Search Results

Search found 2137 results on 86 pages for 'par'.

Page 19/86 | < Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >

  • Le moteur de recherche Baidu fait son entrée sur le marché des navigateurs mobiles, dominé par Apple et Google

    Le moteur de recherche Baidu fait son entrée sur le marché des navigateurs mobiles Dominé par Apple et Google Le moteur de recherche chinois Baidu lance son propre navigateur Web mobile dans le but de générer plus de bénéfices auprès des utilisateurs de smartphones, dont le nombre se chiffre désormais en centaines de millions d'utilisateurs en Chine. [IMG]http://idelways.developpez.com/news/images/baidu-logo.jpg[/IMG] Baidu a choisi de cibler les utilisateurs chinois et se place comme principal rival à Safari sur les appareils d'Apple et à Chrome sur Google Android. Il ne compte pas que sur la fierté nationale : selon la société Baidu, les tests de perform...

    Read the article

  • Microsoft brevète la technologie de ses Microsoft Glass, les lunettes prochain objet grand public révolutionné par l'informatique ?

    Microsoft brevète des technologies pour des Microsoft Glass Les lunettes prochain objet grand public révolutionné par l'informatique ? Les Google Glass suscitent beaucoup d'intérêt de la part de la concurrence. Après Apple, c'est au tour de Microsoft de se lancer dans ce genre de projet. L'éditeur qui avait promis qu'il sortirait d'autres appareils que la Surface (et la Xbox 360) sous sa marque propre pourrait bien tenir parole avec des lunettes. C'est en tout cas ce que laisse entrevoir un brevet qu'il a déposé ce 22 novembre. [IMG]http://ftp-developpez.com/gordon-fowler/Microsoft%20Glass.jpg[/IMG] Microsoft Glasses te...

    Read the article

  • Choose Your Boss : un tiers de recruteurs en plus par mois, le nouveau site d'emploi IT inspiré des sites de rencontres trouve son public

    Choose Your Boss : un nouveau site d'emplois IT qui s'inspire des sites de rencontres Plus de deux cent offres qualifiées de postes disponibles Choose Your Boss est un site original. Il s'inspire de Meetic et autres Attractive World pour mettre en relation développeurs et professionnels de l'IT d'une part et recruteurs d'autre part. Créé par Laurent Chollat-Namy, qui bénéficie d'une expérience professionnelle de 15 ans dans l'IT, celui-ci explique : « Nous avons longuement discuté avec des recruteurs et des informaticiens pour identifier leurs besoins et leurs pratiques. Cette réflexion nous a amenés à réinventer la mise en relation candidat / recruteur en nous inspirant des sites de r...

    Read the article

  • Le réseau GSM cracké par deux chercheurs qui ont présenté un moyen de sniffer données et conversations d'un mobile

    Le réseau GSM cracké par deux chercheurs qui ont présenté un moyen de sniffer données et conversations d'un mobile pour moins de 100 euros Deux chercheurs allemands viennent de faire la démonstration d'un système de piratage du réseau GSM (technologie la plus utilisée dans le monde pour relier les téléphones mobiles entre eux -plus de 5 milliards d'appareils concernés selon les opérateurs-), qui permet également de réaliser des écoutes. Il faut savoir qu'à la base, un système d'écoutes est extrêmement onéreux (près de 40.000 euros). Mais celui présenté en Allemagne est réalisable pour moins de 100 euros d'investissement ! Le toolkit utilise en effet des téléphones mobiles Motorola à 10 euros, sur lesquels le firmwar...

    Read the article

  • Qt 4.8.5 est disponible, cette version de maintenance sera disponible par les mêmes outils de Qt 5.1 à sa sortie

    Sortie de Qt 4.8.1 : de nombreuses corrections de bugsMise à jour du 29/03/2012 par gbdiversQuelques mois après la sortie de Qt 4.8, voici la première mise à jour avec la sortie de Qt 4.8.1. Cette version apporte principalement des corrections de bugs et plus de 200 améliorations fonctionnelles. Digia, responsable du support commercial de Qt, a fait un travail majeur dans la correction des bugs en proposant un grand nombre de corrections. La version 1.2.1 du Qt SDK devrait être mis à jour également dans les semaines prochaines pour intégrer cette nouvelle version du framework.Vous pouvez télécharger Qt 4.8.1 sur la

    Read the article

  • iOS 6 "jailbreaké" moins d'une journée après son lancement par le groupe de hackers Dev-Team, l'iPhone 5 bientôt déverrouillé ?

    iOS 6 "jailbreaké" moins d'une journée après son lancement Par le groupe de hackers Dev-Team, l'iPhone 5 bientôt déverrouillé ? L'iPhone Dev-Team, un groupe de hackers indépendant spécialisé dans les produits Apple, a réussi à créer un Jailbreak (déverrouillage) pour l'iOS 6. Cette annonce est survenue moins d'une journée après la sortie de ce dernier. [IMG]http://idelways.developpez.com/news/images/jailbreak.jpg[/IMG] Sorti dans la lignée du célèbre outil redsn0w, le jailbreak fonctionne seulement pour l'iPhone 4, l'iPhone 3GS et la quatrième génération de l'iPod Touch, soit uniquement des dispositifs équipés de processeurs A4. L'iPhone 5 n'est ...

    Read the article

  • Les tablettes vont-elles réussir leur percée en entreprise ? 38 % des professionnels prêts à remplacer leur notebook par un de ces appareils

    Les tablettes vont-elles réussir leur percée en entreprise ? 38% des professionnels serait prêt à remplacer leur notebook par l'un de ces appareils C'est un scénario que plusieurs experts envisagent depuis des mois, et c'est aussi une possibilité que Steve Ballmer réfute : les tablettes pourraient remplacer les ordinateurs et les netbooks. A moins d'être sourd et aveugle, tout le monde a constaté le succès phénoménal qu'ont rencontré ces appareils. La société de conseil ChangeWave s'est penchée sur la question, mais depuis le point de vue des professionnels. Elle a ainsi interrogé 1641 employés à propos de leur intérêt pour les tablettes, dans le cadre de leurs fonctions. Et les résultats sont clairs :...

    Read the article

  • Pourquoi les entreprises passent-elles par des cabinets de recrutement lorsqu'elles ont besoin de développeurs ? Pour quels intérêts ?

    Pourquoi les boites ne publient pas des annonces détaillées des jobs de développeur qu'elles proposent au lieu de passer par des cabinets de recrutement ou même des SSII alors que le projet dure plus d'un an ?Je suis convaincu que dans 99% des cas c'est ridicule de passer par un cabinet de recrutement (déjà ça leur coûte au moins 1500 euros à payer quand le nouvel employé a terminé sa période d'essai) et que le principal effet en plus de la perte nette sur salaire (c'est 1500 euros de moins sur...

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • WebM : la justice américaine enquête sur le groupe MPEG-LA et des actions potentiellement anticoncurrentielles contre le format de Google

    WebM : la justice américaine enquête sur le groupe MPEG-LA Et des actions potentiellement anticoncurrentielles contre le format de Google Mise à jour du 07/03/2011 par Idelways D'après un rapport rendu public par le Wall Street Journal, le département de la justice américaine aurait lancé une enquête antitrust sur le groupe de gestion de brevets MPEG-LA, le soupçonnant de vouloir attenter injustement à un rival technologique open-source supporté par Google (VP8). Le groupe MPEG-LA avait lancé mi-février un appel à tous les industriels qui estiment détenir des brevets potentiellement utilisés par le codec concurrent « VP...

    Read the article

  • Android connait une croissance record, un graphique présente son évolution sur les 18 derniers mois

    Mise à jour du 27.05.2010 par Katleen Android connait une croissance record, un graphique présente son évolution sur les 18 derniers mois Un visuel infographique très complet, retraçant l'évolution d'Android au cours des 18 derniers mois. Il s'appuie sur les dernières statistiques dévoilées par Google il y a quelques jours lors de sa conférence I/O. Des chiffres rassurants suite à l'abandon des logiciels de Google au profit de ceux de Microsoft par plusieurs constructeurs. Les points clés transmis par ces i...

    Read the article

  • Les Bouches-du-Rhône sponsorisent des développeurs pour promouvoir l'open data : avez-vous proposé votre application ?

    Les Bouches-du-Rhône lancent une opération de sponsoring pour les développeurs d'applications et de sites web Afin de promouvoir l'open-data et la région, Developpez.com partenaire Depuis le mois d'avril, l'association Bouches-du-Rhône Tourisme a rejoint la démarche Open-data en ouvrant son portail et en libérant une centaine de jeux de données liées au tourisme dans le département. Toutes les informations détenues par l'association ont été rendues disponibles et exploitables par les développeurs, les scientifiques, les associations, les étudiants et les entreprises. Bref, par tout le monde. On y trouve par exemple...

    Read the article

  • Les Bouches-du-Rhône lancent une opération de sponsoring de développeurs pour promouvoir l'open-data et la région

    Les Bouches-du-Rhône lancent une opération de sponsoring pour les développeurs d'applications et de sites web Afin de promouvoir l'open-data et la région, Developpez.com partenaire Depuis le mois d'avril, l'association Bouches-du-Rhône Tourisme a rejoint la démarche Open-data en ouvrant son portail et en libérant une centaine de jeux de données liées au tourisme dans le département. Toutes les informations détenues par l'association ont été rendues disponibles et exploitables par les développeurs, les scientifiques, les associations, les étudiants et les entreprises. Bref, par tout le monde. On y trouve par...

    Read the article

  • Programme d'étude sur le C++ bas niveau n° 2 : les types de données, un article d'Alex Darby traduit par Bousk

    Dans ce deuxième article sur le C++ bas niveau, Alex Darby aborde les types de données et leurs représentations internes. Programme d'étude sur le C++ bas niveau n° 2 : les types de données Quels sont les points les plus importants pour vous à connaître sur les types ? Connaissez-vous d'autres subtilités sur les types de données ? Bonne lecture. Retrouver l'ensemble des articles de cette série sur la

    Read the article

  • Programme d'étude sur le C++ bas niveau n° 3 : la Pile, un article d'Alex Darby traduit par ram-0000

    L'objectif de cette série d'articles d'Alex Darby sur la programmation « bas-niveau » est de permettre aux développeurs ayant déjà des connaissances de la programmation C++ de mieux comprendre comment ses programmes sont exécutés en pratique. Ce troisième article explique le rôle et le fonctionnement de la Pile, son usage lors de l'appel d'une fonction, la gestion des variables locales ainsi que la gestion de la valeur de retour d'une fonction. Programme d'étude sur le C++ bas niveau n° 3 : la Pile Connaissiez-vous bien le fonctionnement de la Pile et des appels de fonctions ?

    Read the article

  • Le C++ expressif n° 4 : une bibliothèque de fonctions lambda en à peine 30 lignes - partie 1, un article d'Eric Niebler traduit par cob59

    Dans cet article, Eric Niebler entre dans les détails de la création de grammaires, en particulier sur le rôle des transformées, qui permettent d'appliquer une action spécifique lorsque l'entrée correspond à la grammaire donnée. De cette manière, il est possible d'étendre les fonctionnalités des expressions de Boost.Proto. Cet article explique aussi comment créer sa propre bibliothèques de fonctions pour faciliter la création d'expression Le C++ expressif n° 4 : une bibliothèque de fonctions lambda en à peine 30 lignes - partie 1 Avec l'ajout des transformées, commencez-vous à voir des doma...

    Read the article

  • Un plugin jQuery multitâche : méthode de construction personnelle et exemples. Adapter jQuery à vos besoins, niveau 2, par Daniel Hagnoul

    Plugin multitâche : méthode de construction personnelle et exemples Adapter jQuery à vos besoins, niveau 2 Résumé : La plupart des plugins exécutent une seule tâche et les méthodes d'écriture de plugin utilisées dans « Mon Cahier d'exercices », dans la FAQ jQuery et dans l'article « Adapter jQuery à vos besoins » couvrent la majorité des besoins. Lorsque l'on souhaite inclure la modification des options et implémenter plusieurs méthodes on doit penser multitâche . Dans cet ...

    Read the article

  • Gérez la navigation entre les pages de vos applications Silverlight pour Windows Phone 7, par nico-pyright(c)

    Citation: Windows Phone 7 (WP7) est la nouvelle plateforme de développement de Microsoft destinée aux smartphones. Dans ce quatrième tutoriel nous allons voir comment naviguer entre les pages d'une application Silverlight pour Windows Phone 7. Nous verrons également que le bouton "Back" du téléphone s'interface parfaitement avec le framework de navigation de Silverlight pour WP7. Nous verrons enfin comment faire passer des informations entre les pages.

    Read the article

  • Guru of the Week n° 34 : les déclarations anticipées, un article de Herb Sutter traduit par la rédaction C++

    Les déclarations anticipées sont un moyen formidable d'éliminer les dépendances inutiles lors de la compilation. Mais voici un exemple de piège typique des déclarations anticipées... Comment l'éviteriez-vous ? Guru of the Week n° 34 : les déclarations anticipées Utilisez-vous dès que possible les déclarations anticipées ? Connaissiez-vous ces problèmes ? Retrouver l'ensemble des Guru of...

    Read the article

  • Le pluriel dans les traductions avec Qt, un article de Jan-Arve Sæther traduit par Jonathan Courtois

    Bonjour, Dans la continuité des traductions des Qt Quarterly, je vous propose aujourd'hui un article expliquant comment gérer au mieux les formes du pluriel des différentes langues dans vos traductions. Les formes du pluriel dans les traductions Aviez-vous déjà connaissance de ces subtilités ? Cet article va-t-il améliorer la qualité des traductions de vos applications ?...

    Read the article

  • Guru Of the Week n° 43 : copie sur écriture - première partie, un article de Herb Sutter traduit par la rédaction C++

    L'idiome "copie sur écriture" (aussi connu sous les noms "copy-on-write", "COW" ou "implicite sharing") est une technique de programmation (qui devrait être) bien connue des développeurs utilisant Qt. Cette technique peut éviter les copies inutiles de gros objets (comme QString ou QVector), en réalisant la copie uniquement lors de la première modification d'un objet. Dans cet article, Herb Sutter détaille quelques implémentations possibles et comparer leurs performances respectives. Guru Of the Week n° 43 : copie sur écriture - première partie

    Read the article

  • Guru Of the Week n° 44 : copie sur écriture - deuxième partie, un article de Herb Sutter traduit par la rédaction C++

    Second article consacré à l'idiome "copie sur écriture" suite à la première partie. Dans cet article, Herb Sutter développe l'exemple d'une classe de chaîne de caractères utilisant cet idiome. Guru Of the Week n° 44 : copie sur écriture - deuxième partie Que pensez-vous de la différence entre std::string et la classe proposée dans cet article ? Retrouver l'ensemble des Guru of the Week sur la page d'index....

    Read the article

  • Création d'une application « Hello World » dans Visual Studio Lightswitch, un article d'Avkash Chauhan, traduit par Deepin Prayag

    Citation: Visual Studio LightSwitch 2011 propose des « starter kits » et des options de déploiement flexibles qui vous aident à créer et à facilement publier des applications métier personnalisées à l'aspect professionnel et distingué, sans nécessité de code. Visual Studio LightSwitch propose une manière simple de développer des applications métier de type bureau ou Cloud. LightSwitch gère toute la plomberie pour vous, afin que vous puissiez vous concentrer sur la création de valeurs métier. Partie 1 :

    Read the article

  • Casse-têtes en C#, un article de Jon Skeet sur les pièges du langage, traduit par Jean-Michel Ormes

    Cette discussion est destinée à recueillir vos commentaires sur l'article Casse-têtes en C# (traduction de l'article C# Brainteasers de Jon Skeet) Citation: Régulièrement, je tombe sur une situation intéressante en C# qui donne des résultats surprenants. Cette page contient une liste d'exemples. Dans les exemples où il n'y a qu'un bout de code, nous supposerons que celui-ci est dans la m...

    Read the article

< Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >