Search Results

Search found 19458 results on 779 pages for 'interface implementation'.

Page 184/779 | < Previous Page | 180 181 182 183 184 185 186 187 188 189 190 191  | Next Page >

  • C#: Optional Parameters - Pros and Pitfalls

    - by James Michael Hare
    When Microsoft rolled out Visual Studio 2010 with C# 4, I was very excited to learn how I could apply all the new features and enhancements to help make me and my team more productive developers. Default parameters have been around forever in C++, and were intentionally omitted in Java in favor of using overloading to satisfy that need as it was though that having too many default parameters could introduce code safety issues.  To some extent I can understand that move, as I’ve been bitten by default parameter pitfalls before, but at the same time I feel like Java threw out the baby with the bathwater in that move and I’m glad to see C# now has them. This post briefly discusses the pros and pitfalls of using default parameters.  I’m avoiding saying cons, because I really don’t believe using default parameters is a negative thing, I just think there are things you must watch for and guard against to avoid abuses that can cause code safety issues. Pro: Default Parameters Can Simplify Code Let’s start out with positives.  Consider how much cleaner it is to reduce all the overloads in methods or constructors that simply exist to give the semblance of optional parameters.  For example, we could have a Message class defined which allows for all possible initializations of a Message: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message() 5: : this(string.Empty) 6: { 7: } 8:  9: public Message(string text) 10: : this(text, null) 11: { 12: } 13:  14: public Message(string text, IDictionary<string, string> properties) 15: : this(text, properties, -1) 16: { 17: } 18:  19: public Message(string text, IDictionary<string, string> properties, long timeToLive) 20: { 21: // ... 22: } 23: }   Now consider the same code with default parameters: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message(string text = "", IDictionary<string, string> properties = null, long timeToLive = -1) 5: { 6: // ... 7: } 8: }   Much more clean and concise and no repetitive coding!  In addition, in the past if you wanted to be able to cleanly supply timeToLive and accept the default on text and properties above, you would need to either create another overload, or pass in the defaults explicitly.  With named parameters, though, we can do this easily: 1: var msg = new Message(timeToLive: 100);   Pro: Named Parameters can Improve Readability I must say one of my favorite things with the default parameters addition in C# is the named parameters.  It lets code be a lot easier to understand visually with no comments.  Think how many times you’ve run across a TimeSpan declaration with 4 arguments and wondered if they were passing in days/hours/minutes/seconds or hours/minutes/seconds/milliseconds.  A novice running through your code may wonder what it is.  Named arguments can help resolve the visual ambiguity: 1: // is this days/hours/minutes/seconds (no) or hours/minutes/seconds/milliseconds (yes) 2: var ts = new TimeSpan(1, 2, 3, 4); 3:  4: // this however is visually very explicit 5: var ts = new TimeSpan(days: 1, hours: 2, minutes: 3, seconds: 4);   Or think of the times you’ve run across something passing a Boolean literal and wondered what it was: 1: // what is false here? 2: var sub = CreateSubscriber(hostname, port, false); 3:  4: // aha! Much more visibly clear 5: var sub = CreateSubscriber(hostname, port, isBuffered: false);   Pitfall: Don't Insert new Default Parameters In Between Existing Defaults Now let’s consider a two potential pitfalls.  The first is really an abuse.  It’s not really a fault of the default parameters themselves, but a fault in the use of them.  Let’s consider that Message constructor again with defaults.  Let’s say you want to add a messagePriority to the message and you think this is more important than a timeToLive value, so you decide to put messagePriority before it in the default, this gives you: 1: public class Message 2: { 3: public Message(string text = "", IDictionary<string, string> properties = null, int priority = 5, long timeToLive = -1) 4: { 5: // ... 6: } 7: }   Oh boy have we set ourselves up for failure!  Why?  Think of all the code out there that could already be using the library that already specified the timeToLive, such as this possible call: 1: var msg = new Message(“An error occurred”, myProperties, 1000);   Before this specified a message with a TTL of 1000, now it specifies a message with a priority of 1000 and a time to live of -1 (infinite).  All of this with NO compiler errors or warnings. So the rule to take away is if you are adding new default parameters to a method that’s currently in use, make sure you add them to the end of the list or create a brand new method or overload. Pitfall: Beware of Default Parameters in Inheritance and Interface Implementation Now, the second potential pitfalls has to do with inheritance and interface implementation.  I’ll illustrate with a puzzle: 1: public interface ITag 2: { 3: void WriteTag(string tagName = "ITag"); 4: } 5:  6: public class BaseTag : ITag 7: { 8: public virtual void WriteTag(string tagName = "BaseTag") { Console.WriteLine(tagName); } 9: } 10:  11: public class SubTag : BaseTag 12: { 13: public override void WriteTag(string tagName = "SubTag") { Console.WriteLine(tagName); } 14: } 15:  16: public static class Program 17: { 18: public static void Main() 19: { 20: SubTag subTag = new SubTag(); 21: BaseTag subByBaseTag = subTag; 22: ITag subByInterfaceTag = subTag; 23:  24: // what happens here? 25: subTag.WriteTag(); 26: subByBaseTag.WriteTag(); 27: subByInterfaceTag.WriteTag(); 28: } 29: }   What happens?  Well, even though the object in each case is SubTag whose tag is “SubTag”, you will get: 1: SubTag 2: BaseTag 3: ITag   Why?  Because default parameter are resolved at compile time, not runtime!  This means that the default does not belong to the object being called, but by the reference type it’s being called through.  Since the SubTag instance is being called through an ITag reference, it will use the default specified in ITag. So the moral of the story here is to be very careful how you specify defaults in interfaces or inheritance hierarchies.  I would suggest avoiding repeating them, and instead concentrating on the layer of classes or interfaces you must likely expect your caller to be calling from. For example, if you have a messaging factory that returns an IMessage which can be either an MsmqMessage or JmsMessage, it only makes since to put the defaults at the IMessage level since chances are your user will be using the interface only. So let’s sum up.  In general, I really love default and named parameters in C# 4.0.  I think they’re a great tool to help make your code easier to read and maintain when used correctly. On the plus side, default parameters: Reduce redundant overloading for the sake of providing optional calling structures. Improve readability by being able to name an ambiguous argument. But remember to make sure you: Do not insert new default parameters in the middle of an existing set of default parameters, this may cause unpredictable behavior that may not necessarily throw a syntax error – add to end of list or create new method. Be extremely careful how you use default parameters in inheritance hierarchies and interfaces – choose the most appropriate level to add the defaults based on expected usage. Technorati Tags: C#,.NET,Software,Default Parameters

    Read the article

  • European Interoperability Framework - a new beginning?

    - by trond-arne.undheim
    The most controversial document in the history of the European Commission's IT policy is out. EIF is here, wrapped in the Communication "Towards interoperability for European public services", and including the new feature European Interoperability Strategy (EIS), arguably a higher strategic take on the same topic. Leaving EIS aside for a moment, the EIF controversy has been around IPR, defining open standards and about the proper terminology around standardization deliverables. Today, as the document finally emerges, what is the verdict? First of all, to be fair to those among you who do not spend your lives in the intricate labyrinths of Commission IT policy documents on interoperability, let's define what we are talking about. According to the Communication: "An interoperability framework is an agreed approach to interoperability for organisations that want to collaborate to provide joint delivery of public services. Within its scope of applicability, it specifies common elements such as vocabulary, concepts, principles, policies, guidelines, recommendations, standards, specifications and practices." The Good - EIF reconfirms that "The Digital Agenda can only take off if interoperability based on standards and open platforms is ensured" and also confirms that "The positive effect of open specifications is also demonstrated by the Internet ecosystem." - EIF takes a productive and pragmatic stance on openness: "In the context of the EIF, openness is the willingness of persons, organisations or other members of a community of interest to share knowledge and stimulate debate within that community, the ultimate goal being to advance knowledge and the use of this knowledge to solve problems" (p.11). "If the openness principle is applied in full: - All stakeholders have the same possibility of contributing to the development of the specification and public review is part of the decision-making process; - The specification is available for everybody to study; - Intellectual property rights related to the specification are licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software" (p. 26). - EIF is a formal Commission document. The former EIF 1.0 was a semi-formal deliverable from the PEGSCO, a working group of Member State representatives. - EIF tackles interoperability head-on and takes a clear stance: "Recommendation 22. When establishing European public services, public administrations should prefer open specifications, taking due account of the coverage of functional needs, maturity and market support." - The Commission will continue to support the National Interoperability Framework Observatory (NIFO), reconfirming the importance of coordinating such approaches across borders. - The Commission will align its internal interoperability strategy with the EIS through the eCommission initiative. - One cannot stress the importance of using open standards enough, whether in the context of open source or non-open source software. The EIF seems to have picked up on this fact: What does the EIF says about the relation between open specifications and open source software? The EIF introduces, as one of the characteristics of an open specification, the requirement that IPRs related to the specification have to be licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software. In this way, companies working under various business models can compete on an equal footing when providing solutions to public administrations while administrations that implement the standard in their own software (software that they own) can share such software with others under an open source licence if they so decide. - EIF is now among the center pieces of the Digital Agenda (even though this demands extensive inter-agency coordination in the Commission): "The EIS and the EIF will be maintained under the ISA Programme and kept in line with the results of other relevant Digital Agenda actions on interoperability and standards such as the ones on the reform of rules on implementation of ICT standards in Europe to allow use of certain ICT fora and consortia standards, on issuing guidelines on essential intellectual property rights and licensing conditions in standard-setting, including for ex-ante disclosure, and on providing guidance on the link between ICT standardisation and public procurement to help public authorities to use standards to promote efficiency and reduce lock-in.(Communication, p.7)" All in all, quite a few good things have happened to the document in the two years it has been on the shelf or was being re-written, depending on your perspective, in any case, awaiting the storms to calm. The Bad - While a certain pragmatism is required, and governments cannot migrate to full openness overnight, EIF gives a bit too much room for governments not to apply the openness principle in full. Plenty of reasons are given, which should maybe have been put as challenges to be overcome: "However, public administrations may decide to use less open specifications, if open specifications do not exist or do not meet functional interoperability needs. In all cases, specifications should be mature and sufficiently supported by the market, except if used in the context of creating innovative solutions". - EIF does not use the internationally established terminology: open standards. Rather, the EIF introduces the notion of "formalised specification". How do "formalised specifications" relate to "standards"? According to the FAQ provided: The word "standard" has a specific meaning in Europe as defined by Directive 98/34/EC. Only technical specifications approved by a recognised standardisation body can be called a standard. Many ICT systems rely on the use of specifications developed by other organisations such as a forum or consortium. The EIF introduces the notion of "formalised specification", which is either a standard pursuant to Directive 98/34/EC or a specification established by ICT fora and consortia. The term "open specification" used in the EIF, on the one hand, avoids terminological confusion with the Directive and, on the other, states the main features that comply with the basic principle of openness laid down in the EIF for European Public Services. Well, this may be somewhat true, but in reality, Europe is 30 year behind in terminology. Unless the European Standardization Reform gets completed in the next few months, most Member States will likely conclude that they will go on referencing and using standards beyond those created by the three European endorsed monopolists of standardization, CEN, CENELEC and ETSI. Who can afford to begin following the strict Brussels rules for what they can call open standards when, in reality, standards stemming from global standardization organizations, so-called fora/consortia, dominate in the IT industry. What exactly is EIF saying? Does it encourage Member States to go on using non-ESO standards as long as they call it something else? I guess I am all for it, although it is a bit cumbersome, no? Why was there so much interest around the EIF? The FAQ attempts to explain: Some Member States have begun to adopt policies to achieve interoperability for their public services. These actions have had a significant impact on the ecosystem built around the provision of such services, e.g. providers of ICT goods and services, standardisation bodies, industry fora and consortia, etc... The Commission identified a clear need for action at European level to ensure that actions by individual Member States would not create new electronic barriers that would hinder the development of interoperable European public services. As a result, all stakeholders involved in the delivery of electronic public services in Europe have expressed their opinions on how to increase interoperability for public services provided by the different public administrations in Europe. Well, it does not take two years to read 50 consultation documents, and the EU Standardization Reform is not yet completed, so, more pragmatically, you finally had to release the document. Ok, let's leave some of that aside because the document is out and some people are happy (and others definitely not). The Verdict Considering the controversy, the delays, the lobbying, and the interests at stake both in the EU, in Member States and among vendors large and small, this document is pretty impressive. As with a good wine that has not yet come to full maturity, let's say that it seems to be coming in in the 85-88/100 range, but only a more fine-grained analysis, enjoyment in good company, and ultimately, implementation, will tell. The European Commission has today adopted a significant interoperability initiative to encourage public administrations across the EU to maximise the social and economic potential of information and communication technologies. Today, we should rally around this achievement. Tomorrow, let's sit down and figure out what it means for the future.

    Read the article

  • migrating webclient to WCF; WCF client serializes parametername of method

    - by Wouter
    I'm struggling with migrating from webservice/webclient architecture to WCF architecture. The object are very complex, with lots of nested xsd's and different namespaces. Proxy classes are generated by adding a Web Reference to an original wsdl with 30+ webmethods and using xsd.exe for generating the missing SOAPFault objects. My pilot WCF Service consists of only 1 webmethod which matches the exact syntax of one of the original methods: 1 object as parameter, returning 1 other object as result value. I greated a WCF Interface using those proxy classes, using attributes: XMLSerializerFormat and ServiceContract on the interface, OperationContract on one method from original wsdl specifying Action, ReplyAction, all with the proper namespaces. I create incoming client messages using SoapUI; I generated a project from the original WSDL files (causing the SoapUI project to have 30+ methods) and created one new Request at the one implemented WebMethod, changed the url to my wcf webservice and send the message. Because of the specified (Reply-)Action in the OperationContractAttribute, the message is actually received and properly deserialized into an object. To get this far (40 hours of googling), a lot of frustration led me to using a custom endpoint in which the WCF 'wrapped tags' are removed, the namespaces for nested types are corrected, and the generated wsdl get's flattened (for better compatibility with other tools then MS VisualStudio). Interface code is this: [XmlSerializerFormat(Use = OperationFormatUse.Literal, Style = OperationFormatStyle.Document, SupportFaults = true)] [ServiceContract(Namespace = Constants.NamespaceStufZKN)] public interface IOntvangAsynchroon { [OperationContract(Action = Constants.NamespaceStufZKN + "/zakLk01", ReplyAction = Constants.NamespaceStufZKN + "/zakLk01", Name = "zakLk01")] [FaultContract(typeof(Fo03Bericht), Namespace = Constants.NamespaceStuf)] Bv03Bericht zakLk01([XmlElement("zakLk01", Namespace = Constants.NamespaceStufZKN)] ZAKLk01 zakLk011); When I use a Webclient in code to send a message, everything works. My problem is, when I use a WCF client. I use ChannelFactory< IOntvangAsynchroon to send a message. But the generated xml looks different: it includes the parametername of the method! It took me a lot of time to figure this one out, but here's what happens: Correct xml (stripped soap envelope): <soap:Body> <zakLk01 xmlns="http://www.egem.nl/StUF/sector/zkn/0310"> <stuurgegevens> <berichtcode xmlns="http://www.egem.nl/StUF/StUF0301">Bv01</berichtcode> <zender xmlns="http://www.egem.nl/StUF/StUF0301"> <applicatie>ONBEKEND</applicatie> </zender> </stuurgegevens> <parameters> </parameters> </zakLk01> </soap:Body> Bad xml: <soap:Body> <zakLk01 xmlns="http://www.egem.nl/StUF/sector/zkn/0310"> <zakLk011> <stuurgegevens> <berichtcode xmlns="http://www.egem.nl/StUF/StUF0301">Bv01</berichtcode> <zender xmlns="http://www.egem.nl/StUF/StUF0301"> <applicatie>ONBEKEND</applicatie> </zender> </stuurgegevens> <parameters> </parameters> </zakLk011> </zakLk01> </soap:Body> Notice the 'zakLk011' element? It is the name of the parameter of the method in my interface! So NOW it is zakLk011, but it when my parameter name was 'zakLk01', the xml seemed to contain some magical duplicate of the tag above, but without namespace. Of course, you can imagine me going crazy over what was happening before finding out it was the parametername! I know have actually created a WCF Service, at which I cannot send messages using a WCF Client anymore. For clarity: The method does get invoked using the WCF Client on my webservice, but the parameter object is empty. Because I'm using a custom endpoint to log the incoming xml, I can see the message is received fine, but just with the wrong syntax! WCF client code: ZAKLk01 stufbericht = MessageFactory.CreateZAKLk01(); ChannelFactory<IOntvangAsynchroon> factory = new ChannelFactory<IOntvangAsynchroon>(new BasicHttpBinding(), new EndpointAddress("http://localhost:8193/Roxit/Link/zkn0310")); factory.Endpoint.Behaviors.Add(new LinkEndpointBehavior()); IOntvangAsynchroon client = factory.CreateChannel(); client.zakLk01(stufbericht); I am not using a generated client, i just reference the webservice like i am lot's of times. Can anyone please help me? I can't google anything on this...

    Read the article

  • MySQL Cluster 7.3 Labs Release – Foreign Keys Are In!

    - by Mat Keep
    0 0 1 1097 6254 Homework 52 14 7337 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary (aka TL/DR): Support for Foreign Key constraints has been one of the most requested feature enhancements for MySQL Cluster. We are therefore extremely excited to announce that Foreign Keys are part of the first Labs Release of MySQL Cluster 7.3 – available for download, evaluation and feedback now! (Select the mysql-cluster-7.3-labs-June-2012 build) In this blog, I will attempt to discuss the design rationale, implementation, configuration and steps to get started in evaluating the first MySQL Cluster 7.3 Labs Release. Pace of Innovation It was only a couple of months ago that we announced the General Availability (GA) of MySQL Cluster 7.2, delivering 1 billion Queries per Minute, with 70x higher cross-shard JOIN performance, Memcached NoSQL key-value API and cross-data center replication.  This release has been a huge hit, with downloads and deployments quickly reaching record levels. The announcement of the first MySQL Cluster 7.3 Early Access lab release at today's MySQL Innovation Day event demonstrates the continued pace in Cluster development, and provides an opportunity for the community to evaluate and feedback on new features they want to see. What’s the Plan for MySQL Cluster 7.3? Well, Foreign Keys, as you may have gathered by now (!), and this is the focus of this first Labs Release. As with MySQL Cluster 7.2, we plan to publish a series of preview releases for 7.3 that will incrementally add new candidate features for a final GA release (subject to usual safe harbor statement below*), including: - New NoSQL APIs; - Features to automate the configuration and provisioning of multi-node clusters, on premise or in the cloud; - Performance and scalability enhancements; - Taking advantage of features in the latest MySQL 5.x Server GA. Design Rationale MySQL Cluster is designed as a “Not-Only-SQL” database. It combines attributes that enable users to blend the best of both relational and NoSQL technologies into solutions that deliver web scalability with 99.999% availability and real-time performance, including: Concurrent NoSQL and SQL access to the database; Auto-sharding with simple scale-out across commodity hardware; Multi-master replication with failover and recovery both within and across data centers; Shared-nothing architecture with no single point of failure; Online scaling and schema changes; ACID compliance and support for complex queries, across shards. Native support for Foreign Key constraints enables users to extend the benefits of MySQL Cluster into a broader range of use-cases, including: - Packaged applications in areas such as eCommerce and Web Content Management that prescribe databases with Foreign Key support. - In-house developments benefiting from Foreign Key constraints to simplify data models and eliminate the additional application logic needed to maintain data consistency and integrity between tables. Implementation The Foreign Key functionality is implemented directly within MySQL Cluster’s data nodes, allowing any client API accessing the cluster to benefit from them – whether using SQL or one of the NoSQL interfaces (Memcached, C++, Java, JPA or HTTP/REST.) The core referential actions defined in the SQL:2003 standard are implemented: CASCADE RESTRICT NO ACTION SET NULL In addition, the MySQL Cluster implementation supports the online adding and dropping of Foreign Keys, ensuring the Cluster continues to serve both read and write requests during the operation. An important difference to note with the Foreign Key implementation in InnoDB is that MySQL Cluster does not support the updating of Primary Keys from within the Data Nodes themselves - instead the UPDATE is emulated with a DELETE followed by an INSERT operation. Therefore an UPDATE operation will return an error if the parent reference is using a Primary Key, unless using CASCADE action, in which case the delete operation will result in the corresponding rows in the child table being deleted. The Engineering team plans to change this behavior in a subsequent preview release. Also note that when using InnoDB "NO ACTION" is identical to "RESTRICT". In the case of MySQL Cluster “NO ACTION” means “deferred check”, i.e. the constraint is checked before commit, allowing user-defined triggers to automatically make changes in order to satisfy the Foreign Key constraints. Configuration There is nothing special you have to do here – Foreign Key constraint checking is enabled by default. If you intend to migrate existing tables from another database or storage engine, for example from InnoDB, there are a couple of best practices to observe: 1. Analyze the structure of the Foreign Key graph and run the ALTER TABLE ENGINE=NDB in the correct sequence to ensure constraints are enforced 2. Alternatively drop the Foreign Key constraints prior to the import process and then recreate when complete. Getting Started Read this blog for a demonstration of using Foreign Keys with MySQL Cluster.  You can download MySQL Cluster 7.3 Labs Release with Foreign Keys today - (select the mysql-cluster-7.3-labs-June-2012 build) If you are new to MySQL Cluster, the Getting Started guide will walk you through installing an evaluation cluster on a singe host (these guides reflect MySQL Cluster 7.2, but apply equally well to 7.3) Post any questions to the MySQL Cluster forum where our Engineering team will attempt to assist you. Post any bugs you find to the MySQL bug tracking system (select MySQL Cluster from the Category drop-down menu) And if you have any feedback, please post them to the Comments section of this blog. Summary MySQL Cluster 7.2 is the GA, production-ready release of MySQL Cluster. This first Labs Release of MySQL Cluster 7.3 gives you the opportunity to preview and evaluate future developments in the MySQL Cluster database, and we are very excited to be able to share that with you. Let us know how you get along with MySQL Cluster 7.3, and other features that you want to see in future releases. * Safe Harbor Statement This information is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.

    Read the article

  • Does Test Driven Development (TDD) improve Quality and Correctness? (Part 1)

    - by David V. Corbin
    Since the dawn of the computer age, various methodologies have been introduced to improve quality and reduce cost. In this posting, I will by sharing my experiences with Test Driven Development; both its benefits and limitations. To start this topic, we need to agree on what TDD is. The first is to define each of the three words as used in this context. Test - An item or action which measures something in some quantifiable form. Driven - The primary motivation or focus of a series of activities (process) Development - All phases of a software project/product from concept through delivery. The above are very simple definitions that result in the following: "TDD is a process where the primary focus is on measuring and quantifying all aspects of the creation of a (software) product." There are many places where TDD is used outside of software development, even though it is not known by this name. Consider the (conventional) education process that most of us grew up on. The focus was to get the best grades as measured by different tests. Many of these tests measured rote memorization and not understanding of the subject matter. The result of this that many people graduated with high scores but without "quality and correctness" in their ability to utilize the subject matter (of course, the flip side is true where certain people DID understand the material but were not very good at taking this type of test). Returning to software development, let us look at some common scenarios. While these items are generally applicable regardless of platform, language and tools; the remainder of this post will utilize Microsoft Visual Studio and Team Foundation Server (TFS) for examples. It should be realized that everyone does at least some aspect of TDD. At the most rudimentary level, getting a program to compile involves a "pass/fail" measurement (is the syntax valid) that drives their ability to proceed further (run the program). Other developers may create "Unit Tests" in the belief that having a test for every method/property of a class and good code coverage is the goal of TDD. These items may be helpful and even important, but really only address a small aspect of the overall effort. To see TDD in a bigger view, lets identify the various activities that are part of the Software Development LifeCycle. These are going to be presented in a Waterfall style for simplicity, but each item also occurs within Iterative methodologies such as Agile/Scrum. the key ones here are: Requirements Gathering Architecture Design Implementation Quality Assurance Can each of these items be subjected to a process which establishes metrics (quantified metrics) that reflect both the quality and correctness of each item? It should be clear that conventional Unit Tests do not apply to all of these items; at best they can verify that a local aspect (e.g. a Class/Method) of implementation matches the (test writers perspective of) the appropriate design document. So what can we do? For each of area, the goal is to create tests that are quantifiable and durable. The ability to quantify the measurements (beyond a simple pass/fail) is critical to tracking progress(eventually measuring the level of success that has been achieved) and for providing clear information on what items need to be addressed (along with the appropriate time to address them - in varying levels of detail) . Durability is important so that the test can be reapplied (ideally in an automated fashion) over the entire cycle. Returning for a moment back to our "education example", one must also be careful of how the tests are organized and how the measurements are taken. If a test is in a multiple choice format, there is a significant statistical probability that a correct answer might be the result of a random guess. Also, in many situations, having the student simply provide a final answer can obscure many important elements. For example, on a math test, having the student simply provide a numeric answer (rather than showing the methodology) may result in a complete mismatch between the process and the result. It is hard to determine which is worse: The student who makes a simple arithmetric error at one step of a long process (resulting in a wrong answer) or The student who (without providing the "workflow") uses a completely invalid approach, yet still comes up with the right number. The "Wrong Process"/"Right Answer" is probably the single biggest problem in software development. Even very simple items can suffer from this. As an example consider the following code for a "straight line" calculation....Is it correct? (for Integral Points)         int Solve(int m, int b, int x) { return m * x + b; }   Most people would respond "Yes". But let's take the question one step further... Is it correct for all possible values of m,b,x??? (no fair if you cheated by being focused on the bolded text!)  Without additional information regarding constrains on "the possible values of m,b,x" the answer must be NO, there is the risk of overflow/wraparound that will produce an incorrect result! To properly answer this question (i.e. Test the Code), one MUST be able to backtrack from the implementation through the design, and architecture all the way back to the requirements. And the requirement itself must be tested against the stakeholder(s). It is only when the bounding conditions are defined that it is possible to determine if the code is "Correct" and has "Quality". Yet, how many of us (myself included) have written such code without even thinking about it. In many canses we (think we) "know" what the bounds are, and that the code will be correct. As we all know, requirements change, "code reuse" causes implementations to be applied to different scenarios, etc. This leads directly to the types of system failures that plague so many projects. This approach to TDD is much more holistic than ones which start by focusing on the details. The fundamental concepts still apply: Each item should be tested. The test should be defined/implemented before (or concurrent with) the definition/implementation of the actual item. We also add concepts that expand the scope and alter the style by recognizing: There are many things beside "lines of code" that benefit from testing (measuring/evaluating in a formal way) Correctness and Quality can not be solely measured by "correct results" In the future parts, we will examine in greater detail some of the techniques that can be applied to each of these areas....

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • Is RTD Stateless or Stateful?

    - by [email protected]
    Yes.   A stateless service is one where each request is an independent transaction that can be processed by any of the servers in a cluster.  A stateful service is one where state is kept in a server's memory from transaction to transaction, thus necessitating the proper routing of requests to the right server. The main advantage of stateless systems is simplicity of design. The main advantage of stateful systems is performance. I'm often asked whether RTD is a stateless or stateful service, so I wanted to clarify this issue in depth so that RTD's architecture will be properly understood. The short answer is: "RTD can be configured as a stateless or stateful service." The performance difference between stateless and stateful systems can be very significant, and while in a call center implementation it may be reasonable to use a pure stateless configuration, a web implementation that produces thousands of requests per second is practically impossible with a stateless configuration. RTD's performance is orders of magnitude better than most competing systems. RTD was architected from the ground up to achieve this performance. Features like automatic and dynamic compression of prediction models, automatic translation of metadata to machine code, lack of interpreted languages, and separation of model building from decisioning contribute to achieving this performance level. Because  of this focus on performance we decided to have RTD's default configuration work in a stateful manner. By being stateful RTD requests are typically handled in a few milliseconds when repeated requests come to the same session. Now, those readers that have participated in implementations of RTD know that RTD's architecture is also focused on reducing Total Cost of Ownership (TCO) with features like automatic model building, automatic time windows, automatic maintenance of database tables, automatic evaluation of data mining models, automatic management of models partitioned by channel, geography, etcetera, and hot swapping of configurations. How do you reconcile the need for a low TCO and the need for performance? How do you get the performance of a stateful system with the simplicity of a stateless system? The answer is that you make the system behave like a stateless system to the exterior, but you let it automatically take advantage of situations where being stateful is better. For example, one of the advantages of stateless systems is that you can route a message to any server in a cluster, without worrying about sending it to the same server that was handling the session in previous messages. With an RTD stateful configuration you can still route the message to any server in the cluster, so from the point of view of the configuration of other systems, it is the same as a stateless service. The difference though comes in performance, because if the message arrives to the right server, RTD can serve it without any external access to the session's state, thus tremendously reducing processing time. In typical implementations it is not rare to have high percentages of messages routed directly to the right server, while those that are not, are easily handled by forwarding the messages to the right server. This architecture usually provides the best of both worlds with performance and simplicity of configuration.   Configuring RTD as a pure stateless service A pure stateless configuration requires session data to be persisted at the end of handling each and every message and reloading that data at the beginning of handling any new message. This is of course, the root of the inefficiency of these configurations. This is also the reason why many "stateless" implementations actually do keep state to take advantage of a request coming back to the same server. Nevertheless, if the implementation requires a pure stateless decision service, this is easy to configure in RTD. The way to do it is: Mark every Integration Point to Close the session at the end of processing the message In the Session entity persist the session data on closing the session In the session entity check if a persisted version exists and load it An excellent solution for persisting the session data is Oracle Coherence, which provides a high performance, distributed cache that minimizes the performance impact of persisting and reloading the session. Alternatively, the session can be persisted to a local database. An interesting feature of the RTD stateless configuration is that it can cope with serializing concurrent requests for the same session. For example, if a web page produces two requests to the decision service, these requests could come concurrently to the decision services and be handled by different servers. Most stateless implementation would have the two requests step onto each other when saving the state, or fail one of the messages. When properly configured, RTD will make one message wait for the other before processing.   A Word on Context Using the context of a customer interaction typically significantly increases lift. For example, offer success in a call center could double if the context of the call is taken into account. For this reason, it is important to utilize the contextual information in decision making. To make the contextual information available throughout a session it needs to be persisted. When there is a well defined owner for the information then there is no problem because in case of a session restart, the information can be easily retrieved. If there is no official owner of the information, then RTD can be configured to persist this information.   Once again, RTD provides flexibility to ensure high performance when it is adequate to allow for some loss of state in the rare cases of server failure. For example, in a heavy use web site that serves 1000 pages per second the navigation history may be stored in the in memory session. In such sites it is typical that there is no OLTP that stores all the navigation events, therefore if an RTD server were to fail, it would be possible for the navigation to that point to be lost (note that a new session would be immediately established in one of the other servers). In most cases the loss of this navigation information would be acceptable as it would happen rarely. If it is desired to save this information, RTD would persist it every time the visitor navigates to a new page. Note that this practice is preferred whether RTD is configured in a stateless or stateful manner.  

    Read the article

  • Massive Silverlight Giveaway! DevExpress , Syncfusion, Crypto Obfuscator and SL Spy!

    - by mbcrump
    Oh my, have we grown! Maybe I should change the name to Multiple Silverlight Giveaways. So far, my Silverlight giveaways have been such a success that I’m going to be able to give away more than one Silverlight product every month. Last month, we gave away 3 great products. 1) ComponentOne Silverlight Controls 2)  ComponentOne XAP Optimizer (with obfuscation) and 3) Silverlight Spy. This month, we will give away 4 great Silverlight products and have 4 different winners. This way the Silverlight community can grow with more than just one person winning all the prizes. This month we will be giving away: DevExpress Silverlight Controls – Over 50+ Silverlight Controls Syncfusion User Interface Edition - Create stunning line of business silverlight applications with a wide range of components including a high performance grid, docking manager, chart, gauge, scheduler and much more. Crypto Obfuscator – Works for all .NET including Silverlight/Windows Phone 7. Silverlight Spy – provides a license EVERY month for this giveaway. ----------------------------------------------------------------------------------------------------------------------------------------------------------- Win a FREE developer’s license of one of the products listed above! 4 winners will be announced on April 1st, 2011! To be entered into the contest do the following things: Subscribe to my feed. – Use Google Reader, email or whatever is best for you.  Leave a comment below with a valid email account (I WILL NOT share this info with anyone.) Retweet the following : I just entered to win free #Silverlight controls from @mbcrump . Register here: http://mcrump.me/fTSmB8 ! Don’t change the URL because this will allow me to track the users that Tweet this page. Don’t forget to visit each of the vendors sites because they made this possible. MichaelCrump.Net provides Silverlight Giveaways every month. You can also see the latest giveaway by bookmarking http://giveaways.michaelcrump.net . ---------------------------------------------------------------------------------------------------------------------------------------------------------- DevExpress Silverlight Controls Let’s take a quick look at some of the software that is provided in this giveaway. Before we get started with the Silverlight Controls, here is a couple of links to bookmark for the DevExpress Silverlight Controls: The Live Demos of the Silverlight Controls is located here. Great Video Tutorials of the Silverlight Controls are here. One thing that I liked about the DevExpress is how easy it was to find demos of each control. After you install the controls the following Program Group appears complete with “demos” that include full-source.   So, the first question that you may ask is, “What is included?” Here is the official list below. I wanted to show several of the controls that I think developers will use the most. The Book – Very rich animation between switching pages. Very easy to add your own images and custom text. The Menu – This is another control that just looked great. You can easily add images to the menu items with a few lines of XAML. The Window / Dialog Box – You can use this control to make a very beautiful “Wizard” to help your users navigate between pages. This is useful in setup or installation. Calculator – This would be useful for any type of Banking app. Also a first that I’ve seen from a 3rd party Control company. DatePicker – This controls feels a lot smoother than the one provided by Microsoft. It also provides the ability to “Clear” the selection. Overall the DevExpress Silverlight Controls feature a lot of quality controls that you should check out. You can go ahead and download a trial version of it right now by clicking here. If you win the contest you can simply enter your registration key and continue using the product without reinstalling. Syncfusion User Interface Edition Before we get started with the Syncfusion User Interface Edition, here is a couple of links to bookmark. The Live Demos can be found here. You can download a demo of it now at http://www.syncfusion.com/downloads/evalstart. After you install the Syncfusion, you can view the dashboard to run locally installed samples. You may also download the documentation to your local machine if needed. Since the name of the package is “User Interface Edition”, I decided to share several samples that struck me as “awesome”. Dashboard Gauges – I was very impressed with the various gauges they have included. The digital clock also looks very impressive. Diagram – The diagrams are also very easy to build. In the sample project below you can drag/drop the shapes onto the content pane. More complex lines like the Bezier lines are also easy to create using Syncfusion. Scheduling – Another strong component was the Scheduling with built-in support for Themes. Tools – If all of that wasn’t enough, it also comes with a nice pack of essential tools. Syncfusion has a nice variety of Silverlight Controls that you should check out. You can go ahead and download a trial version of it right now by clicking here. Crypto Obfuscator The following feature set is what is important to me in an Obfuscator since I am a Silverlight/WP7 Developer: And thankfully this is what you get in Crypto Obfuscator. You can download a trial version right now if you want to go ahead and play with it. Let’s spend a few moments taking a look at the application. After you have installed Crypto Obfuscator you will see the following screen: After you click on Assemblies you have the option to add your .XAP file in: I went ahead and loaded my .xap file from a Silverlight Application. At this point, you can simply save your project and hit “Obfuscate” and your done. You don’t have to mess with any of the other settings if you don’t want too. Of course, you can change the settings and add obfuscation rules, watermarks and signing if you wish.  After Obfuscation, it looks like this in .NET Reflector: I was trying to browse through methods and it actually crashed Reflector. This confirms the level of protection the obfuscator is providing. If this were a commercial application that my team built, I would have a huge smile on my face right now. Crypto Obfuscator is a great product and I hope you will spend the time learning more about it. Silverlight Spy Silverlight Spy is a runtime inspector tool that will tell you pretty much everything that is going on with the application. Basically, you give it a URL that contains a Silverlight application and you can explore the element tree, events, xaml and so much more. This has already been reviewed on MichaelCrump.net. _________________________________________________________________________________________ Thanks for reading and don’t forget to leave a comment below in order to win one of the four prizes available! Subscribe to my feed

    Read the article

  • testing dao with hibernate genericdao pattern with spring.Headache

    - by black sensei
    Hello good fellas! in my journey of learning hibernate i came across an article on hibernate site. i' learning spring too and wanted to do certain things to discover the flexibility of spring by letting you implement you own session.yes i don't want to use the hibernateTemplate(for experiment). and i'm now having a problem and even the test class.I followed the article on the hibernate site especially the section an "implementation with hibernate" so we have the generic dao interface : public interface GenericDAO<T, ID extends Serializable> { T findById(ID id, boolean lock); List<T> findAll(); List<T> findByExample(T exampleInstance); T makePersistent(T entity); void makeTransient(T entity); } it's implementation in an abstract class that is the same as the one on the web site.Please refer to it from the link i provide.i'll like to save this post to be too long now come my dao's messagedao interface package com.project.core.dao; import com.project.core.model.MessageDetails; import java.util.List; public interface MessageDAO extends GenericDAO<MessageDetails, Long>{ //Message class is on of my pojo public List<Message> GetAllByStatus(String status); } its implementation is messagedaoimpl: public class MessageDAOImpl extends GenericDAOImpl <Message, Long> implements MessageDAO { // mySContainer is an interface which my HibernateUtils implement mySContainer sessionManager; /** * */ public MessageDAOImpl(){} /** * * @param sessionManager */ public MessageDAOImpl(HibernateUtils sessionManager){ this.sessionManager = sessionManager; } //........ plus other methods } here is my HibernatUtils public class HibernateUtils implements SessionContainer { private final SessionFactory sessionFactory; private Session session; public HibernateUtils() { this.sessionFactory = new AnnotationConfiguration().configure().buildSessionFactory(); } public HibernateUtils(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } /** * * this is the function that return a session.So i'm free to implements any type of session in here. */ public Session requestSession() { // if (session != null || session.isOpen()) { // return session; // } else { session = sessionFactory.openSession(); // } return session; } } So in my understanding while using spring(will provide the conf), i'ld wire sessionFactory to my HiberbernateUtils and then wire its method RequestSession to the Session Property of the GenericDAOImpl (the one from the link provided). here is my spring config core.xml <bean id="sessionManager" class="com.project.core.dao.hibernate.HibernateUtils"> <constructor-arg ref="sessionFactory" /> </bean> <bean id="messageDao" class="com.project.core.dao.hibernate.MessageDAOImpl"> <constructor-arg ref="sessionManager"/> </bean> <bean id="genericDAOimpl" class="com.project.core.dao.GenericDAO"> <property name="session" ref="mySession"/> </bean> <bean id="mySession" factory-bean="com.project.core.dao.SessionContainer" factory-method="requestSession"/> now my test is this public class MessageDetailsDAOImplTest extends AbstractDependencyInjectionSpringContextTests{ HibernateUtils sessionManager = (HibernateUtils) applicationContext.getBean("sessionManager"); MessageDAO messagedao =(MessageDAO) applicationContext.getBean("messageDao"); static Message[] message = new Message[] { new Message("text",1,"test for dummies 1","1234567890","Pending",new Date()), new Message("text",2,"test for dummies 2","334455669990","Delivered",new Date()) }; public MessageDAOImplTest() { } @Override protected String[] getConfigLocations(){ return new String[]{"file:src/main/resources/core.xml"}; } @Test public void testMakePersistent() { System.out.println("MakePersistent"); messagedao.makePersistent(message[0]); Session session = sessionManager.RequestSession(); session.beginTransaction(); MessageDetails fromdb = ( Message) session.load(Message.class, message[0].getMessageId()); assertEquals(fromdb.getMessageId(), message[0].getMessageId()); assertEquals(fromdb.getDateSent(),message.getDateSent()); assertEquals(fromdb.getGlobalStatus(),message.getGlobalStatus()); assertEquals(fromdb.getNumberOfPages(),message.getNumberOfPages()); } i'm having this error exception in constructor testMakePersistent(java.lang.NullPointerException at com.project.core.dao.hibernate.MessageDAOImplTest) with this stack : at com.project.core.dao.hibernate.MessageDAOImplTest.(MessageDAOImplTest.java:28) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at junit.framework.TestSuite.createTest(TestSuite.java:61) at junit.framework.TestSuite.addTestMethod(TestSuite.java:283) at junit.framework.TestSuite.(TestSuite.java:146) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.run(JUnitTestRunner.java:481) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.launch(JUnitTestRunner.java:1031) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.main(JUnitTestRunner.java:888) )) How to actually make this one work.I know this is a lot to stuffs and i'm thanking you for reading it.Please give me a solution.How would you do this? thanks

    Read the article

  • Using Apache FOP from .NET level

    - by Lukasz Kurylo
    In one of my previous posts I was talking about FO.NET which I was using to generate a pdf documents from XSL-FO. FO.NET is one of the .NET ports of Apache FOP. Unfortunatelly it is no longer maintained. I known it when I decidec to use it, because there is a lack of available (free) choices for .NET to render a pdf form XSL-FO. I hoped in this implementation I will find all I need to create a pdf file with my really simple requirements. FO.NET is a port from some old version of Apache FOP and I found really quickly that there is a lack of some features that I needed, like dotted borders, double borders or support for margins. So I started to looking for some alternatives. I didn’t try the NFOP, another port of Apache FOP, because I found something I think much more better, the IKVM.NET project.   IKVM.NET it is not a pdf renderer. So what it is? From the project site:   IKVM.NET is an implementation of Java for Mono and the Microsoft .NET Framework. It includes the following components: a Java Virtual Machine implemented in .NET a .NET implementation of the Java class libraries tools that enable Java and .NET interoperability   In the simplest form IKVM.NET allows to use a Java code library in the C# code and vice versa.   I tried to use an Apache FOP, the best I think open source pdf –> XSL-FO renderer written in Java from my project written in C# using an IKVM.NET and it work like a charm. In the rest of the post I want to show, how to prepare a .NET *.dll class library from Apache FOP *.jar’s with IKVM.NET and generate a simple Hello world pdf document.   To start playing with IKVM.NET and Apache FOP we need to download their packages: IKVM.NET Apache FOP and then unpack them.   From the FOP directory copy all the *.jar’s files from lib and build catalogs to some location, e.g. d:\fop. Second step is to build the *.dll library from these files. On the console execute the following comand:   ikvmc –target:library –out:d:\fop\fop.dll –recurse:d:\fop   The ikvmc is located in the bin subdirectory where you unpacked the IKVM.NET. You must execute this command from this catalog, add this path to the global variable PATH or specify the full path to the bin subdirectory.   In no error occurred during this process, the fop.dll library should be created. Right now we can create a simple project to test if we can create a pdf file.   So let’s create a simple console project application and add reference to the fop.dll and the IKVM dll’s: IKVM.OpenJDK.Core and IKVM.OpenJDK.XML.API.   Full code to generate a pdf file from XSL-FO template:   static void Main(string[] args)         {             //initialize the Apache FOP             FopFactory fopFactory = FopFactory.newInstance();               //in this stream we will get the generated pdf file             OutputStream o = new DotNetOutputMemoryStream();             try             {                 Fop fop = fopFactory.newFop("application/pdf", o);                 TransformerFactory factory = TransformerFactory.newInstance();                 Transformer transformer = factory.newTransformer();                   //read the template from disc                 Source src = new StreamSource(new File("HelloWorld.fo"));                 Result res = new SAXResult(fop.getDefaultHandler());                 transformer.transform(src, res);             }             finally             {                 o.close();             }             using (System.IO.FileStream fs = System.IO.File.Create("HelloWorld.pdf"))             {                 //write from the .NET MemoryStream stream to disc the generated pdf file                 var data = ((DotNetOutputMemoryStream)o).Stream.GetBuffer();                 fs.Write(data, 0, data.Length);             }             Process.Start("HelloWorld.pdf");             System.Console.ReadLine();         }   Apache FOP be default using a Java’s Xalan to work with XML files. I didn’t find a way to replace this piece of code with equivalent from .NET standard library. If any error or warning will occure during generating the pdf file, on the console will ge shown, that’s why I inserted the last line in the sample above. The DotNetOutputMemoryStream this is my wrapper for the Java OutputStream. I have created it to have the possibility to exchange data between the .NET <-> Java objects. It’s implementation:   class DotNetOutputMemoryStream : OutputStream     {         private System.IO.MemoryStream ms = new System.IO.MemoryStream();         public System.IO.MemoryStream Stream         {             get             {                 return ms;             }         }         public override void write(int i)         {             ms.WriteByte((byte)i);         }         public override void write(byte[] b, int off, int len)         {             ms.Write(b, off, len);         }         public override void write(byte[] b)         {             ms.Write(b, 0, b.Length);         }         public override void close()         {             ms.Close();         }         public override void flush()         {             ms.Flush();         }     } The last thing we need, this is the HelloWorld.fo template.   <?xml version="1.0" encoding="utf-8"?> <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">   <fo:layout-master-set>     <fo:simple-page-master master-name="simple"                   page-height="29.7cm"                   page-width="21cm"                   margin-top="1.8cm"                   margin-bottom="0.8cm"                   margin-left="1.6cm"                   margin-right="1.2cm">       <fo:region-body margin-top="3cm"/>       <fo:region-before extent="3cm"/>       <fo:region-after extent="1.5cm"/>     </fo:simple-page-master>   </fo:layout-master-set>   <fo:page-sequence master-reference="simple">     <fo:flow flow-name="xsl-region-body">       <fo:block font-size="18pt" color="black" text-align="center">         Hello, World!       </fo:block>     </fo:flow>   </fo:page-sequence> </fo:root>   I’m not going to explain how how this template is created, because this will be covered in the near future posts.   Generated pdf file should look that:

    Read the article

  • Disk Drive not working

    - by user287681
    The CD/DVD drive on my sisters' (I'm helping her shift from Win. XP (now officially deprecated by Microsoft) to Ubuntu) system. Now, it may end up being a failed attempt, all together (Almost the whole last year (when she's been on XP) the disk drive hasn't (not even powering on) been working.), I just want to make sure I've explored every remote possibility. Because I figure, "Huh, now that I've got Ubuntu running, instead of XP, that (just) might make a difference.". I have tried using the sudo lshw command in the terminal, to (seemingly) no avil, but, who knows, you might be able to make something out of it. Here's the output: kyra@kyra-Satellite-P105:~$ sudo lshw [sudo] password for kyra: kyra-satellite-p105 description: Notebook product: Satellite P105 () vendor: TOSHIBA version: PSPA0U-0TN01M serial: 96084354W width: 64 bits capabilities: smbios-2.4 dmi-2.4 vsyscall32 configuration: administrator_password=disabled boot=oem-specific chassis=notebook frontpanel_password=unknown keyboard_password=unknown power-on_password=disabled uuid=00900559-F88E-D811-82E0-00163680E992 *-core description: Motherboard product: Satellite P105 vendor: TOSHIBA physical id: 0 version: Not Applicable serial: 1234567890 *-firmware description: BIOS vendor: TOSHIBA physical id: 0 version: V4.70 date: 01/19/20092 size: 92KiB capabilities: isa pci pcmcia pnp upgrade shadowing escd cdboot acpi usb biosbootspecification *-cpu description: CPU product: Intel(R) Core(TM)2 CPU T5500 @ 1.66GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Core(TM)2 CPU T5 slot: U2E1 size: 1667MHz capacity: 1667MHz width: 64 bits clock: 166MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx x86-64 constant_tsc arch_perfmon pebs bts rep_good nopl aperfmperf pni dtes64 monitor ds_cpl est tm2 ssse3 cx16 xtpr pdcm lahf_lm dtherm cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1 Cache size: 16KiB capacity: 16KiB capabilities: asynchronous internal write-back *-cache:1 description: L2 cache physical id: 6 slot: L2 Cache size: 2MiB capabilities: burst external write-back *-memory description: System Memory physical id: c slot: System board or motherboard size: 2GiB capacity: 3GiB *-bank:0 description: SODIMM DDR2 Synchronous physical id: 0 slot: M1 size: 1GiB width: 64 bits *-bank:1 description: SODIMM DDR2 Synchronous physical id: 1 slot: M2 size: 1GiB width: 64 bits *-pci description: Host bridge product: Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 03 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display:0 description: VGA compatible controller product: Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 03 width: 32 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:16 memory:d0200000-d027ffff ioport:1800(size=8) memory:c0000000-cfffffff memory:d0300000-d033ffff *-display:1 UNCLAIMED description: Display controller product: Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2.1 bus info: pci@0000:00:02.1 version: 03 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: latency=0 resources: memory:d0280000-d02fffff *-multimedia description: Audio device product: NM10/ICH7 Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 02 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:44 memory:d0340000-d0343fff *-pci:0 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:3000(size=4096) memory:84000000-841fffff ioport:84200000(size=2097152) *-pci:1 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:4000(size=4096) memory:84400000-846fffff ioport:84700000(size=2097152) *-network description: Wireless interface product: PRO/Wireless 3945ABG [Golan] Network Connection vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 02 serial: 00:13:02:d6:d2:35 width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwl3945 driverversion=3.13.0-29-generic firmware=15.32.2.9 ip=10.110.20.157 latency=0 link=yes multicast=yes wireless=IEEE 802.11abg resources: irq:43 memory:84400000-84400fff *-pci:2 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 3 vendor: Intel Corporation physical id: 1c.2 bus info: pci@0000:00:1c.2 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:5000(size=4096) memory:84900000-84afffff ioport:84b00000(size=2097152) *-usb:0 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:23 ioport:1820(size=32) *-usb:1 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #2 vendor: Intel Corporation physical id: 1d.1 bus info: pci@0000:00:1d.1 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:19 ioport:1840(size=32) *-usb:2 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #3 vendor: Intel Corporation physical id: 1d.2 bus info: pci@0000:00:1d.2 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:18 ioport:1860(size=32) *-usb:3 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #4 vendor: Intel Corporation physical id: 1d.3 bus info: pci@0000:00:1d.3 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:16 ioport:1880(size=32) *-usb:4 description: USB controller product: NM10/ICH7 Family USB2 EHCI Controller vendor: Intel Corporation physical id: 1d.7 bus info: pci@0000:00:1d.7 version: 02 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:23 memory:d0544000-d05443ff *-pci:3 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: e2 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list resources: ioport:2000(size=4096) memory:d0000000-d00fffff ioport:80000000(size=67108864) *-pcmcia description: CardBus bridge product: PCIxx12 Cardbus Controller vendor: Texas Instruments physical id: 4 bus info: pci@0000:0a:04.0 version: 00 width: 32 bits clock: 33MHz capabilities: pcmcia bus_master cap_list configuration: driver=yenta_cardbus latency=176 maxlatency=5 mingnt=192 resources: irq:17 memory:d0004000-d0004fff ioport:2400(size=256) ioport:2800(size=256) memory:80000000-83ffffff memory:88000000-8bffffff *-firewire description: FireWire (IEEE 1394) product: PCIxx12 OHCI Compliant IEEE 1394 Host Controller vendor: Texas Instruments physical id: 4.1 bus info: pci@0000:0a:04.1 version: 00 width: 32 bits clock: 33MHz capabilities: pm ohci bus_master cap_list configuration: driver=firewire_ohci latency=64 maxlatency=4 mingnt=3 resources: irq:17 memory:d0007000-d00077ff memory:d0000000-d0003fff *-storage description: Mass storage controller product: 5-in-1 Multimedia Card Reader (SD/MMC/MS/MS PRO/xD) vendor: Texas Instruments physical id: 4.2 bus info: pci@0000:0a:04.2 version: 00 width: 32 bits clock: 33MHz capabilities: storage pm bus_master cap_list configuration: driver=tifm_7xx1 latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0005000-d0005fff *-generic description: SD Host controller product: PCIxx12 SDA Standard Compliant SD Host Controller vendor: Texas Instruments physical id: 4.3 bus info: pci@0000:0a:04.3 version: 00 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=sdhci-pci latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0007800-d00078ff *-network description: Ethernet interface product: PRO/100 VE Network Connection vendor: Intel Corporation physical id: 8 bus info: pci@0000:0a:08.0 logical name: eth0 version: 02 serial: 00:16:36:80:e9:92 size: 10Mbit/s capacity: 100Mbit/s width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e100 driverversion=3.5.24-k2-NAPI duplex=half latency=64 link=no maxlatency=56 mingnt=8 multicast=yes port=MII speed=10Mbit/s resources: irq:20 memory:d0006000-d0006fff ioport:2000(size=64) *-isa description: ISA bridge product: 82801GBM (ICH7-M) LPC Interface Bridge vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 02 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: driver=lpc_ich latency=0 resources: irq:0 *-ide description: IDE interface product: 82801GBM/GHM (ICH7-M Family) SATA Controller [IDE mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 02 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:18b0(size=16) *-serial UNCLAIMED description: SMBus product: NM10/ICH7 Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 02 width: 32 bits clock: 33MHz configuration: latency=0 resources: ioport:18c0(size=32) *-scsi physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: ST9250421AS vendor: Seagate physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: SD13 serial: 5TH0B2HB size: 232GiB (250GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=000d7fd5 *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: 13bb4bdd-8cc9-40e2-a490-dbe436c2a02d size: 230GiB capacity: 230GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2014-06-01 17:37:01 filesystem=ext4 lastmountpoint=/ modified=2014-06-01 21:15:21 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered mounted=2014-06-01 21:15:21 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 2037MiB capacity: 2037MiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 2037MiB capabilities: nofs *-remoteaccess UNCLAIMED vendor: Intel physical id: 1 capabilities: inbound kyra@kyra-Satellite-P105:~$

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • BRE (Business Rules Engine) Data Services is out...!!!

    - by Vishal
    A few months ago we at Tellago had open sourced the BizTalk Data Services. We were meanwhile working on other artifacts which comes along with BizTalk Server like the “Business Rules Engine”.  We are happy to announce the first version of BRE Data Services. BRE Data Services is a same concept which we covered through BTS Data Services, providing a RESTFul OData – based API to interact with the Business Rules Engine via HTTP using ATOM Publishing Protocol or JSON as the encoding mechanism.   In the first version release, we mainly focused on the browsing, querying and searching BRE artifacts via a RESTFul interface. Also along with that we provide the functionality to execute Business Rules by inserting the Facts for policies via the IUpdatable implementation of WCF Data Services.   The BRE Data Services API provides a lightweight interface for managing Business Rules Engine artifacts such as Policies, Rules, Vocabularies, Conditions, Actions, Facts etc. The following are some examples which details some of the available features in the current version of the API.   Basic Querying: Querying BRE Policies http://localhost/BREDataServices/BREMananagementService.svc/Policies Querying BRE Rules http://localhost/BREDataServices/BREMananagementService.svc/Rules Querying BRE Vocabularies http://localhost/BREDataServices/BREMananagementService.svc/Vocabularies   Navigation: The BRE Data Services API also leverages WCF Data Services to enable navigation across related different BRE objects. Querying a specific Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies(‘PolicyName’) Querying a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules(‘RuleName’) Querying all Rules under a Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies('PolicyName')/Rules Querying all Facts under a Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies('PolicyName')/Facts Querying all Actions for a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules('RuleName')/Actions Querying all Conditions for a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules('RuleName')/Actions Querying a specific Vocabulary: http://localhost/BREDataServices/BREMananagementService.svc/Vocabularies('VocabName')   Implementation: With the BRE Data Services, we also provide the functionality of executing a particular policy via HTTP. There are couple of ways you can do that though the API.   Ø First is though Service Operations feature of WCF Data Services in which you can execute the Facts by passing them in the URL itself. This is a very simple implementations of the executing the policies due to the limitations & restrictions (only primitive types of input parameters which can be passed) currently of the Service Operations of the WCF Data Services. Below is a code sample.                Below is a traced Request/Response message.                                 Ø Second is through the IUpdatable Interface of WCF Data Services. In this method, you can first query the rule which you want to execute and then inserts Facts for that particular Rules and finally when you perform the SaveChanges() call for the IUpdatable Interface API, it executes the policy with the facts which you inserted at runtime. Below is a sample of client side code. Due to the limitations of current version of WCF Data Services where there is no way you can return back the updates happening on the service side back to the client via the SaveChanges() method. Here we are executing the rule passing a serialized XML as Facts and there is no changes made to any data where we can query back to fetch the changes. This is overcome though the first way to executing the policies which is by executing it as a Service Operation call.     This actually generates a AtomPub message shown as below:   POST /Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/$batch HTTP/1.1 User-Agent: Microsoft ADO.NET Data Services DataServiceVersion: 1.0;NetFx MaxDataServiceVersion: 2.0;NetFx Accept: application/atom+xml,application/xml Accept-Charset: UTF-8 Content-Type: multipart/mixed; boundary=batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7 Host: localhost:8080 Content-Length: 1481 Expect: 100-continue   --batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7 Content-Type: multipart/mixed; boundary=changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf   --changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf Content-Type: application/http Content-Transfer-Encoding: binary   MERGE http://localhost:8080/Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/Facts('TestPolicy') HTTP/1.1 Content-ID: 4 Content-Type: application/atom+xml;type=entry Content-Length: 927   <?xml version="1.0" encoding="utf-8" standalone="yes"?> <entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" font-size: x-small"http://www.w3.org/2005/Atom">   <category scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" term="Tellago.BRE.REST.Resources.Fact" />   <title />   <author>     <name />   </author>   <updated>2011-01-31T20:09:15.0023982Z</updated>   <id>http://localhost:8080/Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/Facts('TestPolicy')</id>   <content type="application/xml">     <m:properties>       <d:FactInstance>&lt;ns0:LoanStatus xmlns:ns0="http://tellago.com"&gt;&lt;Age&gt;10&lt;/Age&gt;&lt;Status&gt;true&lt;/Status&gt;&lt;/ns0:LoanStatus&gt;</d:FactInstance>       <d:FactType>TestSchema</d:FactType>       <d:ID>TestPolicy</d:ID>     </m:properties>   </content> </entry> --changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf-- --batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7—     Installation: The installation of the BRE Data Services is pretty straight forward. ·         Create a new IIS website say BREDataServices. ·         Download the SourceCode from TellagoCodeplex and copy the content from Tellago.BRE.REST.ServiceHost to the physical location of the above created website.     ·         The appPool account running the website should have admin access to the BizTalkRuleEngineDb database. ·         TheRight click the BREManagementService.svc in the IIS ContentView for the website and wala..     Conclusion: The BRE Data Services API is an experiment intended to bring the capabilities of RESTful/OData based services to the Traditional BTS/BRE Solutions. The future releases will target on technologies like BAM, ESB Toolkit. This version has been tested with various version of BizTalk Server and we have uploaded the source code to our Tellago's DevLabs workspace at Codeplex. I hope you guys enjoy this release. Keep an eye on our new releases @ Tellago Codeplex. We are working on various other Biztalk Artifacts like BAM, ESB Toolkit.     Till than happy BizzRuling…!!!     Thanks,   Vishal Mody

    Read the article

  • Unable to connect to Wireless after installing Ubuntu 12.10

    - by Moulik
    I am using Asus U56E laptop and after installing Ubuntu 12.10 alongside Windows 8, I am unable to connect to the Wireless. I have been trying to solve this problem since two weeks and couldn't solve it. Please help. Any answer would be appreciated. Here are some command-line results. lspci -v | grep -iA 7 network ubuntu@ubuntu:~$ lspci -v | grep -iA 7 network 02:00.0 Network controller: Intel Corporation Centrino Wireless-N + WiMAX 6150 (rev 67) Subsystem: Intel Corporation Centrino Wireless-N + WiMAX 6150 BGN Flags: bus master, fast devsel, latency 0, IRQ 52 Memory at de800000 (64-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: iwlwifi Kernel modules: iwlwifi lsmod | grep iwlwifi ubuntu@ubuntu:~$ lsmod | grep iwlwifi iwlwifi 386826 0 mac80211 539908 1 iwlwifi cfg80211 206566 2 iwlwifi,mac80211 ubuntu@ubuntu:~$ dmesg | grep iwlwifi [ 57.846261] iwlwifi: Intel(R) Wireless WiFi Link AGN driver for Linux, in-tree: [ 57.846264] iwlwifi: Copyright(c) 2003-2012 Intel Corporation [ 57.846336] iwlwifi 0000:02:00.0: >pci_resource_len = 0x00002000 [ 57.846338] iwlwifi 0000:02:00.0: >pci_resource_base = ffffc90000c7c000 [ 57.846341] iwlwifi 0000:02:00.0: >HW Revision ID = 0x67 [ 57.846438] iwlwifi 0000:02:00.0: >irq 52 for MSI/MSI-X [ 59.558335] iwlwifi 0000:02:00.0: >loaded firmware version 41.28.5.1 build 33926 [ 59.558514] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEBUG disabled [ 59.558516] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEBUGFS enabled [ 59.558517] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEVICE_TRACING enabled [ 59.558519] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEVICE_TESTMODE enabled [ 59.558520] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_P2P disabled [ 59.558522] iwlwifi 0000:02:00.0: >Detected Intel(R) Centrino(R) Wireless-N + WiMAX 6150 BGN, REV=0x84 [ 59.558583] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 59.569083] iwlwifi 0000:02:00.0: >device EEPROM VER=0x557, CALIB=0x6 [ 59.569085] iwlwifi 0000:02:00.0: >Device SKU: 0x150 [ 59.569087] iwlwifi 0000:02:00.0: >Valid Tx ant: 0x1, Valid Rx ant: 0x3 [ 59.569100] iwlwifi 0000:02:00.0: >Tunable channels: 13 802.11bg, 0 802.11a channels [ 70.208469] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 70.208648] iwlwifi 0000:02:00.0: >Radio type=0x1-0x2-0x0 [ 70.366319] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 70.366470] iwlwifi 0000:02:00.0: >Radio type=0x1-0x2-0x0 sudo lshw -c network ubuntu@ubuntu:~$ sudo lshw -c network *-network description: Wireless interface product: Centrino Wireless-N + WiMAX 6150 vendor: Intel Corporation physical id: 0 bus info: pci@0000:02:00.0 logical name: wlan0 version: 67 serial: 40:25:c2:84:99:c4 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.5.0-17-generic firmware=41.28.5.1 build 33926 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:52 memory:de800000-de801fff *-network description: Ethernet interface product: AR8151 v2.0 Gigabit Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c0 serial: 54:04:a6:2b:6a:ef capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI latency=0 link=no multicast=yes port=twisted pair resources: irq:54 memory:dd400000-dd43ffff ioport:a000(size=128) ifconfig ubuntu@ubuntu:~$ ifconfig eth0 Link encap:Ethernet HWaddr 54:04:a6:2b:6a:ef UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:176 errors:0 dropped:0 overruns:0 frame:0 TX packets:176 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:14368 (14.3 KB) TX bytes:14368 (14.3 KB) wlan0 Link encap:Ethernet HWaddr 40:25:c2:84:99:c4 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) iwconfig ubuntu@ubuntu:~$ iwconfig eth0 no wireless extensions. lo no wireless extensions. wlan0 IEEE 802.11bgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=15 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off iwlist scan ubuntu@ubuntu:~$ iwlist scan eth0 Interface doesn't support scanning. lo Interface doesn't support scanning. wlan0 No scan results nm-tool ubuntu@ubuntu:~$ nm-tool NetworkManager Tool State: disconnected - Device: eth0 ----------------------------------------------------------------- Type: Wired Driver: atl1c State: unavailable Default: no HW Address: 54:04:A6:2B:6A:EF Capabilities: Carrier Detect: yes Wired Properties Carrier: off - Device: wlan0 ---------------------------------------------------------------- Type: 802.11 WiFi Driver: iwlwifi State: disconnected Default: no HW Address: 40:25:C2:84:99:C4 Capabilities: Wireless Properties WEP Encryption: yes WPA Encryption: yes WPA2 Encryption: yes Wireless Access Points hypeness2: Infra, 00:21:29:DA:08:4F, Freq 2462 MHz, Rate 54 Mb/s, Strength 42 WPA love: Infra, 68:7F:74:17:02:66, Freq 2412 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 DIRECT-MwSCX-3400Pamela: Infra, 02:15:99:A3:3F:AC, Freq 2412 MHz, Rate 54 Mb/s, Strength 22 WPA2 router: Infra, 1C:AF:F7:D6:76:F3, Freq 2417 MHz, Rate 54 Mb/s, Strength 20 WPA2 wing: Infra, E8:40:F2:34:E4:F7, Freq 2437 MHz, Rate 54 Mb/s, Strength 20 WPA WPA2 132LINKSYS: Infra, 00:1A:70:80:1F:E9, Freq 2437 MHz, Rate 54 Mb/s, Strength 57 WEP VMITTAL: Infra, E0:46:9A:3C:F0:C4, Freq 2412 MHz, Rate 54 Mb/s, Strength 27 WEP HP-Print-10-LaserJet 1025: Infra, 7C:E9:D3:7E:F8:10, Freq 2437 MHz, Rate 54 Mb/s, Strength 59 ACNBB: Infra, 00:26:75:22:A6:2F, Freq 2437 MHz, Rate 54 Mb/s, Strength 20 SATKAIVAL: Infra, 00:18:E7:CE:69:A6, Freq 2412 MHz, Rate 54 Mb/s, Strength 69 WPA WPA2 hypeness: Infra, B8:E6:25:24:C3:B1, Freq 2437 MHz, Rate 54 Mb/s, Strength 54 WPA WPA2 CSNetwork: Infra, BC:14:01:58:C5:88, Freq 2437 MHz, Rate 54 Mb/s, Strength 25 WPA WPA2 tharma: Infra, BC:14:01:E2:06:18, Freq 2412 MHz, Rate 54 Mb/s, Strength 15 WPA WPA2 Active2.4: Infra, 10:6F:3F:0E:F3:8E, Freq 2462 MHz, Rate 54 Mb/s, Strength 17 WPA WPA2 ACNBB: Infra, 00:26:75:58:4E:7A, Freq 2437 MHz, Rate 54 Mb/s, Strength 85 KO: Infra, BC:14:01:2E:AF:A8, Freq 2452 MHz, Rate 54 Mb/s, Strength 22 WPA WPA2 FEAR: Infra, 00:18:4D:C0:BC:58, Freq 2462 MHz, Rate 54 Mb/s, Strength 17 WPA Pamela: Infra, BC:14:01:52:F6:F8, Freq 2412 MHz, Rate 54 Mb/s, Strength 24 WPA WPA2 bvrk2: Infra, 78:CD:8E:7B:3C:79, Freq 2457 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 BELL030: Infra, D8:6C:E9:17:AF:09, Freq 2462 MHz, Rate 54 Mb/s, Strength 22 WPA2 Desai: Infra, 00:1D:7E:52:FB:C5, Freq 2437 MHz, Rate 54 Mb/s, Strength 14 WEP Sritharan: Infra, BC:14:01:E5:59:78, Freq 2462 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 PFN: Infra, 00:13:10:8B:CF:45, Freq 2437 MHz, Rate 54 Mb/s, Strength 19 WEP rfkill list all ubuntu@ubuntu:~$ rfkill list all 0: asus-wlan: Wireless LAN Soft blocked: no Hard blocked: no 1: asus-wimax: WiMAX Soft blocked: yes Hard blocked: no 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no so these are some more results sudo modprobe -r iwlwifi ubuntu@ubuntu:~$ sudo modprobe -r iwlwifi sudo modprobe iwlwifi 11n_disable=1 ubuntu@ubuntu:~$ sudo modprobe iwlwifi 11n_disable=1 echo "blacklist asus_wmi" | sudo tee -a /etcmodprobe.d/blacklist.conf ubuntu@ubuntu:~$ echo "blacklist asus_wmi" | sudo tee -a /etc/modprobe.d/blacklist.conf blacklist asus_wmi echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf ubuntu@ubuntu:~$ echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf options iwlwifi 11n_disable=1 sudo modprobe -rfv iwlwifi ubuntu@ubuntu:~$ sudo modprobe -rfv iwlwifi rmmod /lib/modules/3.5.0-17-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko rmmod /lib/modules/3.5.0-17-generic/kernel/net/mac80211/mac80211.ko rmmod /lib/modules/3.5.0-17-generic/kernel/net/wireless/cfg80211.ko sudo modprobe -v iwlwifi ubuntu@ubuntu:~$ sudo modprobe -v iwlwifi insmod /lib/modules/3.5.0-17-generic/kernel/net/wireless/cfg80211.ko insmod /lib/modules/3.5.0-17-generic/kernel/net/mac80211/mac80211.ko insmod /lib/modules/3.5.0-17-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko 11n_disable=1

    Read the article

  • &lt;%: %&gt;, HtmlEncode, IHtmlString and MvcHtmlString

    - by Shaun
    One of my colleague and friend, Robin is playing and struggling with the ASP.NET MVC 2 on a project these days while I’m struggling with a annoying client. Since it’s his first time to use ASP.NET MVC he was meetings with a lot of problem and I was very happy to share my experience to him. Yesterday he asked me when he attempted to insert a <br /> element into his page he found that the page was rendered like this which is bad. He found his <br /> was shown as a part of the string rather than creating a new line. After checked a bit in his code I found that it’s because he utilized a new ASP.NET markup supported in .NET 4.0 – “<%: %>”. If you have been using ASP.NET MVC 1 or in .NET 3.5 world it would be very common that using <%= %> to show something on the page from the backend code. But when you do it you must ensure that the string that are going to be displayed should be Html-safe, which means all the Html markups must be encoded. Otherwise this might cause an XSS (cross-site scripting) problem. So that you’d better use the code like this below to display anything on the page. In .NET 4.0 Microsoft introduced a new markup to solve this problem which is <%: %>. It will encode the content automatically so that you will no need to check and verify your code manually for the XSS issue mentioned below. But this also means that it will encode all things, include the Html element you want to be rendered. So I changed his code like this and it worked well. After helped him solved this problem and finished a spreadsheet for my boring project I considered a bit more on the <%: %>. Since it will encode all thing why it renders correctly when we use “<%: Html.TextBox(“name”) %>” to show a text box? As you know the Html.TextBox will render a “<input name="name" id="name" type="text"/>” element on the page. If <%: %> will encode everything it should not display a text box. So I dig into the source code of the MVC and found some comments in the class MvcHtmlString. 1: // In ASP.NET 4, a new syntax <%: %> is being introduced in WebForms pages, where <%: expression %> is equivalent to 2: // <%= HttpUtility.HtmlEncode(expression) %>. The intent of this is to reduce common causes of XSS vulnerabilities 3: // in WebForms pages (WebForms views in the case of MVC). This involves the addition of an interface 4: // System.Web.IHtmlString and a static method overload System.Web.HttpUtility::HtmlEncode(object). The interface 5: // definition is roughly: 6: // public interface IHtmlString { 7: // string ToHtmlString(); 8: // } 9: // And the HtmlEncode(object) logic is roughly: 10: // - If the input argument is an IHtmlString, return argument.ToHtmlString(), 11: // - Otherwise, return HtmlEncode(Convert.ToString(argument)). 12: // 13: // Unfortunately this has the effect that calling <%: Html.SomeHelper() %> in an MVC application running on .NET 4 14: // will end up encoding output that is already HTML-safe. As a result, we're changing out HTML helpers to return 15: // MvcHtmlString where appropriate. <%= Html.SomeHelper() %> will continue to work in both .NET 3.5 and .NET 4, but 16: // changing the return types to MvcHtmlString has the added benefit that <%: Html.SomeHelper() %> will also work 17: // properly in .NET 4 rather than resulting in a double-encoded output. MVC developers in .NET 4 will then be able 18: // to use the <%: %> syntax almost everywhere instead of having to remember where to use <%= %> and where to use 19: // <%: %>. This should help developers craft more secure web applications by default. 20: // 21: // To create an MvcHtmlString, use the static Create() method instead of calling the protected constructor. The comment said the encoding rule of the <%: %> would be: If the type of the content is IHtmlString it will NOT encode since the IHtmlString indicates that it’s Html-safe. Otherwise it will use HtmlEncode to encode the content. If we check the return type of the Html.TextBox method we will find that it’s MvcHtmlString, which was implemented the IHtmlString interface dynamically. That is the reason why the “<input name="name" id="name" type="text"/>” was not encoded by <%: %>. So if we want to tell ASP.NET MVC, or I should say the ASP.NET runtime that the content is Html-safe and no need, or should not be encoded we can convert the content into IHtmlString. So another resolution would be like this. Also we can create an extension method as well for better developing experience. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6:  7: namespace ShaunXu.Blogs.IHtmlStringIssue 8: { 9: public static class Helpers 10: { 11: public static MvcHtmlString IsHtmlSafe(this string content) 12: { 13: return MvcHtmlString.Create(content); 14: } 15: } 16: } Then the view would be like this. And the page rendered correctly.         Summary In this post I explained a bit about the new markup in .NET 4.0 – <%: %> and its usage. I also explained a bit about how to control the page content, whether it should be encoded or not. We can see the ASP.NET MVC gives us more points to control the web pages.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Ubuntu 12.04 + Wifi not working

    - by user171154
    i'm having problems connecting over wireless. At the moment, I'm using wicd. It seems to get stuck on "Verifying AP association...". Without wicd I can get the connection up and ping the Net - but if I take eth0 down (ifconfig eth0 down), my wireless goes away too (same result if I unplug the wire instead). wicd is the only way I can bring eth0 back (which is the main reason I'm using it) - ifconfig eth0 and/or ifup eth0 do not re-enable the connection (I just discovered it leaves out the gateway. Adding the gateway back in re-enables the connection including wifi; I didn't want to delete the info about wicd above in case it gives someone an idea.) Doing it manually, despite the errors (which it would be nice to also resolve) - allows me to ping the outside world: ifup wlan0 ioctl[SIOCSIWENCODEEXT]: Invalid argument ioctl[SIOCSIWENCODEEXT]: Invalid argument ssh stop/waiting ssh start/running, process 17336 ping -I wlan0 -c 4 8.8.8.8 PING 8.8.8.8 (8.8.8.8) from 192.168.0.12 wlan0: 56(84) bytes of data. 64 bytes from 8.8.8.8: icmp_req=1 ttl=43 time=48.8 ms 64 bytes from 8.8.8.8: icmp_req=2 ttl=43 time=47.9 ms 64 bytes from 8.8.8.8: icmp_req=3 ttl=43 time=48.7 ms 64 bytes from 8.8.8.8: icmp_req=4 ttl=43 time=53.2 ms --- 8.8.8.8 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3003ms rtt min/avg/max/mdev = 47.975/49.711/53.235/2.063 ms # iwconfig lo no wireless extensions. wlan0 IEEE 802.11bgn ESSID:"TPLINK" Mode:Managed Frequency:2.427 GHz Access Point: 64:66:xx:xx:xx:22 Bit Rate=108 Mb/s Tx-Power=27 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off Link Quality=70/70 Signal level=-39 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:3 Missed beacon:0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 01 serial: f0:7d:68:c1:b4:13 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=ath9k driverversion=3.2.0-67-generic-pae firmware=N/A latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:17 memory:dfbf0000-dfbfffff ip route default via 192.168.0.1 dev eth0 default via 192.168.0.1 dev wlan0 metric 100 169.254.0.0/16 dev wlan0 scope link metric 1000 192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.102 192.168.0.0/24 dev wlan0 proto kernel scope link src 192.168.0.12 (For the record, I have no idea what the 169.254.0.0 address is doing there.) uname -a 3.2.0-67-generic-pae #101-Ubuntu SMP Tue Jul 15 18:04:54 UTC 2014 i686 i686 i386 GNU/Linux lshw -C network *-network description: Ethernet interface product: NetXtreme BCM5751 Gigabit Ethernet PCI Express vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: 01 serial: 00:11:11:59:fc:09 size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm vpd msi pciexpress bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=tg3 driverversion=3.121 duplex=full firmware=5751-v3.23a ip=192.168.0.102 latency=0 link=yes multicast=yes port=twisted pair speed=100Mbit/s resources: irq:16 memory:dfcf0000-dfcfffff *-network description: Wireless interface product: AR5418 Wireless Network Adapter [AR5008E 802.11(a)bgn] (PCI-Express) vendor: Qualcomm Atheros physical id: 0 /etc/network/interfaces # interfaces(5) file used by ifup(8) and ifdown(8) auto lo iface lo inet loopback source /etc/network/interfaces.eth0 source /etc/network/interfaces.wlan0 /etc/network/interfaces.eth0 #Main Interface auto eth0 iface eth0 inet static address 192.168.0.102 netmask 255.255.255.0 gateway 192.168.0.1 /etc/network/interfaces.wlan0 auto wlan0 iface wlan0 inet static address 192.168.0.12 gateway 192.168.0.1 dns-nameservers 192.168.0.1 8.8.8.8 netmask 255.255.255.0 wpa-driver wext wpa-ssid TPLINK wpa-ap-scan 1 wpa-proto RSN wpa-pairwise CCMP wpa-group CCMP wpa-key-mgmt WPA-PSK wpa-psk dca1badb5fd4e9axxx4xxdaaxxfa91xx610bxx6a7d57ef67af9809dxx6af42e39 /etc/wpa_supplicant.conf ctrl_interface=/var/run/wpa_supplicant network={ ssid="TPLINK" psk="my password" key_mgmt=WPA-PSK proto=RSN pairwise=CCMP group=CCMP } ifdown eth0 ifdown: interface eth0 not configured ifconfig eth0 Link encap:Ethernet HWaddr 00:11:xx:xx:xx:09 inet addr:192.168.0.102 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::211:11ff:fe59:fc09/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:213690 errors:0 dropped:0 overruns:0 frame:0 TX packets:155266 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:220057808 (220.0 MB) TX bytes:21137696 (21.1 MB) Interrupt:16 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:196412 errors:0 dropped:0 overruns:0 frame:0 TX packets:196412 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:153270697 (153.2 MB) TX bytes:153270697 (153.2 MB) wlan0 Link encap:Ethernet HWaddr f0:7d:xx:xx:xx:13 inet addr:192.168.0.12 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::f27d:68ff:fec1:b413/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:11335 errors:0 dropped:0 overruns:0 frame:0 TX packets:7287 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:2563290 (2.5 MB) TX bytes:855746 (855.7 KB) ifconfig eth0 down ifconfig eth0 Link encap:Ethernet HWaddr 00:xx:xx:xx:xx:09 inet addr:192.168.0.102 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::211:11ff:fe59:fc09/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:2 errors:0 dropped:0 overruns:0 frame:0 TX packets:1 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:192 (192.0 B) TX bytes:94 (94.0 B) Interrupt:16 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:196418 errors:0 dropped:0 overruns:0 frame:0 TX packets:196418 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:153270871 (153.2 MB) TX bytes:153270871 (153.2 MB) wlan0 Link encap:Ethernet HWaddr f0:7d:xx:xx:xx:13 inet addr:192.168.0.12 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::f27d:68ff:fec1:b413/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:11359 errors:0 dropped:0 overruns:0 frame:0 TX packets:7293 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:2565482 (2.5 MB) TX bytes:856363 (856.3 KB) ip route default via 192.168.0.1 dev wlan0 metric 100 169.254.0.0/16 dev wlan0 scope link metric 1000 192.168.0.0/24 dev wlan0 proto kernel scope link src 192.168.0.12 192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.102 ping -I wlan0 -c 4 8.8.8.8 PING 8.8.8.8 (8.8.8.8) from 192.168.0.12 wlan0: 56(84) bytes of data. --- 8.8.8.8 ping statistics --- 4 packets transmitted, 0 received, 100% packet loss, time 3024ms ping -I eth0 -c 3 router PING router (192.168.0.1) from 192.168.0.102 eth0: 56(84) bytes of data. --- router ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 2015ms ping -I wlan0 -c 3 router PING router (192.168.0.1) from 192.168.0.12 wlan0: 56(84) bytes of data. --- router ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 2014ms Let me know if you need more info. Thank you in advance.

    Read the article

  • Hibernate Lazy init exception in spring scheduled job

    - by Noam Nevo
    I have a spring scheduled job (@Scheduled) that sends emails from my system according to a list of recipients in the DB. This method is annotated with the @Scheduled annotation and it invokes a method from another interface, the method in the interface is annotated with the @Transactional annotation. Now, when i invoke the scheduled method manually, it works perfectly. But when the method is invoked by spring scheduler i get the LazyInitFailed exception in the method implementing the said interface. What am I doing wrong? code: The scheduled method: @Component public class ScheduledReportsSender { public static final int MAX_RETIRES = 3; public static final long HALF_HOUR = 1000 * 60 * 30; @Autowired IScheduledReportDAO scheduledReportDAO; @Autowired IDataService dataService; @Autowired IErrorService errorService; @Scheduled(cron = "0 0 3 ? * *") // every day at 2:10AM public void runDailyReports() { // get all daily reports List<ScheduledReport> scheduledReports = scheduledReportDAO.getDaily(); sendScheduledReports(scheduledReports); } private void sendScheduledReports(List<ScheduledReport> scheduledReports) { if(scheduledReports.size()<1) { return; } //check if data flow ended its process by checking the report_last_updated table in dwh int reportTimeId = scheduledReportDAO.getReportTimeId(); String todayTimeId = DateUtils.getTimeid(DateUtils.getTodayDate()); int yesterdayTimeId = Integer.parseInt(DateUtils.addDaysSafe(todayTimeId, -1)); int counter = 0; //wait for time id to update from the daily flow while (reportTimeId != yesterdayTimeId && counter < MAX_RETIRES) { errorService.logException("Daily report sender, data not ready. Will try again in one hour.", null, null, null); try { Thread.sleep(HALF_HOUR); } catch (InterruptedException ignore) {} reportTimeId = scheduledReportDAO.getReportTimeId(); counter++; } if (counter == MAX_RETIRES) { MarketplaceServiceException mse = new MarketplaceServiceException(); mse.setMessage("Data flow not done for today, reports are not sent."); throw mse; } // get updated timeid updateTimeId(); for (ScheduledReport scheduledReport : scheduledReports) { dataService.generateScheduledReport(scheduledReport); } } } The Invoked interface: public interface IDataService { @Transactional public void generateScheduledReport(ScheduledReport scheduledReport); } The implementation (up to the line of the exception): @Service public class DataService implements IDataService { public void generateScheduledReport(ScheduledReport scheduledReport) { // if no recipients or no export type - return if(scheduledReport.getRecipients()==null || scheduledReport.getRecipients().size()==0 || scheduledReport.getExportType() == null) { return; } } } Stack trace: ERROR: 2012-09-01 03:30:00,365 [Scheduler-15] LazyInitializationException.<init>(42) | failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:383) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:375) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:122) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at com.x.service.DataService.generateScheduledReport(DataService.java:219) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:309) at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMethodInvocation.java:183) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:150) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy208.generateScheduledReport(Unknown Source) at com.x.scheduledJobs.ScheduledReportsSender.sendScheduledReports(ScheduledReportsSender.java:85) at com.x.scheduledJobs.ScheduledReportsSender.runDailyReports(ScheduledReportsSender.java:38) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.util.MethodInvoker.invoke(MethodInvoker.java:273) at org.springframework.scheduling.support.MethodInvokingRunnable.run(MethodInvokingRunnable.java:65) at org.springframework.scheduling.support.DelegatingErrorHandlingRunnable.run(DelegatingErrorHandlingRunnable.java:51) at org.springframework.scheduling.concurrent.ReschedulingRunnable.run(ReschedulingRunnable.java:81) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:165) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:636) ERROR: 2012-09-01 03:30:00,366 [Scheduler-15] MethodInvokingRunnable.run(68) | Invocation of method 'runDailyReports' on target class [class com.x.scheduledJobs.ScheduledReportsSender] failed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:383) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:375) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:122) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at com.x.service.DataService.generateScheduledReport(DataService.java:219) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:309) at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMethodInvocation.java:183) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:150) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy208.generateScheduledReport(Unknown Source) at com.x.scheduledJobs.ScheduledReportsSender.sendScheduledReports(ScheduledReportsSender.java:85) at com.x.scheduledJobs.ScheduledReportsSender.runDailyReports(ScheduledReportsSender.java:38) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.util.MethodInvoker.invoke(MethodInvoker.java:273) at org.springframework.scheduling.support.MethodInvokingRunnable.run(MethodInvokingRunnable.java:65) at org.springframework.scheduling.support.DelegatingErrorHandlingRunnable.run(DelegatingErrorHandlingRunnable.java:51) at org.springframework.scheduling.concurrent.ReschedulingRunnable.run(ReschedulingRunnable.java:81) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:165) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:636)

    Read the article

  • What's new in EJB 3.2 ? - Java EE 7 chugging along!

    - by arungupta
    EJB 3.1 added a whole ton of features for simplicity and ease-of-use such as @Singleton, @Asynchronous, @Schedule, Portable JNDI name, EJBContainer.createEJBContainer, EJB 3.1 Lite, and many others. As part of Java EE 7, EJB 3.2 (JSR 345) is making progress and this blog will provide highlights from the work done so far. This release has been particularly kept small but include several minor improvements and tweaks for usability. More features in EJB.Lite Asynchronous session bean Non-persistent EJB Timer service This also means these features can be used in embeddable EJB container and there by improving testability of your application. Pruning - The following features were made Proposed Optional in Java EE 6 and are now made optional. EJB 2.1 and earlier Entity Bean Component Contract for CMP and BMP Client View of an EJB 2.1 and earlier Entity Bean EJB QL: Query Language for CMP Query Methods JAX-RPC-based Web Service Endpoints and Client View The optional features are moved to a separate document and as a result EJB specification is now split into Core and Optional documents. This allows the specification to be more readable and better organized. Updates and Improvements Transactional lifecycle callbacks in Stateful Session Beans, only for CMT. In EJB 3.1, the transaction context for lifecyle callback methods (@PostConstruct, @PreDestroy, @PostActivate, @PrePassivate) are defined as shown. @PostConstruct @PreDestroy @PrePassivate @PostActivate Stateless Unspecified Unspecified N/A N/A Stateful Unspecified Unspecified Unspecified Unspecified Singleton Bean's transaction management type Bean's transaction management type N/A N/A In EJB 3.2, stateful session bean lifecycle callback methods can opt-in to be transactional. These methods are then executed in a transaction context as shown. @PostConstruct @PreDestroy @PrePassivate @PostActivate Stateless Unspecified Unspecified N/A N/A Stateful Bean's transaction management type Bean's transaction management type Bean's transaction management type Bean's transaction management type Singleton Bean's transaction management type Bean's transaction management type N/A N/A For example, the following stateful session bean require a new transaction to be started for @PostConstruct and @PreDestroy lifecycle callback methods. @Statefulpublic class HelloBean {   @PersistenceContext(type=PersistenceContextType.EXTENDED)   private EntityManager em;    @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)   @PostConstruct   public void init() {        myEntity = em.find(...);   }   @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)    @PostConstruct    public void destroy() {        em.flush();    }} Notice, by default the lifecycle callback methods are not transactional for backwards compatibility. They need to be explicitly opt-in to be made transactional. Opt-out of passivation for stateful session bean - If your stateful session bean needs to stick around or it has non-serializable field then the bean can be opt-out of passivation as shown. @Stateful(passivationCapable=false)public class HelloBean {    private NonSerializableType ref = ... . . .} Simplified the rules to define all local/remote views of the bean. For example, if the bean is defined as: @Statelesspublic class Bean implements Foo, Bar {    . . .} where Foo and Bar have no annotations of their own, then Foo and Bar are exposed as local views of the bean. The bean may be explicitly marked @Local as @Local@Statelesspublic class Bean implements Foo, Bar {    . . .} then this is the same behavior as explained above, i.e. Foo and Bar are local views. If the bean is marked @Remote as: @Remote@Statelesspublic class Bean implements Foo, Bar {    . . .} then Foo and Bar are remote views. If an interface is marked @Local or @Remote then each interface need to be explicitly marked explicitly to be exposed as a view. For example: @Remotepublic interface Foo { . . . }@Statelesspublic class Bean implements Foo, Bar {    . . .} only exposes one remote interface Foo. Section 4.9.7 from the specification provide more details about this feature. TimerService.getAllTimers is a newly added convenience API that returns all timers in the same bean. This is only for displaying the list of timers as the timer can only be canceled by its owner. Removed restriction to obtain the current class loader, and allow to use java.io package. This is handy if you want to do file access within your beans. JMS 2.0 alignment - A standard list of activation-config properties is now defined destinationLookup connectionFactoryLookup clientId subscriptionName shareSubscriptions Tons of other clarifications through out the spec. Appendix A provide a comprehensive list of changes since EJB 3.1. ThreadContext in Singleton is guaranteed to be thread-safe. Embeddable container implement Autocloseable. A complete replay of Enterprise JavaBeans Today and Tomorrow from JavaOne 2012 can be seen here (click on CON4654_mp4_4654_001 in Media). The specification is still evolving so the actual property or method names or their actual behavior may be different from the currently proposed ones. Are there any improvements that you'd like to see in EJB 3.2 ? The EJB 3.2 Expert Group would love to hear your feedback. An Early Draft of the specification is available. The latest version of the specification can always be downloaded from here. Java EE 7 Specification Status EJB Specification Project JIRA of EJB Specification JSR Expert Group Discussion Archive These features will start showing up in GlassFish 4 Promoted Builds soon.

    Read the article

  • Designing an API with compile-time option to remove first parameter to most functions and use a glob

    - by tomlogic
    I'm trying to design a portable API in ANSI C89/ISO C90 to access a wireless networking device on a serial interface. The library will have multiple network layers, and various versions need to run on embedded devices as small as an 8-bit micro with 32K of code and 2K of data, on up to embedded devices with a megabyte or more of code and data. In most cases, the target processor will have a single network interface and I'll want to use a single global structure with all state information for that device. I don't want to pass a pointer to that structure through the network layers. In a few cases (e.g., device with more resources that needs to live on two networks) I will interface to multiple devices, each with their own global state, and will need to pass a pointer to that state (or an index to a state array) through the layers. I came up with two possible solutions, but neither one is particularly pretty. Keep in mind that the full driver will potentially be 20,000 lines or more, cover multiple files, and contain hundreds of functions. The first solution requires a macro that discards the first parameter for every function that needs to access the global state: // network.h typedef struct dev_t { int var; long othervar; char name[20]; } dev_t; #ifdef IF_MULTI #define foo_function( x, a, b, c) _foo_function( x, a, b, c) #define bar_function( x) _bar_function( x) #else extern dev_t DEV; #define IFACE (&DEV) #define foo_function( x, a, b, c) _foo_function( a, b, c) #define bar_function( x) _bar_function( ) #endif int bar_function( dev_t *IFACE); int foo_function( dev_t *IFACE, int a, long b, char *c); // network.c #ifndef IF_MULTI dev_t DEV; #endif int bar_function( dev_t *IFACE) { memset( IFACE, 0, sizeof *IFACE); return 0; } int foo_function( dev_t *IFACE, int a, long b, char *c) { bar_function( IFACE); IFACE->var = a; IFACE->othervar = b; strcpy( IFACE->name, c); return 0; } The second solution defines macros to use in the function declarations: // network.h typedef struct dev_t { int var; long othervar; char name[20]; } dev_t; #ifdef IF_MULTI #define DEV_PARAM_ONLY dev_t *IFACE #define DEV_PARAM DEV_PARAM_ONLY, #else extern dev_t DEV; #define IFACE (&DEV) #define DEV_PARAM_ONLY void #define DEV_PARAM #endif int bar_function( DEV_PARAM_ONLY); // I don't like the missing comma between DEV_PARAM and arg2... int foo_function( DEV_PARAM int a, long b, char *c); // network.c #ifndef IF_MULTI dev_t DEV; #endif int bar_function( DEV_PARAM_ONLY) { memset( IFACE, 0, sizeof *IFACE); return 0; } int foo_function( DEV_PARAM int a, long b, char *c) { bar_function( IFACE); IFACE->var = a; IFACE->othervar = b; strcpy( IFACE->name, c); return 0; } The C code to access either method remains the same: // multi.c - example of multiple interfaces #define IF_MULTI #include "network.h" dev_t if0, if1; int main() { foo_function( &if0, -1, 3.1415926, "public"); foo_function( &if1, 42, 3.1415926, "private"); return 0; } // single.c - example of a single interface #include "network.h" int main() { foo_function( 11, 1.0, "network"); return 0; } Is there a cleaner method that I haven't figured out? I lean toward the second since it should be easier to maintain, and it's clearer that there's some macro magic in the parameters to the function. Also, the first method requires prefixing the function names with "_" when I want to use them as function pointers. I really do want to remove the parameter in the "single interface" case to eliminate unnecessary code to push the parameter onto the stack, and to allow the function to access the first "real" parameter in a register instead of loading it from the stack. And, if at all possible, I don't want to have to maintain two separate codebases. Thoughts? Ideas? Examples of something similar in existing code? (Note that using C++ isn't an option, since some of the planned targets don't have a C++ compiler available.)

    Read the article

  • FreeBSD performance tuning. Sysctls, loader.conf, kernel

    - by SaveTheRbtz
    I wanted to share knowledge of tuning FreeBSD via sysctl.conf/loader.conf/KENCONF. It was initially based on Igor Sysoev's (author of nginx) presentation about FreeBSD tuning up to 100,000-200,000 active connections. Tunings are for FreeBSD-CURRENT. Since 7.2 amd64 some of them are tuned well by default. Prior 7.0 some of them are boot only (set via /boot/loader.conf) or does not exist at all. sysctl.conf: # No zero mapping feature # May break wine # (There are also reports about broken samba3) #security.bsd.map_at_zero=0 # If you have really busy webserver with apache13 you may run out of processes #kern.maxproc=10000 # Same for servers with apache2 / Pound #kern.threads.max_threads_per_proc=4096 # Max. backlog size kern.ipc.somaxconn=4096 # Shared memory // 7.2+ can use shared memory > 2Gb kern.ipc.shmmax=2147483648 # Sockets kern.ipc.maxsockets=204800 # Can cause this on older kernels: # http://old.nabble.com/Significant-performance-regression-for-increased-maxsockbuf-on-8.0-RELEASE-tt26745981.html#a26745981 ) kern.ipc.maxsockbuf=10485760 # Mbuf 2k clusters (on amd64 7.2+ 25600 is default) # For such high value vm.kmem_size must be increased to 3G kern.ipc.nmbclusters=262144 # Jumbo pagesize(_SC_PAGESIZE) clusters # Used as general packet storage for jumbo frames # can be monitored via `netstat -m` #kern.ipc.nmbjumbop=262144 # Jumbo 9k/16k clusters # If you are using them #kern.ipc.nmbjumbo9=65536 #kern.ipc.nmbjumbo16=32768 # For lower latency you can decrease scheduler's maximum time slice # default: stathz/10 (~ 13) #kern.sched.slice=1 # Increase max command-line length showed in `ps` (e.g for Tomcat/Java) # Default is PAGE_SIZE / 16 or 256 on x86 # This avoids commands to be presented as [executable] in `ps` # For more info see: http://www.freebsd.org/cgi/query-pr.cgi?pr=120749 kern.ps_arg_cache_limit=4096 # Every socket is a file, so increase them kern.maxfiles=204800 kern.maxfilesperproc=200000 kern.maxvnodes=200000 # On some systems HPET is almost 2 times faster than default ACPI-fast # Useful on systems with lots of clock_gettime / gettimeofday calls # See http://old.nabble.com/ACPI-fast-default-timecounter,-but-HPET-83--faster-td23248172.html # After revision 222222 HPET became default: http://svnweb.freebsd.org/base?view=revision&revision=222222 kern.timecounter.hardware=HPET # Small receive space, only usable on http-server, on file server this # should be increased to 65535 or even more #net.inet.tcp.recvspace=8192 # This is useful on Fat-Long-Pipes #net.inet.tcp.recvbuf_max=10485760 #net.inet.tcp.recvbuf_inc=65535 # Small send space is useful for http servers that serve small files # Autotuned since 7.x net.inet.tcp.sendspace=16384 # This is useful on Fat-Long-Pipes #net.inet.tcp.sendbuf_max=10485760 #net.inet.tcp.sendbuf_inc=65535 # Turn off receive autotuning # You can play with it. #net.inet.tcp.recvbuf_auto=0 #net.inet.tcp.sendbuf_auto=0 # This should be enabled if you going to use big spaces (>64k) # Also timestamp field is useful when using syncookies net.inet.tcp.rfc1323=1 # Turn this off on high-speed, lossless connections (LAN 1Gbit+) # If you set it there is no need in TCP_NODELAY sockopt (see man tcp) net.inet.tcp.delayed_ack=0 # This feature is useful if you are serving data over modems, Gigabit Ethernet, # or even high speed WAN links (or any other link with a high bandwidth delay product), # especially if you are also using window scaling or have configured a large send window. # Automatically disables on small RTT ( http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/tcp_subr.c?#rev1.237 ) # This sysctl was removed in 10-CURRENT: # See: http://www.mail-archive.com/[email protected]/msg06178.html #net.inet.tcp.inflight.enable=0 # TCP slowstart algorithm tunings # We assuming we have very fast clients #net.inet.tcp.slowstart_flightsize=100 #net.inet.tcp.local_slowstart_flightsize=100 # Disable randomizing of ports to avoid false RST # Before usage check SA here www.bsdcan.org/2006/papers/ImprovingTCPIP.pdf # (it's also says that port randomization auto-disables at some conn.rates, but I didn't checked it thou) #net.inet.ip.portrange.randomized=0 # Increase portrange # For outgoing connections only. Good for seed-boxes and ftp servers. net.inet.ip.portrange.first=1024 net.inet.ip.portrange.last=65535 # # stops route cache degregation during a high-bandwidth flood # http://www.freebsd.org/doc/en/books/handbook/securing-freebsd.html #net.inet.ip.rtexpire=2 net.inet.ip.rtminexpire=2 net.inet.ip.rtmaxcache=1024 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # # There is also good example of sysctl.conf with comments: # http://www.thern.org/projects/sysctl.conf # # icmp may NOT rst, helpful for those pesky spoofed # icmp/udp floods that end up taking up your outgoing # bandwidth/ifqueue due to all that outgoing RST traffic. # #net.inet.tcp.icmp_may_rst=0 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # IPv6 Security # For more info see http://www.fosslc.org/drupal/content/security-implications-ipv6 # Disable Node info replies # To see this vulnerability in action run `ping6 -a sglAac ::1` or `ping6 -w ::1` on unprotected node net.inet6.icmp6.nodeinfo=0 # Turn on IPv6 privacy extensions # For more info see proposal http://unix.derkeiler.com/Mailing-Lists/FreeBSD/net/2008-06/msg00103.html net.inet6.ip6.use_tempaddr=1 net.inet6.ip6.prefer_tempaddr=1 # Disable ICMP redirect net.inet6.icmp6.rediraccept=0 # Disable acceptation of RA and auto linklocal generation if you don't use them #net.inet6.ip6.accept_rtadv=0 #net.inet6.ip6.auto_linklocal=0 # Increases default TTL, sometimes useful # Default is 64 net.inet.ip.ttl=128 # Lessen max segment life to conserve resources # ACK waiting time in miliseconds # (default: 30000. RFC from 1979 recommends 120000) net.inet.tcp.msl=5000 # Max bumber of timewait sockets net.inet.tcp.maxtcptw=200000 # Don't use tw on local connections # As of 15 Apr 2009. Igor Sysoev says that nolocaltimewait has some buggy realization. # So disable it or now till get fixed #net.inet.tcp.nolocaltimewait=1 # FIN_WAIT_2 state fast recycle net.inet.tcp.fast_finwait2_recycle=1 # Time before tcp keepalive probe is sent # default is 2 hours (7200000) #net.inet.tcp.keepidle=60000 # Should be increased until net.inet.ip.intr_queue_drops is zero net.inet.ip.intr_queue_maxlen=4096 # Interrupt handling via multiple CPU, but with context switch. # You can play with it. Default is 1; #net.isr.direct=0 # This is for routers only #net.inet.ip.forwarding=1 #net.inet.ip.fastforwarding=1 # This speed ups dummynet when channel isn't saturated net.inet.ip.dummynet.io_fast=1 # Increase dummynet(4) hash #net.inet.ip.dummynet.hash_size=2048 #net.inet.ip.dummynet.max_chain_len # Should be increased when you have A LOT of files on server # (Increase until vfs.ufs.dirhash_mem becomes lower) vfs.ufs.dirhash_maxmem=67108864 # Note from commit http://svn.freebsd.org/base/head@211031 : # For systems with RAID volumes and/or virtualization envirnments, where # read performance is very important, increasing this sysctl tunable to 32 # or even more will demonstratively yield additional performance benefits. vfs.read_max=32 # Explicit Congestion Notification (see http://en.wikipedia.org/wiki/Explicit_Congestion_Notification) net.inet.tcp.ecn.enable=1 # Flowtable - flow caching mechanism # Useful for routers #net.inet.flowtable.enable=1 #net.inet.flowtable.nmbflows=65535 # Extreme polling tuning #kern.polling.burst_max=1000 #kern.polling.each_burst=1000 #kern.polling.reg_frac=100 #kern.polling.user_frac=1 #kern.polling.idle_poll=0 # IPFW dynamic rules and timeouts tuning # Increase dyn_buckets till net.inet.ip.fw.curr_dyn_buckets is lower net.inet.ip.fw.dyn_buckets=65536 net.inet.ip.fw.dyn_max=65536 net.inet.ip.fw.dyn_ack_lifetime=120 net.inet.ip.fw.dyn_syn_lifetime=10 net.inet.ip.fw.dyn_fin_lifetime=2 net.inet.ip.fw.dyn_short_lifetime=10 # Make packets pass firewall only once when using dummynet # i.e. packets going thru pipe are passing out from firewall with accept #net.inet.ip.fw.one_pass=1 # shm_use_phys Wires all shared pages, making them unswappable # Use this to lessen Virtual Memory Manager's work when using Shared Mem. # Useful for databases #kern.ipc.shm_use_phys=1 # ZFS # Enable prefetch. Useful for sequential load type i.e fileserver. # FreeBSD sets vfs.zfs.prefetch_disable to 1 on any i386 systems and # on any amd64 systems with less than 4GB of avaiable memory # For additional info check this nabble thread http://old.nabble.com/Samba-read-speed-performance-tuning-td27964534.html #vfs.zfs.prefetch_disable=0 # On highload servers you may notice following message in dmesg: # "Approaching the limit on PV entries, consider increasing either the # vm.pmap.shpgperproc or the vm.pmap.pv_entry_max tunable" vm.pmap.shpgperproc=2048 loader.conf: # Accept filters for data, http and DNS requests # Useful when your software uses select() instead of kevent/kqueue or when you under DDoS # DNS accf available on 8.0+ accf_data_load="YES" accf_http_load="YES" accf_dns_load="YES" # Async IO system calls aio_load="YES" # Linux specific devices in /dev # As for 8.1 it only /dev/full #lindev_load="YES" # Adds NCQ support in FreeBSD # WARNING! all ad[0-9]+ devices will be renamed to ada[0-9]+ # 8.0+ only #ahci_load="YES" #siis_load="YES" # FreeBSD 8.2+ # New Congestion Control for FreeBSD # http://caia.swin.edu.au/urp/newtcp/tools/cc_chd-readme-0.1.txt # http://www.ietf.org/proceedings/78/slides/iccrg-5.pdf # Initial merge commit message http://www.mail-archive.com/[email protected]/msg31410.html #cc_chd_load="YES" # Increase kernel memory size to 3G. # # Use ONLY if you have KVA_PAGES in kernel configuration, and you have more than 3G RAM # Otherwise panic will happen on next reboot! # # It's required for high buffer sizes: kern.ipc.nmbjumbop, kern.ipc.nmbclusters, etc # Useful on highload stateful firewalls, proxies or ZFS fileservers # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #vm.kmem_size="3G" # If your server has lots of swap (>4Gb) you should increase following value # according to http://lists.freebsd.org/pipermail/freebsd-hackers/2009-October/029616.html # Otherwise you'll be getting errors # "kernel: swap zone exhausted, increase kern.maxswzone" # kern.maxswzone="256M" # Older versions of FreeBSD can't tune maxfiles on the fly #kern.maxfiles="200000" # Useful for databases # Sets maximum data size to 1G # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #kern.maxdsiz="1G" # Maximum buffer size(vfs.maxbufspace) # You can check current one via vfs.bufspace # Should be lowered/upped depending on server's load-type # Usually decreased to preserve kmem # (default is 10% of mem) #kern.maxbcache="512M" # Sendfile buffers # For i386 only #kern.ipc.nsfbufs=10240 # FreeBSD 9+ # HPET "legacy route" support. It should allow HPET to work per-CPU # See http://www.mail-archive.com/[email protected]/msg03603.html #hint.atrtc.0.clock=0 #hint.attimer.0.clock=0 #hint.hpet.0.legacy_route=1 # syncache Hash table tuning net.inet.tcp.syncache.hashsize=1024 net.inet.tcp.syncache.bucketlimit=512 net.inet.tcp.syncache.cachelimit=65536 # Increased hostcache # Later host cache can be viewed via net.inet.tcp.hostcache.list hidden sysctl # Very useful for it's RTT RTTVAR # Must be power of two net.inet.tcp.hostcache.hashsize=65536 # hashsize * bucketlimit (which is 30 by default) # It allocates 255Mb (1966080*136) of RAM net.inet.tcp.hostcache.cachelimit=1966080 # TCP control-block Hash table tuning net.inet.tcp.tcbhashsize=4096 # Disable ipfw deny all # Should be uncommented when there is a chance that # kernel and ipfw binary may be out-of sync on next reboot #net.inet.ip.fw.default_to_accept=1 # # SIFTR (Statistical Information For TCP Research) is a kernel module that # logs a range of statistics on active TCP connections to a log file. # See prerelease notes http://groups.google.com/group/mailing.freebsd.current/browse_thread/thread/b4c18be6cdce76e4 # and man 4 sitfr #siftr_load="YES" # Enable superpages, for 7.2+ only # Also read http://lists.freebsd.org/pipermail/freebsd-hackers/2009-November/030094.html vm.pmap.pg_ps_enabled=1 # Usefull if you are using Intel-Gigabit NIC #hw.em.rxd=4096 #hw.em.txd=4096 #hw.em.rx_process_limit="-1" # Also if you have ALOT interrupts on NIC - play with following parameters # NOTE: You should set them for every NIC #dev.em.0.rx_int_delay: 250 #dev.em.0.tx_int_delay: 250 #dev.em.0.rx_abs_int_delay: 250 #dev.em.0.tx_abs_int_delay: 250 # There is also multithreaded version of em/igb drivers can be found here: # http://people.yandex-team.ru/~wawa/ # # for additional em monitoring and statistics use # sysctl dev.em.0.stats=1 ; dmesg # sysctl dev.em.0.debug=1 ; dmesg # Also after r209242 (-CURRENT) there is a separate sysctl for each stat variable; # Same tunings for igb #hw.igb.rxd=4096 #hw.igb.txd=4096 #hw.igb.rx_process_limit=100 # Some useful netisr tunables. See sysctl net.isr #net.isr.maxthreads=4 #net.isr.defaultqlimit=4096 #net.isr.maxqlimit: 10240 # Bind netisr threads to CPUs #net.isr.bindthreads=1 # # FreeBSD 9.x+ # Increase interface send queue length # See commit message http://svn.freebsd.org/viewvc/base?view=revision&revision=207554 #net.link.ifqmaxlen=1024 # Nicer boot logo =) loader_logo="beastie" And finally here is KERNCONF: # Just some of them, see also # cat /sys/{i386,amd64,}/conf/NOTES # This one useful only on i386 #options KVA_PAGES=512 # You can play with HZ in environments with high interrupt rate (default is 1000) # 100 is for my notebook to prolong it's battery life #options HZ=100 # Polling is goot on network loads with high packet rates and low-end NICs # NB! Do not enable it if you want more than one netisr thread #options DEVICE_POLLING # Eliminate datacopy on socket read-write # To take advantage with zero copy sockets you should have an MTU >= 4k # This req. is only for receiving data. # Read more in man zero_copy_sockets # Also this epic thread on kernel trap: # http://kerneltrap.org/node/6506 # Here Linus says that "anybody that does it that way (FreeBSD) is totally incompetent" #options ZERO_COPY_SOCKETS # Support TCP sign. Used for IPSec options TCP_SIGNATURE # There was stackoverflow found in KAME IPSec stack: # See http://secunia.com/advisories/43995/ # For quick workaround you can use `ipfw add deny proto ipcomp` options IPSEC # This ones can be loaded as modules. They described in loader.conf section #options ACCEPT_FILTER_DATA #options ACCEPT_FILTER_HTTP # Adding ipfw, also can be loaded as modules options IPFIREWALL # On 8.1+ you can disable verbose to see blocked packets on ipfw0 interface. # Also there is no point in compiling verbose into the kernel, because # now there is net.inet.ip.fw.verbose tunable. #options IPFIREWALL_VERBOSE #options IPFIREWALL_VERBOSE_LIMIT=10 options IPFIREWALL_FORWARD # Adding kernel NAT options IPFIREWALL_NAT options LIBALIAS # Traffic shaping options DUMMYNET # Divert, i.e. for userspace NAT options IPDIVERT # This is for OpenBSD's pf firewall device pf device pflog # pf's QoS - ALTQ options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Required for SMP build # Pretty console # Manual can be found here http://forums.freebsd.org/showthread.php?t=6134 #options VESA #options SC_PIXEL_MODE # Disable reboot on Ctrl Alt Del #options SC_DISABLE_REBOOT # Change normal|kernel messages color options SC_NORM_ATTR=(FG_GREEN|BG_BLACK) options SC_KERNEL_CONS_ATTR=(FG_YELLOW|BG_BLACK) # More scroll space options SC_HISTORY_SIZE=8192 # Adding hardware crypto device device crypto device cryptodev # Useful network interfaces device vlan device tap #Virtual Ethernet driver device gre #IP over IP tunneling device if_bridge #Bridge interface device pfsync #synchronization interface for PF device carp #Common Address Redundancy Protocol device enc #IPsec interface device lagg #Link aggregation interface device stf #IPv4-IPv6 port # Also for my notebook, but may be used with Opteron device amdtemp # Same for Intel processors device coretemp # man 4 cpuctl device cpuctl # CPU control pseudo-device # Support for ECMP. More than one route for destination # Works even with default route so one can use it as LB for two ISP # For now code is unstable and panics (panic: rtfree 2) on route deletions. #options RADIX_MPATH # Multicast routing #options MROUTING #options PIM # Debug & DTrace options KDB # Kernel debugger related code options KDB_TRACE # Print a stack trace for a panic options KDTRACE_FRAME # amd64-only(?) options KDTRACE_HOOKS # all architectures - enable general DTrace hooks #options DDB #options DDB_CTF # all architectures - kernel ELF linker loads CTF data # Adaptive spining in lockmgr (8.x+) # See http://www.mail-archive.com/[email protected]/msg10782.html options ADAPTIVE_LOCKMGRS # UTF-8 in console (8.x+) #options TEKEN_UTF8 # FreeBSD 8.1+ # Deadlock resolver thread # For additional information see http://www.mail-archive.com/[email protected]/msg18124.html # (FYI: "resolution" is panic so use with caution) #options DEADLKRES # Increase maximum size of Raw I/O and sendfile(2) readahead #options MAXPHYS=(1024*1024) #options MAXBSIZE=(1024*1024) # For scheduler debug enable following option. # Debug will be available via `kern.sched.stats` sysctl # For more information see http://svnweb.freebsd.org/base/head/sys/conf/NOTES?view=markup #options SCHED_STATS If you are tuning network for maximum performance you may wish to play with ifconfig options like: # You can list all capabilities via `ifconfig -m` ifconfig [-]rxcsum [-]txcsum [-]tso [-]lro mtu In case you've enabled DDB in kernel config, you should edit your /etc/ddb.conf and add something like this to enable automatic reboot (and textdump as bonus): script kdb.enter.panic=textdump set; capture on; show pcpu; bt; ps; alltrace; capture off; call doadump; reset script kdb.enter.default=textdump set; capture on; bt; ps; capture off; call doadump; reset And do not forget to add ddb_enable="YES" to /etc/rc.conf Since FreeBSD 9 you can select to enable/disable flowcontrol on your NIC: # See http://en.wikipedia.org/wiki/Ethernet_flow_control and # http://www.mail-archive.com/[email protected]/msg07927.html for additional info ifconfig bge0 media auto mediaopt flowcontrol PS. Also most of FreeBSD's limits can be monitored by # vmstat -z and # limits PPS. variety of network counters can be monitored via # netstat -s In FreeBSD-9 netstat's -Q option appeared, try following command to display netisr stats # netstat -Q PPPS. also see # man 7 tuning PPPPS. I wanted to thank FreeBSD community, especially author of nginx - Igor Sysoev, nginx-ru@ and FreeBSD-performance@ mailing lists for providing useful information about FreeBSD tuning. FreeBSD WIP * Whats cooking for FreeBSD 7? * Whats cooking for FreeBSD 8? * Whats cooking for FreeBSD 9? So here is the question: What tunings are you using on yours FreeBSD servers? You can also post your /etc/sysctl.conf, /boot/loader.conf, kernel options, etc with description of its' meaning (do not copy-paste from sysctl -d). Don't forget to specify server type (web, smb, gateway, etc) Let's share experience!

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • What is the Oracle Utilities Application Framework?

    - by Anthony Shorten
    The Oracle Utilities Application Framework is a reusable, scalable and flexible java based framework which allows other products to be built, configured and implemented in a standard way. Note: Even though the Framework is built in java it can be integrated with COBOL based extensions for backward compatibility. When Oracle Utilities Customer Care & Billing was migrated from V1 to V2, it was decided that the technical aspects of that product be separated to allow for reuse and independence from technical issues. The idea was that all the technical aspects would be concentrated in this separate product (i.e. a framework) and allow all products using the framework to concentrate on delivering superior functionality. The product was named the Oracle Utilities Application Framework (oufw is the product code). The technical components are contained in the Oracle Utilities Application Framework which can be summarized as follows: Metadata - The Oracle Utilities Application Framework is responsible for defining and using the metadata to define the runtime behavior of the product. All the metadata definition and management is contained within the Oracle Utilities Application Framework. UI Management - The Oracle Utilities Application Framework is responsible for defining and rendering the pages and responsible for ensuring the pages are in the appropriate format for the locale. Integration - The Oracle Utilities Application Framework is responsible for providing the integration points to the architecture. Refer to the Oracle Utilities Application Framework Integration Overview for more details Tools - The Oracle Utilities Application Framework provides a common set of facilities and tools that can be used across all products. Technology - The Oracle Utilities Application Framework is responsible for all technology standards compliance, platform support and integration. There are a number of products from the Tax and Utilities Global Business Unit as well as from the Financial Services Global Business Unit that are built upon the Oracle Utilities Application Framework. These products require the Oracle Utilities Application Framework to be installed first and then the product itself installed onto the framework to complete the installation process. There are a number of key benefits that the Oracle Utilities Application Framework provides to these products: Common facilities - The Oracle Utilities Application Framework provides a standard set of technical facilities that mean that products can concentrate in the unique aspects of their markets rather than making technical decisions. Common methods of configuration - The Oracle Utilities Application Framework standardizes the technical configuration process for a product. Customers can effectively reuse the configuration process across products. Multi-lingual and Multi-platform - The Oracle Utilities Application Framework allows the products to be offered in more markets and across multiple platforms for maximized flexibility. Common methods of implementation - The Oracle Utilities Application Framework standardizes the technical aspects of a product implementation. Customers can effectively reuse the technical implementation process across products. Quicker adoption of new technologies - As new technologies and standards are identified as being important for the product line, they can be integrated centrally benefiting multiple products. Cross product reuse - As enhancements to the Oracle Utilities Application Framework are identified by a particular product, all products can potentially benefit from the enhancement. Note: Use of the Oracle Utilities Application Framework does not preclude the introduction of product specific technologies or facilities to satisfy market needs. The framework minimizes the need and assists in the quick integration of a new product specific piece of technology (if necessary). The Framework is not available as a product itself and is bundled with Tax and Utilities Global Business Unit prodicts. At the present time the following products are on the Framework: Oracle Utilities Customer Care And Billing (V2 and above) Oracle Enterprise Taxation Management (V2 and above) Oracle Utilities Business Intelligence (V2 and above) Oracle Utilities Mobile Workforice Management (V2 and above)

    Read the article

  • Web Services for Info Explorer Zones

    - by Anthony Shorten
    One of the most interesting uses for XAI and Configurable objects is the exposure of a query portal as a Web Service. Let me illustrate this with an example. Say you have an interface that requires a list of data from a number of product tables. In the past you would have to build a java program to do this with SQL then use an application service but it is now possible with just configuration. The first step in the process is to create the SQL you want to use for the interface. It can be any valid static SQL or use host variables for the WHERE clause (we call that filtered). Once you are happy with the SQL (and it performs acceptably) you can incorporate that SQL into a Info-Explorer Zone. You can use any of the explorer zone types but I typically recommend F1-DE-SINGLE as it supports a single SQL statement with multiple filters (up to 15) as well as hidden filters (up to 5). Hidden filters are typically not displayed in the UI for criteria (remember explorer zones can be used on the user Interface as well) but for web services they can be used as normal filters (this means you can use up to 20 filters all up). Once you are happy with the zone, you now need to define it as a Business Service. We have a generic service called FWLZDEXP which allows a explorer zone to be defined as a Business Service. If you open any Business Service based upon FWLZDEXP you will see some examples. The schema is standard and pretty self explanatory in terms of the structure. The schema pattern looks like this: Zone element - maps to the ZONE_CD element and the default value is the zone name you just created. This links the business service to the zone. Filter elements - You name the filters as you like but the mapField is set to Fx_VALUE where x is the filter number corresponding to the filter element in the zone definition. Hidden filter elements - You name the filters as you like but the mapField is set to Hx_VALUE where x is the filter number corresponding to the hidden filter element in the zone definition. results group - this holds the elements of the result set. Each element in your result set has a tagname and is linked to the COL_VALUE mapField and the row element is lists the SEQNO of the column. This corresponds to the column number in the results set in the zone. An example schema is shown below for the F1-USGRACML zone, which returns the access modes for a user group and application service filters. In the example, the userGroup and applicationService elements are the filters and the rows would contain a list of accessModeDescr. This is just a simple example to illustrate the point. There are lots of examples in the product that you can investigate. One recommendation, to save time, is that you copy the schema from one of the examples to save you typing it from scratch. You can simply modify the tags and other elements to suit your needs. Once the Business Service is defined it can simply be defined as a Web Service by registering an XAI Inbound Service using the Business Service definition as a basis. You now have a Web Service based upon a Info Explorer Zone. This is one of my favorite components as it allows interfaces to be simplified. This will be my last blog entry for this year. I hope you all have a great and safe Christmas and an even greater new year. Next year promises to be an exciting year and I look forward to communicating exciting developments we are working on at the moment as they are released.

    Read the article

  • Best WordPress Shopping Cart & Ecommerce Plugins

    - by Edward
    A versatile WordPress Shopping Cart plugin can help you create a feature-rich online store on your WordPress-powered website or blog. Some are so advanced that you can get your store up and running in minutes. Some plugins allow you to take ecommerce to a next level with their high end customization tools. Here is a list of best WP shopping cart plugins available: Cart66 One of the best WordPress plugin with lots of features, great quality and ease of use. It accepts few more payment getways such as PayPal Website Payments Standard, PayPal Website Payments Professional, PayPal Express Checkout, eProcessing Network etc. It has flexible design options, recurring payments for subscriptions, memberships, and payment plans, Easy PCI Compliance – Safe and Secure. It is fast and efficient, one can sell digital and physical products and support is good. Price: Standard $49 & Professional $99 Details Download StorePress StorePress is a WordPress theme, which is fully coded. It comes with scripts that can change a WordPress blog into a veritable e-commerce virtual store. With this great premium WordPress theme, one can start affiliate stores, or promote affiliate products. Price: Single $59.99 & Developer License $119.99 Details Download WordPress eStore Plugin This shopping cart plugin comes with easy checkout, ease of design and use, automatic instant digital product delivery, Next Gen gallery integration, autoresponder integration etc. It is a lightweight shopping cart and allows multi site license. This plugin offers an amazingly comprehensive toolkit that will ensure your online shop is almost just plug-and-play. Price: $49.99 Details Download Shoppers Press Shoppers press is a premium cart for Word Press that comes with 20+ to choose from and 20+ built in payment gateways. It features one-click setups, personalized user accounts, easy management tools, detailed sales tracking, promotional options, a variety of product import tools, and many more features Price:$79 Details Download WordPress Shopping Cart plugin The WordPress Shopping Cart plugin by Tribulant quickly and seamlessly integrates an online shop with a fully functional shopping cart interface into any WordPress website. It has easy to use interface, which enables set up of multiple products and categorize and organizing them into multiple product categories. It also has many more attractive features. Price: $49.99 Details Download WP e-commerce WP e-commerce is a free full-featured shopping cart plugin for WordPress. It is a full featured shopping cart and boasts of easy checkout. It offers a wide range of features including SSL compatibility, customization and merchandising, integrated payment processing solutions including manual payment, Google Checkout and PayPal Payments, and email marketing. It is wordpress and social networking integrated. It is customizable by use of PHP template tag, wordpress shortcode and widgets. Details Download YAK for WordPress YAK is an open source shopping cart plugin for WordPress. It associates products with weblog entries (in other words, posts), so the post ID also becomes the product code. It supports both pages and posts as products, handles different types of product through categories. YAK supports downloadable products, so any e-books, plugins, or zip files you’re marketing can be easily purchased and dowloaded. Details Download Market Press It is another shopping cart full of many features. It offers following features such as assign categories and tags to products to make them easy to find, stock tracking with alerts, order management/alerts, fully customizable email messages, full support for most major currencies, fully customizable store urls/slugs, customers can checkout without being a site user etc. Expensive, but good option for those who can afford it. Price: $17.42/month Details Download Shopp It is an excellent shopping cart plugin for Word Press. This plugin is extremely easy to install and use. It has a cleaner interface. The customer support is good. Use can easily customize the look of the cart by using its amazing features. Price: $55 Details Download Related posts:8 PHP Shopping Cart Software for Reliable Ecommerce Solution Shopping Cart SEO 8 Free Open Source Shopping Carts

    Read the article

  • ODI 11g – Insight to the SDK

    - by David Allan
    This post is a useful index into the ODI SDK that cross references the type names from the user interface with the SDK class and also the finder for how to get a handle on the object or objects. The volume of content in the SDK might seem a little ominous, there is a lot there, but there is a general pattern to the SDK that I will describe here. Also I will illustrate some basic CRUD operations so you can see how the SDK usage pattern works. The examples are written in groovy, you can simply run from the groovy console in ODI 11.1.1.6. Entry to the Platform   Object Finder SDK odiInstance odiInstance (groovy variable for console) OdiInstance Topology Objects Object Finder SDK Technology IOdiTechnologyFinder OdiTechnology Context IOdiContextFinder OdiContext Logical Schema IOdiLogicalSchemaFinder OdiLogicalSchema Data Server IOdiDataServerFinder OdiDataServer Physical Schema IOdiPhysicalSchemaFinder OdiPhysicalSchema Logical Schema to Physical Mapping IOdiContextualSchemaMappingFinder OdiContextualSchemaMapping Logical Agent IOdiLogicalAgentFinder OdiLogicalAgent Physical Agent IOdiPhysicalAgentFinder OdiPhysicalAgent Logical Agent to Physical Mapping IOdiContextualAgentMappingFinder OdiContextualAgentMapping Master Repository IOdiMasterRepositoryInfoFinder OdiMasterRepositoryInfo Work Repository IOdiWorkRepositoryInfoFinder OdiWorkRepositoryInfo Project Objects Object Finder SDK Project IOdiProjectFinder OdiProject Folder IOdiFolderFinder OdiFolder Interface IOdiInterfaceFinder OdiInterface Package IOdiPackageFinder OdiPackage Procedure IOdiUserProcedureFinder OdiUserProcedure User Function IOdiUserFunctionFinder OdiUserFunction Variable IOdiVariableFinder OdiVariable Sequence IOdiSequenceFinder OdiSequence KM IOdiKMFinder OdiKM Load Plans and Scenarios   Object Finder SDK Load Plan IOdiLoadPlanFinder OdiLoadPlan Load Plan and Scenario Folder IOdiScenarioFolderFinder OdiScenarioFolder Model Objects Object Finder SDK Model IOdiModelFinder OdiModel Sub Model IOdiSubModel OdiSubModel DataStore IOdiDataStoreFinder OdiDataStore Column IOdiColumnFinder OdiColumn Key IOdiKeyFinder OdiKey Condition IOdiConditionFinder OdiCondition Operator Objects   Object Finder SDK Session Folder IOdiSessionFolderFinder OdiSessionFolder Session IOdiSessionFinder OdiSession Schedule OdiSchedule How to Create an Object? Here is a simple example to create a project, it uses IOdiEntityManager.persist to persist the object. import oracle.odi.domain.project.OdiProject; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) project = new OdiProject("Project For Demo", "PROJECT_DEMO") odiInstance.getTransactionalEntityManager().persist(project) tm.commit(txnStatus) How to Update an Object? This update example uses the methods on the OdiProject object to change the project’s name that was created above, it is then persisted. import oracle.odi.domain.project.OdiProject; import oracle.odi.domain.project.finder.IOdiProjectFinder; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) prjFinder = (IOdiProjectFinder)odiInstance.getTransactionalEntityManager().getFinder(OdiProject.class); project = prjFinder.findByCode("PROJECT_DEMO"); project.setName("A Demo Project"); odiInstance.getTransactionalEntityManager().persist(project) tm.commit(txnStatus) How to Delete an Object? Here is a simple example to delete all of the sessions, it uses IOdiEntityManager.remove to delete the object. import oracle.odi.domain.runtime.session.finder.IOdiSessionFinder; import oracle.odi.domain.runtime.session.OdiSession; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) sessFinder = (IOdiSessionFinder)odiInstance.getTransactionalEntityManager().getFinder(OdiSession.class); sessc = sessFinder.findAll(); sessItr = sessc.iterator() while (sessItr.hasNext()) {   sess = (OdiSession) sessItr.next()   odiInstance.getTransactionalEntityManager().remove(sess) } tm.commit(txnStatus) This isn't an all encompassing summary of the SDK, but covers a lot of the content to give you a good handle on the objects and how they work. For details of how specific complex objects are created via the SDK, its best to look at postings such as the interface builder posting here. Have fun, happy coding!

    Read the article

< Previous Page | 180 181 182 183 184 185 186 187 188 189 190 191  | Next Page >