Search Results

Search found 19390 results on 776 pages for 'key bindings'.

Page 183/776 | < Previous Page | 179 180 181 182 183 184 185 186 187 188 189 190  | Next Page >

  • AdPrep logs show an LDAP error

    - by Omar
    What I am trying to do is transition our domain from Server 2003 Enterprise x32 to Server 2008 R2 Enterprise x64. Here is what I have done thus far. The 2003 server is a physical machine, the 2008 server is a virtual machine Built a virtual machine that has Server 2008 R2 Enterprise x64 and joined it to the domain as a domain member On the 2003 DC, Raised Domain Functional Level and Forest Functional Level to Windows Server 2003 On the 2003 DC, went into the registry and navigated to HKLM\SYSTEM\CurrentControlSet\Services\NTDS\Parameters and verified that the Schema Version is 30 On the 2003 DC, inserted the Windows Server 2008 Enterprise x32 Edition to copy over the adprep folder. This version is the only one that seemed to work On the 2003 DC, opened command prompt and went to adprep directory and ran adprep /forestprep , adprep /domainprep , and adprep /domainprep /gpprep On the 2008 server, Installed the Active Directory Domain Services role from Server Manager On the 2003 DC, went into the registry and navigated to HKLM\SYSTEM\CurrentControlSet\Services\NTDS\Parameters and verified that the Schema Version is now 44 When I go to run dcpromo on the 2008 server, I get a message that says: "To install a domain controller into this Active Directory forest, you must first prepare using adprep /forestprep" I went back to the 2003 DC server and went through the adprep logs and I came across this: Adprep was unable to modify the security descriptor on object CN=DomainControllerAuthentication,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=xeroxtoledo,DC=com. [Status/Consequence] ADPREP was unable to merge the existing security descriptor with the new access control entry (ACE). [User Action] Check the log file ADPrep.log in the C:\WINDOWS\debug\adprep\logs\20100327143517 directory for more information. Adprep encountered an LDAP error. *Error code: 0x20. Server extended error code: 0x208d, Server error message: 0000208D: NameErr: DSID-031001CD, problem 2001 (NO_OBJECT), data 0, best match of: 'CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=xeroxtoledo,DC=com* In fact, I got three of these errors. The LDAP error is consistent with all three, but the top part where it says "Adprep was unable to modify the security descriptor on object" are different. They are the following: CN=DomainControllerAuthentication,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=xeroxtoledo,DC=com. CN=DirectoryEmailReplication,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=xeroxtoledo,DC=com. CN=KerberosAuthentication,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=xeroxtoledo,DC=com. The credentials I am using on the 2008 server when running dcpromo is my domain account. My account is part of the domain and enterprise admin groups. I've tried various quick fixes that I've came across through Google searches that include: Disabling AntiVirus on current DCs Pointing DNS on PDC to point to itself Changing the Schema Update Allowed key to 1 and tried rerunning adprep - when rerunning adprep, told me that Forest-wide information has already been updated Disabled Windows Firewall on the Server 2008 box On the 2003 DC, went to Domain Controller Security Policy Local Policies User Rights Assignment and added Domain Admins to the Enable computer and user accounts to be trusted for delegation policy setting Both our PDC and BDC are Global Catalog Servers. Not sure if this matters or not I ran the command netdom query fsmo and verified that the FSMO role holder is the current 2003 PDC I ran dcdiag /v on the 2003 PDC and the only thing that failed was Services. Dnscache Service is stopped on the PDC I even went as far as deleting the virtual machine and recreating it from scratch - no avail... Help :(

    Read the article

  • Need help merging 2 AHK scripts

    - by Mikey
    i have two functioning scripts that i want to merge into a single AHK File. My problem is that when i combine both scripts, the second script doesnt function or causes an error on script 1. Either way, script 2 ist not functioning at all. Here are some facts: Script 1 = a simple menu script where i want to assign hotkeys to. Script 2 = A small launcher script from a user named Tertius in autohotkey forum. Can someone please look at both codes and help me merge this? The INI File for script 2 looks like this: Keywords.ini npff|Firefox|Firefox gm|Gmail|http://gmail.google.com ;;;;;;;;;;;; BEGIN SCRIPT 2 DetectHiddenWindows, On SetWinDelay, -1 SetKeyDelay, -1 SetBatchLines, -1 GoSub Remin SetTimer, Remin, % 1000 * 60 Loop, read, %A_ScriptDir%\keywords.ini { LineNumber = %A_Index% Loop, parse, A_LoopReadLine, | { if (A_Index == 1) abbrevs%LineNumber% := A_LoopField else if (A_Index == 2) tips%LineNumber% := A_LoopField else if (A_Index == 3) programs%LineNumber% := A_LoopField else if (A_Index == 4) params%LineNumber% := A_LoopField } tosay := abbrevs%LineNumber% } cnt = %LineNumber% Loop { Input, Key, L1 V, % "{LControl}{RControl}{LAlt}{RAlt}{LShift}{RShift}{LWin}{RWin}" . "{AppsKey}{F1}{F2}{F3}{F4}{F5}{F6}{F7}{F8}{F9}{F10}{F11}{F12}{Left}{Right}{Up}{Down}" . "{Home}{End}{PgUp}{PgDn}{Del}{Ins}{BS}{Capslock}{Numlock}{PrintScreen}{Pause}{Escape}" If( ( Asc(Key) = 65 && Asc(Key) <= 90 ) || ( Asc(Key) = 97 && Asc(Key) <= 122 ) ) Word .= Key Else { Word := "" Continue } tipup := false Loop %cnt% { if (Word == abbrevs%A_index%) { tip := tips%A_index% ToolTip %tip% tipup := true } else { if (tipup == false) ToolTip } } } $Tab:: Loop %cnt% { if (Word != "" && Word == abbrevs%A_index%) { Word := "" StringLen, len, abbrevs%A_index% Loop %len% Send {Shift Down}{Left} Send {Shift Up}{BS} ToolTip program := programs%A_index% param := params%A_index% run, %program% %param% return } } Word := "" Send {Tab} Return ~LButton:: ~MButton:: ~RButton:: ~XButton1:: ~XButton2:: Word := "" Tooltip Return Remin: WinMinimize, %A_ScriptFullPath% - AutoHotkey v WinHide, %A_ScriptFullPath% - AutoHotkey v Return ;;;;;;;;;; END SCRIPT 2 ;;;;;;;;;;;;;; BEGIN SCRIPT 1 ;This is a working script that creates a popup menu. ; Create the popup menu by adding some items to it. Menu, MyMenu, Add, FIS 201, MenuHandler Menu, MyMenu, Add ; Add a separator line. Menu, MyMenu, Color, Lime, Single ;Define the Menu Color ; Create another menu destined to become a submenu of the above menu. Menu, Submenu1, Add, Item2, MenuHandler Menu, Submenu1, Add, Item3, MenuHandler Menu, Submenu1, Color, Yellow ;Define the Menu Color ; Create another menu destined to become a submenu of the above menu. Menu, Submenu2, Add, Item1a, MenuHandler Menu, Submenu2, Add, Item2a, MenuHandler Menu, Submenu2, Add, Item3a, MenuHandler Menu, Submenu2, Add, Item4a, MenuHandler Menu, Submenu2, Add, Item5a, MenuHandler Menu, Submenu2, Add, Item6a, MenuHandler Menu, Submenu2, Color, Aqua ;Define the Menu Color ; Create a submenu in the first menu (a right-arrow indicator). When the user selects it, the second menu is displayed. Menu, MyMenu, Add, BKRS 119, :Submenu1 Menu, MyMenu, Add ; Add a separator line below the submenu. Menu, MyMenu, Add, BKRS 201, :Submenu2 Menu, MyMenu, Add ; Add a separator line below the submenu. Menu, MyMenu, Add ; Add a separator line below the submenu. Menu, MyMenu, Add, Google Search, Google ; Add another menu item beneath the submenu. return ; End of script's auto-execute section. Capslock & LButton::Menu, MyMenu, Show ; i.e. press the Win-Z hotkey to show the menu. MenuHandler: MsgBox You selected %A_ThisMenuItem% from the menu %A_ThisMenu%. return ;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;; Google Search ;;; FORMAT InputBox, OutputVar [, Title, Prompt, HIDE, Width, Height, X, Y, Font, Timeout, Default] Google: InputBox, SearchTerm, Google Search,,,350, 120 if SearchTerm < "" Run http://www.google.de/search?sclient=psy-ab&hl=de&site=&source=hp&q=%SearchTerm%&btnG=Suche return ; Make Window Transparent Space::WinSet, Transparent, 125, A ^!Space UP::WinSet, Transparent, OFF, A return ;;;;;;;;;;; END SCRIPT 1 Help is appreciated. Kind Regards, Mikey

    Read the article

  • Unable to Mange DNS via MMC

    - by IT Helpdesk Team Manager
    When trying to access the DNS service on Microsoft Windows Server 2003 (Build 3790) domain controller/schema master via the MMC DNS snap in or locally via the DNS MMC from Administrative tools I'm getting a red "X" through the icon for the DNS Server. The inability to access DNS management via MMC happens on all domain controllers as well. We've looked at items such as the DHCP client not being started, incorrect DNS setup ( the machine points at itself and another DC ), the DNS service not running ( it is and all DNS queries via NSLOOKUP work correctly ), dslint returns the correct information and functions as expected. There is the following entry in the DNS event log: The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp. 0000: 0000051b dnscmd fails with RPC server unavailable yet RPC is started: C:\Documents and Settings\Administrator.DOMAIN>dnscmd /Info Info query failed status = 1722 (0x000006ba) Command failed: RPC_S_SERVER_UNAVAILABLE 1722 (000006ba) DCDIAG /TEST:DNS /V /E produces the following errors: Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1753 (Type: Win32 - Description: There are no more endpoints available from the endpoint mapper.)] Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1722 (Type: Win32 - Description: The RPC server is unavailable.)] The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. A DNS query for _ldap._tcp.dc._msdcs. returns the correct results. All domain and ADS related activities are working except that I can't manage my DNS via MMC or dnscmd. Any thoughts or solutions would be greatly appreciated. EDIT: Adding Registry export per request: Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc Class Name: <NO CLASS> Last Write Time: 10/18/2012 - 2:29 PM Value 0 Name: DCOM Protocols Type: REG_MULTI_SZ Data: ncacn_ip_tcp Value 1 Name: UuidSequenceNumber Type: REG_DWORD Data: 0xb19bd0f Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ClientProtocols Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: ncacn_np Type: REG_SZ Data: rpcrt4.dll Value 1 Name: ncacn_ip_tcp Type: REG_SZ Data: rpcrt4.dll Value 2 Name: ncadg_ip_udp Type: REG_SZ Data: rpcrt4.dll Value 3 Name: ncacn_http Type: REG_SZ Data: rpcrt4.dll Value 4 Name: ncacn_at_dsp Type: REG_SZ Data: rpcrt4.dll Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: DefaultSyntax Type: REG_SZ Data: 3 Value 1 Name: Endpoint Type: REG_SZ Data: \pipe\locator Value 2 Name: NetworkAddress Type: REG_SZ Data: \\. Value 3 Name: Protocol Type: REG_SZ Data: ncacn_np Value 4 Name: ServerNetworkAddress Type: REG_SZ Data: \\. Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NetBios Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\RpcProxy Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: Enabled Type: REG_DWORD Data: 0x1 Value 1 Name: ValidPorts Type: REG_SZ Data: pdc:100-5000 Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\SecurityService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: 9 Type: REG_SZ Data: secur32.dll Value 1 Name: 10 Type: REG_SZ Data: secur32.dll Value 2 Name: 14 Type: REG_SZ Data: schannel.dll Value 3 Name: 16 Type: REG_SZ Data: secur32.dll Value 4 Name: 1 Type: REG_SZ Data: secur32.dll Value 5 Name: 18 Type: REG_SZ Data: secur32.dll Value 6 Name: 68 Type: REG_SZ Data: netlogon.dll

    Read the article

  • how does openvpn decide which interface to get IP addrs from

    - by bkrupa
    Using ubuntu 10.04 on both ends. We have a client and server machine on the SAME network attempting to make a vpn connection. We use the config files from here and made minimal changes. The server and client start and seem to connect without any trouble. The server looks like: Wed Feb 23 22:13:22 2011 MULTI: multi_create_instance called Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Re-using SSL/TLS context Wed Feb 23 22:13:22 2011 192.168.1.55:47166 LZO compression initialized Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Control Channel MTU parms [ L:1574 D:138 EF:38 EB:0 ET:0 EL:0 ] Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Data Channel MTU parms [ L:1574 D:1450 EF:42 EB:135 ET:32 EL:0 AF:3/1 ] Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Local Options hash (VER=V4): 'f7df56b8' Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Expected Remote Options hash (VER=V4): 'd79ca330' Wed Feb 23 22:13:22 2011 192.168.1.55:47166 TLS: Initial packet from 192.168.1.55:47166, sid=69112e42 5458135b *...* Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Control Channel: TLSv1, cipher TLSv1/SSLv3 DHE-RSA-AES256-SHA, 1024 bit RSA Wed Feb 23 22:13:22 2011 192.168.1.55:47166 [client1] Peer Connection Initiated with 192.168.1.55:47166 On the client side the connection looks like: Wed Feb 23 22:20:07 2011 [server] Peer Connection Initiated with [AF_INET]192.168.1.41:1194 Wed Feb 23 22:20:10 2011 SENT CONTROL [server]: 'PUSH_REQUEST' (status=1) Wed Feb 23 22:20:10 2011 PUSH: Received control message: 'PUSH_REPLY,route-gateway 10.8.0.4,ping 10,ping-restart 120,ifconfig 10.8.0.50 255.255.255.0' ... Wed Feb 23 22:20:10 2011 /sbin/ifconfig tap0 10.8.0.50 netmask 255.255.255.0 mtu 1500 broadcast 10.8.0.255 Wed Feb 23 22:20:10 2011 Initialization Sequence Completed The openvpn server has been configured to assign ip addresses in the range 10.8.0.* and the client has been given 10.8.0.50. When I run the following nmap from the client: Starting Nmap 5.00 ( http://nmap.org ) at 2011-02-23 22:04 EST Host 10.8.0.50 is up (0.00047s latency). Nmap done: 256 IP addresses (1 host up) scanned in 30.34 seconds Host 192.168.1.1 is up (0.0025s latency). Host 192.168.1.18 is up (0.074s latency). Host 192.168.1.41 is up (0.0024s latency). Host 192.168.1.55 is up (0.00018s latency). Nmap done: 256 IP addresses (4 hosts up) scanned in 6.33 seconds If I run an nmap from the server on 10.8.0.* I get nothing. If the client has two interfaces (wireless and tap device) when you look for a certain ip address, how does it decide which interface to connect on? edit I am trying to set up a vpn so that I can connect to my home network from a remote network. It seems like openvpn is connecting but none of the computers on my home network appear as network machines even after the connection is "Established". Stripped versions of the client and server config files are posted below. Thanks for any help you can offer. server.conf port 1194 proto udp dev tap ca /etc/openvpn/easy-rsa/keys/ca.crt cert /etc/openvpn/easy-rsa/keys/server.crt key /etc/openvpn/easy-rsa/keys/server.key # This file should be kept secret dh /etc/openvpn/easy-rsa/keys/dh1024.pem ifconfig-pool-persist ipp.txt server-bridge 10.8.0.4 255.255.255.0 10.8.0.50 10.8.0.100 keepalive 10 120 comp-lzo persist-key persist-tun status openvpn-status.log verb 3 client.conf client dev tap dev-node tap0901 proto udp remote ********** 1194 resolv-retry infinite nobind persist-key persist-tun ca ca.crt cert client1.crt key client1.key comp-lzo verb 3 one other thing that might be helpful, I tried to connect using the openvpn gui for windows and the connection stalls out on "obtaining configuration" and the bar just scrolls forever.

    Read the article

  • Trouble with site-to-site OpenVPN & pfSense not passing traffic

    - by JohnCC
    I'm trying to get an OpenVPN tunnel going on pfSense 1.2.3-RELEASE running on embedded routers. I have a local LAN 10.34.43.0/254. The remote LAN is 10.200.1.0/24. The local pfSense is configured as the client, and the remote is configured as the server. My OpenVPN tunnel is using the IP range 10.99.89.0/24 internally. There are also some additional LANs on the remote side routed through the tunnel, but the issue is not with those since my connectivity fails before that point in the chain. The tunnel comes up fine and the logs look healthy. What I find is this:- I can ping and telnet to the remote LAN and the additional remote LANs from the local pfSense box's shell. I cannot ping or telnet to any remote LANs from the local network. I cannot ping or telnet to the local network from the remote LAN or the remote pfSense box's shell. If I tcpdump the tun interfaces on both sides and ping from the local LAN, I see the packets hit the tunnel locally, but they do not appear on the remote side (nor do they appear on the remote LAN interface if I tcpdump that). If I tcpdump the tun interfaces on both sides and ping from the local pfSense shell, I see the packets hit the tunnel locally, and exit the remote side. I can also tcpdump the remote LAN interface and see them pass there too. If I tcpdump the tun interfaces on both sides and ping from the remote pfSense shell, I see the packets hit the remote tun but they do not emerge from the local one. Here is the config file the remote side is using:- #user nobody #group nobody daemon keepalive 10 60 ping-timer-rem persist-tun persist-key dev tun proto udp cipher BF-CBC up /etc/rc.filter_configure down /etc/rc.filter_configure server 10.99.89.0 255.255.255.0 client-config-dir /var/etc/openvpn_csc push "route 10.200.1.0 255.255.255.0" lport <port> route 10.34.43.0 255.255.255.0 ca /var/etc/openvpn_server0.ca cert /var/etc/openvpn_server0.cert key /var/etc/openvpn_server0.key dh /var/etc/openvpn_server0.dh comp-lzo push "route 205.217.5.128 255.255.255.224" push "route 205.217.5.64 255.255.255.224" push "route 165.193.147.128 255.255.255.224" push "route 165.193.147.32 255.255.255.240" push "route 192.168.1.16 255.255.255.240" push "route 192.168.2.16 255.255.255.240" Here is the local config:- writepid /var/run/openvpn_client0.pid #user nobody #group nobody daemon keepalive 10 60 ping-timer-rem persist-tun persist-key dev tun proto udp cipher BF-CBC up /etc/rc.filter_configure down /etc/rc.filter_configure remote <host> <port> client lport 1194 ifconfig 10.99.89.2 10.99.89.1 ca /var/etc/openvpn_client0.ca cert /var/etc/openvpn_client0.cert key /var/etc/openvpn_client0.key comp-lzo You can see the relevant parts of the routing tables extracted from pfSense here http://pastie.org/5365800 The local firewall permits all ICMP from the LAN, and my PC is allowed everything to anywhere. The remote firewall treats its LAN as trusted and permits all traffic on that interface. Can anyone suggest why this is not working, and what I could try next?

    Read the article

  • How do I connect my Windows XP laptop to the internet?

    - by rubysiddhi
    Hello fellow super users, The Past I have a Acer Travelmate 2300 laptop running Windows XP. 6 months ago I moved into a new apartment and got a new internet connection set up. After getting an internet connection installed in my apartment I reinstalled Windows XP and at the same time wiped my drive clean losing all the original Acer software and drivers. Once XP was reinstalled I had to find all the drivers again to get the Travelmate laptop connected to the internet. So, using my Vista laptop which was connected fine, I went to the Acer Travelmate Series drivers download page to download the necessary drivers. I transferred them to my Acer XP machine and installed them the best I could (there were no easy instructions so I just had to find all the executables and run them). I eventually got connected to the internet but not exactly in the way I had hoped for. The Present To be connected to the internet I need to have an Ethernet cord connecting my computer (via the Ethernet port) to my router. This is a problem since it defeats the purpose of having a Wireless LAN card in my Acer laptop. One of the programs I downloaded from the Acer Travelmate Series page was the Acer Wireless LAN Configuration Utility. This program allows me to see the current network I am connected to and all the available networks I could potentially connect to. It reminds me of XP's Wireless Network Connection window/utility where you can see all available wireless networks, refresh the network list and connect to one of the networks. I should mention that my ISP set up a security enabled wireless network with WPA. This network requires a network key if you want to connect to it. I guess my Vista computer has the network key entered into it already. The problem is that I do not know what the network key is. Now obviously you would say just contact my ISP to get the key. And I will but there is just one extra weird issue. I am able to connect to another unsecured wireless network in the Wireless Network Connection window/utility. I can be on it as long as my Ethernet cable is plugged in. So this is not really wireless is it? And this indicates that even if I do get that network key password from my ISP, I will only solve one of the two problems I have. I will only solve being able to get online as long as I am connected to my router via the Ethernet cable. The Main Questions So how do I enable my acer IPN2220 Wireless LAN Card so that I can use my Acer laptop from anywhere with in my apartment? Or should I first get the network key from my ISP to access my security enabled wireless network? And then deal with getting the acer IPN2220 Wireless LAN Card working? Hard & Learned VS Easy & Stupid Of course contacting the ISP would be easier. Have em just come in here and do there thing. The problem with that is that they do not speak English (yeah, im in Poland) and it'd be a hell of a time trying to understand what they are doing (uncomfortable looking over their shoulder). Also, I want to learn how to do this task myself so that I can fix the problem if it ever happens again. You know, be more self sufficient. I look forward to helpful replies. Thanks, Xaviour

    Read the article

  • BeansBinding Across Modules in a NetBeans Platform Application

    - by Geertjan
    Here's two TopComponents, each in a different NetBeans module. Let's use BeansBinding to synchronize the JTextField in TC2TopComponent with the data published by TC1TopComponent and received in TC2TopComponent by listening to the Lookup. The key to getting to the solution is to have the following in TC2TopComponent, which implements LookupListener: private BindingGroup bindingGroup = null; private AutoBinding binding = null; @Override public void resultChanged(LookupEvent le) { if (bindingGroup != null && binding != null) { bindingGroup.getBinding("customerNameBinding").unbind(); } if (!result.allInstances().isEmpty()){ Customer c = result.allInstances().iterator().next(); // put the customer into the lookup of this topcomponent, // so that it will remain in the lookup when focus changes // to this topcomponent: ic.set(Collections.singleton(c), null); bindingGroup = new BindingGroup(); binding = Bindings.createAutoBinding( // a two-way binding, i.e., a change in // one will cause a change in the other: AutoBinding.UpdateStrategy.READ_WRITE, // source: c, BeanProperty.create("name"), // target: jTextField1, BeanProperty.create("text"), // binding name: "customerNameBinding"); bindingGroup.addBinding(binding); bindingGroup.bind(); } } I must say that this solution is preferable over what I've been doing prior to getting to this solution: I would get the customer from the resultChanged, set a class-level field to that customer, add a document listener (or action listener, which is invoked when Enter is pressed) on the text field and, when a change is detected, set the new value on the customer. All that is not needed with the above bit of code. Then, in the node, make sure to use canRename, setName, and getDisplayName, so that when the user presses F2 on a node, the display name can be changed. In other words, when the user types something different in the node display name after pressing F2, the underlying customer name is changed, which happens, in the first place, because the customer name is bound to the text field's value, so that the text field's value will also change once enter is pressed on the changed node display name. Also set a PropertyChangeListener on the node (which implies you need to add property change support to the customer object), so that when the customer object changes (which happens, in the second place, via a change in the value of the text field, as defined in the binding defined above), the node display name is updated. In other words, there's still a bit of plumbing you need to include. But less than before and the nasty class-level field for storing the customer in the TC2TopComponent is no longer needed. And a listener on the text field, with a property change listener implented on the TC2TopComponent, isn't needed either. On the other hand, it's more code than I was using before and I've had to include the BeansBinding JAR, which adds a bit of overhead to my application, without much additional functionality over what I was doing originally. I'd lean towards not doing things this way. Seems quite expensive for essentially replacing a listener on a text field and a property change listener implemented on the TC2TopComponent for being notified of changes to the customer so that the text field can be updated. On the other other hand, it's kind of nice that all this listening-related code is centralized in one place now. So, here's a nice improvement over the above. Instead of listening for a customer, listen for a node, from which the customer can be obtained. Then, bind the node display name to the text field's value, so that when the user types in the text field, the node display name is updated. That saves you from having to listen in the node for changes to the customer's name. In addition to that binding, keep the previous binding, because the previous binding connects the customer name to the text field, so that when the customer display name is changed via F2 on the node, the text field will be updated. private BindingGroup bindingGroup = null; private AutoBinding nodeUpdateBinding; private AutoBinding textFieldUpdateBinding; @Override public void resultChanged(LookupEvent le) { if (bindingGroup != null && textFieldUpdateBinding != null) { bindingGroup.getBinding("textFieldUpdateBinding").unbind(); } if (bindingGroup != null && nodeUpdateBinding != null) { bindingGroup.getBinding("nodeUpdateBinding").unbind(); } if (!result.allInstances().isEmpty()) { Node n = result.allInstances().iterator().next(); Customer c = n.getLookup().lookup(Customer.class); ic.set(Collections.singleton(n), null); bindingGroup = new BindingGroup(); nodeUpdateBinding = Bindings.createAutoBinding( AutoBinding.UpdateStrategy.READ_WRITE, n, BeanProperty.create("name"), jTextField1, BeanProperty.create("text"), "nodeUpdateBinding"); bindingGroup.addBinding(nodeUpdateBinding); textFieldUpdateBinding = Bindings.createAutoBinding( AutoBinding.UpdateStrategy.READ_WRITE, c, BeanProperty.create("name"), jTextField1, BeanProperty.create("text"), "textFieldUpdateBinding"); bindingGroup.addBinding(textFieldUpdateBinding); bindingGroup.bind(); } } Now my node has no property change listener, while the customer has no property change support. As in the first bit of code, the text field doesn't have a listener either. All that listening is taken care of by the BeansBinding code.  Thanks to Toni for help with this, though he can't be blamed for anything that is wrong with it, only thanked for anything that is right with it. 

    Read the article

  • SSH problems (ssh_exchange_identification: read: Connection reset by peer)

    - by kSiR
    I was running 11.10 and decided to do the full upgrade and come up to 12.04 after the update SSH (not SSHD) is now misbehaving when attempting to connect to other OpenSSH instances. I say OpenSSH as I am running a DropBear sshd on my router and I am able to connect to it. When attempting to connect to an OpenSSH server risk@skynet:~/.ssh$ ssh -vvv risk@someserver OpenSSH_5.9p1 Debian-5ubuntu1, OpenSSL 1.0.1 14 Mar 2012 debug1: Reading configuration data /home/risk/.ssh/config debug3: key names ok: [[email protected],[email protected],[email protected],[email protected],ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-rsa,ssh-dss] debug1: Reading configuration data /etc/ssh/ssh_config debug1: /etc/ssh/ssh_config line 19: Applying options for * debug2: ssh_connect: needpriv 0 debug1: Connecting to someserver [someserver] port 22. debug1: Connection established. debug1: identity file /home/risk/.ssh/id_rsa type -1 debug1: identity file /home/risk/.ssh/id_rsa-cert type -1 debug1: identity file /home/risk/.ssh/id_dsa type -1 debug1: identity file /home/risk/.ssh/id_dsa-cert type -1 debug3: Incorrect RSA1 identifier debug3: Could not load "/home/risk/.ssh/id_ecdsa" as a RSA1 public key debug1: identity file /home/risk/.ssh/id_ecdsa type 3 debug1: Checking blacklist file /usr/share/ssh/blacklist.ECDSA-521 debug1: Checking blacklist file /etc/ssh/blacklist.ECDSA-521 debug1: identity file /home/risk/.ssh/id_ecdsa-cert type -1 ssh_exchange_identification: read: Connection reset by peer risk@skynet:~/.ssh$ DropBear instance risk@skynet:~/.ssh$ ssh -vvv root@darkness OpenSSH_5.9p1 Debian-5ubuntu1, OpenSSL 1.0.1 14 Mar 2012 debug1: Reading configuration data /home/risk/.ssh/config debug3: key names ok: [[email protected],[email protected],[email protected],[email protected],ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-rsa,ssh-dss] debug1: Reading configuration data /etc/ssh/ssh_config debug1: /etc/ssh/ssh_config line 19: Applying options for * debug2: ssh_connect: needpriv 0 debug1: Connecting to darkness [192.168.1.1] port 22. debug1: Connection established. debug1: identity file /home/risk/.ssh/id_rsa type -1 debug1: identity file /home/risk/.ssh/id_rsa-cert type -1 debug1: identity file /home/risk/.ssh/id_dsa type -1 debug1: identity file /home/risk/.ssh/id_dsa-cert type -1 debug3: Incorrect RSA1 identifier debug3: Could not load "/home/risk/.ssh/id_ecdsa" as a RSA1 public key debug1: identity file /home/risk/.ssh/id_ecdsa type 3 debug1: Checking blacklist file /usr/share/ssh/blacklist.ECDSA-521 debug1: Checking blacklist file /etc/ssh/blacklist.ECDSA-521 debug1: identity file /home/risk/.ssh/id_ecdsa-cert type -1 debug1: Remote protocol version 2.0, remote software version dropbear_0.52 debug1: no match: dropbear_0.52 ... I have googled and ran most ALL fixes recommend both from the Debian and Arch sides and none of them seem to resolve my issue. Any ideas?

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Cloud MBaaS : The Next Big Thing in Enterprise Mobility

    - by shiju
    In this blog post, I will take a look at Cloud Mobile Backend as a Service (MBaaS) and how we can leverage Cloud based Mobile Backend as a Service for building enterprise mobile apps. Today, mobile apps are incredibly significant in both consumer and enterprise space and the demand for the mobile apps is unbelievably increasing in day to day business. An enterprise can’t survive in business without a proper mobility strategy. A better mobility strategy and faster delivery of your mobile apps will give you an extra mileage for your business and IT strategy. So organizations and mobile developers are looking for different strategy for meeting this demand and adopting different development strategy for their mobile apps. Some developers are adopting hybrid mobile app development platforms, for delivering their products for multiple platforms, for fast time-to-market. Others are adopting a Mobile enterprise application platform (MEAP) such as Kony for their enterprise mobile apps for fast time-to-market and better business integration. The Challenges of Enterprise Mobility The real challenge of enterprise mobile apps, is not about creating the front-end environment or developing front-end for multiple platforms. The most important thing of enterprise mobile apps is to expose your enterprise data to mobile devices where the real pain is your business data might be residing in lot of different systems including legacy systems, ERP systems etc., and these systems will be deployed with lot of security restrictions. Exposing your data from the on-premises servers, is not a easy thing for most of the business organizations. Many organizations are spending too much time for their front-end development strategy, but they are really lacking for building a strategy on their back-end for exposing the business data to mobile apps. So building a REST services layer and mobile back-end services, on the top of legacy systems and existing middleware systems, is the key part of most of the enterprise mobile apps, where multiple mobile platforms can easily consume these REST services and other mobile back-end services for building mobile apps. For some mobile apps, we can’t predict its user base, especially for products where customers can gradually increase at any time. And for today’s mobile apps, faster time-to-market is very critical so that spending too much time for mobile app’s scalability, will not be worth. The real power of Cloud is the agility and on-demand scalability, where we can scale-up and scale-down our applications very easily. It would be great if we could use the power of Cloud to mobile apps. So using Cloud for mobile apps is a natural fit, where we can use Cloud as the storage for mobile apps and hosting mechanism for mobile back-end services, where we can enjoy the full power of Cloud with greater level of on-demand scalability and operational agility. So Cloud based Mobile Backend as a Service is great choice for building enterprise mobile apps, where enterprises can enjoy the massive scalability power of their mobile apps, provided by public cloud vendors such as Microsoft Windows Azure. Mobile Backend as a Service (MBaaS) We have discussed the key challenges of enterprise mobile apps and how we can leverage Cloud for hosting mobile backend services. MBaaS is a set of cloud-based, server-side mobile services for multiple mobile platforms and HTML5 platform, which can be used as a backend for your mobile apps with the scalability power of Cloud. The information below provides the key features of a typical MBaaS platform: Cloud based storage for your application data. Automatic REST API services on the application data, for CRUD operations. Native push notification services with massive scalability power. User management services for authenticate users. User authentication via Social accounts such as Facebook, Google, Microsoft, and Twitter. Scheduler services for periodically sending data to mobile devices. Native SDKs for multiple mobile platforms such as Windows Phone and Windows Store, Android, Apple iOS, and HTML5, for easily accessing the mobile services from mobile apps, with better security.  Typically, a MBaaS platform will provide native SDKs for multiple mobile platforms so that we can easily consume the server-side mobile services. MBaaS based REST APIs can use for integrating to enterprise backend systems. We can use the same mobile services for multiple platform so hat we can reuse the application logic to multiple mobile platforms. Public cloud vendors are building the mobile services on the top of their PaaS offerings. Windows Azure Mobile Services is a great platform for a MBaaS offering that is leveraging Windows Azure Cloud platform’s PaaS capabilities. Hybrid mobile development platform Titanium provides their own MBaaS services. LoopBack is a new MBaaS service provided by Node.js consulting firm StrongLoop, which can be hosted on multiple cloud platforms and also for on-premises servers. The Challenges of MBaaS Solutions If you are building your mobile apps with a new data storage, it will be very easy, since there is not any integration challenges you have to face. But most of the use cases, you have to extract your application data in which stored in on-premises servers which might be under VPNs and firewalls. So exposing these data to your MBaaS solution with a proper security would be a big challenge. The capability of your MBaaS vendor is very important as you have to interact with your legacy systems for many enterprise mobile apps. So you should be very careful about choosing for MBaaS vendor. At the same time, you should have a proper strategy for mobilizing your application data which stored in on-premises legacy systems, where your solution architecture and strategy is more important than platforms and tools.  Windows Azure Mobile Services Windows Azure Mobile Services is an MBaaS offerings from Windows Azure cloud platform. IMHO, Microsoft Windows Azure is the best PaaS platform in the Cloud space. Windows Azure Mobile Services extends the PaaS capabilities of Windows Azure, to mobile devices, which can be used as a cloud backend for your mobile apps, which will provide global availability and reach for your mobile apps. Windows Azure Mobile Services provides storage services, user management with social network integration, push notification services and scheduler services and provides native SDKs for all major mobile platforms and HTML5. In Windows Azure Mobile Services, you can write server-side scripts in Node.js where you can enjoy the full power of Node.js including the use of NPM modules for your server-side scripts. In the previous section, we had discussed some challenges of MBaaS solutions. You can leverage Windows Azure Cloud platform for solving many challenges regarding with enterprise mobility. The entire Windows Azure platform can play a key role for working as the backend for your mobile apps where you can leverage the entire Windows Azure platform for your mobile apps. With Windows Azure, you can easily connect to your on-premises systems which is a key thing for mobile backend solutions. Another key point is that Windows Azure provides better integration with services like Active Directory, which makes Windows Azure as the de facto platform for enterprise mobility, for enterprises, who have been leveraging Microsoft ecosystem for their application and IT infrastructure. Windows Azure Mobile Services  is going to next evolution where you can expect some exciting features in near future. One area, where Windows Azure Mobile Services should definitely need an improvement, is about the default storage mechanism in which currently it is depends on SQL Server. IMHO, developers should be able to choose multiple default storage option when creating a new mobile service instance. Let’s say, there should be a different storage providers such as SQL Server storage provider and Table storage provider where developers should be able to choose their choice of storage provider when creating a new mobile services project. I have been used Windows Azure and Windows Azure Mobile Services as the backend for production apps for mobile, where it performed very well. MBaaS Over MEAP Recently, many larger enterprises has been adopted Mobile enterprise application platform (MEAP) for their mobile apps. I haven’t worked on any production MEAP solution, but I heard that developers are really struggling with MEAP in different way. The learning curve for a proprietary MEAP platform is very high. I am completely against for using larger proprietary ecosystem for mobile apps. For enterprise mobile apps, I highly recommend to use native iOS/Android/Windows Phone or HTML5  for front-end with a cloud hosted MBaaS solution as the middleware. A MBaaS service can be consumed from multiple mobile apps where REST APIs are using to integrating with enterprise backend systems. Enterprise mobility should start with exposing REST APIs on the enterprise backend systems and these REST APIs can host on Cloud where we can enjoy the power of Cloud for our services. If you are having REST APIs for your enterprise data, then you can easily build mobile frontends for multiple platforms.   You can follow me on Twitter @shijucv

    Read the article

  • Earthquake Locator - Live Demo and Source Code

    - by Bobby Diaz
    Quick Links Live Demo Source Code I finally got a live demo up and running!  I signed up for a shared hosting account over at discountasp.net so I could post a working version of the Earthquake Locator application, but ran into a few minor issues related to RIA Services.  Thankfully, Tim Heuer had already encountered and explained all of the problems I had along with solutions to these and other common pitfalls.  You can find his blog post here.  The ones that got me were the default authentication tag being set to Windows instead of Forms, needed to add the <baseAddressPrefixFilters> tag since I was running on a shared server using host headers, and finally the Multiple Authentication Schemes settings in the IIS7 Manager.   To get the demo application ready, I pulled down local copies of the earthquake data feeds that the application can use instead of pulling from the USGS web site.  I basically added the feed URL as an app setting in the web.config:       <appSettings>         <!-- USGS Data Feeds: http://earthquake.usgs.gov/earthquakes/catalogs/ -->         <!--<add key="FeedUrl"             value="http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml" />-->         <!--<add key="FeedUrl"             value="http://earthquake.usgs.gov/earthquakes/catalogs/7day-M2.5.xml" />-->         <!--<add key="FeedUrl"             value="~/Demo/1day-M2.5.xml" />-->         <add key="FeedUrl"              value="~/Demo/7day-M2.5.xml" />     </appSettings> You will need to do the same if you want to run from local copies of the feed data.  I also made the following minor changes to the EarthquakeService class so that it gets the FeedUrl from the web.config:       private static readonly string FeedUrl = ConfigurationManager.AppSettings["FeedUrl"];       /// <summary>     /// Gets the feed at the specified URL.     /// </summary>     /// <param name="url">The URL.</param>     /// <returns>A <see cref="SyndicationFeed"/> object.</returns>     public static SyndicationFeed GetFeed(String url)     {         SyndicationFeed feed = null;           if ( !String.IsNullOrEmpty(url) && url.StartsWith("~") )         {             // resolve virtual path to physical file system             url = System.Web.HttpContext.Current.Server.MapPath(url);         }           try         {             log.Debug("Loading RSS feed: " + url);               using ( var reader = XmlReader.Create(url) )             {                 feed = SyndicationFeed.Load(reader);             }         }         catch ( Exception ex )         {             log.Error("Error occurred while loading RSS feed: " + url, ex);         }           return feed;     } You can now view the live demo or download the source code here, but be sure you have WCF RIA Services installed before running the application locally and make sure the FeedUrl is pointing to a valid location.  Please let me know if you have any comments or if you run into any issues with the code.   Enjoy!

    Read the article

  • SQLAuthority News SQL Server 2008 R2 Update for Developers Training Kit (March 2010 Update)

    SQL Server 2008 R2 offers an impressive array of capabilities for developers that build upon key innovations introduced in SQL Server 2008. The SQL Server 2008 R2 Update for Developers Training Kit is ideal for developers who want to understand how to take advantage of the key improvements introduced in SQL [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • OWB 11gR2 &ndash; Degenerate Dimensions

    - by David Allan
    Ever wondered how to build degenerate dimensions in OWB and get the benefits of slowly changing dimensions and cube loading? Now its possible through some changes in 11gR2 to make the dimension and cube loading much more flexible. This will let you get the benefits of OWB's surrogate key handling and slowly changing dimension reference when loading the fact table and need degenerate dimensions (see Ralph Kimball's degenerate dimensions design tip). Here we will see how to use the cube operator to load slowly changing, regular and degenerate dimensions. The cube and cube operator can now work with dimensions which have no surrogate key as well as dimensions with surrogates, so you can get the benefit of the cube loading and incorporate the degenerate dimension loading. What you need to do is create a dimension in OWB that is purely used for ETL metadata; the dimension itself is never deployed (its table is, but has not data) it has no surrogate keys has a single level with a business attribute the degenerate dimension data and a dummy attribute, say description just to pass the OWB validation. When this degenerate dimension is added into a cube, you will need to configure the fact table created and set the 'Deployable' flag to FALSE for the foreign key generated to the degenerate dimension table. The degenerate dimension reference will then be in the cube operator and used when matching. Create the degenerate dimension using the regular wizard. Delete the Surrogate ID attribute, this is not needed. Define a level name for the dimension member (any name). After the wizard has completed, in the editor delete the hierarchy STANDARD that was automatically generated, there is only a single level, no need for a hierarchy and this shouldn't really be created. Deploy the implementing table DD_ORDERNUMBER_TAB, this needs to be deployed but with no data (the mapping here will do a left outer join of the source data with the empty degenerate dimension table). Now, go ahead and build your cube, use the regular TIMES dimension for example and your degenerate dimension DD_ORDERNUMBER, can add in SCD dimensions etc. Configure the fact table created and set Deployable to false, so the foreign key does not get generated. Can now use the cube in a mapping and load data into the fact table via the cube operator, this will look after surrogate lookups and slowly changing dimension references.   If you generate the SQL you will see the ON clause for matching includes the columns representing the degenerate dimension columns. Here we have seen how this use case for loading fact tables using degenerate dimensions becomes a whole lot simpler using OWB 11gR2. I'm sure there are other use cases where using this mix of dimensions with surrogate and regular identifiers is useful, Fact tables partitioned by date columns is another classic example that this will greatly help and make the cube operator much more useful. Good to hear any comments.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • How to install Windows 8 to dual boot with Windows 7/XP?

    - by Gopinath
    Microsoft released Windows 8 beta(customer preview) few days ago and yesterday I had a chance to install it on one of my home computers. My home PC is running on Windows 7 and I would like to install Windows 8 side by side so that I can dual boot. The installation process was pretty simple and with in 40 minutes my PC was up and running with beautiful Windows 8 OS along with Windows 7. In this post I want to share my experience and provide information for you to install Windows 8. 1. Identify a drive  with at least 20 GB of space – Identify one of the drives on your hard disk that can be used to install Windows 8. Delete all the files or preferably quick format it and make sure that it has at least 20 GB of free space. Rename the drive name to Windows 8 so that it will be helpful to identify the destination drive during installation process. 2. Download Windows 8 installer ISO– Go to Microsoft’s website and download Windows 8 ISO file which is approximately 2.5 GB file(32 bit English version). 3. Create Windows 8 bootable USB/DVD – Its advised to launch Windows 8 installer using a bootable USB or DVD for enabling dual boot instead of unzipping the ISO file and launching the setup from Windows 7 OS. Also consider creating bootable USB instead of bootable DVD to save a disc. To create bootable USB/DVD follow these steps Download and install the Windows 7 DVD / USB tool available at microsoftstore.com Launch the utility and follow the onscreen instructions where you would be asked to choose the ISO file(point to file downloaded in step 2) and choose a USB drive or DVD as destination. The onscreen instructions are very simple and you would be able to complete it in 20 minutes time. So now you have Windows 8 installation setup on your USB drive or DVD. 4. Change BIOS settings to boot from USB/DVD – Restart your PC and open BIOS configuration settings key by pressing F2 or  F12 or DELETE key (the key depends on your computer manufacturer). Go to boot sequence options and make sure that USB/DVD is ahead of hard disk in the boot sequence. Save the settings and restart the PC. 5. Install Windows 8 – After the restart you should be straight into Windows 8 installation screen. Follow the onscreen instructions and install Windows 8 on the drive that is identified during step 1. When prompted for product serial key enter NF32V-Q9P3W-7DR7Y-JGWRW-JFCK8. The installer would restart couple of times during the installation process. On the first restart, make sure that you remove USB/DVD. Windows 8 installation process is pretty simple and very quick. The complete process of creating bootable USB and installation should complete in 30 – 40 minutes time.

    Read the article

  • Understanding Oracle: Demystifying OpenWorld

    - by mseika
    Seminar: Wednesday 24th October 2012: Avnet, Bracknell Oracle OpenWorld is the world's largest event dedicated to helping enterprises harness the power of technology, during a full week in October. Oracle Corporation always uses Oracle OpenWorld to make its most important product announcements, and this year is no exception. We realise that not all our partners can attend this prestigious event in San Francisco, primarily due to time and cost pressures. Oracle OpenWorld is the only conference that goes this deep and wide with Oracle technology, providing thousands of sessions and hundreds of demonstrations geared toward helping partners and customers get better results with the technology it has —and plan strategically for the technology it will need to keep ahead of the competition in the years to come. With the sheer number of announcements planned, it is sometimes difficult to find your way through the fog and identify the opportunities relevant to your business to take advantage of, this coming year. So why not engage with the Oracle's UK team via Avnet and get the announcements shared with you face-to-face, in the UK? As a key Value Added Distributor of Oracle Applications, Technology and Hardware solutions, Avnet has been attending Oracle OpenWorld for a number of years and invites our partners to attend a half day summary event which will share the keynote announcements. We will also help prioritise for you the announcements of greatest interest and business opportunity for the UK channel. Agenda Time Module 12:00-13:15 Registration and lunch 13:15-14:00 Introductions and Key Hardware announcements Discover how Oracle's complete and integrated application-aware virtualization solutions, including virtualization for SPARC and x86 architectures, can help you gain better efficiencies across your business. Get updates on how Oracle storage products and solutions can accelerate database performance, improve application responsiveness, and meet your data protection needs. 14:00-14:15 Q&A and Break 14:15-15:00 Key Technology announcements Technology products, encompassing Oracle's Database 12c and Middleware, are revolutionizing the industry with record-breaking performance, helping customers consolidate onto private clouds and achieve high returns on investment. 15:00-15:15 Q&A and Break 15:15-16:00 Key Applications announcements Presentations focused on Oracle's strategy and vision for its applications business, including Oracle E-Business Suite; Oracle's PeopleSoft, JD Edwards, Siebel, Hyperion, and Agile products; and the newly available Oracle Fusion Applications. 16:00-16:30 Oracle-on-Oracle announcements & business opportunities with Avnet Learn about Oracle's cloud computing and Oracle-on-Oracle strategies and find out more about Oracle's engineered systems for the broad market 16:30 Close * Please note agenda may be subject to change What do you need to do now Register now or for more information email our Oracle events team at [email protected]. N.B. Places are limited, so please register early to avoid disappointment.

    Read the article

  • Quartz.Net Windows Service Configure Logging

    - by Tarun Arora
    In this blog post I’ll be covering, Logging for Quartz.Net Windows Service 01 – Why doesn’t Quartz.Net Windows Service log by default 02 – Configuring Quartz.Net windows service for logging to eventlog, file, console, etc 03 – Results: Logging in action If you are new to Quartz.Net I would recommend going through, A brief Introduction to Quartz.net Walkthrough of Installing & Testing Quartz.Net as a Windows Service Writing & Scheduling your First HelloWorld job with Quartz.Net   01 – Why doesn’t Quartz.Net Windows Service log by default If you are trying to figure out why… The Quartz.Net windows service isn’t logging The Quartz.Net windows service isn’t writing anything to the event log The Quartz.Net windows service isn’t writing anything to a file How do I configure Quartz.Net windows service to use log4Net How do I change the level of logging for Quartz.Net Look no further, This blog post should help you answer these questions. Quartz.NET uses the Common.Logging framework for all of its logging needs. If you navigate to the directory where Quartz.Net Windows Service is installed (I have the service installed in C:\Program Files (x86)\Quartz.net, you can find out the location by looking at the properties of the service) and open ‘Quartz.Server.exe.config’ you’ll see that the Quartz.Net is already set up for logging to ConsoleAppender and EventLogAppender, but only ‘ConsoleAppender’ is set up as active. So, unless you have the console associated to the Quartz.Net service you won’t be able to see any logging. <log4net> <appender name="ConsoleAppender" type="log4net.Appender.ConsoleAppender"> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d [%t] %-5p %l - %m%n" /> </layout> </appender> <appender name="EventLogAppender" type="log4net.Appender.EventLogAppender"> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d [%t] %-5p %l - %m%n" /> </layout> </appender> <root> <level value="INFO" /> <appender-ref ref="ConsoleAppender" /> <!-- uncomment to enable event log appending --> <!-- <appender-ref ref="EventLogAppender" /> --> </root> </log4net> Problem: In the configuration above Quartz.Net Windows Service only has ConsoleAppender active. So, no logging will be done to EventLog. More over the RollingFileAppender isn’t setup at all. So, Quartz.Net will not log to an application trace log file. 02 – Configuring Quartz.Net windows service for logging to eventlog, file, console, etc Let’s change this behaviour by changing the config file… In the below config file, I have added the RollingFileAppender. This will configure Quartz.Net service to write to a log file. (<appender name="GeneralLog" type="log4net.Appender.RollingFileAppender">) I have specified the location for the log file (<arg key="configFile" value="Trace/application.log.txt"/>) I have enabled the EventLogAppender and RollingFileAppender to be written to by Quartz. Net windows service Changed the default level of logging from ‘Info’ to ‘All’. This means all activity performed by Quartz.Net Windows service will be logged. You might want to tune this back to ‘Debug’ or ‘Info’ later as logging ‘All’ will produce too much data to the logs. (<level value="ALL"/>) Since I have changed the logging level to ‘All’, I have added applicationSetting to remove logging log4Net internal debugging. (<add key="log4net.Internal.Debug" value="false"/>) <?xml version="1.0" encoding="utf-8" ?> <configuration> <configSections> <section name="quartz" type="System.Configuration.NameValueSectionHandler, System, Version=1.0.5000.0,Culture=neutral, PublicKeyToken=b77a5c561934e089" /> <section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler, log4net" /> <sectionGroup name="common"> <section name="logging" type="Common.Logging.ConfigurationSectionHandler, Common.Logging" /> </sectionGroup> </configSections> <common> <logging> <factoryAdapter type="Common.Logging.Log4Net.Log4NetLoggerFactoryAdapter, Common.Logging.Log4net"> <arg key="configType" value="INLINE" /> <arg key="configFile" value="Trace/application.log.txt"/> <arg key="level" value="ALL" /> </factoryAdapter> </logging> </common> <appSettings> <add key="log4net.Internal.Debug" value="false"/> </appSettings> <log4net> <appender name="ConsoleAppender" type="log4net.Appender.ConsoleAppender"> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d [%t] %-5p %l - %m%n" /> </layout> </appender> <appender name="EventLogAppender" type="log4net.Appender.EventLogAppender"> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d [%t] %-5p %l - %m%n" /> </layout> </appender> <appender name="GeneralLog" type="log4net.Appender.RollingFileAppender"> <file value="Trace/application.log.txt"/> <appendToFile value="true"/> <maximumFileSize value="1024KB"/> <rollingStyle value="Size"/> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d{HH:mm:ss} [%t] %-5p %c - %m%n"/> </layout> </appender> <root> <level value="ALL" /> <appender-ref ref="ConsoleAppender" /> <appender-ref ref="EventLogAppender" /> <appender-ref ref="GeneralLog"/> </root> </log4net> </configuration>   Note – Please ensure you restart the Quartz.Net Windows service for the config changes to be picked up by the service   03 – Results: Logging in action Once you start the Quartz.Net Windows Service up, the logging should be initiated to write all activities in the Console, EventLog and File… See screen shots below… Figure – Quartz.Net Windows Service logging all activity to the event log Figure – Quartz.Net Windows Service logging all activity to the application log file Where is the output from log4Net ConsoleAppender? As a default behaviour, the console isn't available in windows services, web services, windows forms. The output will simply be dismissed. Unless you are running the process interactively. Which you can do by firing up Quartz.Server.exe –i to see the output   This was fourth in the series of posts on enterprise scheduling using Quartz.net, in the next post I’ll be covering troubleshooting why a scheduled task hasn’t fired on Quartz.net windows service. All Quartz.Net specific blog posts can listed here. Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Stay tuned!

    Read the article

  • Invitation: WebCenter Implementation Specialist Exam Preparation Webcasts

    - by rituchhibber
    Oracle Partner Network would like to invite you to Refresh Courses for WebCenter Content and WebCenter Portal, to help partners to prepare for the WebCenter Implementation Specialist EXAMS.This is a 3 hours intensive refresher partner-only training session, providing attendees with an overview of WebCenter Content and WebCenter Portal functions and related topics. After the refresher part you will be able to take the relevant Implementation Specialist EXAM depending on your personal focus. NOTE: This is only suitable for experienced WebCenter Content or WebCenter Portal practitioners Who should attend?Partner Consultants who want to become an Oracle WebCenter Content or a WebCenter Portal Certified Implementation Specialist or both, that will help them to differentiate themselves in front of customers and support their Companies to become Specialized. Webcast Details: Date Topic Speaker  Web Call Details  Intercall Details  December 14th WebCenter Content RefreshCourse Markus Neubauer, SilburyWebCenter Content Specialized Partner Join Webcast Dial-in numbers:CC/SP: 1579222/9221 Time: 12:00 -15:00 CET Break around 13:30 Conference ID/Key: 9249533/1412 Date Topic Speaker Web Call Details Intercall Details January 10th                  WebCenter Portal    Refresh Course                   Yannick Ongena, InfoMentumWebCenter Portal Specialized Partner                     Join Webcast Dial-in numbers:CC/SP: 1579222/9221 Time: 12:00 -15:00 CET Break around 13:30 Conference ID/Key: 9249375/1001 Date Topic Speaker Web Call Details Intercall Details February 22nd                WebCenter Content  RefreshCourse Markus Neubauer, SilburyWebCenter Content Specialized Partner    Join Webcast Dial-in numbers:CC/SP: 1579222/9221 Time: 12:00 -15:00 CET Break around13:30 Conference ID/Key: 9249541/2202 Date Topic Speaker Web Call Details Intercall Details  March 13th                WebCenter Portal   Refresh     Course      Yannick Ongena, InfoMentumWebCenter Portal Specialized Partner    Join Webcast Dial-in numbers:CC/SP: 1579222/9221 Time: 12:00 -15:00 CET Break around 13:30 Conference ID/Key: 9249549/1303 Local dial-in numbers can be found here . Next Steps:After the Webcast you will receive the Training material and FREE Vouchers to book and take the: Oracle ECM 11g Certified Implementation Specialist EXAM Oracle WebCenter 11g Essentials EXAM Booking with Voucher can be done on www.pearsonvue.com. Note: FREE Vouchers will be send after attending the webcast.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Stairway to SQL Server Indexes: Step 1, Introduction to Indexes

    Indexes are the database objects that enable SQL Server to satisfy each data access request from a client application with the minimum amount of effort, resulting in the maximum performance of individual requests while also reducing the impact of one request upon another. Prerequisites: Familiarity with the following relational database concepts: Table, row, primary key, foreign key Join SQL Backup’s 35,000+ customers to compress and strengthen your backups "SQL Backup will be a REAL boost to any DBA lucky enough to use it." Jonathan Allen. Download a free trial now.

    Read the article

  • How to share two keyboard on the same laptop, french iso layout and usa ansi layout keyboard with usb?

    - by reyman64
    I recently buy a "noppoo choc mini" with this specific ANSI US-INTERNATIONAL pc84 layout. This specific keyboard have only 84 key , a 60% (compact tenkeyless) reduced layout My problem is simple, there is no keyboard layout into Ubuntu 12.04 which correspond to this usa normal ansi layout ... so it's the same problem with reduced version and only 84 key .. I search a template of normal ANSI US-INTERNATIONAL for xmodmap/xkb, and after i can try to manually map the other key. I search on google, and i don't find any other user which have same problem, so it's seem i have not the good keywoard to search this information.. Edit 1 : Here you can see there is probably a bug in ubuntu, because the layout for USA with dead key is not correct ! I have this : http://minus.com/lEdKMrsNAwkVA And other users have this for the same layout : http://i.stack.imgur.com/p52XG.png EDIT 2 It seems after a "sudo dpkg-reconfigure keyboard-configuration" : french standard keyboard pc105 + precision M65 keyboard from dell laptop Now i can see the good us layout in parameters, but i cannot have the iso layout for french usage... EDIT 3 Ok, after reboot i understand the probleme, i explain. I have one laptop with integrated french keyboard, and i want to use my usb keyboard which use a usa ANSI layout. It seem it's impossible in ubuntu and "dpkg-reconfigure keyboard-configuration" to share two different physical layout (ANSI and EU ISO) on the same computer ... EDIT4 Ok, it seems i can switch the physical layout (ISO <- ANSI) with this command in terminal : setxkbmap -layout us setxkbmap -layout us -variant alt-intl an setxkbmap -layout fr It's very complicated qnd it seem ubuntu 12.04 have big problem with keyboard manager ... because all works great with these two commands, without ANY change into the system parameters keyboard !!! Second bug ? The image of the layout for fr is buggy, the layout is not ISO, but i can press on the letter "< " at the left of right shift without any problem ! You can see the image here (french alternative with ANSI layout ? it's crazy ?) : http: //minus.com/lXsDJwoeyWAfF Can you help me on this point ? I'm lost with xkb, and manual mapping is very complicated ... Thanks a lot, SR

    Read the article

  • So which null equals this null, that null? maybe this null, or is it this null?

    - by GrumpyOldDBA
    Tuning takes many routes and I get into some interesting situations and often make some exciting finds, see http://sqlblogcasts.com/blogs/grumpyolddba/archive/2010/05/17/just-when-you-thought-it-was-safe.aspx for an example. Today I encountered a multitude of Foreign Key constraints on a table, now FKs are often candidates for indexes and as none of the defined keys had an index it required a closer look. I view foreign key constraints as somewhat of a pain, excessive keys can cause excessive related...(read more)

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • Create Ubuntu repository on CentOS server with debmirror

    - by Wilco Groothand
    I want to create a UBUNTU repo mirror on my CentOS reposerver. I read about it and came to the conclusion that for our purpose debmirror was the correct solution, because I then could mirror a subset of the total repository. The problem is that with debmirror I run into the gpg key errors. Already solved in Ubuntu, but the apt-key solutions are not valid within CentOS. The command does not exists. I am totally stuck.

    Read the article

< Previous Page | 179 180 181 182 183 184 185 186 187 188 189 190  | Next Page >