_alias.so LoadModule rewrite_module modules/mod_rewrite.so <IfDefine JUSTTOMAKEAPXSHAPPY> LoadModule php4_module modules/libphp4.so LoadModule php5_module modules/libphp5.so </IfDefine> <IfModule unixd_module> # # If you wish httpd to run as a different user or group, you must run # httpd as root initially and it will switch. # # User/Group: The name (or #number) of the user/group to run httpd as. # It is usually good practice to create a dedicated user and group for # running httpd, as with most system services. # User root Group www </IfModule> # 'Main' server configuration # # The directives in this section set up the values used by the 'main' # server, which responds to any requests that aren't handled by a # <VirtualHost> definition. These values also provide defaults for # any <VirtualHost> containers you may define later in the file. # # All of these directives may appear inside <VirtualHost> containers, # in which case these default settings will be overridden for the # virtual host being defined. # # # ServerAdmin: Your address, where problems with the server should be # e-mailed. This address appears on some server-generated pages, such # as error documents. e.g. [email protected] # ServerAdmin [email protected] # # ServerName gives the name and port that the server uses to identify itself. # This can often be determined automatically, but we recommend you specify # it explicitly to prevent problems during startup. # # If your host doesn't have a registered DNS name, enter its IP address here. # #ServerName www.example.com:@@Port@@ # XAMPP ServerName localhost # # Deny access to the entirety of your server's filesystem. You must # explicitly permit access to web content directories in other # <Directory> blocks below. # <Directory /> AllowOverride none Require all denied </Directory> # # Note that from this point forward you must specifically allow # particular features to be enabled - so if something's not working as # you might expect, make sure that you have specifically enabled it # below. # # # DocumentRoot: The directory out of which you will serve your # documents. By default, all requests are taken from this directory, but # symbolic links and aliases may be used to point to other locations. # DocumentRoot "/opt/lampp/htdocs" <Directory "/opt/lampp/htdocs"> # # Possible values for the Options directive are "None", "All", # or any combination of: # Indexes Includes FollowSymLinks SymLinksifOwnerMatch ExecCGI MultiViews # # Note that "MultiViews" must be named *explicitly* --- "Options All" # doesn't give it to you. # # The Options directive is both complicated and important. Please see # http://httpd.apache.org/docs/trunk/mod/core.html#options # for more information. # #Options Indexes FollowSymLinks # XAMPP Options Indexes FollowSymLinks ExecCGI Includes # # AllowOverride controls what directives may be placed in .htaccess files. # It can be "All", "None", or any combination of the keywords: # Options FileInfo AuthConfig Limit # #AllowOverride None # since XAMPP 1.4: AllowOverride All # # Controls who can get stuff from this server. # Require all granted </Directory> # # DirectoryIndex: sets the file that Apache will serve if a directory # is requested. # <IfModule dir_module> #DirectoryIndex index.html # XAMPP DirectoryIndex index.html index.html.var index.php index.php3 index.php4 </IfModule> # # The following lines prevent .htaccess and .htpasswd files from being # viewed by Web clients. # <Files ".ht*"> Require all denied </Files> # # ErrorLog: The location of the error log file. # If you do not specify an ErrorLog directive within a <VirtualHost> # container, error messages relating to that virtual host will be # logged here. If you *do* define an error logfile for a <VirtualHost> # container, that host's errors will be logged there and not here. # ErrorLog "logs/error_log" # # LogLevel: Control the number of messages logged to the error_log. # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. # LogLevel warn <IfModule log_config_module> # # The following directives define some format nicknames for use with # a CustomLog directive (see below). # LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %b" common <IfModule logio_module> # You need to enable mod_logio.c to use %I and %O LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %I %O" combinedio </IfModule> # # The location and format of the access logfile (Common Logfile Format). # If you do not define any access logfiles within a <VirtualHost> # container, they will be logged here. Contrariwise, if you *do* # define per-<VirtualHost> access logfiles, transactions will be # logged therein and *not* in this file. # CustomLog "logs/access_log" common # # If you prefer a logfile with access, agent, and referer information # (Combined Logfile Format) you can use the following directive. # #CustomLog "logs/access_log" combined </IfModule> <IfModule alias_module> # # Redirect: Allows you to tell clients about documents that used to # exist in your server's namespace, but do not anymore. The client # will make a new request for the document at its new location. # Example: # Redirect permanent /foo http://www.example.com/bar # # Alias: Maps web paths into filesystem paths and is used to # access content that does not live under the DocumentRoot. # Example: # Alias /webpath /full/filesystem/path # # If you include a trailing / on /webpath then the server will # require it to be present in the URL. You will also likely # need to provide a <Directory> section to allow access to # the filesystem path. # # ScriptAlias: This controls which directories contain server scripts. # ScriptAliases are essentially the same as Aliases, except that # documents in the target directory are treated as applications and # run by the server when requested rather than as documents sent to the # client. The same rules about trailing "/" apply to ScriptAlias # directives as to Alias. # ScriptAlias /cgi-bin/ "/opt/lampp/cgi-bin/" </IfModule> <IfModule cgid_module> # # ScriptSock: On threaded servers, designate the path to the UNIX # socket used to communicate with the CGI daemon of mod_cgid. # #Scriptsock logs/cgisock </IfModule> # # "/opt/lampp/cgi-bin" should be changed to whatever your ScriptAliased # CGI directory exists, if you have that configured. # <Directory "/opt/lampp/cgi-bin"> AllowOverride None Options None Require all granted </Directory> <IfModule mime_module> # # TypesConfig points to the file containing the list of mappings from # filename extension to MIME-type. # TypesConfig etc/mime.types # # AddType allows you to add to or override the MIME configuration # file specified in TypesConfig for specific file types. # #AddType application/x-gzip .tgz # # AddEncoding allows you to have certain browsers uncompress # information on the fly. Note: Not all browsers support this. # #AddEncoding x-compress .Z #AddEncoding x-gzip .gz .tgz # # If the AddEncoding directives above are commented-out, then you # probably should define those extensions to indicate media types: # AddType application/x-compress .Z AddType application/x-gzip .gz .tgz # # AddHandler allows you to map certain file extensions to "handlers": # actions unrelated to filetype. These can be either built into the server # or added with the Action directive (see below) # # To use CGI scripts outside of ScriptAliased directories: # (You will also need to add "ExecCGI" to the "Options" directive.) # #AddHandler cgi-script .cgi # XAMPP, since LAMPP 0.9.8: AddHandler cgi-script .cgi .pl # For type maps (negotiated resources): #AddHandler type-map var # # Filters allow you to process content before it is sent to the client. # # To parse .shtml files for server-side includes (SSI): # (You will also need to add "Includes" to the "Options" directive.) # # XAMPP AddType text/html .shtml AddOutputFilter INCLUDES .shtml </IfModule> # # The mod_mime_magic module allows the server to use various hints from the # contents of the file itself to determine its type. The MIMEMagicFile # directive tells the module where the hint definitions are located. # #MIMEMagicFile etc/magic # # Customizable error responses come in three flavors: # 1) plain text 2) local redirects 3) external redirects # # Some examples: #ErrorDocument 500 "The server made a boo boo." #ErrorDocument 404 /missing.html #ErrorDocument 404 "/cgi-bin/missing_handler.pl" #ErrorDocument 402 http://www.example.com/subscription_info.html # # # MaxRanges: Maximum number of Ranges in a request before # returning the entire resource, or one of the special # values 'default', 'none' or 'unlimited'. # Default setting is to accept 200 Ranges. #MaxRanges unlimited # # EnableMMAP and EnableSendfile: On systems that support it, # memory-mapping or the sendfile syscall may be used to deliver # files. This usually improves server performance, but must # be turned off when serving from networked-mounted # filesystems or if support for these functions is otherwise # broken on your system. # Defaults: EnableMMAP On, EnableSendfile Off # EnableMMAP off EnableSendfile off # Supplemental configuration # # The configuration files in the etc/extra/ directory can be # included to add extra features or to modify the default configuration of # the server, or you may simply copy their contents here and change as # necessary. # Server-pool management (MPM specific) #Include etc/extra/httpd-mpm.conf # Multi-language error messages Include etc/extra/httpd-multilang-errordoc.conf # Fancy directory listings Include etc/extra/httpd-autoindex.conf # Language settings #Include etc/extra/httpd-languages.conf # User home directories #Include etc/extra/httpd-userdir.conf # Real-time info on requests and configuration #Include etc/extra/httpd-info.conf # Virtual hosts Include etc/extra/httpd-vhosts.conf # Local access to the Apache HTTP Server Manual #Include etc/extra/httpd-manual.conf # Distributed authoring and versioning (WebDAV) #Include etc/extra/httpd-dav.conf # Various default settings Include etc/extra/httpd-default.conf # Configure mod_proxy_html to understand HTML4/XHTML1 <IfModule proxy_html_module> Include etc/extra/proxy-html.conf </IfModule> # Secure (SSL/TLS) connections <IfModule ssl_module> # XAMPP <IfDefine SSL> Include etc/extra/httpd-ssl.conf </IfDefine> </IfModule> # # Note: The following must must be present to support # starting without SSL on platforms with no /dev/random equivalent # but a statically compiled-in mod_ssl. # <IfModule ssl_module> SSLRandomSeed startup builtin SSLRandomSeed connect builtin </IfModule> # XAMPP Include etc/extra/httpd-xampp.conf Include "/opt/lampp/apache2/conf/httpd.conf" I used command shown in this example. I used below lines to change and add group Add group "groupadd www" Add user to group "usermod -aG www root" Change htdocs group "chgrp -R www /opt/lampp/htdocs" Change sitedir group "chgrp -R www /opt/lampp/htdocs/mysite" Change htdocs chmod "chmod 2775 /opt/lampp/htdocs" Change sitedir chmod "chmod 2775 /opt/lampp/htdocs/mysite" And then I changed my vhosts.conf file # Virtual Hosts # # Required modules: mod_log_config # If you want to maintain multiple domains/hostnames on your # machine you can setup VirtualHost containers for them. Most configurations # use only name-based virtual hosts so the server doesn't need to worry about # IP addresses. This is indicated by the asterisks in the directives below. # # Please see the documentation at # <URL:http://httpd.apache.org/docs/2.4/vhosts/> # for further details before you try to setup virtual hosts. # # You may use the command line option '-S' to verify your virtual host # configuration. # # VirtualHost example: # Almost any Apache directive may go into a VirtualHost container. # The first VirtualHost section is used for all requests that do not # match a ServerName or ServerAlias in any <VirtualHost> block. # <VirtualHost *:80> ServerAdmin [email protected] DocumentRoot "/opt/lampp/docs/dummy-host.example.com" ServerName dummy-host.example.com ServerAlias www.dummy-host.example.com ErrorLog "logs/dummy-host.example.com-error_log" CustomLog "logs/dummy-host.example.com-access_log" common </VirtualHost> <VirtualHost *:80> ServerAdmin [email protected] DocumentRoot "/opt/lampp/docs/dummy-host2.example.com" ServerName dummy-host2.example.com ErrorLog "logs/dummy-host2.example.com-error_log" CustomLog "logs/dummy-host2.example.com-access_log" common </VirtualHost> NameVirtualHost * <VirtualHost *> ServerAdmin [email protected] DocumentRoot "/opt/lampp/htdocs/mysite" ServerName mysite.com ServerAlias mysite.com ErrorLog "/opt/lampp/htdocs/mysite/errorlogs" CustomLog "/opt/lampp/htdocs/mysite/customlog" common <Directory "/opt/lampp/htdocs/mysite"> Options Indexes FollowSymLinks Includes ExecCGI AllowOverride All Order Allow,Deny Allow from all Require all granted </Directory> </VirtualHost> but still its not working and I am getting 403 error on my ip and domain however I can access phpmyadmin. If anyone can help me, please help me.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Issue 15: Oracle Exadata Marketing Campaigns

    - by rituchhibber
         PARTNER FOCUS Oracle ExadataMarketing Campaign Steve McNickleVP Europe, cVidya Steve McNickle is VP Europe for cVidya, an innovative provider of revenue intelligence solutions for telecom, media and entertainment service providers including AT&T, BT, Deutsche Telecom and Vodafone. The company's product portfolio helps operators and service providers maximise margins, improve customer experience and optimise ecosystem relationships through revenue assurance, fraud and security management, sales performance management, pricing analytics, and inter-carrier services. cVidya has partnered with Oracle for more than a decade. RESOURCES -- Oracle PartnerNetwork (OPN) Oracle Exastack Program Oracle Exastack Optimized Oracle Exastack Labs and Enablement Resources Oracle Engineered Systems Oracle Communications cVidya SUBSCRIBE FEEDBACK PREVIOUS ISSUES Are you ready for Oracle OpenWorld this October? -- -- Please could you tell us a little about cVidya's partnering history with Oracle, and expand on your Oracle Exastack accreditations? "cVidya was established just over ten years ago and we've had a strong relationship with Oracle almost since the very beginning. Through our Revenue Intelligence work with some of the world's largest service providers we collect tremendous amounts of information, amounting to billions of records per day. We help our clients to collect, store and analyse that data to ensure that their end customers are getting the best levels of service, are billed correctly, and are happy that they are on the correct price plan. We have been an Oracle Gold level partner for seven years, and crucially just two months ago we were also accredited as Oracle Exastack Optimized for MoneyMap, our core Revenue Assurance solution. Very soon we also expect to be Oracle Exastack Optimized DRMap, our Data Retention solution." What unique capabilities and customer benefits does Oracle Exastack add to your applications? "Oracle Exastack enables us to deliver radical benefits to our customers. A typical mobile operator in the UK might handle between 500 million and two billion call data record details daily. Each transaction needs to be validated, billed correctly and fraud checked. Because of the enormous volumes involved, our clients demand scalable infrastructure that allows them to efficiently acquire, store and process all that data within controlled cost, space and environmental constraints. We have proved that the Oracle Exadata system can process data up to seven times faster and load it as much as 20 times faster than other standard best-of-breed server approaches. With the Oracle Exadata Database Machine they can reduce their datacentre equipment from say, the six or seven cabinets that they needed in the past, down to just one. This dramatic simplification delivers incredible value to the customer by cutting down enormously on all of their significant cost, space, energy, cooling and maintenance overheads." "The Oracle Exastack Program has given our clients the ability to switch their focus from reactive to proactive. Traditionally they may have spent 80 percent of their day processing, and just 20 percent enabling end customers to see advanced analytics, and avoiding issues before they occur. With our solutions and Oracle Exadata they can now switch that balance around entirely, resulting not only in reduced revenue leakage, but a far higher focus on proactive leakage prevention. How has the Oracle Exastack Program transformed your customer business? "We can already see the impact. Oracle solutions allow our delivery teams to achieve successful deployments, happy customers and self-satisfaction, and the power of Oracle's Exa solutions is easy to measure in terms of their transformational ability. We gained our first sale into a major European telco by demonstrating the major performance gains that would transform their business. Clients can measure the ease of organisational change, the early prevention of business issues, the reduction in manpower required to provide protection and coverage across all their products and services, plus of course end customer satisfaction. If customers know that that service is provided accurately and that their bills are calculated correctly, then over time this satisfaction can be attributed to revenue intelligence and the underlying systems which provide it. Combine this with the further integration we have with the other layers of the Oracle stack, including the telecommunications offerings such as NCC, OCDM and BRM, and the result is even greater customer value—not to mention the increased speed to market and the reduced project risk." What does the Oracle Exastack community bring to cVidya, both in terms of general benefits, and also tangible new opportunities and partnerships? "A great deal. We have participated in the Oracle Exastack community heavily over the past year, and have had lots of meetings with Oracle and our peers around the globe. It brings us into contact with like-minded, innovative partners, who like us are not happy to just stand still and want to take fresh technology to their customer base in order to gain enhanced value. We identified three new partnerships in each of two recent meetings, and hope these will open up new opportunities, not only in areas that exactly match where we operate today, but also in some new associative areas that will expand our reach into new business sectors. Notably, thanks to the Exastack community we were invited on stage at last year's Oracle OpenWorld conference. Appearing so publically with Oracle senior VP Judson Althoff elevated awareness and visibility of cVidya and has enabled us to participate in a number of other events with Oracle over the past eight months. We've been involved in speaking opportunities, forums and exhibitions, providing us with invaluable opportunities that we wouldn't otherwise have got close to." How has Exastack differentiated cVidya as an ISV, and helped you to evolve your business to the next level? "When we are selling to our core customer base of Tier 1 telecommunications providers, we know that they want more than just software. They want an enduring partnership that will last many years, they want innovation, and a forward thinking partner who knows how to guide them on where they need to be to meet market demand three, five or seven years down the line. Membership of respected global bodies, such as the Telemanagement Forum enables us to lead standard adherence in our area of business, giving us a lot of credibility, but Oracle is also involved in this forum with its own telecommunications portfolio, strengthening our position still further. When we approach CEOs, CTOs and CIOs at the very largest Tier 1 operators, not only can we easily show them that our technology is fantastic, we can also talk about our strong partnership with Oracle, and our joint embracing of today's standards and tomorrow's innovation." Where would you like cVidya to be in one year's time? "We want to get all of our relevant products Oracle Exastack Optimized. Our MoneyMap Revenue Assurance solution is already Exastack Optimised, our DRMAP Data Retention Solution should be Exastack Optimised within the next month, and our FraudView Fraud Management solution within the next two to three months. We'd then like to extend our Oracle accreditation out to include other members of the Oracle Engineered Systems family. We are moving into the 'Big Data' space, and so we're obviously very keen to work closely with Oracle to conduct pilots, map new technologies onto Oracle Big Data platforms, and embrace and measure the benefits of other Oracle systems, namely Oracle Exalogic Elastic Cloud, the Oracle Exalytics In-Memory Machine and the Oracle SPARC SuperCluster. We would also like to examine how the Oracle Database Appliance might benefit our Tier 2 service provider customers. Finally, we'd also like to continue working with the Oracle Communications Global Business Unit (CGBU), furthering our integration with Oracle billing products so that we are able to quickly deploy fraud solutions into Oracle's Engineered System stack, give operational benefits to our clients that are pre-integrated, more cost-effective, and can be rapidly deployed rapidly and producing benefits in three months, not nine months." Chris Baker ,Senior Vice President, Oracle Worldwide ISV-OEM-Java Sales Chris Baker is the Global Head of ISV/OEM Sales responsible for working with ISV/OEM partners to maximise Oracle's business through those partners, whilst maximising those partners' business to their end users. Chris works with partners, customers, innovators, investors and employees to develop innovative business solutions using Oracle products, services and skills. Firstly, could you please explain Oracle's current strategy for ISV partners, globally and in EMEA? "Oracle customers use independent software vendor (ISV) applications to run their businesses. They use them to generate revenue and to fulfil obligations to their own customers. Our strategy is very straight-forward. We want all of our ISV partners and OEMs to concentrate on the things that they do the best – building applications to meet the unique industry and functional requirements of their customer. We want to ensure that we deliver a best in class application platform so the ISV is free to concentrate their effort on their application functionality and user experience We invest over four billion dollars in research and development every year, and we want our ISVs to benefit from all of that investment in operating systems, virtualisation, databases, middleware, engineered systems, and other hardware. By doing this, we help them to reduce their costs, gain more consistency and agility for quicker implementations, and also rapidly differentiate themselves from other application vendors. It's all about simplification because we believe that around 25 to 30 percent of the development costs incurred by many ISVs are caused by customising infrastructure and have nothing to do with their applications. Our strategy is to enable our ISV partners to standardise their application platform using engineered architecture, so they can write once to the Oracle stack and deploy seamlessly in the cloud, on-premise, or in hybrid deployments. It's really important that architecture is the same in order to keep cost and time overheads at a minimum, so we provide standardisation and an environment that enables our ISVs to concentrate on the core business that makes them the most money and brings them success." How do you believe this strategy is helping the ISVs to work hand-in-hand with Oracle to ensure that end customers get the industry-leading solutions that they need? "We work with our ISVs not just to help them be successful, but also to help them market themselves. We have something called the 'Oracle Exastack Ready Program', which enables ISVs to publicise themselves as 'Ready' to run the core software platforms that run on Oracle's engineered systems including Exadata and Exalogic. So, for example, they can become 'Database Ready' which means that they use the latest version of Oracle Database and therefore can run their application without modification on Exadata or the Oracle Database Appliance. Alternatively, they can become WebLogic Ready, Oracle Linux Ready and Oracle Solaris Ready which means they run on the latest release and therefore can run their application, with no new porting work, on Oracle Exalogic. Those 'Ready' logos are important in helping ISVs advertise to their customers that they are using the latest technologies which have been fully tested. We now also have Exadata Ready and Exalogic Ready programmes which allow ISVs to promote the certification of their applications on these platforms. This highlights these partners to Oracle customers as having solutions that run fluently on the Oracle Exadata Database Machine, the Oracle Exalogic Elastic Cloud or one of our other engineered systems. This makes it easy for customers to identify solutions and provides ISVs with an avenue to connect with Oracle customers who are rapidly adopting engineered systems. We have also taken this programme to the next level in the shape of 'Oracle Exastack Optimized' for partners whose applications run best on the Oracle stack and have invested the time to fully optimise application performance. We ensure that Exastack Optimized partner status is promoted and supported by press releases, and we help our ISVs go to market and differentiate themselves through the use our technology and the standardisation it delivers. To date we have had several hundred organisations successfully work through our Exastack Optimized programme." How does Oracle's strategy of offering pre-integrated open platform software and hardware allow ISVs to bring their products to market more quickly? "One of the problems for many ISVs is that they have to think very carefully about the technology on which their solutions will be deployed, particularly in the cloud or hosted environments. They have to think hard about how they secure these environments, whether the concern is, for example, middleware, identity management, or securing personal data. If they don't use the technology that we build-in to our products to help them to fulfil these roles, they then have to build it themselves. This takes time, requires testing, and must be maintained. By taking advantage of our technology, partners will now know that they have a standard platform. They will know that they can confidently talk about implementation being the same every time they do it. Very large ISV applications could once take a year or two to be implemented at an on-premise environment. But it wasn't just the configuration of the application that took the time, it was actually the infrastructure - the different hardware configurations, operating systems and configurations of databases and middleware. Now we strongly believe that it's all about standardisation and repeatability. It's about making sure that our partners can do it once and are then able to roll it out many different times using standard componentry." What actions would you recommend for existing ISV partners that are looking to do more business with Oracle and its customer base, not only to maximise benefits, but also to maximise partner relationships? "My team, around the world and in the EMEA region, is available and ready to talk to any of our ISVs and to explore the possibilities together. We run programmes like 'Excite' and 'Insight' to help us to understand how we can help ISVs with architecture and widen their environments. But we also want to work with, and look at, new opportunities - for example, the Machine-to-Machine (M2M) market or 'The Internet of Things'. Over the next few years, many millions, indeed billions of devices will be collecting massive amounts of data and communicating it back to the central systems where ISVs will be running their applications. The only way that our partners will be able to provide a single vendor 'end-to-end' solution is to use Oracle integrated systems at the back end and Java on the 'smart' devices collecting the data – a complete solution from device to data centre. So there are huge opportunities to work closely with our ISVs, using Oracle's complete M2M platform, to provide the infrastructure that enables them to extract maximum value from the data collected. If any partners don't know where to start or who to contact, then they can contact me directly at [email protected] or indeed any of our teams across the EMEA region. We want to work with ISVs to help them to be as successful as they possibly can through simplification and speed to market, and we also want all of the top ISVs in the world based on Oracle." What opportunities are immediately opened to new ISV partners joining the OPN? "As you know OPN is very, very important. New members will discover a huge amount of content that instantly becomes accessible to them. They can access a wealth of no-cost training and enablement materials to build their expertise in Oracle technology. They can download Oracle software and use it for development projects. They can help themselves become more competent by becoming part of a true community and uncovering new opportunities by working with Oracle and their peers in the Oracle Partner Network. As well as publishing massive amounts of information on OPN, we also hold our global Oracle OpenWorld event, at which partners play a huge role. This takes place at the end of September and the beginning of October in San Francisco. Attending ISV partners have an unrivalled opportunity to contribute to elements such as the OpenWorld / OPN Exchange, at which they can talk to other partners and really begin thinking about how they can move their businesses on and play key roles in a very large ecosystem which revolves around technology and standardisation." Finally, are there any other messages that you would like to share with the Oracle ISV community? "The crucial message that I always like to reinforce is architecture, architecture and architecture! The key opportunities that ISVs have today revolve around standardising their architectures so that they can confidently think: “I will I be able to do exactly the same thing whenever a customer is looking to deploy on-premise, hosted or in the cloud”. The right architecture is critical to being competitive and to really start changing the game. We want to help our ISV partners to do just that; to establish standard architecture and to seize the opportunities it opens up for them. New market opportunities like M2M are enormous - just look at how many devices are all around you right now. We can help our partners to interface with these devices more effectively while thinking about their entire ecosystem, rather than just the piece that they have traditionally focused upon. With standardised architecture, we can help people dramatically improve their speed, reach, agility and delivery of enhanced customer satisfaction and value all the way from the Java side to their centralised systems. All Oracle ISV partners must take advantage of these opportunities, which is why Oracle will continue to invest in and support them." -- Gergely Strbik is Oracle Hardware and Software Product Manager for Avnet in Hungary. Avnet Technology Solutions is an OracleValue Added Distributor focused on the development of the existing Oracle channel. This includes the recruitment and enablement of Oracle partners as well as driving deeper adoption of Oracle's technology and application products within the IT channel. "The main business benefits of ODA for our customers and partners are scalability, flexibility, a great price point for the high performance delivered, and the easily configurable embedded Linux operating system. People welcome a lower point of entry and the ability to grow capacity on demand as their business expands." "Marketing and selling the ODA requires another way of thinking because it is an appliance. We have to transform the ways in which our partners and customers think from buying hardware and software independently to buying complete solutions. Successful early adopters and satisfied customer reactions will certainly help us to sell the ODA. We will have more experience with the product after the first deliveries and installations—end users need to see the power and benefits for themselves." "Our typical ODA customers will be those looking for complete solutions from a single reseller partner who is also able to manage the appliance. They will have enjoyed using Oracle Database but now want a new product that is able to unlock new levels of performance. A higher proportion of potential customers will come from our existing Oracle base, with around 30% from new business, but we intend to evangelise the ODA on the market to see how we can change this balance as all our customers adjust to the concept of 'Hardware and Software, Engineered to Work Together'. -- Back to the welcome page

    Read the article

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • Using the jQuery UI Library in a MVC 3 Application to Build a Dialog Form

    - by ChrisD
    Using a simulated dialog window is a nice way to handle inline data editing. The jQuery UI has a UI widget for a dialog window that makes it easy to get up and running with it in your application. With the release of ASP.NET MVC 3, Microsoft included the jQuery UI scripts and files in the MVC 3 project templates for Visual Studio. With the release of the MVC 3 Tools Update, Microsoft implemented the inclusion of those with NuGet as packages. That means we can get up and running using the latest version of the jQuery UI with minimal effort. To the code! Another that might interested you about JQuery Mobile and ASP.NET MVC 3 with C#. If you are starting with a new MVC 3 application and have the Tools Update then you are a NuGet update and a <link> and <script> tag away from adding the jQuery UI to your project. If you are using an existing MVC project you can still get the jQuery UI library added to your project via NuGet and then add the link and script tags. Assuming that you have pulled down the latest version (at the time of this publish it was 1.8.13) you can add the following link and script tags to your <head> tag: < link href = "@Url.Content(" ~ / Content / themes / base / jquery . ui . all . css ")" rel = "Stylesheet" type = "text/css" /> < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > The jQuery UI library relies upon the CSS scripts and some image files to handle rendering of its widgets (you can choose a different theme or role your own if you like). Adding these to the stock _Layout.cshtml file results in the following markup: <!DOCTYPE html> < html > < head >     < meta charset = "utf-8" />     < title > @ViewBag.Title </ title >     < link href = "@Url.Content(" ~ / Content / Site . css ")" rel = "stylesheet" type = "text/css" />     <link href="@Url.Content("~/Content/themes/base/jquery.ui.all.css")" rel="Stylesheet" type="text/css" />     <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script>     <script src="@Url.Content("~/Scripts/modernizr-1.7.min . js ")" type = "text/javascript" ></ script >     < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > </ head > < body >     @RenderBody() </ body > </ html > Our example will involve building a list of notes with an id, title and description. Each note can be edited and new notes can be added. The user will never have to leave the single page of notes to manage the note data. The add and edit forms will be delivered in a jQuery UI dialog widget and the note list content will get reloaded via an AJAX call after each change to the list. To begin, we need to craft a model and a data management class. We will do this so we can simulate data storage and get a feel for the workflow of the user experience. The first class named Note will have properties to represent our data model. namespace Website . Models {     public class Note     {         public int Id { get ; set ; }         public string Title { get ; set ; }         public string Body { get ; set ; }     } } The second class named NoteManager will be used to set up our simulated data storage and provide methods for querying and updating the data. We will take a look at the class content as a whole and then walk through each method after. using System . Collections . ObjectModel ; using System . Linq ; using System . Web ; namespace Website . Models {     public class NoteManager     {         public Collection < Note > Notes         {             get             {                 if ( HttpRuntime . Cache [ "Notes" ] == null )                     this . loadInitialData ();                 return ( Collection < Note >) HttpRuntime . Cache [ "Notes" ];             }         }         private void loadInitialData ()         {             var notes = new Collection < Note >();             notes . Add ( new Note                           {                               Id = 1 ,                               Title = "Set DVR for Sunday" ,                               Body = "Don't forget to record Game of Thrones!"                           });             notes . Add ( new Note                           {                               Id = 2 ,                               Title = "Read MVC article" ,                               Body = "Check out the new iwantmymvc.com post"                           });             notes . Add ( new Note                           {                               Id = 3 ,                               Title = "Pick up kid" ,                               Body = "Daughter out of school at 1:30pm on Thursday. Don't forget!"                           });             notes . Add ( new Note                           {                               Id = 4 ,                               Title = "Paint" ,                               Body = "Finish the 2nd coat in the bathroom"                           });             HttpRuntime . Cache [ "Notes" ] = notes ;         }         public Collection < Note > GetAll ()         {             return Notes ;         }         public Note GetById ( int id )         {             return Notes . Where ( i => i . Id == id ). FirstOrDefault ();         }         public int Save ( Note item )         {             if ( item . Id <= 0 )                 return saveAsNew ( item );             var existingNote = Notes . Where ( i => i . Id == item . Id ). FirstOrDefault ();             existingNote . Title = item . Title ;             existingNote . Body = item . Body ;             return existingNote . Id ;         }         private int saveAsNew ( Note item )         {             item . Id = Notes . Count + 1 ;             Notes . Add ( item );             return item . Id ;         }     } } The class has a property named Notes that is read only and handles instantiating a collection of Note objects in the runtime cache if it doesn't exist, and then returns the collection from the cache. This property is there to give us a simulated storage so that we didn't have to add a full blown database (beyond the scope of this post). The private method loadInitialData handles pre-filling the collection of Note objects with some initial data and stuffs them into the cache. Both of these chunks of code would be refactored out with a move to a real means of data storage. The GetAll and GetById methods access our simulated data storage to return all of our notes or a specific note by id. The Save method takes in a Note object, checks to see if it has an Id less than or equal to zero (we assume that an Id that is not greater than zero represents a note that is new) and if so, calls the private method saveAsNew . If the Note item sent in has an Id , the code finds that Note in the simulated storage, updates the Title and Description , and returns the Id value. The saveAsNew method sets the Id , adds it to the simulated storage, and returns the Id value. The increment of the Id is simulated here by getting the current count of the note collection and adding 1 to it. The setting of the Id is the only other chunk of code that would be refactored out when moving to a different data storage approach. With our model and data manager code in place we can turn our attention to the controller and views. We can do all of our work in a single controller. If we use a HomeController , we can add an action method named Index that will return our main view. An action method named List will get all of our Note objects from our manager and return a partial view. We will use some jQuery to make an AJAX call to that action method and update our main view with the partial view content returned. Since the jQuery AJAX call will cache the call to the content in Internet Explorer by default (a setting in jQuery), we will decorate the List, Create and Edit action methods with the OutputCache attribute and a duration of 0. This will send the no-cache flag back in the header of the content to the browser and jQuery will pick that up and not cache the AJAX call. The Create action method instantiates a new Note model object and returns a partial view, specifying the NoteForm.cshtml view file and passing in the model. The NoteForm view is used for the add and edit functionality. The Edit action method takes in the Id of the note to be edited, loads the Note model object based on that Id , and does the same return of the partial view as the Create method. The Save method takes in the posted Note object and sends it to the manager to save. It is decorated with the HttpPost attribute to ensure that it will only be available via a POST. It returns a Json object with a property named Success that can be used by the UX to verify everything went well (we won't use that in our example). Both the add and edit actions in the UX will post to the Save action method, allowing us to reduce the amount of unique jQuery we need to write in our view. The contents of the HomeController.cs file: using System . Web . Mvc ; using Website . Models ; namespace Website . Controllers {     public class HomeController : Controller     {         public ActionResult Index ()         {             return View ();         }         [ OutputCache ( Duration = 0 )]         public ActionResult List ()         {             var manager = new NoteManager ();             var model = manager . GetAll ();             return PartialView ( model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Create ()         {             var model = new Note ();             return PartialView ( "NoteForm" , model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Edit ( int id )         {             var manager = new NoteManager ();             var model = manager . GetById ( id );             return PartialView ( "NoteForm" , model );         }         [ HttpPost ]         public JsonResult Save ( Note note )         {             var manager = new NoteManager ();             var noteId = manager . Save ( note );             return Json ( new { Success = noteId > 0 });         }     } } The view for the note form, NoteForm.cshtml , looks like so: @model Website . Models . Note @using ( Html . BeginForm ( "Save" , "Home" , FormMethod . Post , new { id = "NoteForm" })) { @Html . Hidden ( "Id" ) < label class = "Title" >     < span > Title < /span><br / >     @Html . TextBox ( "Title" ) < /label> <label class="Body">     <span>Body</ span >< br />     @Html . TextArea ( "Body" ) < /label> } It is a strongly typed view for our Note model class. We give the <form> element an id attribute so that we can reference it via jQuery. The <label> and <span> tags give our UX some structure that we can style with some CSS. The List.cshtml view is used to render out a <ul> element with all of our notes. @model IEnumerable < Website . Models . Note > < ul class = "NotesList" >     @foreach ( var note in Model )     {     < li >         @note . Title < br />         @note . Body < br />         < span class = "EditLink ButtonLink" noteid = "@note.Id" > Edit < /span>     </ li >     } < /ul> This view is strongly typed as well. It includes a <span> tag that we will use as an edit button. We add a custom attribute named noteid to the <span> tag that we can use in our jQuery to identify the Id of the note object we want to edit. The view, Index.cshtml , contains a bit of html block structure and all of our jQuery logic code. @ {     ViewBag . Title = "Index" ; } < h2 > Notes < /h2> <div id="NoteListBlock"></ div > < span class = "AddLink ButtonLink" > Add New Note < /span> <div id="NoteDialog" title="" class="Hidden"></ div > < script type = "text/javascript" >     $ ( function () {         $ ( "#NoteDialog" ). dialog ({             autoOpen : false , width : 400 , height : 330 , modal : true ,             buttons : {                 "Save" : function () {                     $ . post ( "/Home/Save" ,                         $ ( "#NoteForm" ). serialize (),                         function () {                             $ ( "#NoteDialog" ). dialog ( "close" );                             LoadList ();                         });                 },                 Cancel : function () { $ ( this ). dialog ( "close" ); }             }         });         $ ( ".EditLink" ). live ( "click" , function () {             var id = $ ( this ). attr ( "noteid" );             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Edit Note" )                 . load ( "/Home/Edit/" + id , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         $ ( ".AddLink" ). click ( function () {             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Add Note" )                 . load ( "/Home/Create" , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         LoadList ();     });     function LoadList () {         $ ( "#NoteListBlock" ). load ( "/Home/List" );     } < /script> The <div> tag with the id attribute of "NoteListBlock" is used as a container target for the load of the partial view content of our List action method. It starts out empty and will get loaded with content via jQuery once the DOM is loaded. The <div> tag with the id attribute of "NoteDialog" is the element for our dialog widget. The jQuery UI library will use the title attribute for the text in the dialog widget top header bar. We start out with it empty here and will dynamically change the text via jQuery based on the request to either add or edit a note. This <div> tag is given a CSS class named "Hidden" that will set the display:none style on the element. Since our call to the jQuery UI method to make the element a dialog widget will occur in the jQuery document ready code block, the end user will see the <div> element rendered in their browser as the page renders and then it will hide after that jQuery call. Adding the display:hidden to the <div> element via CSS will ensure that it is never rendered until the user triggers the request to open the dialog. The jQuery document load block contains the setup for the dialog node, click event bindings for the edit and add links, and a call to a JavaScript function called LoadList that handles the AJAX call to the List action method. The .dialog() method is called on the "NoteDialog" <div> element and the options are set for the dialog widget. The buttons option defines 2 buttons and their click actions. The first is the "Save" button (the text in quotations is used as the text for the button) that will do an AJAX post to our Save action method and send the serialized form data from the note form (targeted with the id attribute "NoteForm"). Upon completion it will close the dialog widget and call the LoadList to update the UX without a redirect. The "Cancel" button simply closes the dialog widget. The .live() method handles binding a function to the "click" event on all elements with the CSS class named EditLink . We use the .live() method because it will catch and bind our function to elements even as the DOM changes. Since we will be constantly changing the note list as we add and edit we want to ensure that the edit links get wired up with click events. The function for the click event on the edit links gets the noteid attribute and stores it in a local variable. Then it clears out the HTML in the dialog element (to ensure a fresh start), calls the .dialog() method and sets the "title" option (this sets the title attribute value), and then calls the .load() AJAX method to hit our Edit action method and inject the returned content into the "NoteDialog" <div> element. Once the .load() method is complete it opens the dialog widget. The click event binding for the add link is similar to the edit, only we don't need to get the id value and we load the Create action method. This binding is done via the .click() method because it will only be bound on the initial load of the page. The add button will always exist. Finally, we toss in some CSS in the Content/Site.css file to style our form and the add/edit links. . ButtonLink { color : Blue ; cursor : pointer ; } . ButtonLink : hover { text - decoration : underline ; } . Hidden { display : none ; } #NoteForm label { display:block; margin-bottom:6px; } #NoteForm label > span { font-weight:bold; } #NoteForm input[type=text] { width:350px; } #NoteForm textarea { width:350px; height:80px; } With all of our code in place we can do an F5 and see our list of notes: If we click on an edit link we will get the dialog widget with the correct note data loaded: And if we click on the add new note link we will get the dialog widget with the empty form: The end result of our solution tree for our sample:

    Read the article

  • Partner Blog Series: PwC Perspectives - The Gotchas, The Do's and Don'ts for IDM Implementations

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Verdana","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Arial Narrow","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} It is generally accepted among business communities that technology by itself is not a silver bullet to all problems, but when it is combined with leading practices, strategy, careful planning and execution, it can create a recipe for success. This post attempts to highlight some of the best practices along with dos & don’ts that our practice has accumulated over the years in the identity & access management space in general, and also in the context of R2, in particular. Best Practices The following section illustrates the leading practices in “How” to plan, implement and sustain a successful OIM deployment, based on our collective experience. Planning is critical, but often overlooked A common approach to planning an IAM program that we identify with our clients is the three step process involving a current state assessment, a future state roadmap and an executable strategy to get there. It is extremely beneficial for clients to assess their current IAM state, perform gap analysis, document the recommended controls to address the gaps, align future state roadmap to business initiatives and get buy in from all stakeholders involved to improve the chances of success. When designing an enterprise-wide solution, the scalability of the technology must accommodate the future growth of the enterprise and the projected identity transactions over several years. Aligning the implementation schedule of OIM to related information technology projects increases the chances of success. As a baseline, it is recommended to match hardware specifications to the sizing guide for R2 published by Oracle. Adherence to this will help ensure that the hardware used to support OIM will not become a bottleneck as the adoption of new services increases. If your Organization has numerous connected applications that rely on reconciliation to synchronize the access data into OIM, consider hosting dedicated instances to handle reconciliation. Finally, ensure the use of clustered environment for development and have at least three total environments to help facilitate a controlled migration to production. If your Organization is planning to implement role based access control, we recommend performing a role mining exercise and consolidate your enterprise roles to keep them manageable. In addition, many Organizations have multiple approval flows to control access to critical roles, applications and entitlements. If your Organization falls into this category, we highly recommend that you limit the number of approval workflows to a small set. Most Organizations have operations managed across data centers with backend database synchronization, if your Organization falls into this category, ensure that the overall latency between the datacenters when replicating the databases is less than ten milliseconds to ensure that there are no front office performance impacts. Ingredients for a successful implementation During the development phase of your project, there are a number of guidelines that can be followed to help increase the chances for success. Most implementations cannot be completed without the use of customizations. If your implementation requires this, it’s a good practice to perform code reviews to help ensure quality and reduce code bottlenecks related to performance. We have observed at our clients that the development process works best when team members adhere to coding leading practices. Plan for time to correct coding defects and ensure developers are empowered to report their own bugs for maximum transparency. Many organizations struggle with defining a consistent approach to managing logs. This is particularly important due to the amount of information that can be logged by OIM. We recommend Oracle Diagnostics Logging (ODL) as an alternative to be used for logging. ODL allows log files to be formatted in XML for easy parsing and does not require a server restart when the log levels are changed during troubleshooting. Testing is a vital part of any large project, and an OIM R2 implementation is no exception. We suggest that at least one lower environment should use production-like data and connectors. Configurations should match as closely as possible. For example, use secure channels between OIM and target platforms in pre-production environments to test the configurations, the migration processes of certificates, and the additional overhead that encryption could impose. Finally, we ask our clients to perform database backups regularly and before any major change event, such as a patch or migration between environments. In the lowest environments, we recommend to have at least a weekly backup in order to prevent significant loss of time and effort. Similarly, if your organization is using virtual machines for one or more of the environments, it is recommended to take frequent snapshots so that rollbacks can occur in the event of improper configuration. Operate & sustain the solution to derive maximum benefits When migrating OIM R2 to production, it is important to perform certain activities that will help achieve a smoother transition. At our clients, we have seen that splitting the OIM tables into their own tablespaces by categories (physical tables, indexes, etc.) can help manage database growth effectively. If we notice that a client hasn’t enabled the Oracle-recommended indexing in the applicable database, we strongly suggest doing so to improve performance. Additionally, we work with our clients to make sure that the audit level is set to fit the organization’s auditing needs and sometimes even allocate UPA tables and indexes into their own table-space for better maintenance. Finally, many of our clients have set up schedules for reconciliation tables to be archived at regular intervals in order to keep the size of the database(s) reasonable and result in optimal database performance. For our clients that anticipate availability issues with target applications, we strongly encourage the use of the offline provisioning capabilities of OIM R2. This reduces the provisioning process for a given target application dependency on target availability and help avoid broken workflows. To account for this and other abnormalities, we also advocate that OIM’s monitoring controls be configured to alert administrators on any abnormal situations. Within OIM R2, we have begun advising our clients to utilize the ‘profile’ feature to encapsulate multiple commonly requested accounts, roles, and/or entitlements into a single item. By setting up a number of profiles that can be searched for and used, users will spend less time performing the same exact steps for common tasks. We advise our clients to follow the Oracle recommended guides for database and application server tuning which provides a good baseline configuration. It offers guidance on database connection pools, connection timeouts, user interface threads and proper handling of adapters/plug-ins. All of these can be important configurations that will allow faster provisioning and web page response times. Many of our clients have begun to recognize the value of data mining and a remediation process during the initial phases of an implementation (to help ensure high quality data gets loaded) and beyond (to support ongoing maintenance and business-as-usual processes). A successful program always begins with identifying the data elements and assigning a classification level based on criticality, risk, and availability. It should finish by following through with a remediation process. Dos & Don’ts Here are the most common dos and don'ts that we socialize with our clients, derived from our experience implementing the solution. Dos Don’ts Scope the project into phases with realistic goals. Look for quick wins to show success and value to the stake holders. Avoid “boiling the ocean” and trying to integrate all enterprise applications in the first phase. Establish an enterprise ID (universal unique ID across the enterprise) earlier in the program. Avoid major UI customizations that require code changes. Have a plan in place to patch during the project, which helps alleviate any major issues or roadblocks (product and database). Avoid publishing all the target entitlements if you don't anticipate their usage during access request. Assess your current state and prepare a roadmap to address your operations, tactical and strategic goals, align it with your business priorities. Avoid integrating non-production environments with your production target systems. Defer complex integrations to the later phases and take advantage of lessons learned from previous phases Avoid creating multiple accounts for the same user on the same system, if there is an opportunity to do so. Have an identity and access data quality initiative built into your plan to identify and remediate data related issues early on. Avoid creating complex approval workflows that would negative impact productivity and SLAs. Identify the owner of the identity systems with fair IdM knowledge and empower them with authority to make product related decisions. This will help ensure overcome any design hurdles. Avoid creating complex designs that are not sustainable long term and would need major overhaul during upgrades. Shadow your internal or external consulting resources during the implementation to build the necessary product skills needed to operate and sustain the solution. Avoid treating IAM as a point solution and have appropriate level of communication and training plan for the IT and business users alike. Conclusion In our experience, Identity programs will struggle with scope, proper resourcing, and more. We suggest that companies consider the suggestions discussed in this post and leverage them to help enable their identity and access program. This concludes PwC blog series on R2 for the month and we sincerely hope that the information we have shared thus far has been beneficial. For more information or if you have questions, you can reach out to Rex Thexton, Senior Managing Director, PwC and or Dharma Padala, Director, PwC. We look forward to hearing from you. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Meet the Writers: Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL).

    Read the article

  • Problem in creation MDB Queue connection at Jboss StartUp

    - by Amit Ruwali
    I am not able to create a Queue connection in JBOSS4.2.3GA Version & Java1.5, as I am using MDB as per the below details. I am putting this MDB in a jar file(named utsJar.jar) and copied it in deploy folder of JBOSS, In the test env. this MDB works well but in another env. [ env settings and jboss/java ver is same ] it is throwing error at jboss start up [attached below ]. I have searched for this error but couldn't find any solution till now; was there any issue of port confict or something related with configurations ? UTSMessageListner.java @MessageDriven(activationConfig = { @ActivationConfigProperty(propertyName="destinationType", propertyValue="javax.jms.Queue"), @ActivationConfigProperty(propertyName="destination", propertyValue="queue/UTSQueue") }) @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED) public class UTSMessageListner implements MessageListener { public void onMessage(Message msg) { ObjectMessage objmsg = (ObjectMessage) msg; try { UTSListVO utsMessageListVO = (UTSListVO) objmsg.getObject(); if(utsMessageListVO.getUtsMessageList()!=null) { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: SIZE Of UTSMessage List =[" +utsMessageListVO.getUtsMessageList().size() + "]"); UTSDataLayerImpl.getInstance().insertUTSMessage(utsMessageListVO); } else { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: Message List is NULL"); } } catch (Exception ex) { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: Error Receiving Message"+ExceptionUtility.getStackTrace(ex)); } } } [ I have also attached whole server.log as an attach] /// ///////////////////////////////// Error Trace is Below while starting the server /////////////////////////// 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] Could not find the queue destination-jndi-name=queue/UTSQueue 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] destination not found: queue/UTSQueue reason: javax.naming.NameNotFoundException: queue not bound 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] creating a new temporary destination: queue/UTSQueue 2010-03-12 07:05:40,071 WARN [org.jboss.system.ServiceController] Problem starting service jboss.j2ee:ear=uts.ear,jar=utsJar.jar,name=UTSMessageListner,service=EJB3 java.lang.NullPointerException at org.jboss.mq.server.jmx.DestinationManager.createDestination(DestinationManager.java:336) at org.jboss.mq.server.jmx.DestinationManager.createQueue(DestinationManager.java:293) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.ejb3.JmxClientKernelAbstraction.invoke(JmxClientKernelAbstraction.java:44) at org.jboss.ejb3.jms.DestinationManagerJMSDestinationFactory.createDestination(DestinationManagerJMSDestinationFactory.java:75) at org.jboss.ejb3.mdb.MessagingContainer.createTemporaryDestination(MessagingContainer.java:573) at org.jboss.ejb3.mdb.MessagingContainer.createDestination(MessagingContainer.java:512) at org.jboss.ejb3.mdb.MessagingContainer.innerCreateQueue(MessagingContainer.java:438) at org.jboss.ejb3.mdb.MessagingContainer.jmsCreate(MessagingContainer.java:400) at org.jboss.ejb3.mdb.MessagingContainer.innerStart(MessagingContainer.java:166) at org.jboss.ejb3.mdb.MessagingContainer.start(MessagingContainer.java:152) at org.jboss.ejb3.mdb.MDB.start(MDB.java:126) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.ejb3.ServiceDelegateWrapper.startService(ServiceDelegateWrapper.java:103) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy53.start(Unknown Source) at org.jboss.ejb3.JmxKernelAbstraction.install(JmxKernelAbstraction.java:120) at org.jboss.ejb3.Ejb3Deployment.registerEJBContainer(Ejb3Deployment.java:301) at org.jboss.ejb3.Ejb3Deployment.start(Ejb3Deployment.java:362) at org.jboss.ejb3.Ejb3Module.startService(Ejb3Module.java:91) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy33.start(Unknown Source) at org.jboss.ejb3.EJB3Deployer.start(EJB3Deployer.java:512) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.interceptor.DynamicInterceptor.invoke(DynamicInterceptor.java:97) at org.jboss.system.InterceptorServiceMBeanSupport.invokeNext(InterceptorServiceMBeanSupport.java:238) at org.jboss.wsf.container.jboss42.DeployerInterceptor.start(DeployerInterceptor.java:87) at org.jboss.deployment.SubDeployerInterceptorSupport$XMBeanInterceptor.start(SubDeployerInterceptorSupport.java:188) at org.jboss.deployment.SubDeployerInterceptor.invoke(SubDeployerInterceptor.java:95) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy34.start(Unknown Source) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1025) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1015) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:819) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:782) at sun.reflect.GeneratedMethodAccessor20.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy9.deploy(Unknown Source) at org.jboss.deployment.scanner.URLDeploymentScanner.deploy(URLDeploymentScanner.java:421) at org.jboss.deployment.scanner.URLDeploymentScanner.scan(URLDeploymentScanner.java:634) at org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.doScan(AbstractDeploymentScanner.java:263) at org.jboss.deployment.scanner.AbstractDeploymentScanner.startService(AbstractDeploymentScanner.java:336) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy4.start(Unknown Source) at org.jboss.deployment.SARDeployer.start(SARDeployer.java:304) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1025) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:819) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:782) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:766) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy5.deploy(Unknown Source) at org.jboss.system.server.ServerImpl.doStart(ServerImpl.java:482) at org.jboss.system.server.ServerImpl.start(ServerImpl.java:362) at org.jboss.Main.boot(Main.java:200) at org.jboss.Main$1.run(Main.java:508) at java.lang.Thread.run(Thread.java:595)

    Read the article

  • Android WebView not loading a JavaScript file, but Android Browser loads it fine.

    - by Justin
    I'm writing an application which connects to a back office site. The backoffice site contains a whole slew of JavaScript functions, at least 100 times the average site. Unfortunately it does not load them, and causes much of the functionality to not work properly. So I am running a test. I put a page out on my server which loads the FireBugLite javascript text. Its a lot of javascript and perfect to test and see if the Android WebView will load it. The WebView loads nothing, but the browser loads the Firebug Icon. What on earth would make the difference, why can it run in the browser and not in my WebView? Any suggestions. More background information, in order to get the stinking backoffice application available on a Droid (or any other platform except windows) I needed to trick the bakcoffice application to believe what's accessing the website is Internet Explorer. I do this by modifying the WebView User Agent. Also for this application I've slimmed my landing page, so I could give you the source to offer me aid. package ksc.myKMB; import android.app.Activity; import android.app.AlertDialog; import android.app.Dialog; import android.app.ProgressDialog; import android.content.DialogInterface; import android.graphics.Bitmap; import android.os.Bundle; import android.view.Menu; import android.view.MenuInflater; import android.view.MenuItem; import android.view.Window; import android.webkit.WebChromeClient; import android.webkit.WebView; import android.webkit.WebSettings; import android.webkit.WebViewClient; import android.widget.Toast; public class myKMB extends Activity { /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); /** Performs base set up */ /** Create a Activity of this Activity, IE myProcess */ myProcess = this; /*** Create global objects and web browsing objects */ HideDialogOnce = true; webview = new WebView(this) { }; webChromeClient = new WebChromeClient() { public void onProgressChanged(WebView view, int progress) { // Activities and WebViews measure progress with different scales. // The progress meter will automatically disappear when we reach 100% myProcess.setProgress((progress * 100)); //CreateMessage("Progress is : " + progress); } }; webViewClient = new WebViewClient() { public void onReceivedError(WebView view, int errorCode, String description, String failingUrl) { Toast.makeText(myProcess, MessageBegText + description + MessageEndText, Toast.LENGTH_SHORT).show(); } public void onPageFinished (WebView view, String url) { /** Hide dialog */ try { // loadingDialog.dismiss(); } finally { } //myProcess.setProgress(1000); /** Fon't show the dialog while I'm performing fixes */ //HideDialogOnce = true; view.loadUrl("javascript:document.getElementById('JTRANS011').style.visibility='visible';"); } public void onPageStarted(WebView view, String url, Bitmap favicon) { if (HideDialogOnce == false) { //loadingDialog = ProgressDialog.show(myProcess, "", // "One moment, the page is laoding...", true); } else { //HideDialogOnce = true; } } }; getWindow().requestFeature(Window.FEATURE_PROGRESS); webview.setWebChromeClient(webChromeClient); webview.setWebViewClient(webViewClient); setContentView(webview); /** Load the Keynote Browser Settings */ LoadSettings(); webview.loadUrl(LandingPage); } /** Get Menu */ @Override public boolean onCreateOptionsMenu(Menu menu) { MenuInflater inflater = getMenuInflater(); inflater.inflate(R.menu.menu, menu); return true; } /** an item gets pushed */ @Override public boolean onOptionsItemSelected(MenuItem item) { switch (item.getItemId()) { // We have only one menu option case R.id.quit: System.exit(0); break; case R.id.back: webview.goBack(); case R.id.refresh: webview.reload(); case R.id.info: //IncludeJavascript(""); } return true; } /** Begin Globals */ public WebView webview; public WebChromeClient webChromeClient; public WebViewClient webViewClient; public ProgressDialog loadingDialog; public Boolean HideDialogOnce; public Activity myProcess; public String OverideUserAgent_IE = "Mozilla/5.0 (Windows; MSIE 6.0; Android 1.6; en-US) AppleWebKit/525.10+ (KHTML, like Gecko) Version/3.0.4 Safari/523.12.2 myKMB/1.0"; public String LandingPage = "http://kscserver.com/main-leap-slim.html"; public String MessageBegText = "Problem making a connection, Details: "; public String MessageEndText = " For Support Call: (xxx) xxx - xxxx."; public void LoadSettings() { webview.getSettings().setUserAgentString(OverideUserAgent_IE); webview.getSettings().setJavaScriptEnabled(true); webview.getSettings().setBuiltInZoomControls(true); webview.getSettings().setSupportZoom(true); } /** Creates a message alert dialog */ public void CreateMessage(String message) { AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setMessage(message) .setCancelable(true) .setNegativeButton("Close", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { dialog.cancel(); } }); AlertDialog alert = builder.create(); alert.show(); } } My Application is running in the background, and as you can see no Firebug in the lower right hand corner. However the browser (the emulator on top) has the same page but shows the firebug. What am I doing wrong? I'm assuming its either not enough memory allocated to the application, process power allocation, or a physical memory thing. I can't tell, all I know is the results are strange. I get the same thing form my android device, the application shows no firebug but the browser shows the firebug.

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

  • Nested property binding

    - by EtherealMonkey
    Recently, I have been trying to wrap my mind around the BindingList<T> and INotifyPropertChanged. More specifically - How do I make a collection of objects (having objects as properties) which will allow me to subscribe to events throughout the tree? To that end, I have examined the code offered as examples by others. One such project that I downloaded was Nested Property Binding - CodeProject by "seesharper". Now, the article explains the implementation, but there was a question by "Someone@AnotherWorld" about "INotifyPropertyChanged in nested objects". His question was: Hi, nice stuff! But after a couple of time using your solution I realize the ObjectBindingSource ignores the PropertyChanged event of nested objects. E.g. I've got a class 'Foo' with two properties named 'Name' and 'Bar'. 'Name' is a string an 'Bar' reference an instance of class 'Bar', which has a 'Name' property of type string too and both classes implements INotifyPropertyChanged. With your binding source reading and writing with both properties ('Name' and 'Bar_Name') works fine but the PropertyChanged event works only for the 'Name' property, because the binding source listen only for events of 'Foo'. One workaround is to retrigger the PropertyChanged event in the appropriate class (here 'Foo'). What's very unclean! The other approach would be to extend ObjectBindingSource so that all owner of nested property which implements INotifyPropertyChanged get used for receive changes, but how? Thanks! I had asked about BindingList<T> yesterday and received a good answer from Aaronaught. In my question, I had a similar point as "Someone@AnotherWorld": if Keywords were to implement INotifyPropertyChanged, would changes be accessible to the BindingList through the ScannedImage object? To which Aaronaught's response was: No, they will not. BindingList only looks at the specific object in the list, it has no ability to scan all dependencies and monitor everything in the graph (nor would that always be a good idea, if it were possible). I understand Aaronaught's comment regarding this behavior not necessarily being a good idea. Additionally, his suggestion to have my bound object "relay" events on behalf of it's member objects works fine and is perfectly acceptable. For me, "re-triggering" the PropertyChanged event does not seem so unclean as "Someone@AnotherWorld" laments. I do understand why he protests - in the interest of loosely coupled objects. However, I believe that coupling between objects that are part of a composition is logical and not so undesirable as this may be in other scenarios. (I am a newb, so I could be waaayyy off base.) Anyway, in the interest of exploring an answer to the question by "Someone@AnotherWorld", I altered the MainForm.cs file of the example project from Nested Property Binding - CodeProject by "seesharper" to the following: using System; using System.Collections.Generic; using System.ComponentModel; using System.Core.ComponentModel; using System.Windows.Forms; namespace ObjectBindingSourceDemo { public partial class MainForm : Form { private readonly List<Customer> _customers = new List<Customer>(); private readonly List<Product> _products = new List<Product>(); private List<Order> orders; public MainForm() { InitializeComponent(); dataGridView1.AutoGenerateColumns = false; dataGridView2.AutoGenerateColumns = false; CreateData(); } private void CreateData() { _customers.Add( new Customer(1, "Jane Wilson", new Address("98104", "6657 Sand Pointe Lane", "Seattle", "USA"))); _customers.Add( new Customer(1, "Bill Smith", new Address("94109", "5725 Glaze Drive", "San Francisco", "USA"))); _customers.Add( new Customer(1, "Samantha Brown", null)); _products.Add(new Product(1, "Keyboard", 49.99)); _products.Add(new Product(2, "Mouse", 10.99)); _products.Add(new Product(3, "PC", 599.99)); _products.Add(new Product(4, "Monitor", 299.99)); _products.Add(new Product(5, "LapTop", 799.99)); _products.Add(new Product(6, "Harddisc", 89.99)); customerBindingSource.DataSource = _customers; productBindingSource.DataSource = _products; orders = new List<Order>(); orders.Add(new Order(1, DateTime.Now, _customers[0])); orders.Add(new Order(2, DateTime.Now, _customers[1])); orders.Add(new Order(3, DateTime.Now, _customers[2])); #region Added by me OrderLine orderLine1 = new OrderLine(_products[0], 1); OrderLine orderLine2 = new OrderLine(_products[1], 3); orderLine1.PropertyChanged += new PropertyChangedEventHandler(OrderLineChanged); orderLine2.PropertyChanged += new PropertyChangedEventHandler(OrderLineChanged); orders[0].OrderLines.Add(orderLine1); orders[0].OrderLines.Add(orderLine2); #endregion // Removed by me in lieu of region above. //orders[0].OrderLines.Add(new OrderLine(_products[0], 1)); //orders[0].OrderLines.Add(new OrderLine(_products[1], 3)); ordersBindingSource.DataSource = orders; } #region Added by me // Have to wait until the form is Shown to wire up the events // for orderDetailsBindingSource. Otherwise, they are triggered // during MainForm().InitializeComponent(). private void MainForm_Shown(object sender, EventArgs e) { orderDetailsBindingSource.AddingNew += new AddingNewEventHandler(orderDetailsBindSrc_AddingNew); orderDetailsBindingSource.CurrentItemChanged += new EventHandler(orderDetailsBindSrc_CurrentItemChanged); orderDetailsBindingSource.ListChanged += new ListChangedEventHandler(orderDetailsBindSrc_ListChanged); } private void orderDetailsBindSrc_AddingNew( object sender, AddingNewEventArgs e) { } private void orderDetailsBindSrc_CurrentItemChanged( object sender, EventArgs e) { } private void orderDetailsBindSrc_ListChanged( object sender, ListChangedEventArgs e) { ObjectBindingSource bindingSource = (ObjectBindingSource)sender; if (!(bindingSource.Current == null)) { // Unsure if GetType().ToString() is required b/c ToString() // *seems* // to return the same value. if (bindingSource.Current.GetType().ToString() == "ObjectBindingSourceDemo.OrderLine") { if (e.ListChangedType == ListChangedType.ItemAdded) { // I wish that I knew of a way to determine // if the 'PropertyChanged' delegate assignment is null. // I don't like the current test, but it seems to work. if (orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].Product == null) { orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].PropertyChanged += new PropertyChangedEventHandler( OrderLineChanged); } } if (e.ListChangedType == ListChangedType.ItemDeleted) { // Will throw exception when leaving // an OrderLine row with unitialized properties. // // I presume this is because the item // has already been 'disposed' of at this point. // *but* // Will it be actually be released from memory // if the delegate assignment for PropertyChanged // was never removed??? if (orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].Product != null) { orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].PropertyChanged -= new PropertyChangedEventHandler( OrderLineChanged); } } } } } private void OrderLineChanged(object sender, PropertyChangedEventArgs e) { MessageBox.Show(e.PropertyName, "Property Changed:"); } #endregion } } In the method private void orderDetailsBindSrc_ListChanged(object sender, ListChangedEventArgs e) I am able to hook up the PropertyChangedEventHandler to the OrderLine object as it is being created. However, I cannot seem to find a way to unhook the PropertyChangedEventHandler from the OrderLine object before it is being removed from the orders[i].OrderLines list. So, my questions are: Am I simply trying to do something that is very, very wrong here? Will the OrderLines object that I add the delegate assignments to ever be released from memory if the assignment is not removed? Is there a "sane" method of achieving this scenario? Also, note that this question is not specifically related to my prior. I have actually solved the issue which had prompted me to inquire before. However, I have reached a point with this particular topic of discovery where my curiosity has exceeded my patience - hopefully someone here can shed some light on this?

    Read the article

  • I am getting an error with a oneToMany association when using annotations with gilead for hibernate

    - by user286630
    Hello Guys I'm using Gilead to persist my entities in my GWT project, im using hibernate annotations aswell. my problem is on my onetomany association.this is my User class that holds a reference to a list of FileLocations @Entity @Table(name = "yf_user_table") public class YFUser implements Serializable { @Id @GeneratedValue(strategy = GenerationType.AUTO) @Column(name = "user_id",nullable = false) private int userId; @Column(name = "username") private String username; @Column(name = "password") private String password; @Column(name = "email") private String email; @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY) @JoinColumn(name="USER_ID") private List fileLocations = new ArrayList(); This is my file location class @Entity @Table(name = "fileLocationTable") public class FileLocation implements Serializable { @Id @GeneratedValue(strategy = GenerationType.AUTO) @Column(name = "locationId", updatable = false, nullable = false) private int ieId; @Column (name = "location") private String location; @ManyToOne(fetch=FetchType.LAZY) @JoinColumn(name="USER_ID", nullable=false) private YFUser uploadedUser; When i persist this data in a normal desktop application, it works fine , creates the tables and i can add and store data to it. but when i try to persist the data in my gwt application i get errors i will show them lower. this is my ServiceImpl class that extends PersistentRemoteService. public class TestServiceImpl extends PersistentRemoteService implements TestService { public static final String SESSION_USER = "UserWithinSession"; public TestServiceImpl(){ HibernateUtil util = new HibernateUtil(); util.setSessionFactory(com.example.server.HibernateUtil .getSessionFactory()); PersistentBeanManager pbm = new PersistentBeanManager(); pbm.setPersistenceUtil(util); pbm.setProxyStore(new StatelessProxyStore()); setBeanManager(pbm); } @Override public String registerUser(String username, String password, String email) { Session session = com.example.server.HibernateUtil.getSessionFactory().getCurrentSession(); session.beginTransaction(); YFUser newUser = new YFUser(); newUser.setUsername(username);newUser.setPassword(password);newUser.setEmail(email); session.save(newUser); session.getTransaction().commit(); return "Thank you For registering "+ username; } this is the error that im am getting. the error goes away when i remove my onetoManyRelationship and builds my session factory when i put it in , it on the line of buildsessionfactory in hibernate Util that it throws this exception. my hibernate util class is ok also. this is the error java.lang.NoSuchMethodError: javax.persistence.OneToMany.orphanRemoval()Z Mar 24, 2010 10:03:22 PM org.hibernate.cfg.annotations.Version <clinit> INFO: Hibernate Annotations 3.5.0-Beta-4 Mar 24, 2010 10:03:22 PM org.hibernate.cfg.Environment <clinit> INFO: Hibernate 3.5.0-Beta-4 Mar 24, 2010 10:03:22 PM org.hibernate.cfg.Environment <clinit> INFO: hibernate.properties not found Mar 24, 2010 10:03:22 PM org.hibernate.cfg.Environment buildBytecodeProvider INFO: Bytecode provider name : javassist Mar 24, 2010 10:03:22 PM org.hibernate.cfg.Environment <clinit> INFO: using JDK 1.4 java.sql.Timestamp handling Mar 24, 2010 10:03:22 PM org.hibernate.annotations.common.Version <clinit> INFO: Hibernate Commons Annotations 3.2.0-SNAPSHOT Mar 24, 2010 10:03:22 PM org.hibernate.cfg.Configuration configure INFO: configuring from resource: /hibernate.cfg.xml Mar 24, 2010 10:03:22 PM org.hibernate.cfg.Configuration getConfigurationInputStream INFO: Configuration resource: /hibernate.cfg.xml Mar 24, 2010 10:03:22 PM org.hibernate.cfg.Configuration doConfigure INFO: Configured SessionFactory: null Mar 24, 2010 10:03:22 PM org.hibernate.cfg.search.HibernateSearchEventListenerRegister enableHibernateSearch INFO: Unable to find org.hibernate.search.event.FullTextIndexEventListener on the classpath. Hibernate Search is not enabled. Mar 24, 2010 10:03:22 PM org.hibernate.cfg.AnnotationBinder bindClass INFO: Binding entity from annotated class: com.example.client.Entity1 Mar 24, 2010 10:03:22 PM org.hibernate.cfg.annotations.EntityBinder bindTable INFO: Bind entity com.example.client.Entity1 on table entityTable1 Mar 24, 2010 10:03:22 PM org.hibernate.cfg.AnnotationBinder bindClass INFO: Binding entity from annotated class: com.example.client.YFUser Mar 24, 2010 10:03:22 PM org.hibernate.cfg.annotations.EntityBinder bindTable INFO: Bind entity com.example.client.YFUser on table yf_user_table Initial SessionFactory creation failed.java.lang.NoSuchMethodError: javax.persistence.OneToMany.orphanRemoval()Z [WARN] Nested in javax.servlet.ServletException: init: java.lang.ExceptionInInitializerError at com.example.server.HibernateUtil.<clinit>(HibernateUtil.java:38) at com.example.server.TestServiceImpl.<init>(TestServiceImpl.java:29) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39 ) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at java.lang.Class.newInstance0(Class.java:355) at java.lang.Class.newInstance(Class.java:308) at org.mortbay.jetty.servlet.Holder.newInstance(Holder.java:153) at org.mortbay.jetty.servlet.ServletHolder.getServlet(ServletHolder.java:339) at org.mortbay.jetty.servlet.ServletHolder.handle(ServletHolder.java:463) at org.mortbay.jetty.servlet.ServletHandler.handle(ServletHandler.java:362) at org.mortbay.jetty.security.SecurityHandler.handle(SecurityHandler.java:216) at org.mortbay.jetty.servlet.SessionHandler.handle(SessionHandler.java:181) at org.mortbay.jetty.handler.ContextHandler.handle(ContextHandler.java:729) at org.mortbay.jetty.webapp.WebAppContext.handle(WebAppContext.java:405) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at org.mortbay.jetty.handler.RequestLogHandler.handle(RequestLogHandler.java:49) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at org.mortbay.jetty.Server.handle(Server.java:324) at org.mortbay.jetty.HttpConnection.handleRequest(HttpConnection.java:505) at org.mortbay.jetty.HttpConnection$RequestHandler.content(HttpConnection.java:843) at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:647) at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:211) at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:380) at org.mortbay.io.nio.SelectChannelEndPoint.run(SelectChannelEndPoint.java:396) at org.mortbay.thread.QueuedThreadPool$PoolThread.run(QueuedThreadPool.java:488) Caused by: java.lang.NoSuchMethodError: javax.persistence.OneToMany.orphanRemoval()Z at org.hibernate.cfg.AnnotationBinder.processElementAnnotations(AnnotationBinder.java:1642) at org.hibernate.cfg.AnnotationBinder.bindClass(AnnotationBinder.java:772) at org.hibernate.cfg.AnnotationConfiguration.processArtifactsOfType(AnnotationConfiguration.java:629) at org.hibernate.cfg.AnnotationConfiguration.secondPassCompile(AnnotationConfiguration.java:350) at org.hibernate.cfg.Configuration.buildSessionFactory(Configuration.java:1373) at org.hibernate.cfg.AnnotationConfiguration.buildSessionFactory(AnnotationConfiguration.java:973) at com.example.server.HibernateUtil.<clinit>(HibernateUtil.java:33) ... 26 more [WARN] Nested in java.lang.ExceptionInInitializerError: java.lang.NoSuchMethodError: javax.persistence.OneToMany.orphanRemoval()Z at org.hibernate.cfg.AnnotationBinder.processElementAnnotations(AnnotationBinder.java:1642) at org.hibernate.cfg.AnnotationBinder.bindClass(AnnotationBinder.java:772) at org.hibernate.cfg.AnnotationConfiguration.processArtifactsOfType(AnnotationConfiguration.java:629) at org.hibernate.cfg.AnnotationConfiguration.secondPassCompile(AnnotationConfiguration.java:350) at org.hibernate.cfg.Configuration.buildSessionFactory(Configuration.java:1373) at org.hibernate.cfg.AnnotationConfiguration.buildSessionFactory(AnnotationConfiguration.java:973) at com.example.server.HibernateUtil.<clinit>(HibernateUtil.java:33) at com.example.server.TestServiceImpl.<init>(TestServiceImpl.java:29) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at java.lang.Class.newInstance0(Class.java:355) at java.lang.Class.newInstance(Class.java:308) at org.mortbay.jetty.servlet.Holder.newInstance(Holder.java:153) at org.mortbay.jetty.servlet.ServletHolder.getServlet(ServletHolder.java:339) at org.mortbay.jetty.servlet.ServletHolder.handle(ServletHolder.java:463) at org.mortbay.jetty.servlet.ServletHandler.handle(ServletHandler.java:362) at org.mortbay.jetty.security.SecurityHandler.handle(SecurityHandler.java:216) at org.mortbay.jetty.servlet.SessionHandler.handle(SessionHandler.java:181) at org.mortbay.jetty.handler.ContextHandler.handle(ContextHandler.java:729) at org.mortbay.jetty.webapp.WebAppContext.handle(WebAppContext.java:405) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at org.mortbay.jetty.handler.RequestLogHandler.handle(RequestLogHandler.java:49) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at org.mortbay.jetty.Server.handle(Server.java:324) at org.mortbay.jetty.HttpConnection.handleRequest(HttpConnection.java:505) at org.mortbay.jetty.HttpConnection$RequestHandler.content(HttpConnection.java:843) at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:647) at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:211) at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:380) at org.mortbay.io.nio.SelectChannelEndPoint.run(SelectChannelEndPoint.java:396) at org.mortbay.thread.QueuedThreadPool$PoolThread.run(QueuedThreadPool.java:488)

    Read the article

  • Need guidance on a Google Map application that has to show 250 000 polylines.

    - by lucian.jp
    I am looking for advice for an application I am developing that uses Google Map. Summary: A user has a list of criteria for searching a street segment that fulfills the criteria. The street segments will be colored with 3 colors for showing those below average, average and over average. Then the user clicks on the street segment to see an information window showing the properties of that specific segment hiding those not selected until he/she closes the window and other polyline becomes visible again. This looks quite like the Monopoly City Streets game Hasbro made some month ago the difference being I do not use Flash, I can’t use Open Street Map because it doesn’t list street segment (if it does the IDs won’t be the same anyway) and I do not have to show Google sketch building over. Information: I have a database of street segments with IDs, polyline points and centroid. The database has 6,000,000 street segment records in it. To narrow the generated data a bit we focus on city. The largest city we must show has 250,000 street segments. This means 250,000 line segment polyline to show. Our longest polyline uses 9600 characters which is stored in two 8000 varchar columns in SQL Server 2008. We need to use the API v3 because it is faster than the API v2 and the application will be ported to iPhone. For now it's an ASP.NET 3.5 with SQl Server 2008 application. Performance is a priority. Problems: Most of the demo projects that do this are made with API v2. So besides tutorial on the Google API v3 reference page I have nothing to compare performance or technology use to achieve my goal. There is no available .NET wrapper for the API v3 yet. Generating a 250,000 line segment polyline creates a heavy file which takes time to transfer and parse. (I have found a demo of one polyline of 390,000 points. I think the encoder would be far less efficient with more polylines with less points since there will be less rounding.) Since streets segments are shown based on criteria, polylines must be dynamically created and cache can't be used. Some thoughts: KML/KMZ: Pros: Since it is a standard we can easily load Bing maps, Yahoo! maps, Google maps, Google Earth, with the same KML file. The data generation would be the same. Cons: LineString in KML cannot be encoded polyline like the Google map API can handle. So it would probably be bigger and slower to display. Zipping the file at the size it will take more processing time and require the client side to uncompress the data and I am not quite sure with 250,000 data how an iPhone would handle this and how a server would handle 40 users browsing at the same time. JavaScript file: Pros: JavaScript file can have encoded polyline and would significantly reduce the file to transfer. Cons: Have to create my own stripped version of API v3 to add overlays, create polyline, etc. It is more complex than just create a KML file and point to the source. GeoRSS: This option isn't adapted for my needs I think, but I could be wrong. MapServer: I saw some post suggesting using MapServer to generate overlays. Not quite sure for the connection with our database and the performance it would give. Plus it requires a plugin for generating KML. It seems to me that it wouldn't allow me to do better than creating my own KML or JavaScript file. Maintenance would be simpler without. Monopoly City Streets: The game is now over, but for those who know what I am talking about Monopoly City Streets was showing at max zoom level only the streets that the centroid was inside the Bounds of the window. Moving the map was sending request to the server for the new streets to show. While I think this was ingenious, I have no idea how to implement something similar. The only thing I thought about was to compare if the long was inside the bound of map area X and same with Y. While this could improve performance significantly at high zoom level, this would give nothing when showing a whole city. Clustering: While cluster is awesome for marker, it seems we cannot cluster polylines. I would have liked something like MarkerClusterer for polylines and be able to cluster by my 3 polyline colors. This will probably stay as a “would have been freaking awesome but forget it”. Arrow: I will have in a future version to show a direction for the polyline and will have to show an arrow at the centroid. Loading an image or marker will only double my data so creating a custom overlay will probably be my only option. I have found that demo for something similar I would like to achieve. Unfortunately, the demo is very slow, but I only wish to show 1 arrow per polyline and not multiple like the demo. This functionality will depend on the format of data since I don't think KML support custom overlays. Criteria: While the application is done with ASP.NET 3.5, the port to the iPhone won't use the web to show the application and be limited in screen size for selecting the criteria. This is why I was more orienting on a service or page generating the file based on criteria passed in parameters. The service would than generate the file I need to display the polylines on the map. I could also create an aspx page that does this. The aspx page is more documented than the service way. There should be a reason. Questions: Should I create a web service to returns the street segments file or create an aspx page that return the file? Should I create a JavaScript file with encoded polyline or a KML with longitude/latitude based on the fact that maximum longitude/latitude polyline have 9600 characters and I have to render maximum 250,000 line segment polyline. Or should I go with a MapServer that generate the overlay? Will I be able to display simple arrow on the polyline on the next version. In case of KML generation is it faster to create the file with XDocument, XmlDocument, XmlWriter and this manually or just serialize the street segment in the stream? This is more a brainstorming Stack Overflow question than an actual code problem. Any answer helping narrow the possibilities is as good as someone having all the knowledge to point me out a better choice.

    Read the article

  • What is the fastest cyclic synchronization in Java (ExecutorService vs. CyclicBarrier vs. X)?

    - by Alex Dunlop
    Which Java synchronization construct is likely to provide the best performance for a concurrent, iterative processing scenario with a fixed number of threads like the one outlined below? After experimenting on my own for a while (using ExecutorService and CyclicBarrier) and being somewhat surprised by the results, I would be grateful for some expert advice and maybe some new ideas. Existing questions here do not seem to focus primarily on performance, hence this new one. Thanks in advance! The core of the app is a simple iterative data processing algorithm, parallelized to the spread the computational load across 8 cores on a Mac Pro, running OS X 10.6 and Java 1.6.0_07. The data to be processed is split into 8 blocks and each block is fed to a Runnable to be executed by one of a fixed number of threads. Parallelizing the algorithm was fairly straightforward, and it functionally works as desired, but its performance is not yet what I think it could be. The app seems to spend a lot of time in system calls synchronizing, so after some profiling I wonder whether I selected the most appropriate synchronization mechanism(s). A key requirement of the algorithm is that it needs to proceed in stages, so the threads need to sync up at the end of each stage. The main thread prepares the work (very low overhead), passes it to the threads, lets them work on it, then proceeds when all threads are done, rearranges the work (again very low overhead) and repeats the cycle. The machine is dedicated to this task, Garbage Collection is minimized by using per-thread pools of pre-allocated items, and the number of threads can be fixed (no incoming requests or the like, just one thread per CPU core). V1 - ExecutorService My first implementation used an ExecutorService with 8 worker threads. The program creates 8 tasks holding the work and then lets them work on it, roughly like this: // create one thread per CPU executorService = Executors.newFixedThreadPool( 8 ); ... // now process data in cycles while( ...) { // package data into 8 work items ... // create one Callable task per work item ... // submit the Callables to the worker threads executorService.invokeAll( taskList ); } This works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as much as the processing algorithm would be expected to allow (some work items will finish faster than others, then idle). However, as the work items become smaller (and this is not really under the program's control), the user CPU load shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.8% 85% 1.30 64k 2.5% 77% 5.6 16k 4% 64% 22.5 4096 8% 56% 86 1024 13% 38% 227 256 17% 19% 420 64 19% 17% 948 16 19% 13% 1626 Legend: - block size = size of the work item (= computational steps) - system = system load, as shown in OS X Activity Monitor (red bar) - user = user load, as shown in OS X Activity Monitor (green bar) - cycles/sec = iterations through the main while loop, more is better The primary area of concern here is the high percentage of time spent in the system, which appears to be driven by thread synchronization calls. As expected, for smaller work items, ExecutorService.invokeAll() will require relatively more effort to sync up the threads versus the amount of work being performed in each thread. But since ExecutorService is more generic than it would need to be for this use case (it can queue tasks for threads if there are more tasks than cores), I though maybe there would be a leaner synchronization construct. V2 - CyclicBarrier The next implementation used a CyclicBarrier to sync up the threads before receiving work and after completing it, roughly as follows: main() { // create the barrier barrier = new CyclicBarrier( 8 + 1 ); // create Runable for thread, tell it about the barrier Runnable task = new WorkerThreadRunnable( barrier ); // start the threads for( int i = 0; i < 8; i++ ) { // create one thread per core new Thread( task ).start(); } while( ... ) { // tell threads about the work ... // N threads + this will call await(), then system proceeds barrier.await(); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; } public void run() { while( true ) { // wait for work barrier.await(); // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as before. However, as the work items become smaller, the load still shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.7% 78% 6.1 16k 5.5% 52% 25 4096 9% 29% 64 1024 11% 15% 117 256 12% 8% 169 64 12% 6.5% 285 16 12% 6% 377 For large work items, synchronization is negligible and the performance is identical to V1. But unexpectedly, the results of the (highly specialized) CyclicBarrier seem MUCH WORSE than those for the (generic) ExecutorService: throughput (cycles/sec) is only about 1/4th of V1. A preliminary conclusion would be that even though this seems to be the advertised ideal use case for CyclicBarrier, it performs much worse than the generic ExecutorService. V3 - Wait/Notify + CyclicBarrier It seemed worth a try to replace the first cyclic barrier await() with a simple wait/notify mechanism: main() { // create the barrier // create Runable for thread, tell it about the barrier // start the threads while( ... ) { // tell threads about the work // for each: workerThreadRunnable.setWorkItem( ... ); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; @NotNull volatile private Callable<Integer> workItem; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; this.workItem = NO_WORK; } final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { synchronized( this ) { workItem = callable; notify(); } } public void run() { while( true ) { // wait for work while( true ) { synchronized( this ) { if( workItem != NO_WORK ) break; try { wait(); } catch( InterruptedException e ) { e.printStackTrace(); } } } // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.4% 80% 6.3 16k 4.6% 60% 30.1 4096 8.6% 41% 98.5 1024 12% 23% 202 256 14% 11.6% 299 64 14% 10.0% 518 16 14.8% 8.7% 679 The throughput for small work items is still much worse than that of the ExecutorService, but about 2x that of the CyclicBarrier. Eliminating one CyclicBarrier eliminates half of the gap. V4 - Busy wait instead of wait/notify Since this app is the primary one running on the system and the cores idle anyway if they're not busy with a work item, why not try a busy wait for work items in each thread, even if that spins the CPU needlessly. The worker thread code changes as follows: class WorkerThreadRunnable implements Runnable { // as before final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { workItem = callable; } public void run() { while( true ) { // busy-wait for work while( true ) { if( workItem != NO_WORK ) break; } // do the work ... // wait for everyone else to finish barrier.await(); } } } Also works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.2% 81% 6.3 16k 4.2% 62% 33 4096 7.5% 40% 107 1024 10.4% 23% 210 256 12.0% 12.0% 310 64 11.9% 10.2% 550 16 12.2% 8.6% 741 For small work items, this increases throughput by a further 10% over the CyclicBarrier + wait/notify variant, which is not insignificant. But it is still much lower-throughput than V1 with the ExecutorService. V5 - ? So what is the best synchronization mechanism for such a (presumably not uncommon) problem? I am weary of writing my own sync mechanism to completely replace ExecutorService (assuming that it is too generic and there has to be something that can still be taken out to make it more efficient). It is not my area of expertise and I'm concerned that I'd spend a lot of time debugging it (since I'm not even sure my wait/notify and busy wait variants are correct) for uncertain gain. Any advice would be greatly appreciated.

    Read the article

  • Solving embarassingly parallel problems using Python multiprocessing

    - by gotgenes
    How does one use multiprocessing to tackle embarrassingly parallel problems? Embarassingly parallel problems typically consist of three basic parts: Read input data (from a file, database, tcp connection, etc.). Run calculations on the input data, where each calculation is independent of any other calculation. Write results of calculations (to a file, database, tcp connection, etc.). We can parallelize the program in two dimensions: Part 2 can run on multiple cores, since each calculation is independent; order of processing doesn't matter. Each part can run independently. Part 1 can place data on an input queue, part 2 can pull data off the input queue and put results onto an output queue, and part 3 can pull results off the output queue and write them out. This seems a most basic pattern in concurrent programming, but I am still lost in trying to solve it, so let's write a canonical example to illustrate how this is done using multiprocessing. Here is the example problem: Given a CSV file with rows of integers as input, compute their sums. Separate the problem into three parts, which can all run in parallel: Process the input file into raw data (lists/iterables of integers) Calculate the sums of the data, in parallel Output the sums Below is traditional, single-process bound Python program which solves these three tasks: #!/usr/bin/env python # -*- coding: UTF-8 -*- # basicsums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file. """ import csv import optparse import sys def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) return cli_parser def parse_input_csv(csvfile): """Parses the input CSV and yields tuples with the index of the row as the first element, and the integers of the row as the second element. The index is zero-index based. :Parameters: - `csvfile`: a `csv.reader` instance """ for i, row in enumerate(csvfile): row = [int(entry) for entry in row] yield i, row def sum_rows(rows): """Yields a tuple with the index of each input list of integers as the first element, and the sum of the list of integers as the second element. The index is zero-index based. :Parameters: - `rows`: an iterable of tuples, with the index of the original row as the first element, and a list of integers as the second element """ for i, row in rows: yield i, sum(row) def write_results(csvfile, results): """Writes a series of results to an outfile, where the first column is the index of the original row of data, and the second column is the result of the calculation. The index is zero-index based. :Parameters: - `csvfile`: a `csv.writer` instance to which to write results - `results`: an iterable of tuples, with the index (zero-based) of the original row as the first element, and the calculated result from that row as the second element """ for result_row in results: csvfile.writerow(result_row) def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # gets an iterable of rows that's not yet evaluated input_rows = parse_input_csv(in_csvfile) # sends the rows iterable to sum_rows() for results iterable, but # still not evaluated result_rows = sum_rows(input_rows) # finally evaluation takes place as a chain in write_results() write_results(out_csvfile, result_rows) infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) Let's take this program and rewrite it to use multiprocessing to parallelize the three parts outlined above. Below is a skeleton of this new, parallelized program, that needs to be fleshed out to address the parts in the comments: #!/usr/bin/env python # -*- coding: UTF-8 -*- # multiproc_sums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file, using multiple processes if desired. """ import csv import multiprocessing import optparse import sys NUM_PROCS = multiprocessing.cpu_count() def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) cli_parser.add_option('-n', '--numprocs', type='int', default=NUM_PROCS, help="Number of processes to launch [DEFAULT: %default]") return cli_parser def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # Parse the input file and add the parsed data to a queue for # processing, possibly chunking to decrease communication between # processes. # Process the parsed data as soon as any (chunks) appear on the # queue, using as many processes as allotted by the user # (opts.numprocs); place results on a queue for output. # # Terminate processes when the parser stops putting data in the # input queue. # Write the results to disk as soon as they appear on the output # queue. # Ensure all child processes have terminated. # Clean up files. infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) These pieces of code, as well as another piece of code that can generate example CSV files for testing purposes, can be found on github. I would appreciate any insight here as to how you concurrency gurus would approach this problem. Here are some questions I had when thinking about this problem. Bonus points for addressing any/all: Should I have child processes for reading in the data and placing it into the queue, or can the main process do this without blocking until all input is read? Likewise, should I have a child process for writing the results out from the processed queue, or can the main process do this without having to wait for all the results? Should I use a processes pool for the sum operations? If yes, what method do I call on the pool to get it to start processing the results coming into the input queue, without blocking the input and output processes, too? apply_async()? map_async()? imap()? imap_unordered()? Suppose we didn't need to siphon off the input and output queues as data entered them, but could wait until all input was parsed and all results were calculated (e.g., because we know all the input and output will fit in system memory). Should we change the algorithm in any way (e.g., not run any processes concurrently with I/O)?

    Read the article

  • Delphi hook to redirect to different ip

    - by Chris
    What is the best way to redirect ANY browser to a different ip for specific sites? For example if the user will type www.facebook.com in any browser he will be redirected to 127.0.0.1. Also the same should happen if he will type 66.220.146.11. What I have until now is this: using the winpkfilter I am able to intercept all the traffic on port 80, with type(in or out), source ip, destination ip and packet. My problem is to modify somehow the packet so the browser will be redirected. This is the code that i have right now: program Pass; {$APPTYPE CONSOLE} uses SysUtils, Windows, Winsock, winpkf, iphlp; var iIndex, counter : DWORD; hFilt : THANDLE; Adapts : TCP_AdapterList; AdapterMode : ADAPTER_MODE; Buffer, ParsedBuffer : INTERMEDIATE_BUFFER; ReadRequest : ETH_REQUEST; hEvent : THANDLE; hAdapter : THANDLE; pEtherHeader : TEtherHeaderPtr; pIPHeader : TIPHeaderPtr; pTcpHeader : TTCPHeaderPtr; pUdpHeader : TUDPHeaderPtr; SourceIP, DestIP : TInAddr; thePacket : PChar; f : TextFile; SourceIpString, DestinationIpString : string; SourceName, DestinationName : string; function IPAddrToName(IPAddr : string) : string; var SockAddrIn : TSockAddrIn; HostEnt : PHostEnt; WSAData : TWSAData; begin WSAStartup($101, WSAData); SockAddrIn.sin_addr.s_addr := inet_addr(PChar(IPAddr)); HostEnt := gethostbyaddr(@SockAddrIn.sin_addr.S_addr, 4, AF_INET); if HostEnt < nil then begin result := StrPas(Hostent^.h_name) end else begin result := ''; end; end; procedure ReleaseInterface(); begin // Restore default mode AdapterMode.dwFlags := 0; AdapterMode.hAdapterHandle := hAdapter; SetAdapterMode(hFilt, @AdapterMode); // Set NULL event to release previously set event object SetPacketEvent(hFilt, hAdapter, 0); // Close Event if hEvent < 0 then CloseHandle(hEvent); // Close driver object CloseFilterDriver(hFilt); // Release NDISAPI FreeNDISAPI(); end; begin // Check the number of parameters if ParamCount() < 2 then begin Writeln('Command line syntax:'); Writeln(' PassThru.exe index num'); Writeln(' index - network interface index.'); Writeln(' num - number or packets to filter'); Writeln('You can use ListAdapters to determine correct index.'); Exit; end; // Initialize NDISAPI InitNDISAPI(); // Create driver object hFilt := OpenFilterDriver('NDISRD'); if IsDriverLoaded(hFilt) then begin // Get parameters from command line iIndex := StrToInt(ParamStr(1)); counter := StrToInt(ParamStr(2)); // Set exit procedure ExitProcessProc := ReleaseInterface; // Get TCP/IP bound interfaces GetTcpipBoundAdaptersInfo(hFilt, @Adapts); // Check paramer values if iIndex > Adapts.m_nAdapterCount then begin Writeln('There is no network interface with such index on this system.'); Exit; end; hAdapter := Adapts.m_nAdapterHandle[iIndex]; AdapterMode.dwFlags := MSTCP_FLAG_SENT_TUNNEL or MSTCP_FLAG_RECV_TUNNEL; AdapterMode.hAdapterHandle := hAdapter; // Create notification event hEvent := CreateEvent(nil, TRUE, FALSE, nil); if hEvent <> 0 then if SetPacketEvent(hFilt, hAdapter, hEvent) <> 0 then begin // Initialize request ReadRequest.EthPacket.Buffer := @Buffer; ReadRequest.hAdapterHandle := hAdapter; SetAdapterMode(hFilt, @AdapterMode); counter := 0; //while counter <> 0 do while true do begin WaitForSingleObject(hEvent, INFINITE); while ReadPacket(hFilt, @ReadRequest) <> 0 do begin //dec(counter); pEtherHeader := TEtherHeaderPtr(@Buffer.m_IBuffer); if ntohs(pEtherHeader.h_proto) = ETH_P_IP then begin pIPHeader := TIPHeaderPtr(Integer(pEtherHeader) + SizeOf(TEtherHeader)); SourceIP.S_addr := pIPHeader.SourceIp; DestIP.S_addr := pIPHeader.DestIp; if pIPHeader.Protocol = IPPROTO_TCP then begin pTcpHeader := TTCPHeaderPtr(Integer(pIPHeader) + (pIPHeader.VerLen and $F) * 4); if (pTcpHeader.SourcePort = htons(80)) or (pTcpHeader.DestPort = htons(80)) then begin inc(counter); if Buffer.m_dwDeviceFlags = PACKET_FLAG_ON_SEND then Writeln(counter, ') - MSTCP --> Interface') else Writeln(counter, ') - Interface --> MSTCP'); Writeln(' Packet size = ', Buffer.m_Length); Writeln(Format(' IP %.3u.%.3u.%.3u.%.3u --> %.3u.%.3u.%.3u.%.3u PROTOCOL: %u', [byte(SourceIP.S_un_b.s_b1), byte(SourceIP.S_un_b.s_b2), byte(SourceIP.S_un_b.s_b3), byte(SourceIP.S_un_b.s_b4), byte(DestIP.S_un_b.s_b1), byte(DestIP.S_un_b.s_b2), byte(DestIP.S_un_b.s_b3), byte(DestIP.S_un_b.s_b4), byte(pIPHeader.Protocol)] )); Writeln(Format(' TCP SRC PORT: %d DST PORT: %d', [ntohs(pTcpHeader.SourcePort), ntohs(pTcpHeader.DestPort)])); //get the data thePacket := pchar(pEtherHeader) + (sizeof(TEtherHeaderPtr) + pIpHeader.VerLen * 4 + pTcpHeader.Offset * 4); { SourceIpString := IntToStr(byte(SourceIP.S_un_b.s_b1)) + '.' + IntToStr(byte(SourceIP.S_un_b.s_b2)) + '.' + IntToStr(byte(SourceIP.S_un_b.s_b3)) + '.' + IntToStr(byte(SourceIP.S_un_b.s_b4)); DestinationIpString := IntToStr(byte(DestIP.S_un_b.s_b1)) + '.' + IntToStr(byte(DestIP.S_un_b.s_b2)) + '.' + IntToStr(byte(DestIP.S_un_b.s_b3)) + '.' + IntToStr(byte(DestIP.S_un_b.s_b4)); } end; end; end; // if ntohs(pEtherHeader.h_proto) = ETH_P_RARP then // Writeln(' Reverse Addr Res packet'); // if ntohs(pEtherHeader.h_proto) = ETH_P_ARP then // Writeln(' Address Resolution packet'); //Writeln('__'); if Buffer.m_dwDeviceFlags = PACKET_FLAG_ON_SEND then // Place packet on the network interface SendPacketToAdapter(hFilt, @ReadRequest) else // Indicate packet to MSTCP SendPacketToMstcp(hFilt, @ReadRequest); { if counter = 0 then begin Writeln('Filtering complete'); readln; break; end; } end; ResetEvent(hEvent); end; end; end; end.

    Read the article

  • Why html frame behave differently in Firefox and IE8 ?

    - by Frank
    I use html frame on my webiste, it's been running for I while, usually I only use Firefox to surf the net, my site looks and functions ok, but today I suddenly found IE8 has a problem with the frame on my site, if I click on the top menu items, it's supposed to display the content in the lower part of the frame, it does this correctly in Firefox, but in IE8, it displays the content in the upper part of the frame and replaces the menu items. In order to give more details, I'll include a simplified version of my html pages, at the top level there are two items, an index.html page and a file directory, all the pages except the index.html are in the directory, so it looks like this : index.html Dir_Docs 00_Home.html 00_Install_Java.html 00_Top_Menu.html 01_Home_Menu.html 01_Install_Java_Menu.html 10_Home_Welcome.html 10_How_To_Install_Java.html [ index.html ] <Html> <Head><Title>Java Applications : Tv_Panel, Java_Sound, Biz Manager and Web Academy</Title></Head> <Frameset Rows="36,*" Border=5 Bordercolor=#006B9F> <Frame Src=Dir_Docs/00_Top_Menu.html Frameborder=YES Scrolling=no Marginheight=1 Marginwidth=1> <Frame Src=Dir_Docs/00_Home.html Name=lower_frame Marginheight=1 Marginwidth=1> </Frameset> </Html> [ 00_Home.html ] <Html> <Head><Title>NMJava Application Development</Title></Head> <Frameset Cols="217,*" Align=center BorderColor="#006B9F"> <Frame Src=01_Home_Menu.html Frameborder=YES Name=side_menu Marginheight=1 Marginwidth=1> <Frame Src=10_Home_Welcome.html Name=content Marginheight=1 Marginwidth=1> </Frameset> </Html> [ 00_Install_Java.html ] <Html> <Head> <Title>Install Java</Title> </Head> <Frameset Cols="217,*" Align=center BorderColor="#006B9F"> <Frame Src=01_Install_Java_Menu.html Frameborder=YES Name=side_menu Marginheight=1 Marginwidth=1> <Frame Src=10_How_To_Install_Java.html Name=content Marginheight=1 Marginwidth=1> </Frameset> </Html> [ 00_Top_Menu.html ] <Html> <Head>Top Menu</Head> <Body> <Center> <Base target=lower_frame> <Table Border=1 Cellpadding=3 Width=100%> <Tr> <Td Align=Center Bgcolor=#3366FF><A Href=00_Home.html><Font Size=4 Color=White>Home</Font></A></Td> <Td Align=Center Bgcolor=#3366FF><A Href=00_Install_Java.html><Font Size=4 Color=White>Install Java</Font></A></Td> </Tr> </Table> </Center> </Body> </Html> [ 01_Home_Menu.html ] <Html> <Head><Title>Home Menu</Title></Head> <Base Target=content> <Body Bgcolor=#7799DD> <Center> <Table Border=1 Width=100%> <Tr><Td Align=center Bgcolor=#66AAFF><A Href=10_Home_Welcome.html>Welcome</A></Td></Tr> </Table> </Center> </Body> </Html> [ 01_Install_Java_Menu.html ] <Html> <Head><Title>Install Java</Title></Head> <Base Target=content> <Body Bgcolor=#7799DD> <Center> <Table Border=1 Width=100%> <Tr><Td Align=Center Bgcolor=#66AAFF><A Href=10_How_To_Install_Java.html>How To Install Java ?</A></Td></Tr> </Table> </Center> </Body> </Html> [ 10_Home_Welcome.html ] <Html> <Head><Title>NMJava For Software Development</Title></Head> <Body> <Center> <P> <Font Size=5 Color=blue>Welcome To NMJava For Software Development</Font> <P> </Center> </Body> </Html> [ 10_How_To_Install_Java.html ] <Html> <Head> <Title>Install Java</Title> </Head> <Body> <Center> <Br> <Font Size=5 Color=#0022AE><A Href=http://java.com/en/download/index.jsp>How To Install Java ?</A></Font> <Br> <P> <Table Width=90% Cellspacing=5 Cellpadding=5> <Tr><Td><Font Color=#0022AE> You need JRE 6 (Java Runtime Environment) to run the programs on this site. You may or may not have Java already installed on your PC, you can find out by going to the following site, if you don't have the latest version, you can install/upgrade it, it's free from Sun/Oracle at :<Font Size=4> <A Href=http://java.com/en/download/index.jsp>http://java.com/en/download/index.jsp</A></Font>.<P> </Font></Td></Tr> </Table> </Center> </Body> </Html> What's wrong with them, why the two browsers behave differently, and how to fix this ? My site is at : http://nmjava.com , in case you want to see more details. Frank

    Read the article

  • Array sorting efficiency... Beginner need advice

    - by SoleSoft
    I'll start by saying I am very much a beginner programmer, this is essentially my first real project outside of using learning material. I've been making a 'Simon Says' style game (the game where you repeat the pattern generated by the computer) using C# and XNA, the actual game is complete and working fine but while creating it, I wanted to also create a 'top 10' scoreboard. The scoreboard would record player name, level (how many 'rounds' they've completed) and combo (how many buttons presses they got correct), the scoreboard would then be sorted by combo score. This led me to XML, the first time using it, and I eventually got to the point of having an XML file that recorded the top 10 scores. The XML file is managed within a scoreboard class, which is also responsible for adding new scores and sorting scores. Which gets me to the point... I'd like some feedback on the way I've gone about sorting the score list and how I could have done it better, I have no other way to gain feedback =(. I know .NET features Array.Sort() but I wasn't too sure of how to use it as it's not just a single array that needs to be sorted. When a new score needs to be entered into the scoreboard, the player name and level also have to be added. These are stored within an 'array of arrays' (10 = for 'top 10' scores) scoreboardComboData = new int[10]; // Combo scoreboardTextData = new string[2][]; scoreboardTextData[0] = new string[10]; // Name scoreboardTextData[1] = new string[10]; // Level as string The scoreboard class works as follows: - Checks to see if 'scoreboard.xml' exists, if not it creates it - Initialises above arrays and adds any player data from scoreboard.xml, from previous run - when AddScore(name, level, combo) is called the sort begins - Another method can also be called that populates the XML file with above array data The sort checks to see if the new score (combo) is less than or equal to any recorded scores within the scoreboardComboData array (if it's greater than a score, it moves onto the next element). If so, it moves all scores below the score it is less than or equal to down one element, essentially removing the last score and then places the new score within the element below the score it is less than or equal to. If the score is greater than all recorded scores, it moves all scores down one and inserts the new score within the first element. If it's the only score, it simply adds it to the first element. When a new score is added, the Name and Level data is also added to their relevant arrays, in the same way. What a tongue twister. Below is the AddScore method, I've added comments in the hope that it makes things clearer O_o. You can get the actual source file HERE. Below the method is an example of the quickest way to add a score to follow through with a debugger. public static void AddScore(string name, string level, int combo) { // If the scoreboard has not yet been filled, this adds another 'active' // array element each time a new score is added. The actual array size is // defined within PopulateScoreBoard() (set to 10 - for 'top 10' if (totalScores < scoreboardComboData.Length) totalScores++; // Does the scoreboard even need sorting? if (totalScores > 1) { for (int i = totalScores - 1; i > - 1; i--) { // Check to see if score (combo) is greater than score stored in // array if (combo > scoreboardComboData[i] && i != 0) { // If so continue to next element continue; } // Check to see if score (combo) is less or equal to element 'i' // score && that the element is not the last in the // array, if so the score does not need to be added to the scoreboard else if (combo <= scoreboardComboData[i] && i != scoreboardComboData.Length - 1) { // If the score is lower than element 'i' and greater than the last // element within the array, it needs to be added to the scoreboard. This is achieved // by moving each element under element 'i' down an element. The new score is then inserted // into the array under element 'i' for (int j = totalScores - 1; j > i; j--) { // Name and level data are moved down in their relevant arrays scoreboardTextData[0][j] = scoreboardTextData[0][j - 1]; scoreboardTextData[1][j] = scoreboardTextData[1][j - 1]; // Score (combo) data is moved down in relevant array scoreboardComboData[j] = scoreboardComboData[j - 1]; } // The new Name, level and score (combo) data is inserted into the relevant array under element 'i' scoreboardTextData[0][i + 1] = name; scoreboardTextData[1][i + 1] = level; scoreboardComboData[i + 1] = combo; break; } // If the method gets the this point, it means that the score is greater than all scores within // the array and therefore cannot be added in the above way. As it is not less than any score within // the array. else if (i == 0) { // All Names, levels and scores are moved down within their relevant arrays for (int j = totalScores - 1; j != 0; j--) { scoreboardTextData[0][j] = scoreboardTextData[0][j - 1]; scoreboardTextData[1][j] = scoreboardTextData[1][j - 1]; scoreboardComboData[j] = scoreboardComboData[j - 1]; } // The new number 1 top name, level and score, are added into the first element // within each of their relevant arrays. scoreboardTextData[0][0] = name; scoreboardTextData[1][0] = level; scoreboardComboData[0] = combo; break; } // If the methods get to this point, the combo score is not high enough // to be on the top10 score list and therefore needs to break break; } } // As totalScores < 1, the current score is the first to be added. Therefore no checks need to be made // and the Name, Level and combo data can be entered directly into the first element of their relevant // array. else { scoreboardTextData[0][0] = name; scoreboardTextData[1][0] = level; scoreboardComboData[0] = combo; } } } Example for adding score: private static void Initialize() { scoreboardDoc = new XmlDocument(); if (!File.Exists("Scoreboard.xml")) GenerateXML("Scoreboard.xml"); PopulateScoreBoard("Scoreboard.xml"); // ADD TEST SCORES HERE! AddScore("EXAMPLE", "10", 100); AddScore("EXAMPLE2", "24", 999); PopulateXML("Scoreboard.xml"); } In it's current state the source file is just used for testing, initialize is called within main and PopulateScoreBoard handles the majority of other initialising, so nothing else is needed, except to add a test score. I thank you for your time!

    Read the article

  • C++ 2d Array Class Function Call Help

    - by johnny-conrad
    I hope this question takes a simple fix, and I am just missing something very small. I am in my second semester of C++ in college, and we are just getting into OOP. This is my first OOP program, and it is causing me a little problem. Here are the errors I am getting: Member function must be called or its address taken in function displayGrid(int,Cell ( *)[20]) Member function must be called or its address taken in function Turn(int,int,Cell ( *)[20]) Member function must be called or its address taken in function Turn(int,int,Cell ( *)[20]) Warning: Parameter 'grid' is never used in function displayGrid(int,Cell ( *)[20]) Here is all of my code. I am aware It is much more code than necessary, sorry if it makes it more difficult. I was worried that I might accidentally delete something. const int MAX=20; //Struct Cell holds player and their symbol. class Cell { private: int Player; char Symbol; public: Cell(void); void setPlayer(int); void setSymbol(char); int getPlayer(void); char getSymbol(void); }; Cell::Cell(void) { Symbol ='-'; } void Cell::setPlayer(int player_num) { Player = player_num; } void Cell::setSymbol(char rps) { Symbol = rps; } int Cell::getPlayer(void) { return Player; } char Cell::getSymbol(void) { return Symbol; } void Turn(int, int, Cell[MAX][MAX]); void displayGrid(int, Cell[MAX][MAX]); void main(void) { int size; cout << "How big would you like the grid to be: "; cin >> size; //Checks to see valid grid size while(size>MAX || size<3) { cout << "Grid size must between 20 and 3." << endl; cout << "Please re-enter the grid size: "; cin >> size; } int cnt=1; int full; Cell grid[MAX][MAX]; //I use full to detect when the game is over by squaring size. full = size*size; cout << "Starting a new game." << endl; //Exits loop when cnt reaches full. while(cnt<full+1) { displayGrid(size, grid); //calls function to display grid if(cnt%2==0) //if cnt is even then it's 2nd players turn cout << "Player 2's turn." << endl; else cout << "Player 1's turn" << endl; Turn(size, cnt, grid); //calls Turn do each players turn cnt++; } cout << endl; cout << "Board is full... Game Over" << endl; } void displayGrid(int size, Cell grid[MAX][MAX]) { cout << endl; cout << " "; for(int x=1; x<size+1; x++) // prints first row cout << setw(3) << x; // of numbers. cout << endl; //Nested-For prints the grid. for(int i=1; i<size+1; i++) { cout << setw(2) << i; for(int c=1; c<size+1; c++) { cout << setw(3) << grid[i][c].getSymbol; } cout << endl; } cout << endl; } void Turn(int size, int cnt, Cell grid[MAX][MAX]) { char temp; char choice; int row=0; int column=0; cout << "Enter the Row: "; cin >> row; cout << "Enter the Column: "; cin >> column; //puts what is in the current cell in "temp" temp = grid[row][column].getSymbol; //Checks to see if temp is occupied or not while(temp!='-') { cout << "Cell space is Occupied..." << endl; cout << "Enter the Row: "; cin >> row; cout << "Enter the Column: "; cin >> column; temp = grid[row][column].getSymbol; //exits loop when finally correct } if(cnt%2==0) //if cnt is even then its player 2's turn { cout << "Enter your Symbol R, P, or S (Capitals): "; cin >> choice; grid[row][column].setPlayer(1); in >> choice; } //officially sets choice to grid cell grid[row][column].setSymbol(choice); } else //if cnt is odd then its player 1's turn { cout << "Enter your Symbol r, p, or s (Lower-Case): "; cin >> choice; grid[row][column].setPlayer(2); //checks for valid input by user1 while(choice!= 'r' && choice!='p' && choice!='s') { cout << "Invalid Symbol... Please Re-Enter: "; cin >> choice; } //officially sets choice to grid cell. grid[row][column].setSymbol(choice); } cout << endl; } Thanks alot for your help!

    Read the article

< Previous Page | 178 179 180 181 182 183 184 185  | Next Page >