Search Results

Search found 41511 results on 1661 pages for 'via point'.

Page 184/1661 | < Previous Page | 180 181 182 183 184 185 186 187 188 189 190 191  | Next Page >

  • How to attach a line to a moving object?

    - by snow-spur
    Hello i have designed a maze and i want to draw a path between the cells as the 'person' moves from one cell to the next. So each time i move the cell a line is drawn I have done this so far but do not want to show my full code However i get an error saying Circle has no attribute center my circle which is my cell center = Point(15, 15) c = Circle(center, 12) c.setFill('blue') c.setOutline('yellow') c.draw(win) p1 = Point(c.center().getx(), c.center().gety()) this bit is in my loop p2 = Point(getx(), gety()) line = graphics.Line(p1, p2)

    Read the article

  • What is wrong with my version of strchr?

    - by Eduard Saakashvili
    My assignment is to write my own version of strchr, yet it doesn't seem to work. Any advice would be much appreciated. Here it is: char *strchr (const char *s, int c) //we are looking for c on the string s { int dog; //This is the index on the string, initialized as 0 dog = 0; int point; //this is the pointer to the location given by the index point = &s[dog]; while ((s[dog] != c) && (s[dog] != '\0')) { //it keeps adding to dog until it stumbles upon either c or '\0' dog++; } if (s[dog]==c) { return point; //at this point, if this value is equal to c it returns the pointer to that location } else { return NULL; //if not, this means that c is not on the string } }

    Read the article

  • Find the end/finish coordinates you a UISwipeGestureRecognizer

    - by Code
    I can find the start coordinates of where a swipe starts by doing the following - (void)oneFingerSwipeUp:(UISwipeGestureRecognizer *)recognizer { CGPoint point = [recognizer locationInView:[self view]]; NSLog(@"Swipe up - start location: %f,%f", point.x, point.y); } Is it possible to find the coordinates where the swipe ended? I looked into the docs and its not mentioned. Is there some work around for this? Many Thanks, -Code

    Read the article

  • Calculating percent "x/y * 100" always results in 0?

    - by Patrick Beninga
    In my assignment i have to make a simple version of Craps, for some reason the percentage assignments always produce 0 even when both variables are non 0, here is the code. import java.util.Random; Header, note the variables public class Craps { private int die1, die2,myRoll ,myBet,point,myWins,myLosses; private double winPercent,lossPercent; private Random r = new Random(); Just rolls two dies and produces their some. public int roll(){ die1 = r.nextInt(6)+1; die2 = r.nextInt(6)+1; return(die1 + die2); } The Play method, this just loops through the game. public void play(){ myRoll = roll(); point = 0; if(myRoll == 2 ||myRoll == 3 || myRoll == 12){ System.out.println("You lose!"); myLosses++; }else if(myRoll == 7 || myRoll == 11){ System.out.println("You win!"); myWins++; }else{ point = myRoll; do { myRoll = roll(); }while(myRoll != 7 && myRoll != point); if(myRoll == point){ System.out.println("You win!"); myWins++; }else{ System.out.println("You lose!"); myLosses++; } } } This is where the bug is, this is the tester method. public void tester(int howMany){ int i = 0; while(i < howMany){ play(); i++; } bug is right here in these assignments statements winPercent = myWins/i * 100; lossPercent = myLosses/i* 100; System.out.println("program ran "+i+" times "+winPercent+"% wins "+ lossPercent+"% losses with "+myWins+" wins and "+myLosses+" losses"); } }

    Read the article

  • How can I programmatically change my windows domain password?

    - by Deestan
    In other words, how to change my password without going through the "CTRL-ALT-DEL - Change Password" interface. By programmatically I mean via a command-line tool, C# via a .NET library, COM-invocation via Python, ... whatever doesn't involve any manual steps, really. The "NET USER" command is ineligible, as it requires me to run with domain administrator privileges.

    Read the article

  • Most efficient way to move a few SQL Server tables to SQLite?

    - by wom
    I have a fairly large SQL Server database; I'd like to pull 4 tables out and dump them directly into an sqlite.db for remote querying (via nightly batch). I was about to write a script to step through(most likely on a unix host kicked off via cron); but there should be a simpler method to export the tables directly (SQLite not an option in the included DTS Import/Export wizard) What would the most efficient method of dumping the SQL Server tables to SQLite via batch be?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • sendmail can not relay from itself

    - by Bernie
    I am running 3 centos 5.2 servers and I have configured the server for forward all messages to root to be emailed to me via .forward rule. This is working fine on two of the servers but not on the third. I have also tried copying the mail config files from the backup server and placing them on the file server and restarting sendmail. I also removed and reinstalled sendmail via yum but the results are the same. I am not sure what the issue could be they are all standard centos installs. Here is an example from the backup server which is working and the fileserver which isn't I am also going to include the mail log. good from backup server [root@backup ]# sendmail -v [email protected] < test.mail [email protected]... Connecting to [127.0.0.1] via relay... 220 backup.localhost ESMTP Sendmail 8.13.8/8.13.8; Fri, 16 Oct 2009 10:23:50 -0700 >>> EHLO backup.localhost 250-backup.localhost Hello backup.localhost [127.0.0.1], pleased to meet you 250-ENHANCEDSTATUSCODES 250-PIPELINING 250-8BITMIME 250-SIZE 250-DSN 250-ETRN 250-DELIVERBY 250 HELP >>> MAIL From:<[email protected]> SIZE=73 250 2.1.0 <[email protected]>... Sender ok >>> RCPT To:<[email protected]> >>> DATA 250 2.1.5 <[email protected]>... Recipient ok 354 Enter mail, end with "." on a line by itself >>> . 250 2.0.0 n9GHNoGC020924 Message accepted for delivery [email protected]... Sent (n9GHNoGC020924 Message accepted for delivery) Closing connection to [127.0.0.1] >>> QUIT 221 2.0.0 backup.localhost closing connection bad from file server [root@fileserver bernie]# sendmail -v [email protected] < test.mail [email protected]... Connecting to [127.0.0.1] via relay... 220 fileserver.localhost ESMTP Sendmail 8.13.8/8.13.8; Fri, 16 Oct 2009 10:23:26 -0700 >>> EHLO fileserver.localhost 250-fileserver.localhost Hello fileserver.localhost [127.0.0.1], pleased to meet you 250 ENHANCEDSTATUSCODES >>> MAIL From:<[email protected]> 550 5.0.0 Access denied root... Using cached ESMTP connection to [127.0.0.1] via relay... >>> RSET 250 2.0.0 Reset state >>> MAIL From:<> 550 5.0.0 Access denied postmaster... Using cached ESMTP connection to [127.0.0.1] via relay... >>> RSET 250 2.0.0 Reset state >>> MAIL From:<> 550 5.0.0 Access denied Closing connection to [127.0.0.1] >>> QUIT 221 2.0.0 fileserver.localhost closing connection mail log Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDom028059: from=root, size=72, class=0, nrcpts=1, msgid=<[email protected]>, relay=root@localhost Oct 16 10:39:13 fileserver sendmail[28060]: n9GHdDwl028060: tcpwrappers (fileserver.localhost, 127.0.0.1) rejection Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDom028059: [email protected], ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=30072, relay=[127.0.0.1] [127.0.0.1], dsn=5.0.0, stat=Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDom028059: n9GHdDon028059: DSN: Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: to=root, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=31096, relay=[127.0.0.1], dsn=5.0.0, stat=Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: n9GHdDoo028059: return to sender: Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDoo028059: to=postmaster, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=32120, relay=[127.0.0.1], dsn=5.0.0, stat=Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: Losing ./qfn9GHdDon028059: savemail panic Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: SYSERR(root): savemail: cannot save rejected email anywhere

    Read the article

  • DCOM Authentication Fails to use Kerberos, Falls back to NTLM

    - by Asa Yeamans
    I have a webservice that is written in Classic ASP. In this web service it attempts to create a VirtualServer.Application object on another server via DCOM. This fails with Permission Denied. However I have another component instantiated in this same webservice on the same remote server, that is created without problems. This component is a custom-in house component. The webservice is called from a standalone EXE program that calls it via WinHTTP. It has been verified that WinHTTP is authenticating with Kerberos to the webservice successfully. The user authenticated to the webservice is the Administrator user. The EXE to webservice authentication step is successful and with kerberos. I have verified the DCOM permissions on the remote computer with DCOMCNFG. The default limits allow administrators both local and remote activation, both local and remote access, and both local and remote launch. The default component permissions allow the same. This has been verified. The individual component permissions for the working component are set to defaults. The individual component permissions for the VirtualServer.Application component are also set to defaults. Based upon these settings, the webservice should be able to instantiate and access the components on the remote computer. Setting up a Wireshark trace while running both tests, one with the working component and one with the VirtualServer.Application component reveals an intresting behavior. When the webservice is instantiating the working, custom, component, I can see the request on the wire to the RPCSS endpoint mapper first perform the TCP connect sequence. Then I see it perform the bind request with the appropriate security package, in this case kerberos. After it obtains the endpoint for the working DCOM component, it connects to the DCOM endpoint authenticating again via Kerberos, and it successfully is able to instantiate and communicate. On the failing VirtualServer.Application component, I again see the bind request with kerberos go to the RPCC endpoing mapper successfully. However, when it then attempts to connect to the endpoint in the Virtual Server process, it fails to connect because it only attempts to authenticate with NTLM, which ultimately fails, because the webservice does not have access to the credentials to perform the NTLM hash. Why is it attempting to authenticate via NTLM? Additional Information: Both components run on the same server via DCOM Both components run as Local System on the server Both components are Win32 Service components Both components have the exact same launch/access/activation DCOM permissions Both Win32 Services are set to run as Local System The permission denied is not a permissions issue as far as I can tell, it is an authentication issue. Permission is denied because NTLM authentication is used with a NULL username instead of Kerberos Delegation Constrained delegation is setup on the server hosting the webservice. The server hosting the webservice is allowed to delegate to rpcss/dcom-server-name The server hosting the webservice is allowed to delegate to vssvc/dcom-server-name The dcom server is allowed to delegate to rpcss/webservice-server The SPN's registered on the dcom server include rpcss/dcom-server-name and vssvc/dcom-server-name as well as the HOST/dcom-server-name related SPNs The SPN's registered on the webservice-server include rpcss/webservice-server and the HOST/webservice-server related SPNs Anybody have any Ideas why the attempt to create a VirtualServer.Application object on a remote server is falling back to NTLM authentication causing it to fail and get permission denied? Additional information: When the following code is run in the context of the webservice, directly via a testing-only, just-developed COM component, it fails on the specified line with Access Denied. COSERVERINFO csi; csi.dwReserved1=0; csi.pwszName=L"terahnee.rivin.net"; csi.pAuthInfo=NULL; csi.dwReserved2=NULL; hr=CoGetClassObject(CLSID_VirtualServer, CLSCTX_ALL, &csi, IID_IClassFactory, (void **) &pClsFact); if(FAILED( hr )) goto error1; // Fails here with HRESULT_FROM_WIN32(ERROR_ACCESS_DENIED) hr=pClsFact->CreateInstance(NULL, IID_IUnknown, (void **) &pUnk); if(FAILED( hr )) goto error2; Ive also noticed that in the Wireshark Traces, i see the attempt to connect to the service process component only requests NTLMSSP authentication, it doesnt even attmept to use kerberos. This suggests that for some reason the webservice thinks it cant use kerberos...

    Read the article

  • Setup Reverse DNS with Cpanel and WHM?

    - by m3d
    I needed to set-up a reverse DNS via cpanel. I followed the steps in this tutorial but it didn't work: http://docs.cpanel.net/twiki/bin/view/11_30/WHMDocs/RdnsForBind. I use my own name servers registered with go-daddy. But I am with VPS hosting company. I did use a new serial number and exactly as the tutorial however didnt seems to be working When I check this via windows nslookup {ip-address} I still get the my hosting company name, when reversed.

    Read the article

  • How to connect a WordPress contact form to another database which uses a form script on a static site?

    - by eirlymeyer
    Static Site B has two separate contact form scripts. One script processes leads via a script developed using Cold Fusion. Another script processes leads via a script using MySql Database. New Site A is being developed using WordPress. How do I use a WordPress Contact Form plug-in to integrate these two scripts (built on ColdFusion, and uses the existing MySQL database) to ensure the same functionality and processing of leads.

    Read the article

  • Did the Community Lose It’s Focus, or Did I?

    - by Jonathan Kehayias
    Late Thursday night, ok it was actually very early Friday morning, I wrote a blog post that stirred a bit of a controversy in the community.  While the outcome of the discussion that was sparked by that post in the community has been good, it is definitely a case where the end isn’t justified by the means.   Hindsight is always 20/20, and while I stand by the point I was trying to make with that post, there are a number of ways I could have gone about making that point without risking...(read more)

    Read the article

  • SQLAuthority News – SQL SERVER 2008 R2 Pricing

    - by pinaldave
    I was recently asked question about SQL Server 2008 pricing. I have bookmarked official site here which lists the pricing. Official site: What’s New in SQL Server 2008 R2 Editions Editions Per Processor PricingRetail Per Server Plus CAL PricingRetail Parallel Data Warehouse $57,498 Not offered via Server CAL Datacenter $57,498 Not offered via Server CAL Enterprise $28,749 $13,969 with 25 CALs Standard $7,499 $1,849 with 5 CALs However, I have [...]

    Read the article

  • SQLAuthority News SQL SERVER 2008 R2 Pricing

    I was recently asked question about SQL Server 2008 pricing. I have bookmarked official site here which lists the pricing.Official site: What’s New in SQL Server 2008 R2 EditionsEditionsPer Processor PricingRetailPer Server Plus CAL PricingRetailParallel Data Warehouse$57,498Not offered via Server CALDatacenter $57,498Not offered via Server CALEnterprise$28,749$13,969 with 25 CALsStandard $7,499$1,849 with 5 CALsHowever, I have [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Windows Azure VMs - New "Stopped" VM Options Provide Cost-effective Flexibility for On-Demand Workloads

    - by KeithMayer
    Originally posted on: http://geekswithblogs.net/KeithMayer/archive/2013/06/22/windows-azure-vms---new-stopped-vm-options-provide-cost-effective.aspxDidn’t make it to TechEd this year? Don’t worry!  This month, we’ll be releasing a new article series that highlights the Best of TechEd announcements and technical information for IT Pros.  Today’s article focuses on a new, much-heralded enhancement to Windows Azure Infrastructure Services to make it more cost-effective for spinning VMs up and down on-demand on the Windows Azure cloud platform. NEW! VMs that are shutdown from the Windows Azure Management Portal will no longer continue to accumulate compute charges while stopped! Previous to this enhancement being available, the Azure platform maintained fabric resource reservations for VMs, even in a shutdown state, to ensure consistent resource availability when starting those VMs in the future.  And, this meant that VMs had to be exported and completely deprovisioned when not in use to avoid compute charges. In this article, I'll provide more details on the scenarios that this enhancement best fits, and I'll also review the new options and considerations that we now have for performing safe shutdowns of Windows Azure VMs. Which scenarios does the new enhancement best fit? Being able to easily shutdown VMs from the Windows Azure Management Portal without continued compute charges is a great enhancement for certain cloud use cases, such as: On-demand dev/test/lab environments - Freely start and stop lab VMs so that they are only accumulating compute charges when being actively used.  "Bursting" load-balanced web applications - Provision a number of load-balanced VMs, but keep the minimum number of VMs running to support "normal" loads. Easily start-up the remaining VMs only when needed to support peak loads. Disaster Recovery - Start-up "cold" VMs when needed to recover from disaster scenarios. BUT ... there is a consideration to keep in mind when using the Windows Azure Management Portal to shutdown VMs: although performing a VM shutdown via the Windows Azure Management Portal causes that VM to no longer accumulate compute charges, it also deallocates the VM from fabric resources to which it was previously assigned.  These fabric resources include compute resources such as virtual CPU cores and memory, as well as network resources, such as IP addresses.  This means that when the VM is later started after being shutdown from the portal, the VM could be assigned a different IP address or placed on a different compute node within the fabric. In some cases, you may want to shutdown VMs using the old approach, where fabric resource assignments are maintained while the VM is in a shutdown state.  Specifically, you may wish to do this when temporarily shutting down or restarting a "7x24" VM as part of a maintenance activity.  Good news - you can still revert back to the old VM shutdown behavior when necessary by using the alternate VM shutdown approaches listed below.  Let's walk through each approach for performing a VM Shutdown action on Windows Azure so that we can understand the benefits and considerations of each... How many ways can I shutdown a VM? In Windows Azure Infrastructure Services, there's three general ways that can be used to safely shutdown VMs: Shutdown VM via Windows Azure Management Portal Shutdown Guest Operating System inside the VM Stop VM via Windows PowerShell using Windows Azure PowerShell Module Although each of these options performs a safe shutdown of the guest operation system and the VM itself, each option handles the VM shutdown end state differently. Shutdown VM via Windows Azure Management Portal When clicking the Shutdown button at the bottom of the Virtual Machines page in the Windows Azure Management Portal, the VM is safely shutdown and "deallocated" from fabric resources.  Shutdown button on Virtual Machines page in Windows Azure Management Portal  When the shutdown process completes, the VM will be shown on the Virtual Machines page with a "Stopped ( Deallocated )" status as shown in the figure below. Virtual Machine in a "Stopped (Deallocated)" Status "Deallocated" means that the VM configuration is no longer being actively associated with fabric resources, such as virtual CPUs, memory and networks. In this state, the VM will not continue to allocate compute charges, but since fabric resources are deallocated, the VM could receive a different internal IP address ( called "Dynamic IPs" or "DIPs" in Windows Azure ) the next time it is started.  TIP: If you are leveraging this shutdown option and consistency of DIPs is important to applications running inside your VMs, you should consider using virtual networks with your VMs.  Virtual networks permit you to assign a specific IP Address Space for use with VMs that are assigned to that virtual network.  As long as you start VMs in the same order in which they were originally provisioned, each VM should be reassigned the same DIP that it was previously using. What about consistency of External IP Addresses? Great question! External IP addresses ( called "Virtual IPs" or "VIPs" in Windows Azure ) are associated with the cloud service in which one or more Windows Azure VMs are running.  As long as at least 1 VM inside a cloud service remains in a "Running" state, the VIP assigned to a cloud service will be preserved.  If all VMs inside a cloud service are in a "Stopped ( Deallocated )" status, then the cloud service may receive a different VIP when VMs are next restarted. TIP: If consistency of VIPs is important for the cloud services in which you are running VMs, consider keeping one VM inside each cloud service in the alternate VM shutdown state listed below to preserve the VIP associated with the cloud service. Shutdown Guest Operating System inside the VM When performing a Guest OS shutdown or restart ( ie., a shutdown or restart operation initiated from the Guest OS running inside the VM ), the VM configuration will not be deallocated from fabric resources. In the figure below, the VM has been shutdown from within the Guest OS and is shown with a "Stopped" VM status rather than the "Stopped ( Deallocated )" VM status that was shown in the previous figure. Note that it may require a few minutes for the Windows Azure Management Portal to reflect that the VM is in a "Stopped" state in this scenario, because we are performing an OS shutdown inside the VM rather than through an Azure management endpoint. Virtual Machine in a "Stopped" Status VMs shown in a "Stopped" status will continue to accumulate compute charges, because fabric resources are still being reserved for these VMs.  However, this also means that DIPs and VIPs are preserved for VMs in this state, so you don't have to worry about VMs and cloud services getting different IP addresses when they are started in the future. Stop VM via Windows PowerShell In the latest version of the Windows Azure PowerShell Module, a new -StayProvisioned parameter has been added to the Stop-AzureVM cmdlet. This new parameter provides the flexibility to choose the VM configuration end result when stopping VMs using PowerShell: When running the Stop-AzureVM cmdlet without the -StayProvisioned parameter specified, the VM will be safely stopped and deallocated; that is, the VM will be left in a "Stopped ( Deallocated )" status just like the end result when a VM Shutdown operation is performed via the Windows Azure Management Portal.  When running the Stop-AzureVM cmdlet with the -StayProvisioned parameter specified, the VM will be safely stopped but fabric resource reservations will be preserved; that is the VM will be left in a "Stopped" status just like the end result when performing a Guest OS shutdown operation. So, with PowerShell, you can choose how Windows Azure should handle VM configuration and fabric resource reservations when stopping VMs on a case-by-case basis. TIP: It's important to note that the -StayProvisioned parameter is only available in the latest version of the Windows Azure PowerShell Module.  So, if you've previously downloaded this module, be sure to download and install the latest version to get this new functionality. Want to Learn More about Windows Azure Infrastructure Services? To learn more about Windows Azure Infrastructure Services, be sure to check-out these additional FREE resources: Become our next "Early Expert"! Complete the Early Experts "Cloud Quest" and build a multi-VM lab network in the cloud for FREE!  Build some cool scenarios! Check out our list of over 20+ Step-by-Step Lab Guides based on key scenarios that IT Pros are implementing on Windows Azure Infrastructure Services TODAY!  Looking forward to seeing you in the Cloud! - Keith Build Your Lab! Download Windows Server 2012 Don’t Have a Lab? Build Your Lab in the Cloud with Windows Azure Virtual Machines Want to Get Certified? Join our Windows Server 2012 "Early Experts" Study Group

    Read the article

  • What's the recommended way to configure a Synaptics touchpad device?

    - by htorque
    I want to increase the scroll area by moving the so-called RightEdge a bit towards the middle. Right now I'm doing this via a one-liner that's called at session start (added via gnome-session-properties): xinput --set-prop --type=int --format=32 11 252 1781 5125 1646 4582 This works fine, but feels like a hack. What's the recommended way to edit/set touchpad device properties like this one? Few years ago I'd have put that into the xorg.conf, but this seems to be discouraged nowadays.

    Read the article

  • Laser Beam End Points Problems

    - by user36159
    I am building a game in XNA that features colored laser beams in 3D space. The beams are defined as: Segment start position Segment end position Line width For rendering, I am using 3 quads: Start point billboard End point billboard Middle section quad whose forward vector is the slope of the line and whose normal points to the camera The problem is that using additive blending, the end points and middle section overlap, which looks quite jarring. However, I need the endpoints in case the laser is pointing towards the camera! See the blue laser in particular:

    Read the article

  • Drawing an arrow cursor on user dragging in XNA/MonoGame

    - by adrin
    I am writing a touch enabled game in MonoGame (XNA-like API) and would like to display a an arrow 'cursor' as user is making a drag gesture from point A to point B. I am not sure on how to correctly approach this problem. It seems that its best to just draw a sprite from A to B and scale it as required. This would however mean it gets stretched as user continues dragging gesture in one direction. Or maybe its better to dynamically render the arrow so it looks better?

    Read the article

  • CNBC Exclusive: Mark Hurd On BT Win, Oracle Growth, And Investing In The Cloud

    - by Roxana Babiciu
    CNBC Europe recently interviewed Mark Hurd on Oracle's growth strategy and cloud investments, using our BT HCM Cloud win as a jumping-off point. When the CNBC panel misstated that cloud is “a new line for Oracle,” Mark responded, "Larry has been driving at this longer than anybody, and it shows in the products and the portfolio we have today." Case in point? Our BT win. Share this wide-ranging interview with partners today.

    Read the article

  • Livre Blanc : « Les outils de recensement et d'audit open-source », Smile revient sur l'utilité d'analyser son « patrimoine logiciel »

    Livre Blanc : « Les outils de recensement et d'audit open-source » Smile revient sur l'utilité d'analyser son « patrimoine logiciel » Pour Smile, le recensement est le point de départ d'une politique open source : « il s'agit de faire l'état des lieux des logiciels open source utilisés dans l'entreprise ou entrant dans la composition d'un programme donné ». Le but est d'optimiser et d'accompagner l'analyse d'un « patrimoine de logiciel », (identifier les composants open source utilisés, les licences, etc.). Pour faire le point sur les différents outils du marché (Blackduck Software, Protecode, Palamida, OpenLogic, ou le français Antepedia) Smile vien...

    Read the article

  • BizTalk ESB Toolkit: Core Components and Examples

    - by Rajesh Charagandla
    The BizTalk ESB Toolkit 2.0 provides a stable and powerful platform for services that can change as fast as your business needs. The main purpose of an enterprise service bus (ESB) to is to provide a common mediation layer (the “bus”) through which all services connect. By doing so, not only can many of the problems of point-to-point service connectivity be resolved, but a new level of agile service delivery can be achieved. Author: Jon Flanders This Document can be download from here.

    Read the article

  • Laser Beam End Points Problems (XNA)

    - by user36159
    I am building a game in XNA that features colored laser beams in 3D space. The beams are defined as: Segment start position Segment end position Line width For rendering, I am using 3 quads: Start point billboard End point billboard Middle section quad whose forward vector is the slope of the line and whose normal points to the camera The problem is that using additive blending, the end points and middle section overlap, which looks quite jarring. However, I need the endpoints in case the laser is pointing towards the camera! See the blue laser in particular:

    Read the article

  • Decorate Your Desktop with the Rock Stars of Science [Wallpaper]

    - by Jason Fitzpatrick
    This understated desktop wallpaper showcases notable names in science with accompanying icons to represent their contribution to the field. The icons are the work of Megan Lee of Megan Lee Studios–you order prints, t-shirts, and other items with her designs on them here–and the wallpaper arrangement comes to us courtesy of Reddit user wastingtime247–check out the via link below for more arrangements. Science Rock Stars Wallpaper by Megan Lee Studios [via Reddit] How to Access Your Router If You Forget the Password Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor

    Read the article

  • shotwell 0.12 shared library error

    - by blade19899
    i installed shotwell 0.12 like so via its official ppa sudo add-apt-repository ppa:yorba/ppa sudo apt-get update sudo apt-get install shotwell and when i tried to run it via dash it didn't start. i then typed in the gnome-terminal "shotwell" I then got this error error while loading shared libraries: libgexiv2.so.0: cannot open shared object file: No such file or directory my question is how to get shotwell 0.12 up and running in ubuntu 11.10 amd64

    Read the article

< Previous Page | 180 181 182 183 184 185 186 187 188 189 190 191  | Next Page >