Search Results

Search found 4971 results on 199 pages for 'mu mind'.

Page 185/199 | < Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >

  • Windows Azure VMs - New "Stopped" VM Options Provide Cost-effective Flexibility for On-Demand Workloads

    - by KeithMayer
    Originally posted on: http://geekswithblogs.net/KeithMayer/archive/2013/06/22/windows-azure-vms---new-stopped-vm-options-provide-cost-effective.aspxDidn’t make it to TechEd this year? Don’t worry!  This month, we’ll be releasing a new article series that highlights the Best of TechEd announcements and technical information for IT Pros.  Today’s article focuses on a new, much-heralded enhancement to Windows Azure Infrastructure Services to make it more cost-effective for spinning VMs up and down on-demand on the Windows Azure cloud platform. NEW! VMs that are shutdown from the Windows Azure Management Portal will no longer continue to accumulate compute charges while stopped! Previous to this enhancement being available, the Azure platform maintained fabric resource reservations for VMs, even in a shutdown state, to ensure consistent resource availability when starting those VMs in the future.  And, this meant that VMs had to be exported and completely deprovisioned when not in use to avoid compute charges. In this article, I'll provide more details on the scenarios that this enhancement best fits, and I'll also review the new options and considerations that we now have for performing safe shutdowns of Windows Azure VMs. Which scenarios does the new enhancement best fit? Being able to easily shutdown VMs from the Windows Azure Management Portal without continued compute charges is a great enhancement for certain cloud use cases, such as: On-demand dev/test/lab environments - Freely start and stop lab VMs so that they are only accumulating compute charges when being actively used.  "Bursting" load-balanced web applications - Provision a number of load-balanced VMs, but keep the minimum number of VMs running to support "normal" loads. Easily start-up the remaining VMs only when needed to support peak loads. Disaster Recovery - Start-up "cold" VMs when needed to recover from disaster scenarios. BUT ... there is a consideration to keep in mind when using the Windows Azure Management Portal to shutdown VMs: although performing a VM shutdown via the Windows Azure Management Portal causes that VM to no longer accumulate compute charges, it also deallocates the VM from fabric resources to which it was previously assigned.  These fabric resources include compute resources such as virtual CPU cores and memory, as well as network resources, such as IP addresses.  This means that when the VM is later started after being shutdown from the portal, the VM could be assigned a different IP address or placed on a different compute node within the fabric. In some cases, you may want to shutdown VMs using the old approach, where fabric resource assignments are maintained while the VM is in a shutdown state.  Specifically, you may wish to do this when temporarily shutting down or restarting a "7x24" VM as part of a maintenance activity.  Good news - you can still revert back to the old VM shutdown behavior when necessary by using the alternate VM shutdown approaches listed below.  Let's walk through each approach for performing a VM Shutdown action on Windows Azure so that we can understand the benefits and considerations of each... How many ways can I shutdown a VM? In Windows Azure Infrastructure Services, there's three general ways that can be used to safely shutdown VMs: Shutdown VM via Windows Azure Management Portal Shutdown Guest Operating System inside the VM Stop VM via Windows PowerShell using Windows Azure PowerShell Module Although each of these options performs a safe shutdown of the guest operation system and the VM itself, each option handles the VM shutdown end state differently. Shutdown VM via Windows Azure Management Portal When clicking the Shutdown button at the bottom of the Virtual Machines page in the Windows Azure Management Portal, the VM is safely shutdown and "deallocated" from fabric resources.  Shutdown button on Virtual Machines page in Windows Azure Management Portal  When the shutdown process completes, the VM will be shown on the Virtual Machines page with a "Stopped ( Deallocated )" status as shown in the figure below. Virtual Machine in a "Stopped (Deallocated)" Status "Deallocated" means that the VM configuration is no longer being actively associated with fabric resources, such as virtual CPUs, memory and networks. In this state, the VM will not continue to allocate compute charges, but since fabric resources are deallocated, the VM could receive a different internal IP address ( called "Dynamic IPs" or "DIPs" in Windows Azure ) the next time it is started.  TIP: If you are leveraging this shutdown option and consistency of DIPs is important to applications running inside your VMs, you should consider using virtual networks with your VMs.  Virtual networks permit you to assign a specific IP Address Space for use with VMs that are assigned to that virtual network.  As long as you start VMs in the same order in which they were originally provisioned, each VM should be reassigned the same DIP that it was previously using. What about consistency of External IP Addresses? Great question! External IP addresses ( called "Virtual IPs" or "VIPs" in Windows Azure ) are associated with the cloud service in which one or more Windows Azure VMs are running.  As long as at least 1 VM inside a cloud service remains in a "Running" state, the VIP assigned to a cloud service will be preserved.  If all VMs inside a cloud service are in a "Stopped ( Deallocated )" status, then the cloud service may receive a different VIP when VMs are next restarted. TIP: If consistency of VIPs is important for the cloud services in which you are running VMs, consider keeping one VM inside each cloud service in the alternate VM shutdown state listed below to preserve the VIP associated with the cloud service. Shutdown Guest Operating System inside the VM When performing a Guest OS shutdown or restart ( ie., a shutdown or restart operation initiated from the Guest OS running inside the VM ), the VM configuration will not be deallocated from fabric resources. In the figure below, the VM has been shutdown from within the Guest OS and is shown with a "Stopped" VM status rather than the "Stopped ( Deallocated )" VM status that was shown in the previous figure. Note that it may require a few minutes for the Windows Azure Management Portal to reflect that the VM is in a "Stopped" state in this scenario, because we are performing an OS shutdown inside the VM rather than through an Azure management endpoint. Virtual Machine in a "Stopped" Status VMs shown in a "Stopped" status will continue to accumulate compute charges, because fabric resources are still being reserved for these VMs.  However, this also means that DIPs and VIPs are preserved for VMs in this state, so you don't have to worry about VMs and cloud services getting different IP addresses when they are started in the future. Stop VM via Windows PowerShell In the latest version of the Windows Azure PowerShell Module, a new -StayProvisioned parameter has been added to the Stop-AzureVM cmdlet. This new parameter provides the flexibility to choose the VM configuration end result when stopping VMs using PowerShell: When running the Stop-AzureVM cmdlet without the -StayProvisioned parameter specified, the VM will be safely stopped and deallocated; that is, the VM will be left in a "Stopped ( Deallocated )" status just like the end result when a VM Shutdown operation is performed via the Windows Azure Management Portal.  When running the Stop-AzureVM cmdlet with the -StayProvisioned parameter specified, the VM will be safely stopped but fabric resource reservations will be preserved; that is the VM will be left in a "Stopped" status just like the end result when performing a Guest OS shutdown operation. So, with PowerShell, you can choose how Windows Azure should handle VM configuration and fabric resource reservations when stopping VMs on a case-by-case basis. TIP: It's important to note that the -StayProvisioned parameter is only available in the latest version of the Windows Azure PowerShell Module.  So, if you've previously downloaded this module, be sure to download and install the latest version to get this new functionality. Want to Learn More about Windows Azure Infrastructure Services? To learn more about Windows Azure Infrastructure Services, be sure to check-out these additional FREE resources: Become our next "Early Expert"! Complete the Early Experts "Cloud Quest" and build a multi-VM lab network in the cloud for FREE!  Build some cool scenarios! Check out our list of over 20+ Step-by-Step Lab Guides based on key scenarios that IT Pros are implementing on Windows Azure Infrastructure Services TODAY!  Looking forward to seeing you in the Cloud! - Keith Build Your Lab! Download Windows Server 2012 Don’t Have a Lab? Build Your Lab in the Cloud with Windows Azure Virtual Machines Want to Get Certified? Join our Windows Server 2012 "Early Experts" Study Group

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Easier ASP.NET MVC Routing

    - by Steve Wilkes
    I've recently refactored the way Routes are declared in an ASP.NET MVC application I'm working on, and I wanted to share part of the system I came up with; a really easy way to declare and keep track of ASP.NET MVC Routes, which then allows you to find the name of the Route which has been selected for the current request. Traditional MVC Route Declaration Traditionally, ASP.NET MVC Routes are added to the application's RouteCollection using overloads of the RouteCollection.MapRoute() method; for example, this is the standard way the default Route which matches /controller/action URLs is created: routes.MapRoute(     "Default",     "{controller}/{action}/{id}",     new { controller = "Home", action = "Index", id = UrlParameter.Optional }); The first argument declares that this Route is to be named 'Default', the second specifies the Route's URL pattern, and the third contains the URL pattern segments' default values. To then write a link to a URL which matches the default Route in a View, you can use the HtmlHelper.RouteLink() method, like this: @ this.Html.RouteLink("Default", new { controller = "Orders", action = "Index" }) ...that substitutes 'Orders' into the {controller} segment of the default Route's URL pattern, and 'Index' into the {action} segment. The {Id} segment was declared optional and isn't specified here. That's about the most basic thing you can do with MVC routing, and I already have reservations: I've duplicated the magic string "Default" between the Route declaration and the use of RouteLink(). This isn't likely to cause a problem for the default Route, but once you get to dozens of Routes the duplication is a pain. There's no easy way to get from the RouteLink() method call to the declaration of the Route itself, so getting the names of the Route's URL parameters correct requires some effort. The call to MapRoute() is quite verbose; with dozens of Routes this gets pretty ugly. If at some point during a request I want to find out the name of the Route has been matched.... and I can't. To get around these issues, I wanted to achieve the following: Make declaring a Route very easy, using as little code as possible. Introduce a direct link between where a Route is declared, where the Route is defined and where the Route's name is used, so I can use Visual Studio's Go To Definition to get from a call to RouteLink() to the declaration of the Route I'm using, making it easier to make sure I use the correct URL parameters. Create a way to access the currently-selected Route's name during the execution of a request. My first step was to come up with a quick and easy syntax for declaring Routes. 1 . An Easy Route Declaration Syntax I figured the easiest way of declaring a route was to put all the information in a single string with a special syntax. For example, the default MVC route would be declared like this: "{controller:Home}/{action:Index}/{Id}*" This contains the same information as the regular way of defining a Route, but is far more compact: The default values for each URL segment are specified in a colon-separated section after the segment name The {Id} segment is declared as optional simply by placing a * after it That's the default route - a pretty simple example - so how about this? routes.MapRoute(     "CustomerOrderList",     "Orders/{customerRef}/{pageNo}",     new { controller = "Orders", action = "List", pageNo = UrlParameter.Optional },     new { customerRef = "^[a-zA-Z0-9]+$", pageNo = "^[0-9]+$" }); This maps to the List action on the Orders controller URLs which: Start with the string Orders/ Then have a {customerRef} set of characters and numbers Then optionally a numeric {pageNo}. And again, it’s quite verbose. Here's my alternative: "Orders/{customerRef:^[a-zA-Z0-9]+$}/{pageNo:^[0-9]+$}*->Orders/List" Quite a bit more brief, and again, containing the same information as the regular way of declaring Routes: Regular expression constraints are declared after the colon separator, the same as default values The target controller and action are specified after the -> The {pageNo} is defined as optional by placing a * after it With an appropriate parser that gave me a nice, compact and clear way to declare routes. Next I wanted to have a single place where Routes were declared and accessed. 2. A Central Place to Declare and Access Routes I wanted all my Routes declared in one, dedicated place, which I would also use for Route names when calling RouteLink(). With this in mind I made a single class named Routes with a series of public, constant fields, each one relating to a particular Route. With this done, I figured a good place to actually declare each Route was in an attribute on the field defining the Route’s name; the attribute would parse the Route definition string and make the resulting Route object available as a property. I then made the Routes class examine its own fields during its static setup, and cache all the attribute-created Route objects in an internal Dictionary. Finally I made Routes use that cache to register the Routes when requested, and to access them later when required. So the Routes class declares its named Routes like this: public static class Routes{     [RouteDefinition("Orders/{customerName}->Orders/Index")]     public const string OrdersCustomerIndex = "OrdersCustomerIndex";     [RouteDefinition("Orders/{customerName}/{orderId:^([0-9]+)$}->Orders/Details")]     public const string OrdersDetails = "OrdersDetails";     [RouteDefinition("{controller:Home}*/{action:Index}*")]     public const string Default = "Default"; } ...which are then used like this: @ this.Html.RouteLink(Routes.Default, new { controller = "Orders", action = "Index" }) Now that using Go To Definition on the Routes.Default constant takes me to where the Route is actually defined, it's nice and easy to quickly check on the parameter names when using RouteLink(). Finally, I wanted to be able to access the name of the current Route during a request. 3. Recovering the Route Name The RouteDefinitionAttribute creates a NamedRoute class; a simple derivative of Route, but with a Name property. When the Routes class examines its fields and caches all the defined Routes, it has access to the name of the Route through the name of the field against which it is defined. It was therefore a pretty easy matter to have Routes give NamedRoute its name when it creates its cache of Routes. This means that the Route which is found in RequestContext.RouteData.Route is now a NamedRoute, and I can recover the Route's name during a request. For visibility, I made NamedRoute.ToString() return the Route name and URL pattern, like this: The screenshot is from an example project I’ve made on bitbucket; it contains all the named route classes and an MVC 3 application which demonstrates their use. I’ve found this way of defining and using Routes much tidier than the default MVC system, and you find it useful too

    Read the article

  • CodePlex Daily Summary for Tuesday, April 06, 2010

    CodePlex Daily Summary for Tuesday, April 06, 2010New ProjectsASP.NET MVC | SCAFFOLD: Add-in para Visual Studio 2008 que adiciona um poderoso scaffold para o ASP.NET MVC, com suporte ao Entity Framework.ASP.Net Permission Manager: This is an extension of ASP.Net Permission Manager that permission to roles.Babelfish.NET: Babelfish was created as a common framework for navigating several different node-to-node structured data sources, such as HTML, CSS, Javascript, X...CollaSuite: Collaboration Suite, Chat Client ServerdnyFramework: Denny FrameWorkDocxToHtml: DocxToHtmlDomain Driven Design and ASP.NET MVC 2 sample: It's a simple application ASP.NET MVC 2 with DDD modeling approach. It's about how to build maintainable applications applying DDD, IoC and infrast...DRP Address Book: A web based address book implementation using SQL Server 2008, ASP.NET, C#, and CSLA.NETFileSystemHelper SQL Server CLR: FileSystemHelper SQL Server CLR provides a collection of CLR stored procedures and functions for interacting with the file system. Using these sto...Foothill: This is an asp.net Web AppHouseFly controls: Controls for my upcomming app: HouseFlyiTunes Artwork App: This project is related to my iTunes Artwork App blog series. The application will automate the process of collecting album art for music tracks i...Logwiz - Automate the collection of Performance monitor logs using logman.exe: This tool is used to automate the process of collecting Performance monitoring data using the logman.exe on Windows Vista/Windows 7/Windows 2008 an...MailSharp - Beyond MailMessage: An easy-to-use library for .NET developers to send HTML formatted emails using templates with merge tags and embedded images instead of pointing at...MSTests.Fluently: MSTests.Fluently makes it easier for developers and testers to read and write tests with the Visual Studio Unit-Testing Framework. The Sentence-lik...openSIS dot net - Open Source SIS written in C#, built on dotnet 3.5 framework: openSIS dotnet is the dot net version of the popular openSIS Student Information System from OS4ED. This openSIS version is written in C# and is ba...PHP.net: PHP.net is a PHP IDE written in C# for Windows. The IDE will eventually be a complete standalone PHP development enviroment, including a developmen...Recommender System for Optus Website: <Recommender System for Optus Website>This project is trying to apply some recommeder system techniques to telecom company websites. This project ...Sendkeys: This is a tool for remote controlling any Windows Application.Shamil: Shamil WorkSite Directory for SharePoint 2010 (from Microsoft Consulting Services, UK): A solution which provides 'site directory' functionality for SharePoint 2010. Refer to [file:Solution Description|Microsoft.MCSUK.SPSiteDirectory...SPD Workflow action to add user to a security group: This is a custom SPD workflow step developed to facilitate the process of adding users from a list to the security group. Keep in mind this is run...Star Trooper for XNA 2D Tutorial: Source for the Star Trooper XNA 2d Tutorial on XNA-UK (www.XNA-UK.co.uk), including the full set of code and each phase of the tutorial. Additio...TFS WitAdminUI: Team Foundation Server 2010 RC WitAdmin simple application with UIWindows Phone 7 Panorama control: The Windows Phone 7 Panorama control is a sample implementation of a Silverlight control that allows to create "Hub" applications on Windows Phone ...Yulu: Yulu helps you maintain short quotations or your thoughts with your Windows Mobile phones.New ReleasesASP .NET MVC CMS (Content Management System): Atomic CMS 2.0: Atomic CMS 2.0 was released. Please visit http://atomiccms.com/ for download documentation, last release and get more information about Atomic CMS ...ASP.Net Permission Manager: Mal.Web.Security.dll v1.0.2.0: Mal.Web.Security.dll Relealse v1.0.2.0CycleMania Starter Kit EAP - ASP.NET 4 Problem - Design - Solution: Cyclemania 0.08.48: The application now uses Windows Communication Foundation services. See Source Code tab for other recent changes.dotNetInstaller: setup bootstrapper for Windows: 1.10 (Development): Build 1.10.6588.0. Features - Added support for .exe setup components with an optional response file. - Added has_value_disabled option to user-de...Examine: RC 1: This is Examine RC1 release. It includes: Examine UmbracoExamine Lucene.Net 2.9.2Extend SmallBasic: Teaching Extensions v.010: Improved the pentagone crazy quizFileSystemHelper SQL Server CLR: FileSystemHelper CLR Project: Source code for FileSystemHelper CLR assembly.GameStore League Manager: League Manager 1.0.5-Logging: Added Logging functionality to track down bugs.iSun Shut - PC Auto Shutdown: iSun Shut 2.5: Relase Notes: -To properly view the source code please install DotNetBar 8.3 (http://www.devcomponents.com) -The Shutdown after firefox download f...LINQ to Twitter: LINQ to Twitter Beta v2.0.10: New items added since v1.1 include: Support for OAuth (via DotNetOpenAuth), secure communication via https, VB language support, serialization of ...MIC Pattern: !MIC Pattern DAL: Data Access Layer Este arquivo contem a DLL que faz acesso a dados e simplifica as operações de INSERT, UPDATE, DELETE e SELECT em bases de dados ...MVC Foolproof Validation: Alpha 0.1: Server side validation is stable. Client side validation is fairly stable aside from some border cases I hope to address soon. I’m actually using t...OpenGL ES 2.0 Compact Framework Wrapper: First binary release: CAB-installer for installing the sample application provided with the solution. Demonstrates a simple quad with rotation animation. Changes from l...patterns & practices SharePoint Guidance: SPG2010 Drop8: SharePoint Guidance Drop Notes Microsoft patterns and practices ****************************************** ***************************************...PROGRAMMABLE SOFTWARE DEVELOPMENT ENVIRONMENT: PROGRAMMABLE SOFTWARE DEVELOPMENT ENVIRONMENT - V3: The Beta Version 3 of the Programmable Software Development Environment features the random generator, longitudinal and cryptographic commands whi...RoTwee: RoTwee (9.0.0.0): New feature in this version : 17102 Tweet rotated count.SharePhone: SharePhone v.1.0.3: Added search functionality. Use clientContext.SearchProvider.Search(..) or clientContext.SearchProvider.KeywordSearch(..) A few examples here: ht...SharePoint Outlook Connector: Version 1.2.4.3: UI has been improved. Some bugs have been resolved.SPD Workflow action to add user to a security group: Version 1 custom workflow action: A custom SPD workflow step that automatically adds user to the correct security group, the user name can be driven from a list item or document li...SQL Server Metadata Toolkit 2008: SQL Server Metadata Toolkit Alpha 5: This release addresses the Issue 10567, which was a recursive view recursing more than 100 times. This was caused by the addition of SQL Parsing in...TFS WitAdminUI: WitAdminUI ver1.0: Download zip file and unzip to TFS2010 RC. And Excute WitAdminUI.exe. Because WitAdmin is made by .net v4.0 so I can't my application with MSI.TFTP Server: TFTP Server 1.0 Installer: Installer for the binary release of TFTP server v 1.0VivoSocial: VivoSocial 7.1.0: Version 7.1.0 of VivoSocial has been released. If you experienced any issues with the previous version, please update your modules to the 7.1.0 rel...WAFFLE: Windows Authentication Functional Framework (LE): 1.3 (Development): Build 1.3.9740.0. Features Added waffle-jna-auth.jar, native Java with JNA port. Misc Project upgraded to Visual Studio 2008.Most Popular ProjectsWBFS ManagerASP.NET Ajax LibraryImage Resizer Powertoy Clone for WindowsSkype Voice ChangerAll-In-One Code FrameworkWindows Live Calendar GadgetMDownloaderWindows 7 USB/DVD Download ToolDroid ExplorerEnhSimMost Active ProjectsGraffiti CMSnopCommerce. Open Source online shop e-commerce solution.Facebook Developer ToolkitRawrpatterns & practices – Enterprise LibraryjQuery Library for SharePoint Web ServicesShweet: SharePoint 2010 Team Messaging built with PexFarseer Physics EngineNcqrs Framework - The CQRS framework for .NETIonics Isapi Rewrite Filter

    Read the article

  • Generate Strongly Typed Observable Events for the Reactive Extensions for .NET (Rx)

    - by Bobby Diaz
    I must have tried reading through the various explanations and introductions to the new Reactive Extensions for .NET before the concepts finally started sinking in.  The article that gave me the ah-ha moment was over on SilverlightShow.net and titled Using Reactive Extensions in Silverlight.  The author did a good job comparing the "normal" way of handling events vs. the new "reactive" methods. Admittedly, I still have more to learn about the Rx Framework, but I wanted to put together a sample project so I could start playing with the new Observable and IObservable<T> constructs.  I decided to throw together a whiteboard application in Silverlight based on the Drawing with Rx example on the aforementioned article.  At the very least, I figured I would learn a thing or two about a new technology, but my real goal is to create a fun application that I can share with the kids since they love drawing and coloring so much! Here is the code sample that I borrowed from the article: var mouseMoveEvent = Observable.FromEvent<MouseEventArgs>(this, "MouseMove"); var mouseLeftButtonDown = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonDown"); var mouseLeftButtonUp = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonUp");       var draggingEvents = from pos in mouseMoveEvent                              .SkipUntil(mouseLeftButtonDown)                              .TakeUntil(mouseLeftButtonUp)                              .Let(mm => mm.Zip(mm.Skip(1), (prev, cur) =>                                  new                                  {                                      X2 = cur.EventArgs.GetPosition(this).X,                                      X1 = prev.EventArgs.GetPosition(this).X,                                      Y2 = cur.EventArgs.GetPosition(this).Y,                                      Y1 = prev.EventArgs.GetPosition(this).Y                                  })).Repeat()                          select pos;       draggingEvents.Subscribe(p =>     {         Line line = new Line();         line.Stroke = new SolidColorBrush(Colors.Black);         line.StrokeEndLineCap = PenLineCap.Round;         line.StrokeLineJoin = PenLineJoin.Round;         line.StrokeThickness = 5;         line.X1 = p.X1;         line.Y1 = p.Y1;         line.X2 = p.X2;         line.Y2 = p.Y2;         this.LayoutRoot.Children.Add(line);     }); One thing that was nagging at the back of my mind was having to deal with the event names as strings, as well as the verbose syntax for the Observable.FromEvent<TEventArgs>() method.  I came up with a couple of static/helper classes to resolve both issues and also created a T4 template to auto-generate these helpers for any .NET type.  Take the following code from the above example: var mouseMoveEvent = Observable.FromEvent<MouseEventArgs>(this, "MouseMove"); var mouseLeftButtonDown = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonDown"); var mouseLeftButtonUp = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonUp"); Turns into this with the new static Events class: var mouseMoveEvent = Events.Mouse.Move.On(this); var mouseLeftButtonDown = Events.Mouse.LeftButtonDown.On(this); var mouseLeftButtonUp = Events.Mouse.LeftButtonUp.On(this); Or better yet, just remove the variable declarations altogether:     var draggingEvents = from pos in Events.Mouse.Move.On(this)                              .SkipUntil(Events.Mouse.LeftButtonDown.On(this))                              .TakeUntil(Events.Mouse.LeftButtonUp.On(this))                              .Let(mm => mm.Zip(mm.Skip(1), (prev, cur) =>                                  new                                  {                                      X2 = cur.EventArgs.GetPosition(this).X,                                      X1 = prev.EventArgs.GetPosition(this).X,                                      Y2 = cur.EventArgs.GetPosition(this).Y,                                      Y1 = prev.EventArgs.GetPosition(this).Y                                  })).Repeat()                          select pos; The Move, LeftButtonDown and LeftButtonUp members of the Events.Mouse class are readonly instances of the ObservableEvent<TTarget, TEventArgs> class that provide type-safe access to the events via the On() method.  Here is the code for the class: using System; using System.Collections.Generic; using System.Linq;   namespace System.Linq {     /// <summary>     /// Represents an event that can be managed via the <see cref="Observable"/> API.     /// </summary>     /// <typeparam name="TTarget">The type of the target.</typeparam>     /// <typeparam name="TEventArgs">The type of the event args.</typeparam>     public class ObservableEvent<TTarget, TEventArgs> where TEventArgs : EventArgs     {         /// <summary>         /// Initializes a new instance of the <see cref="ObservableEvent"/> class.         /// </summary>         /// <param name="eventName">Name of the event.</param>         protected ObservableEvent(String eventName)         {             EventName = eventName;         }           /// <summary>         /// Registers the specified event name.         /// </summary>         /// <param name="eventName">Name of the event.</param>         /// <returns></returns>         public static ObservableEvent<TTarget, TEventArgs> Register(String eventName)         {             return new ObservableEvent<TTarget, TEventArgs>(eventName);         }           /// <summary>         /// Creates an enumerable sequence of event values for the specified target.         /// </summary>         /// <param name="target">The target.</param>         /// <returns></returns>         public IObservable<IEvent<TEventArgs>> On(TTarget target)         {             return Observable.FromEvent<TEventArgs>(target, EventName);         }           /// <summary>         /// Gets or sets the name of the event.         /// </summary>         /// <value>The name of the event.</value>         public string EventName { get; private set; }     } } And this is how it's used:     /// <summary>     /// Categorizes <see cref="ObservableEvents"/> by class and/or functionality.     /// </summary>     public static partial class Events     {         /// <summary>         /// Implements a set of predefined <see cref="ObservableEvent"/>s         /// for the <see cref="System.Windows.System.Windows.UIElement"/> class         /// that represent mouse related events.         /// </summary>         public static partial class Mouse         {             /// <summary>Represents the MouseMove event.</summary>             public static readonly ObservableEvent<UIElement, MouseEventArgs> Move =                 ObservableEvent<UIElement, MouseEventArgs>.Register("MouseMove");               // additional members omitted...         }     } The source code contains a static Events class with prefedined members for various categories (Key, Mouse, etc.).  There is also an Events.tt template that you can customize to generate additional event categories for any .NET type.  All you should have to do is add the name of your class to the types collection near the top of the template:     types = new Dictionary<String, Type>()     {         //{ "Microsoft.Maps.MapControl.Map, Microsoft.Maps.MapControl", null }         { "System.Windows.FrameworkElement, System.Windows", null },         { "Whiteboard.MainPage, Whiteboard", null }     }; The template is also a bit rough at this point, but at least it generates code that *should* compile.  Please let me know if you run into any issues with it.  Some people have reported errors when trying to use T4 templates within a Silverlight project, but I was able to get it to work with a little black magic...  You can download the source code for this project or play around with the live demo.  Just be warned that it is at a very early stage so don't expect to find much today.  I plan on adding alot more options like pen colors and sizes, saving, printing, etc. as time permits.  HINT: hold down the ESC key to erase! Enjoy! Additional Resources Using Reactive Extensions in Silverlight DevLabs: Reactive Extensions for .NET (Rx) Rx Framework Part III - LINQ to Events - Generating GetEventName() Wrapper Methods using T4

    Read the article

  • MIX 2010 Covert Operations Day 2 Silverlight + Windows 7 Phone

    - by GeekAgilistMercenary
    Left the Circus Circus and headed to the geek circus at Mandalay Bay.  Got in, got some breakfast, met a few more people and headed to the keynote. Upon arriving the crew I was hanging with at the event; Erik Mork, Beth Murray, and Brian Henderson and I were entertained with several other thousand geeks by the wicked yo-yoing. The first video demo of something was of Bing Maps and various aspects of Microsoft Research integrated together.  Namely the pictures, put in place, on real 3d element maps of various environments. Silverlight Scott Guthrie, as one would guess, kicked off the keynote.  His first point was that user experience has become a priority at Microsoft.  This can be seen by any observant soul with the release and push of Expression, Silverlight, and the other tools.  This is even more apparent when one takes note of Microsoft bringing in people that can actually do good design and putting them at the forefront. The next thing Scott brought up was a few key points about Silverlight.  Currently Silverlight is a little over 2 years old and has achieved a pretty solid 60% penetration.  Silverlight has all sorts of capabilities that have been developed and are now provided as open source including;  ad injection, smoothing, playback editing, and more.  Another thing he showed, which really struck me as awesome being in the analytics space, was the Olympics and a quick glimpse of the ad statistics, viewer experience, video playback performance, audience trends, and overall viewer participation.  All of it rendered in Silverlight in beautiful detail. The key piece of Scott's various points were all punctuated with the fact that all of this code is available as open source.  Not only is Microsoft really delving into this design element of things, they're getting involved in the right ways. One of the last points I'll bring up about Silverlight 4 is the ability to have HD video on a monitor, and an entirely different activity being done on the other monitor, effectively making Silverlight the only RIA framework that supports multi-monitor support.  Overall, Silverlight is continuing to impress – providing superior capabilities tit-for-tat with the competition. Windows 7 Phone The Windows 7 Phone has 3 primary buttons (yes, more than the iPhone, don't let your mind explode!!).  Start, Search, and Back control all of the needed functionality of the phone.  At the same time, of course, there is the multi-touch, touch, and other interactive abilities of the interface.  The intent, once start is pressed is to have all the information that a phone owner wants displayed immediately.  Avoiding the scrolling through pages of apps or rolling a ball to get through multitudes of other non-interactive phone interfaces.  The Windows 7 Phone simply has the data right in front of you, basically a phone dashboard.  From there it is easy to dive into the interactive areas of the phone. Each area of the interface of the phone is broken into hubs.  These hubs include applications, data, and other things based on a relative basis.  This basis being determined by the user.  These applications interact on many other levels, and form a kind of relationship between each other adding more and more meta-data to the phone user, their interactions between the applications, and of course the social element of their interactions on the phone.  This makes this phone a practical must have for a marketer involved in social media.  The level of wired together interaction is massive, and of course, if you've seen Office Outlook 2010 you know that the power that is pulled into the phone by being tied to Outlook is massive. Joe Belfiore also showed several UI & specifically UX elements of the phone interface that allows paging to be instinctual by simple clipped items, flipping page to page, and other excellent user experience advances for phone devices.  Belfiore's also showed how his people hub had a massive list of people, with pictures, all from various different social networks and other associated relations.  The rendering, speed, and viewing of these people's, their pictures, their social network information, and other characteristics was smooth and in some situations unbelievably rendered.  This demo showed some of the great power of the beta phone, which isn't even as powerful as the planned end device. Joe finished up by jumping into the music, videos, and other media with the Zune Component of the Windows 7 Mobile Phone.  This was all good stuff, but I'll get to what really sold me on the media element in a moment. When Joe was done, Scott Guthrie stepped back up to walk through building a Windows 7 Mobile Phone.  This is were I have to give serious props.  He built this application, in Visual Studio 2010, in front of 2000+ people.  That was cool, but what really was amazing that he build the application in about 2 minutes.  The IDE, side by side design that is standard in Visual Studio is light years ahead of x-Code or any of the iPhone IDEs.  The Windows 7 Mobile System, if it can get market penetration, poses a technologically superior development and phone platform over anything on the market right now.  The biggest problem with the phone, is it just isn't available yet.  I personally can't wait for a chance to build some apps for the new Windows Phone. Netflix, I May Start Up an Account Again! When I get my Windows 7 Phone device, I am absolutely getting a Netflix account again.  The Vertigo crew, as I wrote on Twitter "#MIX10 Props @seesharp on @netflix demo", displayed an application on the phone for Netflix that actually ran HD Video of Rescue Me (with Dennis Leary).  The video played back smooth as it would on a dedicated computer, I was instantly sold.  So this didn't actually sell me on the phone, because I'm already sold, but it did sell me whole heartedly on the media capabilities of the pending phone. Anyway, I try not to do this but I may double post today.  Lunch is over and I'm off to another session very near and dear to the heart of my occupation, Analytics Tracking.  Stay tuned and I should have that post up by the end of the day. Original Post – Check out my other blog for even more technical ramblings and reads.

    Read the article

  • Use Autoruns to Manually Clean an Infected PC

    - by Mark Virtue
    There are many anti-malware programs out there that will clean your system of nasties, but what happens if you’re not able to use such a program?  Autoruns, from SysInternals (recently acquired by Microsoft), is indispensable when removing malware manually. There are a few reasons why you may need to remove viruses and spyware manually: Perhaps you can’t abide running resource-hungry and invasive anti-malware programs on your PC You might need to clean your mom’s computer (or someone else who doesn’t understand that a big flashing sign on a website that says “Your computer is infected with a virus – click HERE to remove it” is not a message that can necessarily be trusted) The malware is so aggressive that it resists all attempts to automatically remove it, or won’t even allow you to install anti-malware software Part of your geek credo is the belief that anti-spyware utilities are for wimps Autoruns is an invaluable addition to any geek’s software toolkit.  It allows you to track and control all programs (and program components) that start automatically with Windows (or with Internet Explorer).  Virtually all malware is designed to start automatically, so there’s a very strong chance that it can be detected and removed with the help of Autoruns. We have covered how to use Autoruns in an earlier article, which you should read if you need to first familiarize yourself with the program. Autoruns is a standalone utility that does not need to be installed on your computer.  It can be simply downloaded, unzipped and run (link below).  This makes is ideally suited for adding to your portable utility collection on your flash drive. When you start Autoruns for the first time on a computer, you are presented with the license agreement: After agreeing to the terms, the main Autoruns window opens, showing you the complete list of all software that will run when your computer starts, when you log in, or when you open Internet Explorer: To temporarily disable a program from launching, uncheck the box next to it’s entry.  Note:  This does not terminate the program if it is running at the time – it merely prevents it from starting next time.  To permanently prevent a program from launching, delete the entry altogether (use the Delete key, or right-click and choose Delete from the context-menu)).  Note:  This does not remove the program from your computer – to remove it completely you need to uninstall the program (or otherwise delete it from your hard disk). Suspicious Software It can take a fair bit of experience (read “trial and error”) to become adept at identifying what is malware and what is not.  Most of the entries presented in Autoruns are legitimate programs, even if their names are unfamiliar to you.  Here are some tips to help you differentiate the malware from the legitimate software: If an entry is digitally signed by a software publisher (i.e. there’s an entry in the Publisher column) or has a “Description”, then there’s a good chance that it’s legitimate If you recognize the software’s name, then it’s usually okay.  Note that occasionally malware will “impersonate” legitimate software, but adopting a name that’s identical or similar to software you’re familiar with (e.g. “AcrobatLauncher” or “PhotoshopBrowser”).  Also, be aware that many malware programs adopt generic or innocuous-sounding names, such as “Diskfix” or “SearchHelper” (both mentioned below). Malware entries usually appear on the Logon tab of Autoruns (but not always!) If you open up the folder that contains the EXE or DLL file (more on this below), an examine the “last modified” date, the dates are often from the last few days (assuming that your infection is fairly recent) Malware is often located in the C:\Windows folder or the C:\Windows\System32 folder Malware often only has a generic icon (to the left of the name of the entry) If in doubt, right-click the entry and select Search Online… The list below shows two suspicious looking entries:  Diskfix and SearchHelper These entries, highlighted above, are fairly typical of malware infections: They have neither descriptions nor publishers They have generic names The files are located in C:\Windows\System32 They have generic icons The filenames are random strings of characters If you look in the C:\Windows\System32 folder and locate the files, you’ll see that they are some of the most recently modified files in the folder (see below) Double-clicking on the items will take you to their corresponding registry keys: Removing the Malware Once you’ve identified the entries you believe to be suspicious, you now need to decide what you want to do with them.  Your choices include: Temporarily disable the Autorun entry Permanently delete the Autorun entry Locate the running process (using Task Manager or similar) and terminating it Delete the EXE or DLL file from your disk (or at least move it to a folder where it won’t be automatically started) or all of the above, depending upon how certain you are that the program is malware. To see if your changes succeeded, you will need to reboot your machine, and check any or all of the following: Autoruns – to see if the entry has returned Task Manager (or similar) – to see if the program was started again after the reboot Check the behavior that led you to believe that your PC was infected in the first place.  If it’s no longer happening, chances are that your PC is now clean Conclusion This solution isn’t for everyone and is most likely geared to advanced users. Usually using a quality Antivirus application does the trick, but if not Autoruns is a valuable tool in your Anti-Malware kit. Keep in mind that some malware is harder to remove than others.  Sometimes you need several iterations of the steps above, with each iteration requiring you to look more carefully at each Autorun entry.  Sometimes the instant that you remove the Autorun entry, the malware that is running replaces the entry.  When this happens, we need to become more aggressive in our assassination of the malware, including terminating programs (even legitimate programs like Explorer.exe) that are infected with malware DLLs. Shortly we will be publishing an article on how to identify, locate and terminate processes that represent legitimate programs but are running infected DLLs, in order that those DLLs can be deleted from the system. Download Autoruns from SysInternals Similar Articles Productive Geek Tips Using Autoruns Tool to Track Startup Applications and Add-onsHow To Get Detailed Information About Your PCSUPERAntiSpyware Portable is the Must-Have Spyware Removal Tool You NeedQuick Tip: Windows Vista Temp Files DirectoryClear Recent Commands From the Run Dialog in Windows XP TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox) OldTvShows.org – Find episodes of Hitchcock, Soaps, Game Shows and more Download Microsoft Office Help tab

    Read the article

  • Of C# Iterators and Performance

    - by James Michael Hare
    Some of you reading this will be wondering, "what is an iterator" and think I'm locked in the world of C++.  Nope, I'm talking C# iterators.  No, not enumerators, iterators.   So, for those of you who do not know what iterators are in C#, I will explain it in summary, and for those of you who know what iterators are but are curious of the performance impacts, I will explore that as well.   Iterators have been around for a bit now, and there are still a bunch of people who don't know what they are or what they do.  I don't know how many times at work I've had a code review on my code and have someone ask me, "what's that yield word do?"   Basically, this post came to me as I was writing some extension methods to extend IEnumerable<T> -- I'll post some of the fun ones in a later post.  Since I was filtering the resulting list down, I was using the standard C# iterator concept; but that got me wondering: what are the performance implications of using an iterator versus returning a new enumeration?   So, to begin, let's look at a couple of methods.  This is a new (albeit contrived) method called Every(...).  The goal of this method is to access and enumeration and return every nth item in the enumeration (including the first).  So Every(2) would return items 0, 2, 4, 6, etc.   Now, if you wanted to write this in the traditional way, you may come up with something like this:       public static IEnumerable<T> Every<T>(this IEnumerable<T> list, int interval)     {         List<T> newList = new List<T>();         int count = 0;           foreach (var i in list)         {             if ((count++ % interval) == 0)             {                 newList.Add(i);             }         }           return newList;     }     So basically this method takes any IEnumerable<T> and returns a new IEnumerable<T> that contains every nth item.  Pretty straight forward.   The problem?  Well, Every<T>(...) will construct a list containing every nth item whether or not you care.  What happens if you were searching this result for a certain item and find that item after five tries?  You would have generated the rest of the list for nothing.   Enter iterators.  This C# construct uses the yield keyword to effectively defer evaluation of the next item until it is asked for.  This can be very handy if the evaluation itself is expensive or if there's a fair chance you'll never want to fully evaluate a list.   We see this all the time in Linq, where many expressions are chained together to do complex processing on a list.  This would be very expensive if each of these expressions evaluated their entire possible result set on call.    Let's look at the same example function, this time using an iterator:       public static IEnumerable<T> Every<T>(this IEnumerable<T> list, int interval)     {         int count = 0;         foreach (var i in list)         {             if ((count++ % interval) == 0)             {                 yield return i;             }         }     }   Notice it does not create a new return value explicitly, the only evidence of a return is the "yield return" statement.  What this means is that when an item is requested from the enumeration, it will enter this method and evaluate until it either hits a yield return (in which case that item is returned) or until it exits the method or hits a yield break (in which case the iteration ends.   Behind the scenes, this is all done with a class that the CLR creates behind the scenes that keeps track of the state of the iteration, so that every time the next item is asked for, it finds that item and then updates the current position so it knows where to start at next time.   It doesn't seem like a big deal, does it?  But keep in mind the key point here: it only returns items as they are requested. Thus if there's a good chance you will only process a portion of the return list and/or if the evaluation of each item is expensive, an iterator may be of benefit.   This is especially true if you intend your methods to be chainable similar to the way Linq methods can be chained.    For example, perhaps you have a List<int> and you want to take every tenth one until you find one greater than 10.  We could write that as:       List<int> someList = new List<int>();         // fill list here         someList.Every(10).TakeWhile(i => i <= 10);     Now is the difference more apparent?  If we use the first form of Every that makes a copy of the list.  It's going to copy the entire list whether we will need those items or not, that can be costly!    With the iterator version, however, it will only take items from the list until it finds one that is > 10, at which point no further items in the list are evaluated.   So, sounds neat eh?  But what's the cost is what you're probably wondering.  So I ran some tests using the two forms of Every above on lists varying from 5 to 500,000 integers and tried various things.    Now, iteration isn't free.  If you are more likely than not to iterate the entire collection every time, iterator has some very slight overhead:   Copy vs Iterator on 100% of Collection (10,000 iterations) Collection Size Num Iterated Type Total ms 5 5 Copy 5 5 5 Iterator 5 50 50 Copy 28 50 50 Iterator 27 500 500 Copy 227 500 500 Iterator 247 5000 5000 Copy 2266 5000 5000 Iterator 2444 50,000 50,000 Copy 24,443 50,000 50,000 Iterator 24,719 500,000 500,000 Copy 250,024 500,000 500,000 Iterator 251,521   Notice that when iterating over the entire produced list, the times for the iterator are a little better for smaller lists, then getting just a slight bit worse for larger lists.  In reality, given the number of items and iterations, the result is near negligible, but just to show that iterators come at a price.  However, it should also be noted that the form of Every that returns a copy will have a left-over collection to garbage collect.   However, if we only partially evaluate less and less through the list, the savings start to show and make it well worth the overhead.  Let's look at what happens if you stop looking after 80% of the list:   Copy vs Iterator on 80% of Collection (10,000 iterations) Collection Size Num Iterated Type Total ms 5 4 Copy 5 5 4 Iterator 5 50 40 Copy 27 50 40 Iterator 23 500 400 Copy 215 500 400 Iterator 200 5000 4000 Copy 2099 5000 4000 Iterator 1962 50,000 40,000 Copy 22,385 50,000 40,000 Iterator 19,599 500,000 400,000 Copy 236,427 500,000 400,000 Iterator 196,010       Notice that the iterator form is now operating quite a bit faster.  But the savings really add up if you stop on average at 50% (which most searches would typically do):     Copy vs Iterator on 50% of Collection (10,000 iterations) Collection Size Num Iterated Type Total ms 5 2 Copy 5 5 2 Iterator 4 50 25 Copy 25 50 25 Iterator 16 500 250 Copy 188 500 250 Iterator 126 5000 2500 Copy 1854 5000 2500 Iterator 1226 50,000 25,000 Copy 19,839 50,000 25,000 Iterator 12,233 500,000 250,000 Copy 208,667 500,000 250,000 Iterator 122,336   Now we see that if we only expect to go on average 50% into the results, we tend to shave off around 40% of the time.  And this is only for one level deep.  If we are using this in a chain of query expressions it only adds to the savings.   So my recommendation?  If you have a resonable expectation that someone may only want to partially consume your enumerable result, I would always tend to favor an iterator.  The cost if they iterate the whole thing does not add much at all -- and if they consume only partially, you reap some really good performance gains.   Next time I'll discuss some of my favorite extensions I've created to make development life a little easier and maintainability a little better.

    Read the article

  • SQL University: Database testing and refactoring tools and examples

    - by Mladen Prajdic
    This is a post for a great idea called SQL University started by Jorge Segarra also famously known as SqlChicken on Twitter. It’s a collection of blog posts on different database related topics contributed by several smart people all over the world. So this week is mine and we’ll be talking about database testing and refactoring. In 3 posts we’ll cover: SQLU part 1 - What and why of database testing SQLU part 2 - What and why of database refactoring SQLU part 3 - Database testing and refactoring tools and examples This is the third and last part of the series and in it we’ll take a look at tools we can test and refactor with plus some an example of the both. Tools of the trade First a few thoughts about how to go about testing a database. I'm firmily against any testing tools that go into the database itself or need an extra database. Unit tests for the database and applications using the database should all be in one place using the same technology. By using database specific frameworks we fragment our tests into many places and increase test system complexity. Let’s take a look at some testing tools. 1. NUnit, xUnit, MbUnit All three are .Net testing frameworks meant to unit test .Net application. But we can test databases with them just fine. I use NUnit because I’ve always used it for work and personal projects. One day this might change. So the thing to remember is to be flexible if something better comes along. All three are quite similar and you should be able to switch between them without much problem. 2. TSQLUnit As much as this framework is helpful for the non-C# savvy folks I don’t like it for the reason I stated above. It lives in the database and thus fragments the testing infrastructure. Also it appears that it’s not being actively developed anymore. 3. DbFit I haven’t had the pleasure of trying this tool just yet but it’s on my to-do list. From what I’ve read and heard Gojko Adzic (@gojkoadzic on Twitter) has done a remarkable job with it. 4. Redgate SQL Refactor and Apex SQL Refactor Neither of these refactoring tools are free, however if you have hardcore refactoring planned they are worth while looking into. I’ve only used the Red Gate’s Refactor and was quite impressed with it. 5. Reverting the database state I’ve talked before about ways to revert a database to pre-test state after unit testing. This still holds and I haven’t changed my mind. Also make sure to read the comments as they are quite informative. I especially like the idea of setting up and tearing down the schema for each test group with NHibernate. Testing and refactoring example We’ll take a look at the simple schema and data test for a view and refactoring the SELECT * in that view. We’ll use a single table PhoneNumbers with ID and Phone columns. Then we’ll refactor the Phone column into 3 columns Prefix, Number and Suffix. Lastly we’ll remove the original Phone column. Then we’ll check how the view behaves with tests in NUnit. The comments in code explain the problem so be sure to read them. I’m assuming you know NUnit and C#. T-SQL Code C# test code USE tempdbGOCREATE TABLE PhoneNumbers( ID INT IDENTITY(1,1), Phone VARCHAR(20))GOINSERT INTO PhoneNumbers(Phone)SELECT '111 222333 444' UNION ALLSELECT '555 666777 888'GO-- notice we don't have WITH SCHEMABINDINGCREATE VIEW vPhoneNumbersAS SELECT * FROM PhoneNumbersGO-- Let's take a look at what the view returns -- If we add a new columns and rows both tests will failSELECT *FROM vPhoneNumbers GO -- DoesViewReturnCorrectColumns test will SUCCEED -- DoesViewReturnCorrectData test will SUCCEED -- refactor to split Phone column into 3 partsALTER TABLE PhoneNumbers ADD Prefix VARCHAR(3)ALTER TABLE PhoneNumbers ADD Number VARCHAR(6)ALTER TABLE PhoneNumbers ADD Suffix VARCHAR(3)GO-- update the new columnsUPDATE PhoneNumbers SET Prefix = LEFT(Phone, 3), Number = SUBSTRING(Phone, 5, 6), Suffix = RIGHT(Phone, 3)GO-- remove the old columnALTER TABLE PhoneNumbers DROP COLUMN PhoneGO-- This returns unexpected results!-- it returns 2 columns ID and Phone even though -- we don't have a Phone column anymore.-- Notice that the data is from the Prefix column-- This is a danger of SELECT *SELECT *FROM vPhoneNumbers -- DoesViewReturnCorrectColumns test will SUCCEED -- DoesViewReturnCorrectData test will FAIL -- for a fix we have to call sp_refreshview -- to refresh the view definitionEXEC sp_refreshview 'vPhoneNumbers'-- after the refresh the view returns 4 columns-- this breaks the input/output behavior of the database-- which refactoring MUST NOT doSELECT *FROM vPhoneNumbers -- DoesViewReturnCorrectColumns test will FAIL -- DoesViewReturnCorrectData test will FAIL -- to fix the input/output behavior change problem -- we have to concat the 3 columns into one named PhoneALTER VIEW vPhoneNumbersASSELECT ID, Prefix + ' ' + Number + ' ' + Suffix AS PhoneFROM PhoneNumbersGO-- now it works as expectedSELECT *FROM vPhoneNumbers -- DoesViewReturnCorrectColumns test will SUCCEED -- DoesViewReturnCorrectData test will SUCCEED -- clean upDROP VIEW vPhoneNumbersDROP TABLE PhoneNumbers [Test]public void DoesViewReturnCoorectColumns(){ // conn is a valid SqlConnection to the server's tempdb // note the SET FMTONLY ON with which we return only schema and no data using (SqlCommand cmd = new SqlCommand("SET FMTONLY ON; SELECT * FROM vPhoneNumbers", conn)) { DataTable dt = new DataTable(); dt.Load(cmd.ExecuteReader(CommandBehavior.CloseConnection)); // test returned schema: number of columns, column names and data types Assert.AreEqual(dt.Columns.Count, 2); Assert.AreEqual(dt.Columns[0].Caption, "ID"); Assert.AreEqual(dt.Columns[0].DataType, typeof(int)); Assert.AreEqual(dt.Columns[1].Caption, "Phone"); Assert.AreEqual(dt.Columns[1].DataType, typeof(string)); }} [Test]public void DoesViewReturnCorrectData(){ // conn is a valid SqlConnection to the server's tempdb using (SqlCommand cmd = new SqlCommand("SELECT * FROM vPhoneNumbers", conn)) { DataTable dt = new DataTable(); dt.Load(cmd.ExecuteReader(CommandBehavior.CloseConnection)); // test returned data: number of rows and their values Assert.AreEqual(dt.Rows.Count, 2); Assert.AreEqual(dt.Rows[0]["ID"], 1); Assert.AreEqual(dt.Rows[0]["Phone"], "111 222333 444"); Assert.AreEqual(dt.Rows[1]["ID"], 2); Assert.AreEqual(dt.Rows[1]["Phone"], "555 666777 888"); }}   With this simple example we’ve seen how a very simple schema can cause a lot of problems in the whole application/database system if it doesn’t have tests. Imagine what would happen if some outside process would depend on that view. It would get wrong data and propagate it silently throughout the system. And that is not good. So have tests at least for the crucial parts of your systems. And with that we conclude the Database Testing and Refactoring week at SQL University. Hope you learned something new and enjoy the learning weeks to come. Have fun!

    Read the article

  • Physical Directories vs. MVC View Paths

    - by Rick Strahl
    This post falls into the bucket of operator error on my part, but I want to share this anyway because it describes an issue that has bitten me a few times now and writing it down might keep it a little stronger in my mind. I've been working on an MVC project the last few days, and at the end of a long day I accidentally moved one of my View folders from the MVC Root Folder to the project root. It must have been at the very end of the day before shutting down because tests and manual site navigation worked fine just before I quit for the night. I checked in changes and called it a night. Next day I came back, started running the app and had a lot of breaks with certain views. Oddly custom routes to these controllers/views worked, but stock /{controller}/{action} routes would not. After a bit of spelunking I realized that "Hey one of my View Folders is missing", which made some sense given the error messages I got. I looked in the recycle bin - nothing there, so rather than try to figure out what the hell happened, just restored from my last SVN checkin. At this point the folders are back… but… view access  still ends up breaking for this set of views. Specifically I'm getting the Yellow Screen of Death with: CS0103: The name 'model' does not exist in the current context Here's the full error: Server Error in '/ClassifiedsWeb' Application. Compilation ErrorDescription: An error occurred during the compilation of a resource required to service this request. Please review the following specific error details and modify your source code appropriately.Compiler Error Message: CS0103: The name 'model' does not exist in the current contextSource Error: Line 1: @model ClassifiedsWeb.EntryViewModel Line 2: @{ Line 3: ViewBag.Title = Model.Entry.Title + " - " + ClassifiedsBusiness.App.Configuration.ApplicationName; Source File: c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Classifieds\Show.cshtml    Line: 1 Compiler Warning Messages: Show Detailed Compiler Output: Show Complete Compilation Source: Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.272 Here's what's really odd about this error: The views now do exist in the /Views/Classifieds folder of the project, but it appears like MVC is trying to execute the views directly. This is getting pretty weird, man! So I hook up some break points in my controllers to see if my controller actions are getting fired - and sure enough it turns out they are not - but only for those views that were previously 'lost' and then restored from SVN. WTF? At this point I'm thinking that I must have messed up one of the config files, but after some more spelunking and realizing that all the other Controller views work, I give up that idea. Config's gotta be OK if other controllers and views are working. Root Folders and MVC Views don't mix As I mentioned the problem was the fact that I inadvertantly managed to drag my View folder to the root folder of the project. Here's what this looks like in my FUBAR'd project structure after I copied back /Views/Classifieds folder from SVN: There's the actual root folder in the /Views folder and the accidental copy that sits of the root. I of course did not notice the /Classifieds folder at the root because it was excluded and didn't show up in the project. Now, before you call me a complete idiot remember that this happened by accident - an accidental drag probably just before shutting down for the night. :-) So why does this break? MVC should be happy with views in the /Views/Classifieds folder right? While MVC might be happy, IIS is not. The fact that there is a physical folder on disk takes precedence over MVC's routing. In other words if a URL exists that matches a route the pysical path is accessed first. What happens here is that essentially IIS is trying to execute the .cshtml pages directly without ever routing to the Controller methods. In the error page I showed above my clue should have been that the view was served as: c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Classifieds\Show.cshtml rather than c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Views\Classifieds\Show.cshtml But of course I didn't notice that right away, just skimming to the end and looking at the file name. The reason that /classifieds/list actually fires that file is that the ASP.NET Web Pages engine looks for physical files on disk that match a path. IOW, when calling Web Pages you drop the .cshtml off the Razor page and IIS will serve that just fine. So: /classifieds/list looks and tries to find /classifieds/list.cshtml and executes that script. And that is exactly what's happening. Web Pages is trying to execute the .cshtml file and it fails because Web Pages knows nothing about the @model tag which is an MVC specific template extension. This is why my breakpoints in the controller methods didn't fire and it also explains why the error mentions that the @model key word is invalid (@model is an MVC provided template enhancement to the Razor Engine). The solution of course is super simple: Delete the accidentally created root folder and the problem is solved. Routing and Physical Paths I've run into problems with this before actually. In the past I've had a number of applications that had a physical /Admin folder which also would conflict with an MVC Admin controller. More than once I ended up wondering why the index route (/Admin/) was not working properly. If a physical /Admin folder exists /Admin will not route to the Index action (or whatever default action you have set up, but instead try to list the directory or show the default document in the folder. The only way to force the index page through MVC is to explicitly use /Admin/Index. Makes perfect sense once you realize the physical folder is there, but that's easy to forget in an MVC application. As you might imagine after a few times of running into this I gave up on the Admin folder and moved everything into MVC views to handle those operations. Still it's one of those things that can easily bite you, because the behavior and error messages seem to point at completely different  problems. Moral of the story is: If you see routing problems where routes are not reaching obvious controller methods, always check to make sure there's isn't a physical path being mapped by IIS instead. That way you won't feel stupid like I did after trying a million things for about an hour before discovering my sloppy mousing behavior :-)© Rick Strahl, West Wind Technologies, 2005-2012Posted in MVC   IIS7   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#: Does an IDisposable in a Halted Iterator Dispose?

    - by James Michael Hare
    If that sounds confusing, let me give you an example. Let's say you expose a method to read a database of products, and instead of returning a List<Product> you return an IEnumerable<Product> in iterator form (yield return). This accomplishes several good things: The IDataReader is not passed out of the Data Access Layer which prevents abstraction leak and resource leak potentials. You don't need to construct a full List<Product> in memory (which could be very big) if you just want to forward iterate once. If you only want to consume up to a certain point in the list, you won't incur the database cost of looking up the other items. This could give us an example like: 1: // a sample data access object class to do standard CRUD operations. 2: public class ProductDao 3: { 4: private DbProviderFactory _factory = SqlClientFactory.Instance 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: // must create the connection 10: using (var con = _factory.CreateConnection()) 11: { 12: con.ConnectionString = _productsConnectionString; 13: con.Open(); 14:  15: // create the command 16: using (var cmd = _factory.CreateCommand()) 17: { 18: cmd.Connection = con; 19: cmd.CommandText = _getAllProductsStoredProc; 20: cmd.CommandType = CommandType.StoredProcedure; 21:  22: // get a reader and pass back all results 23: using (var reader = cmd.ExecuteReader()) 24: { 25: while(reader.Read()) 26: { 27: yield return new Product 28: { 29: Name = reader["product_name"].ToString(), 30: ... 31: }; 32: } 33: } 34: } 35: } 36: } 37: } The database details themselves are irrelevant. I will say, though, that I'm a big fan of using the System.Data.Common classes instead of your provider specific counterparts directly (SqlCommand, OracleCommand, etc). This lets you mock your data sources easily in unit testing and also allows you to swap out your provider in one line of code. In fact, one of the shared components I'm most proud of implementing was our group's DatabaseUtility library that simplifies all the database access above into one line of code in a thread-safe and provider-neutral way. I went with my own flavor instead of the EL due to the fact I didn't want to force internal company consumers to use the EL if they didn't want to, and it made it easy to allow them to mock their database for unit testing by providing a MockCommand, MockConnection, etc that followed the System.Data.Common model. One of these days I'll blog on that if anyone's interested. Regardless, you often have situations like the above where you are consuming and iterating through a resource that must be closed once you are finished iterating. For the reasons stated above, I didn't want to return IDataReader (that would force them to remember to Dispose it), and I didn't want to return List<Product> (that would force them to hold all products in memory) -- but the first time I wrote this, I was worried. What if you never consume the last item and exit the loop? Are the reader, command, and connection all disposed correctly? Of course, I was 99.999999% sure the creators of C# had already thought of this and taken care of it, but inspection in Reflector was difficult due to the nature of the state machines yield return generates, so I decided to try a quick example program to verify whether or not Dispose() will be called when an iterator is broken from outside the iterator itself -- i.e. before the iterator reports there are no more items. So I wrote a quick Sequencer class with a Dispose() method and an iterator for it. Yes, it is COMPLETELY contrived: 1: // A disposable sequence of int -- yes this is completely contrived... 2: internal class Sequencer : IDisposable 3: { 4: private int _i = 0; 5: private readonly object _mutex = new object(); 6:  7: // Constructs an int sequence. 8: public Sequencer(int start) 9: { 10: _i = start; 11: } 12:  13: // Gets the next integer 14: public int GetNext() 15: { 16: lock (_mutex) 17: { 18: return _i++; 19: } 20: } 21:  22: // Dispose the sequence of integers. 23: public void Dispose() 24: { 25: // force output immediately (flush the buffer) 26: Console.WriteLine("Disposed with last sequence number of {0}!", _i); 27: Console.Out.Flush(); 28: } 29: } And then I created a generator (infinite-loop iterator) that did the using block for auto-Disposal: 1: // simply defines an extension method off of an int to start a sequence 2: public static class SequencerExtensions 3: { 4: // generates an infinite sequence starting at the specified number 5: public static IEnumerable<int> GetSequence(this int starter) 6: { 7: // note the using here, will call Dispose() when block terminated. 8: using (var seq = new Sequencer(starter)) 9: { 10: // infinite loop on this generator, means must be bounded by caller! 11: while(true) 12: { 13: yield return seq.GetNext(); 14: } 15: } 16: } 17: } This is really the same conundrum as the database problem originally posed. Here we are using iteration (yield return) over a large collection (infinite sequence of integers). If we cut the sequence short by breaking iteration, will that using block exit and hence, Dispose be called? Well, let's see: 1: // The test program class 2: public class IteratorTest 3: { 4: // The main test method. 5: public static void Main() 6: { 7: Console.WriteLine("Going to consume 10 of infinite items"); 8: Console.Out.Flush(); 9:  10: foreach(var i in 0.GetSequence()) 11: { 12: // could use TakeWhile, but wanted to output right at break... 13: if(i >= 10) 14: { 15: Console.WriteLine("Breaking now!"); 16: Console.Out.Flush(); 17: break; 18: } 19:  20: Console.WriteLine(i); 21: Console.Out.Flush(); 22: } 23:  24: Console.WriteLine("Done with loop."); 25: Console.Out.Flush(); 26: } 27: } So, what do we see? Do we see the "Disposed" message from our dispose, or did the Dispose get skipped because from an "eyeball" perspective we should be locked in that infinite generator loop? Here's the results: 1: Going to consume 10 of infinite items 2: 0 3: 1 4: 2 5: 3 6: 4 7: 5 8: 6 9: 7 10: 8 11: 9 12: Breaking now! 13: Disposed with last sequence number of 11! 14: Done with loop. Yes indeed, when we break the loop, the state machine that C# generates for yield iterate exits the iteration through the using blocks and auto-disposes the IDisposable correctly. I must admit, though, the first time I wrote one, I began to wonder and that led to this test. If you've never seen iterators before (I wrote a previous entry here) the infinite loop may throw you, but you have to keep in mind it is not a linear piece of code, that every time you hit a "yield return" it cedes control back to the state machine generated for the iterator. And this state machine, I'm happy to say, is smart enough to clean up the using blocks correctly. I suspected those wily guys and gals at Microsoft engineered it well, and I wasn't disappointed. But, I've been bitten by assumptions before, so it's good to test and see. Yes, maybe you knew it would or figured it would, but isn't it nice to know? And as those campy 80s G.I. Joe cartoon public service reminders always taught us, "Knowing is half the battle...". Technorati Tags: C#,.NET

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • Writing the tests for FluentPath

    - by Bertrand Le Roy
    Writing the tests for FluentPath is a challenge. The library is a wrapper around a legacy API (System.IO) that wasn’t designed to be easily testable. If it were more testable, the sensible testing methodology would be to tell System.IO to act against a mock file system, which would enable me to verify that my code is doing the expected file system operations without having to manipulate the actual, physical file system: what we are testing here is FluentPath, not System.IO. Unfortunately, that is not an option as nothing in System.IO enables us to plug a mock file system in. As a consequence, we are left with few options. A few people have suggested me to abstract my calls to System.IO away so that I could tell FluentPath – not System.IO – to use a mock instead of the real thing. That in turn is getting a little silly: FluentPath already is a thin abstraction around System.IO, so layering another abstraction between them would double the test surface while bringing little or no value. I would have to test that new abstraction layer, and that would bring us back to square one. Unless I’m missing something, the only option I have here is to bite the bullet and test against the real file system. Of course, the tests that do that can hardly be called unit tests. They are more integration tests as they don’t only test bits of my code. They really test the successful integration of my code with the underlying System.IO. In order to write such tests, the techniques of BDD work particularly well as they enable you to express scenarios in natural language, from which test code is generated. Integration tests are being better expressed as scenarios orchestrating a few basic behaviors, so this is a nice fit. The Orchard team has been successfully using SpecFlow for integration tests for a while and I thought it was pretty cool so that’s what I decided to use. Consider for example the following scenario: Scenario: Change extension Given a clean test directory When I change the extension of bar\notes.txt to foo Then bar\notes.txt should not exist And bar\notes.foo should exist This is human readable and tells you everything you need to know about what you’re testing, but it is also executable code. What happens when SpecFlow compiles this scenario is that it executes a bunch of regular expressions that identify the known Given (set-up phases), When (actions) and Then (result assertions) to identify the code to run, which is then translated into calls into the appropriate methods. Nothing magical. Here is the code generated by SpecFlow: [NUnit.Framework.TestAttribute()] [NUnit.Framework.DescriptionAttribute("Change extension")] public virtual void ChangeExtension() { TechTalk.SpecFlow.ScenarioInfo scenarioInfo = new TechTalk.SpecFlow.ScenarioInfo("Change extension", ((string[])(null))); #line 6 this.ScenarioSetup(scenarioInfo); #line 7 testRunner.Given("a clean test directory"); #line 8 testRunner.When("I change the extension of " + "bar\\notes.txt to foo"); #line 9 testRunner.Then("bar\\notes.txt should not exist"); #line 10 testRunner.And("bar\\notes.foo should exist"); #line hidden testRunner.CollectScenarioErrors();} The #line directives are there to give clues to the debugger, because yes, you can put breakpoints into a scenario: The way you usually write tests with SpecFlow is that you write the scenario first, let it fail, then write the translation of your Given, When and Then into code if they don’t already exist, which results in running but failing tests, and then you write the code to make your tests pass (you implement the scenario). In the case of FluentPath, I built a simple Given method that builds a simple file hierarchy in a temporary directory that all scenarios are going to work with: [Given("a clean test directory")] public void GivenACleanDirectory() { _path = new Path(SystemIO.Path.GetTempPath()) .CreateSubDirectory("FluentPathSpecs") .MakeCurrent(); _path.GetFileSystemEntries() .Delete(true); _path.CreateFile("foo.txt", "This is a text file named foo."); var bar = _path.CreateSubDirectory("bar"); bar.CreateFile("baz.txt", "bar baz") .SetLastWriteTime(DateTime.Now.AddSeconds(-2)); bar.CreateFile("notes.txt", "This is a text file containing notes."); var barbar = bar.CreateSubDirectory("bar"); barbar.CreateFile("deep.txt", "Deep thoughts"); var sub = _path.CreateSubDirectory("sub"); sub.CreateSubDirectory("subsub"); sub.CreateFile("baz.txt", "sub baz") .SetLastWriteTime(DateTime.Now); sub.CreateFile("binary.bin", new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0xFF}); } Then, to implement the scenario that you can read above, I had to write the following When: [When("I change the extension of (.*) to (.*)")] public void WhenIChangeTheExtension( string path, string newExtension) { var oldPath = Path.Current.Combine(path.Split('\\')); oldPath.Move(p => p.ChangeExtension(newExtension)); } As you can see, the When attribute is specifying the regular expression that will enable the SpecFlow engine to recognize what When method to call and also how to map its parameters. For our scenario, “bar\notes.txt” will get mapped to the path parameter, and “foo” to the newExtension parameter. And of course, the code that verifies the assumptions of the scenario: [Then("(.*) should exist")] public void ThenEntryShouldExist(string path) { Assert.IsTrue(_path.Combine(path.Split('\\')).Exists); } [Then("(.*) should not exist")] public void ThenEntryShouldNotExist(string path) { Assert.IsFalse(_path.Combine(path.Split('\\')).Exists); } These steps should be written with reusability in mind. They are building blocks for your scenarios, not implementation of a specific scenario. Think small and fine-grained. In the case of the above steps, I could reuse each of those steps in other scenarios. Those tests are easy to write and easier to read, which means that they also constitute a form of documentation. Oh, and SpecFlow is just one way to do this. Rob wrote a long time ago about this sort of thing (but using a different framework) and I highly recommend this post if I somehow managed to pique your interest: http://blog.wekeroad.com/blog/make-bdd-your-bff-2/ And this screencast (Rob always makes excellent screencasts): http://blog.wekeroad.com/mvc-storefront/kona-3/ (click the “Download it here” link)

    Read the article

  • ASP.NET MVC JavaScript Routing

    - by zowens
    Have you ever done this sort of thing in your ASP.NET MVC view? The weird thing about this isn’t the alert function, it’s the code block containing the Url formation using the ASP.NET MVC UrlHelper. The terrible thing about this experience is the obvious lack of IntelliSense and this ugly inline JavaScript code. Inline JavaScript isn’t portable to other pages beyond the current page of execution. It is generally considered bad practice to use inline JavaScript in your public-facing pages. How ludicrous would it be to copy and paste the entire jQuery code base into your pages…? Not something you’d ever consider doing. The problem is that your URLs have to be generated by ASP.NET at runtime and really can’t be copied to your JavaScript code without some trickery. How about this? Does the hard-coded URL bother you? It really bothers me. The typical solution to this whole routing in JavaScript issue is to just hard-code your URLs into your JavaScript files and call it done. But what if your URLs change? You have to now go an track down the places in JavaScript and manually replace them. What if you get the pattern wrong? Do you have tests around it? This isn’t something you should have to worry about.   The Solution To Our Problems The solution is to port routing over to JavaScript. Does that sound daunting to you? It’s actually not very hard, but I decided to create my own generator that will do all the work for you. What I have created is a very basic port of the route formation feature of ASP.NET routing. It will generate the formatted URLs based on your routing patterns. Here’s how you’d do this: Does that feel familiar? It looks a lot like something you’d do inside of your ASP.NET MVC views… but this is inside of a JavaScript file… just a plain ol’ .js file.  Your first question might be why do you have to have that “.toUrl()” thing. The reason is that I wanted to make POST and GET requests dead simple. Here’s how you’d do a POST request (and the same would work with a GET request):   The first parameter is extra data passed to the post request and the second parameter is a function that handles the success of the POST request. If you’re familiar with jQuery’s Ajax goodness, you’ll know how to use it. (if not, check out http://api.jquery.com/jQuery.Post/ and the parameters are essentially the same). But we still haven’t gotten rid of the magic strings. We still have controller names and action names represented as strings. This is going to blow your mind… If you’ve seen T4MVC, this will look familiar. We’re essentially doing the same sort of thing with my JavaScript router, but we’re porting the concept to JavaScript. The good news is that parameters to the controllers are directly reflected in the action function, just like T4MVC. And the even better news… IntlliSense is easily transferred to the JavaScript version if you’re using Visual Studio as your JavaScript editor. The additional data parameter gives you the ability to pass extra routing data to the URL formatter.   About the Magic You may be wondering how this all work. It’s actually quite simple. I’ve built a simple jQuery pluggin (called routeManager) that hangs off the main jQuery namespace and routes all the URLs. Every time your solution builds, a routing file will be generated with this pluggin, all your route and controller definitions along with your documentation. Then by the power of Visual Studio, you get some really slick IntelliSense that is hard to live without. But there are a few steps you have to take before this whole thing is going to work. First and foremost, you need a reference to the JsRouting.Core.dll to your projects containing controllers or routes. Second, you have to specify your routes in a bit of a non-standard way. See, we can’t just pull routes out of your App_Start in your Global.asax. We force you to build a route source like this: The way we determine the routes is by pulling in all RouteSources and generating routes based upon the mapped routes. There are various reasons why we can’t use RouteCollection (different post for another day)… but in this case, you get the same route mapping experience. Converting the RouteSource to a RouteCollection is trivial (there’s an extension method for that). Next thing you have to do is generate a documentation XML file. This is done by going to the project settings, going to the build tab and clicking the checkbox. (this isn’t required, but nice to have). The final thing you need to do is hook up the generation mechanism. Pop open your project file and look for the AfterBuild step. Now change the build step task to look like this: The “PathToOutputExe” is the path to the JsRouting.Output.exe file. This will change based on where you put the EXE. The “PathToOutputJs” is a path to the output JavaScript file. The “DicrectoryOfAssemblies” is a path to the directory containing controller and routing DLLs. The JsRouting.Output.exe executable pulls in all these assemblies and scans them for controllers and route sources.   Now that wasn’t too bad, was it :)   The State of the Project This is definitely not complete… I have a lot of plans for this little project of mine. For starters, I need to look at the generation mechanism. Either I will be creating a utility that will do the project file manipulation or I will go a different direction. I’d like some feedback on this if you feel partial either way. Another thing I don’t support currently is areas. While this wouldn’t be too hard to support, I just don’t use areas and I wanted something up quickly (this is, after all, for a current project of mine). I’ll be adding support shortly. There are a few things that I haven’t covered in this post that I will most certainly be covering in another post, such as routing constraints and how these will be translated to JavaScript. I decided to open source this whole thing, since it’s a nice little utility I think others should really be using. Currently we’re using ASP.NET MVC 2, but it should work with MVC 3 as well. I’ll upgrade it as soon as MVC 3 is released. Along those same lines, I’m investigating how this could be put on the NuGet feed. Show me the Bits! OK, OK! The code is posted on my GitHub account. Go nuts. Tell me what you think. Tell me what you want. Tell me that you hate it. All feedback is welcome! https://github.com/zowens/ASP.NET-MVC-JavaScript-Routing

    Read the article

  • My Code Kata–A Solution Kata

    - by Glav
    There are many developers and coders out there who like to do code Kata’s to keep their coding ability up to scratch and to practice their skills. I think it is a good idea. While I like the concept, I find them dead boring and of minimal purpose. Yes, they serve to hone your skills but that’s about it. They are often quite abstract, in that they usually focus on a small problem set requiring specific solutions. It is fair enough as that is how they are designed but again, I find them quite boring. What I personally like to do is go for something a little larger and a little more fun. It takes a little more time and is not as easily executed as a kata though, but it services the same purposes from a practice perspective and allows me to continue to solve some problems that are not directly part of the initial goal. This means I can cover a broader learning range and have a bit more fun. If I am lucky, sometimes they even end up being useful tools. With that in mind, I thought I’d share my current ‘kata’. It is not really a code kata as it is too big. I prefer to think of it as a ‘solution kata’. The code is on bitbucket here. What I wanted to do was create a kind of simplistic virtual world where I can create a player, or a class, stuff it into the world, and see if it survives, and can navigate its way to the exit. Requirements were pretty simple: Must be able to define a map to describe the world using simple X,Y co-ordinates. Z co-ordinates as well if you feel like getting clever. Should have the concept of entrances, exists, solid blocks, and potentially other materials (again if you want to get clever). A coder should be able to easily write a class which will act as an inhabitant of the world. An inhabitant will receive stimulus from the world in the form of surrounding environment and be able to make a decision on action which it passes back to the ‘world’ for processing. At a minimum, an inhabitant will have sight and speed characteristics which determine how far they can ‘see’ in the world, and how fast they can move. Coders who write a really bad ‘inhabitant’ should not adversely affect the rest of world. Should allow multiple inhabitants in the world. So that was the solution I set out to act as a practice solution and a little bit of fun. It had some interesting problems to solve and I figured, if it turned out ok, I could potentially use this as a ‘developer test’ for interviews. Ask a potential coder to write a class for an inhabitant. Show the coder the map they will navigate, but also mention that we will use their code to navigate a map they have not yet seen and a little more complex. I have been playing with solution for a short time now and have it working in basic concepts. Below is a screen shot using a very basic console visualiser that shows the map, boundaries, blocks, entrance, exit and players/inhabitants. The yellow asterisks ‘*’ are the players, green ‘O’ the entrance, purple ‘^’ the exit, maroon/browny ‘#’ are solid blocks. The players can move around at different speeds, knock into each others, and make directional movement decisions based on what they see and who is around them. It has been quite fun to write and it is also quite fun to develop different players to inject into the world. The code below shows a really simple implementation of an inhabitant that can work out what to do based on stimulus from the world. It is pretty simple and just tries to move in some direction if there is nothing blocking the path. public class TestPlayer:LivingEntity { public TestPlayer() { Name = "Beta Boy"; LifeKey = Guid.NewGuid(); } public override ActionResult DecideActionToPerform(EcoDev.Core.Common.Actions.ActionContext actionContext) { try { var action = new MovementAction(); // move forward if we can if (actionContext.Position.ForwardFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.ForwardFacingPositions[0])) { action.DirectionToMove = MovementDirection.Forward; return action; } } if (actionContext.Position.LeftFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.LeftFacingPositions[0])) { action.DirectionToMove = MovementDirection.Left; return action; } } if (actionContext.Position.RearFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.RearFacingPositions[0])) { action.DirectionToMove = MovementDirection.Back; return action; } } if (actionContext.Position.RightFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.RightFacingPositions[0])) { action.DirectionToMove = MovementDirection.Right; return action; } } return action; } catch (Exception ex) { World.WriteDebugInformation("Player: "+ Name, string.Format("Player Generated exception: {0}",ex.Message)); throw ex; } } private bool CheckAccessibilityOfMapBlock(MapBlock block) { if (block == null || block.Accessibility == MapBlockAccessibility.AllowEntry || block.Accessibility == MapBlockAccessibility.AllowExit || block.Accessibility == MapBlockAccessibility.AllowPotentialEntry) { return true; } return false; } } It is simple and it seems to work well. The world implementation itself decides the stimulus context that is passed to he inhabitant to make an action decision. All movement is carried out on separate threads and timed appropriately to be as fair as possible and to cater for additional skills such as speed, and eventually maybe stamina, strength, with actions like fighting. It is pretty fun to make up random maps and see how your inhabitant does. You can download the code from here. Along the way I have played with parallel extensions to make the compute intensive stuff spread across all cores, had to heavily factor in visibility of methods and properties so design of classes was paramount, work out movement algorithms that play fairly in the world and properly favour the players with higher abilities, as well as a host of other issues. So that is my ‘solution kata’. If I keep going with it, I may develop a web interface for it where people can upload assemblies and watch their player within a web browser visualiser and maybe even a map designer. What do you do to keep the fires burning?

    Read the article

  • Learning content for MCSDs: Web Applications and Windows Store Apps using HTML5

    Recently, I started again to learn for various Microsoft certifications. First candidate on my way to MSCD: Web Applications is the Exam 70-480: Programming in HTML5 with JavaScript and CSS3. Motivation to go for a Microsoft exam I guess, this is quite personal but let me briefly describe my intentions to go that exam. First, I'm doing web development since the 1990's. Working with HTML, CSS and Javascript is happening almost daily in my workspace. And honestly, I do not only do 'pure' web development but already integrated several HTML/CSS/Javascript frontend UIs into an existing desktop application (written in Visual FoxPro) inclusive two-way communication and data exchange. Hm, might be an interesting topic for another blog article here... Second, this exam has a very interesting aspect which is listed at the bottom of the exam's details: Credit Toward Certification When you pass Exam 70-480: Programming in HTML5 with JavaScript and CSS3, you complete the requirements for the following certification(s): Programming in HTML5 with JavaScript and CSS3 Specialist Exam 70-480: Programming in HTML5 with JavaScript and CSS3: counts as credit toward the following certification(s): MCSD: Web Applications MCSD: Windows Store Apps using HTML5 So, passing one single exam will earn you specialist certification straight-forward, and opens the path to higher levels of certifications. Preparations and learning path Well, due to a newsletter from Microsoft Learning (MSL) I caught interest in picking up the circumstances and learning materials for this particular exam. As of writing this article there is a promotional / voucher code available which enables you to register for this exam for free! Simply register yourself with or log into your existing account at Prometric, choose the exam for a testing facility near to you and enter the voucher code HTMLJMP (available through 31.03.2013 or while supplies last). Hurry up, there are restrictions... As stated above, I'm already very familiar with web development and the programming flavours involved into this. But of course, it is always good to freshen up your knowledge and reflect on yourself. Microsoft is putting a lot of effort to attract any kind of developers into the 'App Development'. Whether it is for the Windows 8 Store or the Windows Phone 8 Store, doesn't really matter. They simply need more apps. This demand for skilled developers also comes with a nice side-effect: Lots and lots of material to study. During the first couple of hours, I could easily gather high quality preparation material - again for free! Following is just a small list of starting points. If you have more resources, please drop me a message in the comment section, and I'll be glad to update this article accordingly. Developing HTML5 Apps Jump Start This is an accelerated jump start video course on development of HTML5 Apps for Windows 8. There are six modules that are split into two video sessions per module. Very informative and intense course material. This is packed stuff taken from an official preparation course for exam 70-480. Developing Windows Store Apps with HTML5 Jump Start Again, an accelerated preparation video course on Windows 8 Apps. There are six modules with two video sessions each which will catapult you to your exam. This is also related to preps for exam 70-481. Programming Windows 8 Apps with HTML, CSS, and JavaScript Kraig Brockschmidt delves into the ups and downs of Windows 8 App development over 800+ pages. Great eBook to read, study, and to practice the samples - best of all, it's for free. codeSHOW() This is a Windows 8 HTML/JS project with the express goal of demonstrating simple development concepts for the Windows 8 platform. Code, code and more code... absolutely great stuff to study and practice. Microsoft Virtual Academy I already wrote about the MVA in a previous article. Well, if you haven't registered yourself yet, now is the time. The list is not complete for sure, but this might keep you busy for at least one or even two weeks to go through the material. Please don't hesitate to add more resources in the comment section. Right now, I'm already through all videos once, and digging my way through chapter 4 of Kraig's book. Additional material - Pluralsight Apart from those free online resources, I also following some courses from the excellent library of Pluralsight. They already have their own section for Windows 8 development, but of course, you get companion material about HTML5, CSS and Javascript in other sections, too. Introduction to Building Windows 8 Applications Building Windows 8 Applications with JavaScript and HTML Selling Windows 8 Apps HTML5 Fundamentals Using HTML5 and CSS3 HTML5 Advanced Topics CSS3 etc... Interesting to see that Michael Palermo provides his course material on multiple platforms. Fantastic! You might also pay a visit to his personal blog. Hm, it just came to my mind that Aaron Skonnard of Pluralsight publishes so-called '24 hours Learning Paths' based on courses available in the course library. Would be interested to see a combination for Windows 8 App development using HTML5, CSS3 and Javascript in the future. Recommended workspace environment Well, you might have guessed it but this requires Windows 8, Visual Studio 2012 Express or another flavour, and a valid Developers License. Due to an MSDN subscription I working on VS 2012 Premium with some additional tools by Telerik. Honestly, the fastest way to get you up and running for Windows 8 App development is the source code archive of codeSHOW(). It does not only give you all source code in general but contains a couple of SDKs like Bing Maps, Microsoft Advertising, Live ID, and Telerik Windows 8 controls... for free! Hint: Get the Windows Phone 8 SDK as well. Don't worry, while you are studying the material for Windows 8 you will be able to leverage from this knowledge to development for the phone platform, too. It takes roughly one to two hours to get your workspace and learning environment, at least this was my time frame due to slow internet connection and an aged spare machine. ;-) Oh, before I forget to mention it, as soon as you're done, go quickly to the Windows Store and search for ClassBrowserPlus. You might not need it ad hoc for your development using HTML5, CSS and Javascript but I think that it is a great developer's utility that enables you to view the properties, methods and events (along with help text) for all Windows 8 classes. It's always good to look behind the scenes and to explore how it is made. Idea: Start/join a learning group The way you learn new things or intensify your knowledge in a certain technology is completely up to your personal preference. Back in my days at the university, we used to meet once or twice a week in a small quiet room to exchange our progress, questions and problems we ran into. In general, I recommend to any software craftsman to lift your butt and get out to exchange with other developers. Personally, I like this approach, as it gives you new points of view and an insight into others' own experience with certain techniques and how they managed to solve tricky issues. Just keep it relaxed and not too formal after all, and you might a have a good time away from your dull office desk. Give your machine a break, too.

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • SQL SERVER – Thinking about Deprecated, Discontinued Features and Breaking Changes while Upgrading to SQL Server 2012 – Guest Post by Nakul Vachhrajani

    - by pinaldave
    Nakul Vachhrajani is a Technical Specialist and systems development professional with iGATE having a total IT experience of more than 7 years. Nakul is an active blogger with BeyondRelational.com (150+ blogs), and can also be found on forums at SQLServerCentral and BeyondRelational.com. Nakul has also been a guest columnist for SQLAuthority.com and SQLServerCentral.com. Nakul presented a webcast on the “Underappreciated Features of Microsoft SQL Server” at the Microsoft Virtual Tech Days Exclusive Webcast series (May 02-06, 2011) on May 06, 2011. He is also the author of a research paper on Database upgrade methodologies, which was published in a CSI journal, published nationwide. In addition to his passion about SQL Server, Nakul also contributes to the academia out of personal interest. He visits various colleges and universities as an external faculty to judge project activities being carried out by the students. Disclaimer: The opinions expressed herein are his own personal opinions and do not represent his employer’s view in anyway. Blog | LinkedIn | Twitter | Google+ Let us hear the thoughts of Nakul in first person - Those who have been following my blogs would be aware that I am recently running a series on the database engine features that have been deprecated in Microsoft SQL Server 2012. Based on the response that I have received, I was quite surprised to know that most of the audience found these to be breaking changes, when in fact, they were not! It was then that I decided to write a little piece on how to plan your database upgrade such that it works with the next version of Microsoft SQL Server. Please note that the recommendations made in this article are high-level markers and are intended to help you think over the specific steps that you would need to take to upgrade your database. Refer the documentation – Understand the terms Change is the only constant in this world. Therefore, whenever customer requirements, newer architectures and designs require software vendors to make a change to the keywords, functions, etc; they ensure that they provide their end users sufficient time to migrate over to the new standards before dropping off the old ones. Microsoft does that too with it’s Microsoft SQL Server product. Whenever a new SQL Server release is announced, it comes with a list of the following features: Breaking changes These are changes that would break your currently running applications, scripts or functionalities that are based on earlier version of Microsoft SQL Server These are mostly features whose behavior has been changed keeping in mind the newer architectures and designs Lesson: These are the changes that you need to be most worried about! Discontinued features These features are no longer available in the associated version of Microsoft SQL Server These features used to be “deprecated” in the prior release Lesson: Without these changes, your database would not be compliant/may not work with the version of Microsoft SQL Server under consideration Deprecated features These features are those that are still available in the current version of Microsoft SQL Server, but are scheduled for removal in a future version. These may be removed in either the next version or any other future version of Microsoft SQL Server The features listed for deprecation will compose the list of discontinued features in the next version of SQL Server Lesson: Plan to make necessary changes required to remove/replace usage of the deprecated features with the latest recommended replacements Once a feature appears on the list, it moves from bottom to the top, i.e. it is first marked as “Deprecated” and then “Discontinued”. We know of “Breaking change” comes later on in the product life cycle. What this means is that if you want to know what features would not work with SQL Server 2012 (and you are currently using SQL Server 2008 R2), you need to refer the list of breaking changes and discontinued features in SQL Server 2012. Use the tools! There are a lot of tools and technologies around us, but it is rarely that I find teams using these tools religiously and to the best of their potential. Below are the top two tools, from Microsoft, that I use every time I plan a database upgrade. The SQL Server Upgrade Advisor Ever since SQL Server 2005 was announced, Microsoft provides a small, very light-weight tool called the “SQL Server upgrade advisor”. The upgrade advisor analyzes installed components from earlier versions of SQL Server, and then generates a report that identifies issues to fix either before or after you upgrade. The analysis examines objects that can be accessed, such as scripts, stored procedures, triggers, and trace files. Upgrade Advisor cannot analyze desktop applications or encrypted stored procedures. Refer the links towards the end of the post to know how to get the Upgrade Advisor. The SQL Server Profiler Another great tool that you can use is the one most SQL Server developers & administrators use often – the SQL Server profiler. SQL Server Profiler provides functionality to monitor the “Deprecation” event, which contains: Deprecation announcement – equivalent to features to be deprecated in a future release of SQL Server Deprecation final support – equivalent to features to be deprecated in the next release of SQL Server You can learn more using the links towards the end of the post. A basic checklist There are a lot of finer points that need to be taken care of when upgrading your database. But, it would be worth-while to identify a few basic steps in order to make your database compliant with the next version of SQL Server: Monitor the current application workload (on a test bed) via the Profiler in order to identify usage of features marked as Deprecated If none appear, you are all set! (This almost never happens) Note down all the offending queries and feature usages Run analysis sessions using the SQL Server upgrade advisor on your database Based on the inputs from the analysis report and Profiler trace sessions, Incorporate solutions for the breaking changes first Next, incorporate solutions for the discontinued features Revisit and document the upgrade strategy for your deployment scenarios Revisit the fall-back, i.e. rollback strategies in case the upgrades fail Because some programming changes are dependent upon the SQL server version, this may need to be done in consultation with the development teams Before any other enhancements are incorporated by the development team, send out the database changes into QA QA strategy should involve a comparison between an environment running the old version of SQL Server against the new one Because minimal application changes have gone in (essential changes for SQL Server version compliance only), this would be possible As an ongoing activity, keep incorporating changes recommended as per the deprecated features list As a DBA, update your coding standards to ensure that the developers are using ANSI compliant code – this code will require a change only if the ANSI standard changes Remember this: Change management is a continuous process. Keep revisiting the product release notes and incorporate recommended changes to stay prepared for the next release of SQL Server. May the power of SQL Server be with you! Links Referenced in this post Breaking changes in SQL Server 2012: Link Discontinued features in SQL Server 2012: Link Get the upgrade advisor from the Microsoft Download Center at: Link Upgrade Advisor page on MSDN: Link Profiler: Review T-SQL code to identify objects no longer supported by Microsoft: Link Upgrading to SQL Server 2012 by Vinod Kumar: Link Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Upgrade

    Read the article

  • The Shift: how Orchard painlessly shifted to document storage, and how it’ll affect you

    - by Bertrand Le Roy
    We’ve known it all along. The storage for Orchard content items would be much more efficient using a document database than a relational one. Orchard content items are composed of parts that serialize naturally into infoset kinds of documents. Storing them as relational data like we’ve done so far was unnatural and requires the data for a single item to span multiple tables, related through 1-1 relationships. This means lots of joins in queries, and a great potential for Select N+1 problems. Document databases, unfortunately, are still a tough sell in many places that prefer the more familiar relational model. Being able to x-copy Orchard to hosters has also been a basic constraint in the design of Orchard. Combine those with the necessity at the time to run in medium trust, and with license compatibility issues, and you’ll find yourself with very few reasonable choices. So we went, a little reluctantly, for relational SQL stores, with the dream of one day transitioning to document storage. We have played for a while with the idea of building our own document storage on top of SQL databases, and Sébastien implemented something more than decent along those lines, but we had a better way all along that we didn’t notice until recently… In Orchard, there are fields, which are named properties that you can add dynamically to a content part. Because they are so dynamic, we have been storing them as XML into a column on the main content item table. This infoset storage and its associated API are fairly generic, but were only used for fields. The breakthrough was when Sébastien realized how this existing storage could give us the advantages of document storage with minimal changes, while continuing to use relational databases as the substrate. public bool CommercialPrices { get { return this.Retrieve(p => p.CommercialPrices); } set { this.Store(p => p.CommercialPrices, value); } } This code is very compact and efficient because the API can infer from the expression what the type and name of the property are. It is then able to do the proper conversions for you. For this code to work in a content part, there is no need for a record at all. This is particularly nice for site settings: one query on one table and you get everything you need. This shows how the existing infoset solves the data storage problem, but you still need to query. Well, for those properties that need to be filtered and sorted on, you can still use the current record-based relational system. This of course continues to work. We do however provide APIs that make it trivial to store into both record properties and the infoset storage in one operation: public double Price { get { return Retrieve(r => r.Price); } set { Store(r => r.Price, value); } } This code looks strikingly similar to the non-record case above. The difference is that it will manage both the infoset and the record-based storages. The call to the Store method will send the data in both places, keeping them in sync. The call to the Retrieve method does something even cooler: if the property you’re looking for exists in the infoset, it will return it, but if it doesn’t, it will automatically look into the record for it. And if that wasn’t cool enough, it will take that value from the record and store it into the infoset for the next time it’s required. This means that your data will start automagically migrating to infoset storage just by virtue of using the code above instead of the usual: public double Price { get { return Record.Price; } set { Record.Price = value; } } As your users browse the site, it will get faster and faster as Select N+1 issues will optimize themselves away. If you preferred, you could still have explicit migration code, but it really shouldn’t be necessary most of the time. If you do already have code using QueryHints to mitigate Select N+1 issues, you might want to reconsider those, as with the new system, you’ll want to avoid joins that you don’t need for filtering or sorting, further optimizing your queries. There are some rare cases where the storage of the property must be handled differently. Check out this string[] property on SearchSettingsPart for example: public string[] SearchedFields { get { return (Retrieve<string>("SearchedFields") ?? "") .Split(new[] {',', ' '}, StringSplitOptions.RemoveEmptyEntries); } set { Store("SearchedFields", String.Join(", ", value)); } } The array of strings is transformed by the property accessors into and from a comma-separated list stored in a string. The Retrieve and Store overloads used in this case are lower-level versions that explicitly specify the type and name of the attribute to retrieve or store. You may be wondering what this means for code or operations that look directly at the database tables instead of going through the new infoset APIs. Even if there is a record, the infoset version of the property will win if it exists, so it is necessary to keep the infoset up-to-date. It’s not very complicated, but definitely something to keep in mind. Here is what a product record looks like in Nwazet.Commerce for example: And here is the same data in the infoset: The infoset is stored in Orchard_Framework_ContentItemRecord or Orchard_Framework_ContentItemVersionRecord, depending on whether the content type is versionable or not. A good way to find what you’re looking for is to inspect the record table first, as it’s usually easier to read, and then get the item record of the same id. Here is the detailed XML document for this product: <Data> <ProductPart Inventory="40" Price="18" Sku="pi-camera-box" OutOfStockMessage="" AllowBackOrder="false" Weight="0.2" Size="" ShippingCost="null" IsDigital="false" /> <ProductAttributesPart Attributes="" /> <AutoroutePart DisplayAlias="camera-box" /> <TitlePart Title="Nwazet Pi Camera Box" /> <BodyPart Text="[...]" /> <CommonPart CreatedUtc="2013-09-10T00:39:00Z" PublishedUtc="2013-09-14T01:07:47Z" /> </Data> The data is neatly organized under each part. It is easy to see how that document is all you need to know about that content item, all in one table. If you want to modify that data directly in the database, you should be careful to do it in both the record table and the infoset in the content item record. In this configuration, the record is now nothing more than an index, and will only be used for sorting and filtering. Of course, it’s perfectly fine to mix record-backed properties and record-less properties on the same part. It really depends what you think must be sorted and filtered on. In turn, this potentially simplifies migrations considerably. So here it is, the great shift of Orchard to document storage, something that Orchard has been designed for all along, and that we were able to implement with a satisfying and surprising economy of resources. Expect this code to make its way into the 1.8 version of Orchard when that’s available.

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • At most how many customized P3 attributes could be added into Agile?

    - by Jie Chen
    I have one customer/Oracle Partner Consultant asking me such question: how many customized attributes can be allowed to add to Agile's subclass Page Three? I never did research against this because Agile User Guide never says this and theoretically Agile supports unlimited amount of customized attributes, unless the browser itself cannot handle them in allocated memory. However my customers says when to add almost 1000 attributes, the browser (Web Client) will not show any Page Three attributes, including all the out-of-box attributes. Let's see why. Analysis It is horrible to add 1000 attributes manually. Let's do it by a batch SQL like below to add them to Item's subclass Page Three tab. Do not execute below SQL because it will not take effect due to your different node id. CREATE OR REPLACE PROCEDURE createP3Text(v_name IN VARCHAR2) IS v_nid NUMBER; v_pid NUMBER; BEGIN select SEQNODETABLE.nextval into v_nid from dual; Insert Into nodeTable ( id,parentID,description,objType,inherit,helpID,version,name ) values ( v_nid,2473003, v_name ,1,0,0,0, v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,925, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,1,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,2,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,2,0,1,3,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,5, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,1,6,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,0,7,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,8,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,9,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,1,10,v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,11,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,11743,1,14,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,30, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,38, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,59,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,60,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,724,0,61, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,232,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,233,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,12239,1,415,'13307'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,605,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,610,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,716,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,795,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,2000008821,1,864,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,923,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,0,719,'0'); Insert Into tableInfo ( tabID,tableID,classID,att,ordering ) values ( 2473005,1501,2473002,v_nid,9999); commit; END createP3Text; / BEGIN FOR i in 1..1000 LOOP createP3Text('MyText' || i); END LOOP; END; / DROP PROCEDURE createP3Text; COMMIT; Now restart Agile Server and check the Server's log, we noticed below: ***** Node Created : 85625 ***** Property Created : 184579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ However the previously log before batch SQL is ***** Node Created : 84625 ***** Property Created : 157579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ Obviously we successfully imported 1000 (85625-84625) attributes. Now go to JavaClient and confirm if we have them or not. Theoretically we are able to open such item object and see all these 1000 attributes and their values, but we get below error. We have no error tips in server log. But never mind we have the Java Console for JavaClient. If to open the same item in JavaClient we get a clear error and detailed trace in Java Console. ORA-01795: maximum number of expressions in a list is 1000 java.sql.SQLException: ORA-01795: maximum number of expressions in a list is 1000 at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:125) ... ... at weblogic.jdbc.wrapper.PreparedStatement.executeQuery(PreparedStatement.java:128) at com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable(AgileFlexUtil.java:1104) at com.agile.pc.cmserver.base.BaseFlexTableDAO.loadExtraFlexAttValues(BaseFlexTableDAO.java:111) at com.agile.pc.cmserver.base.BasePageThreeDAO.loadTable(BasePageThreeDAO.java:108) If you are interested in the background of the problem, you may de-compile the class com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable and find the root cause that Agile happens to hit Oracle Database's limitation that more than 1000 values in the "IN" clause. Check here http://ora-01795.ora-code.com If you need Oracle Agile's final solution, please contact Oracle Agile Support. Performance Below two screenshot are jvm heap usage from before-SQL and after-SQL. We can see there is no big memory gap between two cases. So definitely there is no performance impact to Agile Application Server unless you have more than 1000 attributes for EACH of your dozens of  subclasses. And for client, 1000 attributes should not impact the browser's performance because in HTML we only use dt and dd for each attribute's pair: label and value. It is quite lightweight.

    Read the article

  • Working With Extended Events

    - by Fatherjack
    SQL Server 2012 has made working with Extended Events (XE) pretty simple when it comes to what sessions you have on your servers and what options you have selected and so forth but if you are like me then you still have some SQL Server instances that are 2008 or 2008 R2. For those servers there is no built-in way to view the Extended Event sessions in SSMS. I keep coming up against the same situations – Where are the xel log files? What events, actions or predicates are set for the events on the server? What sessions are there on the server already? I got tired of this being a perpetual question and wrote some TSQL to save as a snippet in SQL Prompt so that these details are permanently only a couple of clicks away. First, some history. If you just came here for the code skip down a few paragraphs and it’s all there. If you want a little time to reminisce about SQL Server then stick with me through the next paragraph or two. We are in a bit of a cross-over period currently, there are many versions of SQL Server but I would guess that SQL Server 2008, 2008 R2 and 2012 comprise the majority of installations. With each of these comes a set of management tools, of which SQL Server Management Studio (SSMS) is one. In 2008 and 2008 R2 Extended Events made their first appearance and there was no way to work with them in the SSMS interface. At some point the Extended Events guru Jonathan Kehayias (http://www.sqlskills.com/blogs/jonathan/) created the SQL Server 2008 Extended Events SSMS Addin which is really an excellent tool to ease XE session administration. This addin will install in SSMS 2008 or 2008R2 but not SSMS 2012. If you use a compatible version of SSMS then I wholly recommend downloading and using it to make your work with XE much easier. If you have SSMS 2012 installed, and there is no reason not to as it will let you work with all versions of SQL Server, then you cannot install this addin. If you are working with SQL Server 2012 then SSMS 2012 has built in functionality to manage XE sessions – this functionality does not apply for 2008 or 2008 R2 instances though. This means you are somewhat restricted and have to use TSQL to manage XE sessions on older versions of SQL Server. OK, those of you that skipped ahead for the code, you need to start from here: So, you are working with SSMS 2012 but have a SQL Server that is an earlier version that needs an XE session created or you think there is a session created but you aren’t sure, or you know it’s there but can’t remember if it is running and where the output is going. How do you find out? Well, none of the information is hidden as such but it is a bit of a wrangle to locate it and it isn’t a lot of code that is unlikely to remain in your memory. I have created two pieces of code. The first examines the SYS.Server_Event_… management views in combination with the SYS.DM_XE_… management views to give the name of all sessions that exist on the server, regardless of whether they are running or not and two pieces of TSQL code. One piece will alter the state of the session: if the session is running then the code will stop the session if executed and vice versa. The other piece of code will drop the selected session. If the session is running then the code will stop it first. Do not execute the DROP code unless you are sure you have the Create code to hand. It will be dropped from the server without a second chance to change your mind. /**************************************************************/ /***   To locate and describe event sessions on a server    ***/ /***                                                        ***/ /***   Generates TSQL to start/stop/drop sessions           ***/ /***                                                        ***/ /***        Jonathan Allen - @fatherjack                    ***/ /***                 June 2013                                ***/ /***                                                        ***/ /**************************************************************/ SELECT  [EES].[name] AS [Session Name - all sessions] ,         CASE WHEN [MXS].[name] IS NULL THEN ISNULL([MXS].[name], 'Stopped')              ELSE 'Running'         END AS SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'ALTER EVENT SESSION [' + [EES].[name]                          + '] ON SERVER STATE = START;')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP;'         END AS ALTER_SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'DROP EVENT SESSION [' + [EES].[name]                          + '] ON SERVER; -- This WILL drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP; ' + CHAR(10)                   + '-- DROP EVENT SESSION [' + [EES].[name]                   + '] ON SERVER; -- This WILL stop and drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.'         END AS DROP_Session FROM    [sys].[server_event_sessions] AS EES         LEFT JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name] WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) ORDER BY SessionState GO I have excluded the system_health and AlwaysOn sessions as I don’t want to accidentally execute the drop script for these sessions that are created as part of the SQL Server installation. It is possible to recreate the sessions but that is a whole lot of aggravation I’d rather avoid. The second piece of code gathers details of running XE sessions only and provides information on the Events being collected, any predicates that are set on those events, the actions that are set to be collected, where the collected information is being logged and if that logging is to a file target, where that file is located. /**********************************************/ /***    Running Session summary                ***/ /***                                        ***/ /***    Details key values of XE sessions     ***/ /***    that are in a running state            ***/ /***                                        ***/ /***        Jonathan Allen - @fatherjack    ***/ /***        June 2013                        ***/ /***                                        ***/ /**********************************************/ SELECT  [EES].[name] AS [Session Name - running sessions] ,         [EESE].[name] AS [Event Name] ,         COALESCE([EESE].[predicate], 'unfiltered') AS [Event Predicate Filter(s)] ,         [EESA].[Action] AS [Event Action(s)] ,         [EEST].[Target] AS [Session Target(s)] ,         ISNULL([EESF].[value], 'No file target in use') AS [File_Target_UNC] -- select * FROM    [sys].[server_event_sessions] AS EES         INNER JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name]         INNER JOIN [sys].[server_event_session_events] AS [EESE] ON [EES].[event_session_id] = [EESE].[event_session_id]         LEFT JOIN [sys].[server_event_session_fields] AS EESF ON ( [EES].[event_session_id] = [EESF].[event_session_id]                                                               AND [EESF].[name] = 'filename'                                                               )         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + sest.name                                         FROM    [sys].[server_event_session_targets]                                                 AS SEST                                         WHERE   [EES].[event_session_id] = [SEST].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Target]                     ) AS EEST         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + [sesa].NAME                                         FROM    [sys].[server_event_session_actions]                                                 AS sesa                                         WHERE   [sesa].[event_session_id] = [EES].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Action]                     ) AS EESA WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) /*Optional to exclude 'out-of-the-box' traces*/ I hope that these scripts are useful to you and I would be obliged if you would keep my name in the script comments. I have no problem with you using it in production or personal circumstances, however it has no warranty or guarantee. Don’t use it unless you understand it and are happy with what it is going to do. I am not ever responsible for the consequences of executing this script on your servers.

    Read the article

  • Recap: Oracle Fusion Middleware Strategies Driving Business Innovation

    - by Harish Gaur
    Hasan Rizvi, Executive Vice President of Oracle Fusion Middleware & Java took the stage on Tuesday to discuss how Oracle Fusion Middleware helps enable business innovation. Through a series of product demos and customer showcases, Hassan demonstrated how Oracle Fusion Middleware is a complete platform to harness the latest technological innovations (cloud, mobile, social and Fast Data) throughout the application lifecycle. Fig 1: Oracle Fusion Middleware is the foundation of business innovation This Session included 4 demonstrations to illustrate these strategies: 1. Build and deploy native mobile applications using Oracle ADF Mobile 2. Empower business user to model processes, design user interface and have rich mobile experience for process interaction using Oracle BPM Suite PS6. 3. Create collaborative user experience and integrate social sign-on using Oracle WebCenter Portal, Oracle WebCenter Content, Oracle Social Network & Oracle Identity Management 11g R2 4. Deploy and manage business applications on Oracle Exalogic Nike, LA Department of Water & Power and Nintendo joined Hasan on stage to share how their organizations are leveraging Oracle Fusion Middleware to enable business innovation. Managing Performance in the Wrld of Social and Mobile How do you provide predictable scalability and performance for an application that monitors active lifestyle of 8 million users on a daily basis? Nike’s answer is Oracle Coherence, a component of Oracle Fusion Middleware and Oracle Exadata. Fig 2: Oracle Coherence enabled data grid improves performance of Nike+ Digital Sports Platform Nicole Otto, Sr. Director of Consumer Digital Technology discussed the vision of the Nike+ platform, a platform which represents a shift for NIKE from a  "product"  to  a "product +" experience.  There are currently nearly 8 million users in the Nike+ system who are using digitally-enabled Nike+ devices.  Once data from the Nike+ device is transmitted to Nike+ application, users access the Nike+ website or via the Nike mobile applicatoin, seeing metrics around their daily active lifestyle and even engage in socially compelling experiences to compare, compete or collaborate their data with their friends. Nike expects the number of users to grow significantly this year which will drive an explosion of data and potential new experiences. To deal with this challenge, Nike envisioned building a shared platform that would drive a consumer-centric model for the company. Nike built this new platform using Oracle Coherence and Oracle Exadata. Using Coherence, Nike built a data grid tier as a distributed cache, thereby provide low-latency access to most recent and relevant data to consumers. Nicole discussed how Nike+ Digital Sports Platform is unique in the way that it utilizes the Coherence Grid.  Nike takes advantage of Coherence as a traditional cache using both cache-aside and cache-through patterns.  This new tier has enabled Nike to create a horizontally scalable distributed event-driven processing architecture. Current data grid volume is approximately 150,000 request per minute with about 40 million objects at any given time on the grid. Improving Customer Experience Across Multiple Channels Customer experience is on top of every CIO's mind. Customer Experience needs to be consistent and secure across multiple devices consumers may use.  This is the challenge Matt Lampe, CIO of Los Angeles Department of Water & Power (LADWP) was faced with. Despite being the largest utilities company in the country, LADWP had been relying on a 38 year old customer information system for serving its customers. Their prior system  had been unable to keep up with growing customer demands. Last year, LADWP embarked on a journey to improve customer experience for 1.6million LA DWP customers using Oracle WebCenter platform. Figure 3: Multi channel & Multi lingual LADWP.com built using Oracle WebCenter & Oracle Identity Management platform Matt shed light on his efforts to drive customer self-service across 3 dimensions – new website, new IVR platform and new bill payment service. LADWP has built a new portal to increase customer self-service while reducing the transactions via IVR. LADWP's website is powered Oracle WebCenter Portal and is accessible by desktop and mobile devices. By leveraging Oracle WebCenter, LADWP eliminated the need to build, format, and maintain individual mobile applications or websites for different devices. Their entire content is managed using Oracle WebCenter Content and secured using Oracle Identity Management. This new portal automated their paper based processes to web based workflows for customers. This includes automation of Self Service implemented through My Account -  like Bill Pay, Payment History, Bill History and Usage Analysis. LADWP's solution went live in April 2012. Matt indicated that LADWP's Self-Service Portal has greatly improved customer satisfaction.  In a JD Power Associates website satisfaction survey, results indicate rankings have climbed by 25+ points, marking a remarkable increase in user experience. Bolstering Performance and Simplifying Manageability of Business Applications Ingvar Petursson, Senior Vice Preisdent of IT at Nintendo America joined Hasan on-stage to discuss their choice of Exalogic. Nintendo had significant new requirements coming their way for business systems, both internal and external, in the years to come, especially with new products like the WiiU on the horizon this holiday season. Nintendo needed a platform that could give them performance, availability and ease of management as they deploy business systems. Ingvar selected Engineered Systems for two reasons: 1. High performance  2. Ease of management Figure 4: Nintendo relies on Oracle Exalogic to run ATG eCommerce, Oracle e-Business Suite and several business applications Nintendo made a decision to run their business applications (ATG eCommerce, E-Business Suite) and several Fusion Middleware components on the Exalogic platform. What impressed Ingvar was the "stress” testing results during evaluation. Oracle Exalogic could handle their 3-year load estimates for many functions, which was better than Nintendo expected without any hardware expansion. Faster Processing of Big Data Middleware plays an increasingly important role in Big Data. Last year, we announced at OpenWorld the introduction of Oracle Data Integrator for Hadoop and Oracle Loader for Hadoop which helps in the ability to move, transform, load data to and from Big Data Appliance to Exadata.  This year, we’ve added new capabilities to find, filter, and focus data using Oracle Event Processing. This product can natively integrate with Big Data Appliance or runs standalone. Hasan briefly discussed how NTT Docomo, largest mobile operator in Japan, leverages Oracle Event Processing & Oracle Coherence to process mobile data (from 13 million smartphone users) at a speed of 700K events per second before feeding it Hadoop for distributed processing of big data. Figure 5: Mobile traffic data processing at NTT Docomo with Oracle Event Processing & Oracle Coherence    

    Read the article

  • Emit Knowledge - social network for knowledge sharing

    - by hajan
    Emit Knowledge, as the words refer - it's a social network for emitting / sharing knowledge from users by users. Those who can benefit the most out of this network is perhaps all of YOU who have something to share with others and contribute to the knowledge world. I've been closely communicating with the core team of this very, very interesting, brand new social network (with specific purpose!) about the concept, idea and the vision they have for their product and I can say with a lot of confidence that this network has real potential to become something from which we will all benefit. I won't speak much about that and would prefer to give you link and try it yourself - http://www.emitknowledge.com Mainly, through the past few months I've been testing this network and it is getting improved all the time. The user experience is great, you can easily find out what you need and it follows some known patterns that are common for all social networks. They have some real good ideas and plans that are already under development for the next updates of their product. You can do micro blogging or you can do regular normal blogging… it’s up to you, and the way it works, it is seamless. Here is a short Question and Answers (QA) interview I made with the lead of the team, Marijan Nikolovski: 1. Can you please explain us briefly, what is Emit Knowledge? Emit Knowledge is a brand new knowledge based social network, delivering quality content from users to users. We believe that people’s knowledge, experience and professional thoughts compose quality content, worth sharing among millions around the world. Therefore, we created the platform that matches people’s need to share and gain knowledge in the most suitable and comfortable way. Easy to work with, Emit Knowledge lets you to smoothly craft and emit knowledge around the globe. 2. How 'old' is Emit Knowledge? In hamster’s years we are almost five years old start-up :). Just kidding. We’ve released our public beta about three months ago. Our official release date is 27 of June 2012. 3. How did you come up with this idea? Everything started from a simple idea to solve a complex problem. We’ve seen that the social web has become polluted with data and is on the right track to lose its base principles – socialization and common cause. That was our start point. We’ve gathered the team, drew some sketches and started to mind map the idea. After several idea refactoring’s Emit Knowledge was born. 4. Is there any competition out there in the market? Currently we don't have any competitors that share the same cause. What makes our platform different is the ideology that our product promotes and the functionalities that our platform offers for easy socialization based on interests and knowledge sharing. 5. What are the main technologies used to build Emit Knowledge? Emit Knowledge was built on a heterogeneous pallet of technologies. Currently, we have four of separation: UI – Built on ASP.NET MVC3 and Knockout.js; Messaging infrastructure – Build on top of RabbitMQ; Background services – Our in-house solution for job distribution, orchestration and processing; Data storage – Build on top of MongoDB; What are the main reasons you've chosen ASP.NET MVC? Since all of our team members are .NET engineers, the decision was very natural. ASP.NET MVC is the only Microsoft web stack that sticks to the HTTP behavioral standards. It is easy to work with, have a tiny learning curve and everyone who is familiar with the HTTP will understand its architecture and convention without any difficulties. 6. What are the main reasons for choosing ASP.NET MVC? Since all of our team members are .NET engineers, the decision was very natural. ASP.NET MVC is the only Microsoft web stack that sticks to the HTTP behavioral standards. It is easy to work with, have a tiny learning curve and everyone who is familiar with the HTTP will understand its architecture and convention without any difficulties. 7. Did you use some of the latest Microsoft technologies? If yes, which ones? Yes, we like to rock the cutting edge tech house. Currently we are using Microsoft’s latest technologies like ASP.NET MVC, Web API (work in progress) and the best for the last; we are utilizing Windows Azure IaaS to the bone. 8. Can you please tell us shortly, what would be the benefit of regular bloggers in other blogging platforms to join Emit Knowledge? Well, unless you are some of the smoking ace gurus whose blogs are followed by a large number of users, our platform offers knowledge based segregated community equipped with tools that will enable both current and future users to expand their relations and to self-promote in the community based on their activity and knowledge sharing. 10. I see you are working very intensively and there is already integration with some third-party services to make the process of sharing and emitting knowledge easier, which services did you integrate until now and what do you plan do to next? We have “reemit” functionality for internal sharing and we also support external services like: Twitter; LinkedIn; Facebook; For the regular bloggers we have an extra cream, Windows Live Writer support for easy blog posts emitting. 11. What should we expect next? Currently, we are working on a new fancy community feature. This means that we are going to support user groups to be formed. So for all existing communities and user groups out there, wait us a little bit, we are coming for rescue :). One of the top next features they are developing is the Community Feature. It means, if you have your own User Group, Community Group or any other Group on which you and your users are mostly blogging or sharing (emitting) knowledge in various ways, Emit Knowledge as a platform will help you have everything you need to promote your group, make new followers and host all the necessary stuff that you have had need of. I would invite you to try the network and start sharing knowledge in a way that will help you gather new followers and spread your knowledge faster, easier and in a more efficient way! Let’s Emit Knowledge!

    Read the article

  • Advanced Continuous Delivery to Azure from TFS, Part 1: Good Enough Is Not Great

    - by jasont
    The folks over on the TFS / Visual Studio team have been working hard at releasing a steady stream of new features for their new hosted Team Foundation Service in the cloud. One of the most significant features released was simple continuous delivery of your solution into your Azure deployments. The original announcement from Brian Harry can be found here. Team Foundation Service is a great platform for .Net developers who are used to working with TFS on-premises. I’ve been using it since it became available at the //BUILD conference in 2011, and when I recently came to work at Stackify, it was one of the first changes I made. Managing work items is much easier than the tool we were using previously, although there are some limitations (more on that in another blog post). However, when continuous deployment was made available, it blew my mind. It was the killer feature I didn’t know I needed. Not to say that I wasn’t previously an advocate for continuous delivery; just that it was always a pain to set up and configure. Having it hosted - and a one-click setup – well, that’s just the best thing since sliced bread. It made perfect sense: my source code is in the cloud, and my deployment is in the cloud. Great! I can queue up a build from my iPad or phone and just let it go! I quickly tore through the quick setup and saw it all work… sort of. This will be the first in a three part series on how to take the building block of Team Foundation Service continuous delivery and build a CD model that will actually work for any team deploying something more advanced than a “Hello World” example. Part 1: Good Enough Is Not Great Part 2: A Model That Works: Branching and Multiple Deployment Environments Part 3: Other Considerations: SQL, Custom Tasks, Etc Good Enough Is Not Great There. I’ve said it. I certainly hope no one on the TFS team is offended, but it’s the truth. Let’s take a look under the hood and understand how it works, and then why it’s not enough to handle real world CD as-is. How it works. (note that I’ve skipped a couple of steps; I already have my accounts set up and something deployed to Azure) The first step is to establish some oAuth magic between your Azure management portal and your TFS Instance. You do this via the management portal. Once it’s done, you have a new build process template in your TFS instance. (Image lifted from the documentation) From here, you’ll get the usual prompts for security, allowing access, etc. But you’ll also get to pick which Solution in your source control to build. Here’s what the bulk of the build definition looks like. All I’ve had to do is add in the solution to build (notice that mine is from a specific branch – Release – more on that later) and I’ve changed the configuration. I trigger the build, and voila! I have an Azure deployment a few minutes later. The beauty of this is that it’s all in the cloud and I’m not waiting for my machine to compile and upload the package. (I also had to enable the build definition first – by default it is created in disabled state, probably a good thing since it will trigger on every.single.checkin by default.) I get to see a history of deployments from the Azure portal, and can link into TFS to see the associated changesets and work items. You’ll notice also that this build definition also automatically put my code in the Staging slot of my Azure deployment – more on this soon. For now, I can VIP swap and be in production. (P.S. I hate VIP swap and “production” and “staging” in Azure. More on that later too.) That’s it. That’s the default out-of-box experience. Easy, right? But it’s full of room for improvement, so let’s get into that….   The Problems Nothing is perfect (except my code – it’s always perfect), and neither is Continuous Deployment without a bit of work to help it fit your dev team’s process. So what are the issues? Issue 1: Staging vs QA vs Prod vs whatever other environments your team may have. This, for me, is the big hairy one. Remember how this automatically deployed to staging rather than prod for us? There are a couple of issues with this model: If I want to deliver to prod, it requires intervention on my part after deployment (via a VIP swap). If I truly want to promote between environments (i.e. Nightly Build –> Stable QA –> Production) I likely have configuration changes between each environment such as database connection strings and this process (and the VIP swap) doesn’t account for this. Yet. Issue 2: Branching and delivering on every check-in. As I mentioned above, I have set this up to target a specific branch – Release – of my code. For the purposes of this example, I have adopted the “basic” branching strategy as defined by the ALM Rangers. This basically establishes a “Main” trunk where you branch off Dev and Release branches. Granted, the Release branch is usually the only thing you will deploy to production, but you certainly don’t want to roll to production automatically when you merge to the Release branch and check-in (unless you like the thrill of it, and in that case, I like your style, cowboy….). Rather, you have nightly build and QA environments, or if you’ve adopted the feature-branch model you have environments for those. Those are the environments you want to continuously deploy to. But that takes us back to Issue 1: we currently have a 1:1 solution to Azure deployment target. Issue 3: SQL and other custom tasks. Let’s be honest and address the elephant in the room: I need to get some sleep because I see an elephant in the room. But seriously, I can’t think of an application I have touched in the last 10 years that doesn’t need to consider SQL changes when deploying code and upgrading an environment. Microsoft seems perfectly content to ignore this elephant for now: yes, they’ve added Data Tier Applications. But let’s be honest with ourselves again: no one really uses it, and it’s not suitable for anything more complex than a Hello World sample project database. Why? Because it doesn’t fit well into a great source control story. Developers make stored procedure and table changes all day long while coding complex applications, and if someone forgets to go update the DACPAC before the automated deployment, you have a broken build until it’s completed. Developers – not just DBAs – also like to work with SQL in SQL tools, not in Visual Studio. I’m really picking on SQL because that’s generally the biggest concern that I hear. But we need to account for any custom tasks as well in the build process.   The Solutions… ? We’ve taken a look at how this all works, and addressed the shortcomings. In my next post (which I promise will be very, very soon), I will detail how I’ve overcome these shortcomings and used this foundation to create a mature, flexible model for deploying my app – any version, any time, to any environment.

    Read the article

< Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >