Search Results

Search found 524 results on 21 pages for 'toarray'.

Page 19/21 | < Previous Page | 15 16 17 18 19 20 21  | Next Page >

  • Convert Object Hierachey to Object Array

    - by Killercam
    All, I want to create an object array foo[], where the constructor for Foo is public Foo(string name, string discription){} I have a database object which has a structure (not incuding stored procedures, functions or views for simplicity) like public class Database { public string name { get; set; } public string filename { get; set; } public List<Table> tables { get; set; } public Database(string name, string filename) { this.name = name; this.filename = filename; } } protected internal class Table { public string name { get; set; } public List<Column> columns { get; set;} public Table(string name, List<Column> columns) { this.name = name; this.columns = columns; } } protected internal class Column { public string name { get; set; } public string type { get; set; } public Column(string name, string type, int maxLength, bool isNullable) { this.name = name; this.type = type; } } I would like to know the quickest way to add Column and Table information to the Foo[] object array? Clearly I can do List<Foo> fooList = new List<Foo>(); foreach (Table t in database.tables) { fooList.Add(new Foo(t.Name, "Some Description")); foreach (Column c in t.columns) fooList.Add(new Foo(c.Name, "Some Description")); } Foo[] fooArr = fooList.ToArray<Foo>(); But is there a quicker way? Clearly LINQ is likely to be slower for a query that does a simalar operation, but I care allot about speed here so any advice would be appreciated. Perhaps the use of a HashSet would be the way to go as there will not be duplicate entries... Thanks for your time.

    Read the article

  • TFS 2010 Build Custom Activity for Merging Assemblies

    - by Jakob Ehn
    *** The sample build process template discussed in this post is available for download from here: http://cid-ee034c9f620cd58d.office.live.com/self.aspx/BlogSamples/ILMerge.xaml ***   In my previous post I talked about library builds that we use to build and replicate dependencies between applications in TFS. This is typically used for common libraries and tools that several other application need to reference. When the libraries grow in size over time, so does the number of assemblies. So all solutions that uses the common library must reference all the necessary assemblies that they need, and if we for example do a refactoring and extract some code into a new assembly, all the clients must update their references to reflect these changes, otherwise it won’t compile. To improve on this, we use a tool from Microsoft Research called ILMerge (Download from here). It can be used to merge several assemblies into one assembly that contains all types. If you haven’t used this tool before, you should check it out. Previously I have implemented this in builds using a simple batch file that contains the full command, something like this: "%ProgramFiles(x86)%\microsoft\ilmerge\ilmerge.exe" /target:library /attr:ClassLibrary1.bl.dll /out:MyNewLibrary.dll ClassLibrary1.dll ClassLibrar2.dll ClassLibrary3.dll This merges 3 assemblies (ClassLibrary1, 2 and 3) into a new assembly called MyNewLibrary.dll. It will copy the attributes (file version, product version etc..) from ClassLibrary1.dll, using the /attr switch. For more info on ILMerge command line tool, see the above link. This approach works, but requires a little bit too much knowledge for the developers creating builds, therefor I have implemented a custom activity that wraps the use of ILMerge. This makes it much simpler to setup a new build definition and have the build automatically do the merging. The usage of the activity is then implemented as part of the Library Build process template mentioned in the previous post. For this article I have just created a simple build process template that only performs the ILMerge operation.   Below is the code for the custom activity. To make it compile, you need to reference the ILMerge.exe assembly. /// <summary> /// Activity for merging a list of assembies into one, using ILMerge /// </summary> public sealed class ILMergeActivity : BaseCodeActivity { /// <summary> /// A list of file paths to the assemblies that should be merged /// </summary> [RequiredArgument] public InArgument<IEnumerable<string>> InputAssemblies { get; set; } /// <summary> /// Full path to the generated assembly /// </summary> [RequiredArgument] public InArgument<string> OutputFile { get; set; } /// <summary> /// Which input assembly that the attibutes for the generated assembly should be copied from. /// Optional. If not specified, the first input assembly will be used /// </summary> public InArgument<string> AttributeFile { get; set; } /// <summary> /// Kind of assembly to generate, dll or exe /// </summary> public InArgument<TargetKindEnum> TargetKind { get; set; } // If your activity returns a value, derive from CodeActivity<TResult> // and return the value from the Execute method. protected override void Execute(CodeActivityContext context) { string message = InputAssemblies.Get(context).Aggregate("", (current, assembly) => current + (assembly + " ")); TrackMessage(context, "Merging " + message + " into " + OutputFile.Get(context)); ILMerge m = new ILMerge(); m.SetInputAssemblies(InputAssemblies.Get(context).ToArray()); m.TargetKind = TargetKind.Get(context) == TargetKindEnum.Dll ? ILMerge.Kind.Dll : ILMerge.Kind.Exe; m.OutputFile = OutputFile.Get(context); m.AttributeFile = !String.IsNullOrEmpty(AttributeFile.Get(context)) ? AttributeFile.Get(context) : InputAssemblies.Get(context).First(); m.SetTargetPlatform(RuntimeEnvironment.GetSystemVersion().Substring(0,2), RuntimeEnvironment.GetRuntimeDirectory()); m.Merge(); TrackMessage(context, "Generated " + m.OutputFile); } } [Browsable(true)] public enum TargetKindEnum { Dll, Exe } NB: The activity inherits from a BaseCodeActivity class which is an internal helper class which contains some methods and properties useful for moste custom activities. In this case, it uses the TrackeMessage method for writing to the build log. You either need to remove the TrackMessage method calls, or implement this yourself (which is not very hard… ) The custom activity has the following input arguments: InputAssemblies A list with the (full) paths to the assemblies to merge OutputFile The name of the resulting merged assembly AttributeFile Which assembly to use as the template for the attribute of the merged assembly. This argument is optional and if left blank, the first assembly in the input list is used TargetKind Decides what type of assembly to create, can be either a dll or an exe Of course, there are more switches to the ILMerge.exe, and these can be exposed as input arguments as well if you need it. To show how the custom activity can be used, I have attached a build process template (see link at the top of this post) that merges the output of the projects being built (CommonLibrary.dll and CommonLibrary2.dll) into a merged assembly (NewLibrary.dll). The build process template has the following custom process parameters:   The Assemblies To Merge argument is passed into a FindMatchingFiles activity to located all assemblies that are located in the BinariesDirectory folder after the compilation has been performed by Team Build. Here is the complete sequence of activities that performs the merge operation. It is located at the end of the Try, Compile, Test and Associate… sequence: It splits the AssembliesToMerge parameter and appends the full path (using the BinariesDirectory variable) and then enumerates the matching files using the FindMatchingFiles activity. When running the build, you can see that it merges two assemblies into a new one:     And the merged assembly (and associated pdb file) is copied to the drop location together with the rest of the assemblies:

    Read the article

  • Securing an ASP.NET MVC 2 Application

    - by rajbk
    This post attempts to look at some of the methods that can be used to secure an ASP.NET MVC 2 Application called Northwind Traders Human Resources.  The sample code for the project is attached at the bottom of this post. We are going to use a slightly modified Northwind database. The screen capture from SQL server management studio shows the change. I added a new column called Salary, inserted some random salaries for the employees and then turned off AllowNulls.   The reporting relationship for Northwind Employees is shown below.   The requirements for our application are as follows: Employees can see their LastName, FirstName, Title, Address and Salary Employees are allowed to edit only their Address information Employees can see the LastName, FirstName, Title, Address and Salary of their immediate reports Employees cannot see records of non immediate reports.  Employees are allowed to edit only the Salary and Title information of their immediate reports. Employees are not allowed to edit the Address of an immediate report Employees should be authenticated into the system. Employees by default get the “Employee” role. If a user has direct reports, they will also get assigned a “Manager” role. We use a very basic empId/pwd scheme of EmployeeID (1-9) and password test$1. You should never do this in an actual application. The application should protect from Cross Site Request Forgery (CSRF). For example, Michael could trick Steven, who is already logged on to the HR website, to load a page which contains a malicious request. where without Steven’s knowledge, a form on the site posts information back to the Northwind HR website using Steven’s credentials. Michael could use this technique to give himself a raise :-) UI Notes The layout of our app looks like so: When Nancy (EmpID 1) signs on, she sees the default page with her details and is allowed to edit her address. If Nancy attempts to view the record of employee Andrew who has an employeeID of 2 (Employees/Edit/2), she will get a “Not Authorized” error page. When Andrew (EmpID 2) signs on, he can edit the address field of his record and change the title and salary of employees that directly report to him. Implementation Notes All controllers inherit from a BaseController. The BaseController currently only has error handling code. When a user signs on, we check to see if they are in a Manager role. We then create a FormsAuthenticationTicket, encrypt it (including the roles that the employee belongs to) and add it to a cookie. private void SetAuthenticationCookie(int employeeID, List<string> roles) { HttpCookiesSection cookieSection = (HttpCookiesSection) ConfigurationManager.GetSection("system.web/httpCookies"); AuthenticationSection authenticationSection = (AuthenticationSection) ConfigurationManager.GetSection("system.web/authentication"); FormsAuthenticationTicket authTicket = new FormsAuthenticationTicket( 1, employeeID.ToString(), DateTime.Now, DateTime.Now.AddMinutes(authenticationSection.Forms.Timeout.TotalMinutes), false, string.Join("|", roles.ToArray())); String encryptedTicket = FormsAuthentication.Encrypt(authTicket); HttpCookie authCookie = new HttpCookie(FormsAuthentication.FormsCookieName, encryptedTicket); if (cookieSection.RequireSSL || authenticationSection.Forms.RequireSSL) { authCookie.Secure = true; } HttpContext.Current.Response.Cookies.Add(authCookie); } We read this cookie back in Global.asax and set the Context.User to be a new GenericPrincipal with the roles we assigned earlier. protected void Application_AuthenticateRequest(Object sender, EventArgs e){ if (Context.User != null) { string cookieName = FormsAuthentication.FormsCookieName; HttpCookie authCookie = Context.Request.Cookies[cookieName]; if (authCookie == null) return; FormsAuthenticationTicket authTicket = FormsAuthentication.Decrypt(authCookie.Value); string[] roles = authTicket.UserData.Split(new char[] { '|' }); FormsIdentity fi = (FormsIdentity)(Context.User.Identity); Context.User = new System.Security.Principal.GenericPrincipal(fi, roles); }} We ensure that a user has permissions to view a record by creating a custom attribute AuthorizeToViewID that inherits from ActionFilterAttribute. public class AuthorizeToViewIDAttribute : ActionFilterAttribute{ IEmployeeRepository employeeRepository = new EmployeeRepository(); public override void OnActionExecuting(ActionExecutingContext filterContext) { if (filterContext.ActionParameters.ContainsKey("id") && filterContext.ActionParameters["id"] != null) { if (employeeRepository.IsAuthorizedToView((int)filterContext.ActionParameters["id"])) { return; } } throw new UnauthorizedAccessException("The record does not exist or you do not have permission to access it"); }} We add the AuthorizeToView attribute to any Action method that requires authorization. [HttpPost][Authorize(Order = 1)]//To prevent CSRF[ValidateAntiForgeryToken(Salt = Globals.EditSalt, Order = 2)]//See AuthorizeToViewIDAttribute class[AuthorizeToViewID(Order = 3)] [ActionName("Edit")]public ActionResult Update(int id){ var employeeToEdit = employeeRepository.GetEmployee(id); if (employeeToEdit != null) { //Employees can edit only their address //A manager can edit the title and salary of their subordinate string[] whiteList = (employeeToEdit.IsSubordinate) ? new string[] { "Title", "Salary" } : new string[] { "Address" }; if (TryUpdateModel(employeeToEdit, whiteList)) { employeeRepository.Save(employeeToEdit); return RedirectToAction("Details", new { id = id }); } else { ModelState.AddModelError("", "Please correct the following errors."); } } return View(employeeToEdit);} The Authorize attribute is added to ensure that only authorized users can execute that Action. We use the TryUpdateModel with a white list to ensure that (a) an employee is able to edit only their Address and (b) that a manager is able to edit only the Title and Salary of a subordinate. This works in conjunction with the AuthorizeToViewIDAttribute. The ValidateAntiForgeryToken attribute is added (with a salt) to avoid CSRF. The Order on the attributes specify the order in which the attributes are executed. The Edit View uses the AntiForgeryToken helper to render the hidden token: ......<% using (Html.BeginForm()) {%><%=Html.AntiForgeryToken(NorthwindHR.Models.Globals.EditSalt)%><%= Html.ValidationSummary(true, "Please correct the errors and try again.") %><div class="editor-label"> <%= Html.LabelFor(model => model.LastName) %></div><div class="editor-field">...... The application uses View specific models for ease of model binding. public class EmployeeViewModel{ public int EmployeeID; [Required] [DisplayName("Last Name")] public string LastName { get; set; } [Required] [DisplayName("First Name")] public string FirstName { get; set; } [Required] [DisplayName("Title")] public string Title { get; set; } [Required] [DisplayName("Address")] public string Address { get; set; } [Required] [DisplayName("Salary")] [Range(500, double.MaxValue)] public decimal Salary { get; set; } public bool IsSubordinate { get; set; }} To help with displaying readonly/editable fields, we use a helper method. //Simple extension method to display a TextboxFor or DisplayFor based on the isEditable variablepublic static MvcHtmlString TextBoxOrLabelFor<TModel, TProperty>(this HtmlHelper<TModel> htmlHelper, Expression<Func<TModel, TProperty>> expression, bool isEditable){ if (isEditable) { return htmlHelper.TextBoxFor(expression); } else { return htmlHelper.DisplayFor(expression); }} The helper method is used in the view like so: <%=Html.TextBoxOrLabelFor(model => model.Title, Model.IsSubordinate)%> As mentioned in this post, there is a much easier way to update properties on an object. Download Demo Project VS 2008, ASP.NET MVC 2 RTM Remember to change the connectionString to point to your Northwind DB NorthwindHR.zip Feedback and bugs are always welcome :-)

    Read the article

  • Adding Volcanos and Options - Earthquake Locator, part 2

    - by Bobby Diaz
    Since volcanos are often associated with earthquakes, and vice versa, I decided to show recent volcanic activity on the Earthquake Locator map.  I am pulling the data from a website created for a joint project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program, found here.  They provide a Weekly Volcanic Activity Report as an RSS feed.   I started implementing this new functionality by creating a new Volcano entity in the domain model and adding the following to the EarthquakeService class (I also factored out the common reading/parsing helper methods to a separate FeedReader class that can be used by multiple domain service classes):           private static readonly string VolcanoFeedUrl =             ConfigurationManager.AppSettings["VolcanoFeedUrl"];           /// <summary>         /// Gets the volcano data for the previous week.         /// </summary>         /// <returns>A queryable collection of <see cref="Volcano"/> objects.</returns>         public IQueryable<Volcano> GetVolcanos()         {             var feed = FeedReader.Load(VolcanoFeedUrl);             var list = new List<Volcano>();               if ( feed != null )             {                 foreach ( var item in feed.Items )                 {                     var quake = CreateVolcano(item);                     if ( quake != null )                     {                         list.Add(quake);                     }                 }             }               return list.AsQueryable();         }           /// <summary>         /// Creates a <see cref="Volcano"/> object for each item in the RSS feed.         /// </summary>         /// <param name="item">The RSS item.</param>         /// <returns></returns>         private Volcano CreateVolcano(SyndicationItem item)         {             Volcano volcano = null;             string title = item.Title.Text;             string desc = item.Summary.Text;             double? latitude = null;             double? longitude = null;               FeedReader.GetGeoRssPoint(item, out latitude, out longitude);               if ( !String.IsNullOrEmpty(title) )             {                 title = title.Substring(0, title.IndexOf('-'));             }             if ( !String.IsNullOrEmpty(desc) )             {                 desc = String.Join("\n\n", desc                         .Replace("<p>", "")                         .Split(                             new string[] { "</p>" },                             StringSplitOptions.RemoveEmptyEntries)                         .Select(s => s.Trim())                         .ToArray())                         .Trim();             }               if ( latitude != null && longitude != null )             {                 volcano = new Volcano()                 {                     Id = item.Id,                     Title = title,                     Description = desc,                     Url = item.Links.Select(l => l.Uri.OriginalString).FirstOrDefault(),                     Latitude = latitude.GetValueOrDefault(),                     Longitude = longitude.GetValueOrDefault()                 };             }               return volcano;         } I then added the corresponding LoadVolcanos() method and Volcanos collection to the EarthquakeViewModel class in much the same way I did with the Earthquakes in my previous article in this series. Now that I am starting to add more information to the map, I wanted to give the user some options as to what is displayed and allowing them to choose what gets turned off.  I have updated the MainPage.xaml to look like this:   <UserControl x:Class="EarthquakeLocator.MainPage"     xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"     xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:d="http://schemas.microsoft.com/expression/blend/2008"     xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"     xmlns:basic="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"     xmlns:bing="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.Maps.MapControl"     xmlns:vm="clr-namespace:EarthquakeLocator.ViewModel"     mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480" >     <UserControl.Resources>         <DataTemplate x:Key="EarthquakeTemplate">             <Ellipse Fill="Red" Stroke="Black" StrokeThickness="1"                      Width="{Binding Size}" Height="{Binding Size}"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="{Binding UtcTime}" />                         <TextBlock Text="{Binding LocalTime}" />                         <TextBlock Text="{Binding DepthDesc}" />                     </StackPanel>                 </ToolTipService.ToolTip>             </Ellipse>         </DataTemplate>           <DataTemplate x:Key="VolcanoTemplate">             <Polygon Fill="Gold" Stroke="Black" StrokeThickness="1" Points="0,10 5,0 10,10"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center"                      MouseLeftButtonUp="Volcano_MouseLeftButtonUp">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="Click icon for more information..." />                     </StackPanel>                 </ToolTipService.ToolTip>             </Polygon>         </DataTemplate>     </UserControl.Resources>       <UserControl.DataContext>         <vm:EarthquakeViewModel AutoLoadData="True" />     </UserControl.DataContext>       <Grid x:Name="LayoutRoot">           <bing:Map x:Name="map" CredentialsProvider="--Your-Bing-Maps-Key--"                   Center="{Binding MapCenter, Mode=TwoWay}"                   ZoomLevel="{Binding ZoomLevel, Mode=TwoWay}">               <bing:MapItemsControl ItemsSource="{Binding Earthquakes}"                                   ItemTemplate="{StaticResource EarthquakeTemplate}" />               <bing:MapItemsControl ItemsSource="{Binding Volcanos}"                                   ItemTemplate="{StaticResource VolcanoTemplate}" />         </bing:Map>           <basic:TabControl x:Name="tabs" VerticalAlignment="Bottom" MaxHeight="25" Opacity="0.7">             <basic:TabItem Margin="90,0,-90,0" MouseLeftButtonUp="TabItem_MouseLeftButtonUp">                 <basic:TabItem.Header>                     <TextBlock x:Name="txtHeader" Text="Options"                                FontSize="13" FontWeight="Bold" />                 </basic:TabItem.Header>                   <StackPanel Orientation="Horizontal">                     <TextBlock Text="Earthquakes:" FontWeight="Bold" Margin="3" />                     <StackPanel Margin="3">                         <CheckBox Content=" &lt; 4.0"                                   IsChecked="{Binding ShowLt4, Mode=TwoWay}" />                         <CheckBox Content="4.0 - 4.9"                                   IsChecked="{Binding Show4s, Mode=TwoWay}" />                         <CheckBox Content="5.0 - 5.9"                                   IsChecked="{Binding Show5s, Mode=TwoWay}" />                     </StackPanel>                       <StackPanel Margin="10,3,3,3">                         <CheckBox Content="6.0 - 6.9"                                   IsChecked="{Binding Show6s, Mode=TwoWay}" />                         <CheckBox Content="7.0 - 7.9"                                   IsChecked="{Binding Show7s, Mode=TwoWay}" />                         <CheckBox Content="8.0 +"                                   IsChecked="{Binding ShowGe8, Mode=TwoWay}" />                     </StackPanel>                       <TextBlock Text="Other:" FontWeight="Bold" Margin="50,3,3,3" />                     <StackPanel Margin="3">                         <CheckBox Content="Volcanos"                                   IsChecked="{Binding ShowVolcanos, Mode=TwoWay}" />                     </StackPanel>                 </StackPanel>               </basic:TabItem>         </basic:TabControl>       </Grid> </UserControl> Notice that I added a VolcanoTemplate that uses a triangle-shaped Polygon to represent the Volcano locations, and I also added a second <bing:MapItemsControl /> tag to the map to bind to the Volcanos collection.  The TabControl found below the map houses the options panel that will present the user with several checkboxes so they can filter the different points based on type and other properties (i.e. Magnitude).  Initially, the TabItem is collapsed to reduce it's footprint, but the screen shot below shows the options panel expanded to reveal the available settings:     I have updated the Source Code and Live Demo to include these new features.   Happy Mapping!

    Read the article

  • Routing Issue in ASP.NET MVC 3 RC 2

    - by imran_ku07
         Introduction:             Two weeks ago, ASP.NET MVC team shipped the ASP.NET MVC 3 RC 2 release. This release includes some new features and some performance optimization. This release also fixes most of the bugs but still some minor issues are present in this release. Some of these issues are already discussed by Scott Guthrie at Update on ASP.NET MVC 3 RC2 (and a workaround for a bug in it). In addition to these issues, I have found another issue in this release regarding routing. In this article, I will show you the issue regarding routing and a simple workaround for this issue.       Description:             The easiest way to understand an issue is to reproduce it in the application. So create a MVC 2 application and a MVC 3 RC 2 application. Then in both applications, just open global.asax file and update the default route as below,     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = UrlParameter.Optional, id2 = UrlParameter.Optional } // Parameter defaults );              Then just open Index View and add the following lines,    <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> Home Page </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <% Html.RenderAction("About"); %> </asp:Content>             The above view will issue a child request to About action method. Now run both applications. ASP.NET MVC 2 application will run just fine. But ASP.NET MVC 3 RC 2 application will throw an exception as shown below,                  You may think that this is a routing issue but this is not the case here as both ASP.NET MVC 2 and ASP.NET MVC  3 RC 2 applications(created above) are built with .NET Framework 4.0 and both will use the same routing defined in System.Web. Something is wrong in ASP.NET MVC 3 RC 2. So after digging into ASP.NET MVC source code, I have found that the UrlParameter class in ASP.NET MVC 3 RC 2 overrides the ToString method which simply return an empty string.     public sealed class UrlParameter { public static readonly UrlParameter Optional = new UrlParameter(); private UrlParameter() { } public override string ToString() { return string.Empty; } }             In MVC 2 the ToString method was not overridden. So to quickly fix the above problem just replace UrlParameter.Optional default value with a different value other than null or empty(for example, a single white space) or replace UrlParameter.Optional default value with a new class object containing the same code as UrlParameter class have except the ToString method is not overridden (or with a overridden ToString method that return a string value other than null or empty). But by doing this you will loose the benefit of ASP.NET MVC 2 Optional URL Parameters. There may be many different ways to fix the above problem and not loose the benefit of optional parameters. Here I will create a new class MyUrlParameter with the same code as UrlParameter class have except the ToString method is not overridden. Then I will create a base controller class which contains a constructor to remove all MyUrlParameter route data parameters, same like ASP.NET MVC doing with UrlParameter route data parameters early in the request.     public class BaseController : Controller { public BaseController() { if (System.Web.HttpContext.Current.CurrentHandler is MvcHandler) { RouteValueDictionary rvd = ((MvcHandler)System.Web.HttpContext.Current.CurrentHandler).RequestContext.RouteData.Values; string[] matchingKeys = (from entry in rvd where entry.Value == MyUrlParameter.Optional select entry.Key).ToArray(); foreach (string key in matchingKeys) { rvd.Remove(key); } } } } public class HomeController : BaseController { public ActionResult Index(string id1) { ViewBag.Message = "Welcome to ASP.NET MVC!"; return View(); } public ActionResult About() { return Content("Child Request Contents"); } }     public sealed class MyUrlParameter { public static readonly MyUrlParameter Optional = new MyUrlParameter(); private MyUrlParameter() { } }     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = MyUrlParameter.Optional, id2 = MyUrlParameter.Optional } // Parameter defaults );             MyUrlParameter class is a copy of UrlParameter class except that MyUrlParameter class not overrides the ToString method. Note that the default route is modified to use MyUrlParameter.Optional instead of UrlParameter.Optional. Also note that BaseController class constructor is removing MyUrlParameter parameters from the current request route data so that the model binder will not bind these parameters with action method parameters. Now just run the ASP.NET MVC 3 RC 2 application again, you will find that it runs just fine.             In case if you are curious to know that why ASP.NET MVC 3 RC 2 application throws an exception if UrlParameter class contains a ToString method which returns an empty string, then you need to know something about a feature of routing for url generation. During url generation, routing will call the ParsedRoute.Bind method internally. This method includes a logic to match the route and build the url. During building the url, ParsedRoute.Bind method will call the ToString method of the route values(in our case this will call the UrlParameter.ToString method) and then append the returned value into url. This method includes a logic after appending the returned value into url that if two continuous returned values are empty then don't match the current route otherwise an incorrect url will be generated. Here is the snippet from ParsedRoute.Bind method which will prove this statement.       if ((builder2.Length > 0) && (builder2[builder2.Length - 1] == '/')) { return null; } builder2.Append("/"); ........................................................... ........................................................... ........................................................... ........................................................... if (RoutePartsEqual(obj3, obj4)) { builder2.Append(UrlEncode(Convert.ToString(obj3, CultureInfo.InvariantCulture))); continue; }             In the above example, both id1 and id2 parameters default values are set to UrlParameter object and UrlParameter class include a ToString method that returns an empty string. That's why this route will not matched.            Summary:             In this article I showed you the issue regarding routing and also showed you how to workaround this problem. I explained this issue with an example by creating a ASP.NET MVC 2 and a ASP.NET MVC 3 RC 2 application. Finally I also explained the reason for this issue. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Enabling Service Availability in WCF Services

    - by cibrax
    It is very important for the enterprise to know which services are operational at any given point. There are many factors that can affect the availability of the services, some of them are external like a database not responding or any dependant service not working. However, in some cases, you only want to know whether a service is up or down, so a simple heart-beat mechanism with “Ping” messages would do the trick. Unfortunately, WCF does not provide a built-in mechanism to support this functionality, and you probably don’t to implement a “Ping” operation in any service that you have out there. For solving this in a generic way, there is a WCF extensibility point that comes to help us, the “Operation Invokers”. In a nutshell, an operation invoker is the class responsible invoking the service method with a set of parameters and generate the output parameters with the return value. What I am going to do here is to implement a custom operation invoker that intercepts any call to the service, and detects whether a “Ping” header was attached to the message. If the “Ping” header is detected, the operation invoker returns a new header to tell the client that the service is alive, and the real operation execution is omitted. In that way, we have a simple heart beat mechanism based on the messages that include a "Ping” header, so the client application can determine at any point whether the service is up or down. My operation invoker wraps the default implementation attached by default to any operation by WCF. internal class PingOperationInvoker : IOperationInvoker { IOperationInvoker innerInvoker; object[] outputs = null; object returnValue = null; public const string PingHeaderName = "Ping"; public const string PingHeaderNamespace = "http://tellago.serviceModel"; public PingOperationInvoker(IOperationInvoker innerInvoker, OperationDescription description) { this.innerInvoker = innerInvoker; outputs = description.SyncMethod.GetParameters() .Where(p => p.IsOut) .Select(p => DefaultForType(p.ParameterType)).ToArray(); var returnValue = DefaultForType(description.SyncMethod.ReturnType); } private static object DefaultForType(Type targetType) { return targetType.IsValueType ? Activator.CreateInstance(targetType) : null; } public object Invoke(object instance, object[] inputs, out object[] outputs) { object returnValue; if (Invoke(out returnValue, out outputs)) { return returnValue; } else { return this.innerInvoker.Invoke(instance, inputs, out outputs); } } private bool Invoke(out object returnValue, out object[] outputs) { object untypedProperty = null; if (OperationContext.Current .IncomingMessageProperties.TryGetValue(HttpRequestMessageProperty.Name, out untypedProperty)) { var httpRequestProperty = untypedProperty as HttpRequestMessageProperty; if (httpRequestProperty != null) { if (httpRequestProperty.Headers[PingHeaderName] != null) { outputs = this.outputs; if (OperationContext.Current .IncomingMessageProperties.TryGetValue(HttpRequestMessageProperty.Name, out untypedProperty)) { var httpResponseProperty = untypedProperty as HttpResponseMessageProperty; httpResponseProperty.Headers.Add(PingHeaderName, "Ok"); } returnValue = this.returnValue; return true; } } } var headers = OperationContext.Current.IncomingMessageHeaders; if (headers.FindHeader(PingHeaderName, PingHeaderNamespace) > -1) { outputs = this.outputs; MessageHeader<string> header = new MessageHeader<string>("Ok"); var untyped = header.GetUntypedHeader(PingHeaderName, PingHeaderNamespace); OperationContext.Current.OutgoingMessageHeaders.Add(untyped); returnValue = this.returnValue; return true; } returnValue = null; outputs = null; return false; } } The implementation above looks for the “Ping” header either in the Http Request or the Soap message. The next step is to implement a behavior for attaching this operation invoker to the services we want to monitor. [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class, AllowMultiple = false, Inherited = true)] public class PingBehavior : Attribute, IServiceBehavior, IOperationBehavior { public void AddBindingParameters(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase, Collection<ServiceEndpoint> endpoints, BindingParameterCollection bindingParameters) { } public void ApplyDispatchBehavior(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase) { } public void Validate(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase) { foreach (var endpoint in serviceDescription.Endpoints) { foreach (var operation in endpoint.Contract.Operations) { if (operation.Behaviors.Find<PingBehavior>() == null) operation.Behaviors.Add(this); } } } public void AddBindingParameters(OperationDescription operationDescription, BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, ClientOperation clientOperation) { } public void ApplyDispatchBehavior(OperationDescription operationDescription, DispatchOperation dispatchOperation) { dispatchOperation.Invoker = new PingOperationInvoker(dispatchOperation.Invoker, operationDescription); } public void Validate(OperationDescription operationDescription) { } } As an operation invoker can only be added in an “operation behavior”, a trick I learned in the past is that you can implement a service behavior as well and use the “Validate” method to inject it in all the operations, so the final configuration is much easier and cleaner. You only need to decorate the service with a simple attribute to enable the “Ping” functionality. [PingBehavior] public class HelloWorldService : IHelloWorld { public string Hello(string name) { return "Hello " + name; } } On the other hand, the client application needs to send a dummy message with a “Ping” header to detect whether the service is available or not. In order to simplify this task, I created a extension method in the WCF client channel to do this work. public static class ClientChannelExtensions { const string PingNamespace = "http://tellago.serviceModel"; const string PingName = "Ping"; public static bool IsAvailable<TChannel>(this IClientChannel channel, Action<TChannel> operation) { try { using (OperationContextScope scope = new OperationContextScope(channel)) { MessageHeader<string> header = new MessageHeader<string>(PingName); var untyped = header.GetUntypedHeader(PingName, PingNamespace); OperationContext.Current.OutgoingMessageHeaders.Add(untyped); try { operation((TChannel)channel); var headers = OperationContext.Current.IncomingMessageHeaders; if (headers.Any(h => h.Name == PingName && h.Namespace == PingNamespace)) { return true; } else { return false; } } catch (CommunicationException) { return false; } } } catch (Exception) { return false; } } } This extension method basically adds a “Ping” header to the request message, executes the operation passed as argument (Action<TChannel> operation), and looks for the corresponding “Ping” header in the response to see the results. The client application can use this extension with a single line of code, var client = new ServiceReference.HelloWorldClient(); var isAvailable = client.InnerChannel.IsAvailable<IHelloWorld>((c) => c.Hello(null)); The “isAvailable” variable will tell the client application whether the service is available or not. You can download the complete implementation from this location.    

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • Adding multiple data importers support to web applications

    - by DigiMortal
    I’m building web application for customer and there is requirement that users must be able to import data in different formats. Today we will support XLSX and ODF as import formats and some other formats are waiting. I wanted to be able to add new importers on the fly so I don’t have to deploy web application again when I add new importer or change some existing one. In this posting I will show you how to build generic importers support to your web application. Importer interface All importers we use must have something in common so we can easily detect them. To keep things simple I will use interface here. public interface IMyImporter {     string[] SupportedFileExtensions { get; }     ImportResult Import(Stream fileStream, string fileExtension); } Our interface has the following members: SupportedFileExtensions – string array of file extensions that importer supports. This property helps us find out what import formats are available and which importer to use with given format. Import – method that does the actual importing work. Besides file we give in as stream we also give file extension so importer can decide how to handle the file. It is enough to get started. When building real importers I am sure you will switch over to abstract base class. Importer class Here is sample importer that imports data from Excel and Word documents. Importer class with no implementation details looks like this: public class MyOpenXmlImporter : IMyImporter {     public string[] SupportedFileExtensions     {         get { return new[] { "xlsx", "docx" }; }     }     public ImportResult Import(Stream fileStream, string extension)     {         // ...     } } Finding supported import formats in web application Now we have importers created and it’s time to add them to web application. Usually we have one page or ASP.NET MVC controller where we need importers. To this page or controller we add the following method that uses reflection to find all classes that implement our IMyImporter interface. private static string[] GetImporterFileExtensions() {     var types = from a in AppDomain.CurrentDomain.GetAssemblies()                 from t in a.GetTypes()                 where t.GetInterfaces().Contains(typeof(IMyImporter))                 select t;       var extensions = new Collection<string>();     foreach (var type in types)     {         var instance = (IMyImporter)type.InvokeMember(null,                        BindingFlags.CreateInstance, null, null, null);           foreach (var extension in instance.SupportedFileExtensions)         {             if (extensions.Contains(extension))                 continue;               extensions.Add(extension);         }     }       return extensions.ToArray(); } This code doesn’t look nice and is far from optimal but it works for us now. It is possible to improve performance of web application if we cache extensions and their corresponding types to some static dictionary. We have to fill it only once because our application is restarted when something changes in bin folder. Finding importer by extension When user uploads file we need to detect the extension of file and find the importer that supports given extension. We add another method to our page or controller that uses reflection to return us importer instance or null if extension is not supported. private static IMyImporter GetImporterForExtension(string extensionToFind) {     var types = from a in AppDomain.CurrentDomain.GetAssemblies()                 from t in a.GetTypes()                 where t.GetInterfaces().Contains(typeof(IMyImporter))                 select t;     foreach (var type in types)     {         var instance = (IMyImporter)type.InvokeMember(null,                        BindingFlags.CreateInstance, null, null, null);           if (instance.SupportedFileExtensions.Contains(extensionToFind))         {             return instance;         }     }       return null; } Here is example ASP.NET MVC controller action that accepts uploaded file, finds importer that can handle file and imports data. Again, this is sample code I kept minimal to better illustrate how things work. public ActionResult Import(MyImporterModel model) {     var file = Request.Files[0];     var extension = Path.GetExtension(file.FileName).ToLower();     var importer = GetImporterForExtension(extension.Substring(1));     var result = importer.Import(file.InputStream, extension);     if (result.Errors.Count > 0)     {         foreach (var error in result.Errors)             ModelState.AddModelError("file", error);           return Import();     }     return RedirectToAction("Index"); } Conclusion That’s it. Using couple of ugly methods and one simple interface we were able to add importers support to our web application. Example code here is not perfect but it works. It is possible to cache mappings between file extensions and importer types to some static variable because changing of these mappings means that something is changed in bin folder of web application and web application is restarted in this case anyway.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • TOTD #166: Using NoSQL database in your Java EE 6 Applications on GlassFish - MongoDB for now!

    - by arungupta
    The Java EE 6 platform includes Java Persistence API to work with RDBMS. The JPA specification defines a comprehensive API that includes, but not restricted to, how a database table can be mapped to a POJO and vice versa, provides mechanisms how a PersistenceContext can be injected in a @Stateless bean and then be used for performing different operations on the database table and write typesafe queries. There are several well known advantages of RDBMS but the NoSQL movement has gained traction over past couple of years. The NoSQL databases are not intended to be a replacement for the mainstream RDBMS. As Philosophy of NoSQL explains, NoSQL database was designed for casual use where all the features typically provided by an RDBMS are not required. The name "NoSQL" is more of a category of databases that is more known for what it is not rather than what it is. The basic principles of NoSQL database are: No need to have a pre-defined schema and that makes them a schema-less database. Addition of new properties to existing objects is easy and does not require ALTER TABLE. The unstructured data gives flexibility to change the format of data any time without downtime or reduced service levels. Also there are no joins happening on the server because there is no structure and thus no relation between them. Scalability and performance is more important than the entire set of functionality typically provided by an RDBMS. This set of databases provide eventual consistency and/or transactions restricted to single items but more focus on CRUD. Not be restricted to SQL to access the information stored in the backing database. Designed to scale-out (horizontal) instead of scale-up (vertical). This is important knowing that databases, and everything else as well, is moving into the cloud. RBDMS can scale-out using sharding but requires complex management and not for the faint of heart. Unlike RBDMS which require a separate caching tier, most of the NoSQL databases comes with integrated caching. Designed for less management and simpler data models lead to lower administration as well. There are primarily three types of NoSQL databases: Key-Value stores (e.g. Cassandra and Riak) Document databases (MongoDB or CouchDB) Graph databases (Neo4J) You may think NoSQL is panacea but as I mentioned above they are not meant to replace the mainstream databases and here is why: RDBMS have been around for many years, very stable, and functionally rich. This is something CIOs and CTOs can bet their money on without much worry. There is a reason 98% of Fortune 100 companies run Oracle :-) NoSQL is cutting edge, brings excitement to developers, but enterprises are cautious about them. Commercial databases like Oracle are well supported by the backing enterprises in terms of providing support resources on a global scale. There is a full ecosystem built around these commercial databases providing training, performance tuning, architecture guidance, and everything else. NoSQL is fairly new and typically backed by a single company not able to meet the scale of these big enterprises. NoSQL databases are good for CRUDing operations but business intelligence is extremely important for enterprises to stay competitive. RDBMS provide extensive tooling to generate this data but that was not the original intention of NoSQL databases and is lacking in that area. Generating any meaningful information other than CRUDing require extensive programming. Not suited for complex transactions such as banking systems or other highly transactional applications requiring 2-phase commit. SQL cannot be used with NoSQL databases and writing simple queries can be involving. Enough talking, lets take a look at some code. This blog has published multiple blogs on how to access a RDBMS using JPA in a Java EE 6 application. This Tip Of The Day (TOTD) will show you can use MongoDB (a document-oriented database) with a typical 3-tier Java EE 6 application. Lets get started! The complete source code of this project can be downloaded here. Download MongoDB for your platform from here (1.8.2 as of this writing) and start the server as: arun@ArunUbuntu:~/tools/mongodb-linux-x86_64-1.8.2/bin$./mongod./mongod --help for help and startup optionsSun Jun 26 20:41:11 [initandlisten] MongoDB starting : pid=11210port=27017 dbpath=/data/db/ 64-bit Sun Jun 26 20:41:11 [initandlisten] db version v1.8.2, pdfile version4.5Sun Jun 26 20:41:11 [initandlisten] git version:433bbaa14aaba6860da15bd4de8edf600f56501bSun Jun 26 20:41:11 [initandlisten] build sys info: Linuxbs-linux64.10gen.cc 2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 2017:48:28 EST 2009 x86_64 BOOST_LIB_VERSION=1_41Sun Jun 26 20:41:11 [initandlisten] waiting for connections on port 27017Sun Jun 26 20:41:11 [websvr] web admin interface listening on port 28017 The default directory for the database is /data/db and needs to be created as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db You can specify a different directory using "--dbpath" option. Refer to Quickstart for your specific platform. Using NetBeans, create a Java EE 6 project and make sure to enable CDI and add JavaServer Faces framework. Download MongoDB Java Driver (2.6.3 of this writing) and add it to the project library by selecting "Properties", "LIbraries", "Add Library...", creating a new library by specifying the location of the JAR file, and adding the library to the created project. Edit the generated "index.xhtml" such that it looks like: <h1>Add a new movie</h1><h:form> Name: <h:inputText value="#{movie.name}" size="20"/><br/> Year: <h:inputText value="#{movie.year}" size="6"/><br/> Language: <h:inputText value="#{movie.language}" size="20"/><br/> <h:commandButton actionListener="#{movieSessionBean.createMovie}" action="show" title="Add" value="submit"/></h:form> This page has a simple HTML form with three text boxes and a submit button. The text boxes take name, year, and language of a movie and the submit button invokes the "createMovie" method of "movieSessionBean" and then render "show.xhtml". Create "show.xhtml" ("New" -> "Other..." -> "Other" -> "XHTML File") such that it looks like: <head> <title><h1>List of movies</h1></title> </head> <body> <h:form> <h:dataTable value="#{movieSessionBean.movies}" var="m" > <h:column><f:facet name="header">Name</f:facet>#{m.name}</h:column> <h:column><f:facet name="header">Year</f:facet>#{m.year}</h:column> <h:column><f:facet name="header">Language</f:facet>#{m.language}</h:column> </h:dataTable> </h:form> This page shows the name, year, and language of all movies stored in the database so far. The list of movies is returned by "movieSessionBean.movies" property. Now create the "Movie" class such that it looks like: import com.mongodb.BasicDBObject;import com.mongodb.BasicDBObject;import com.mongodb.DBObject;import javax.enterprise.inject.Model;import javax.validation.constraints.Size;/** * @author arun */@Modelpublic class Movie { @Size(min=1, max=20) private String name; @Size(min=1, max=20) private String language; private int year; // getters and setters for "name", "year", "language" public BasicDBObject toDBObject() { BasicDBObject doc = new BasicDBObject(); doc.put("name", name); doc.put("year", year); doc.put("language", language); return doc; } public static Movie fromDBObject(DBObject doc) { Movie m = new Movie(); m.name = (String)doc.get("name"); m.year = (int)doc.get("year"); m.language = (String)doc.get("language"); return m; } @Override public String toString() { return name + ", " + year + ", " + language; }} Other than the usual boilerplate code, the key methods here are "toDBObject" and "fromDBObject". These methods provide a conversion from "Movie" -> "DBObject" and vice versa. The "DBObject" is a MongoDB class that comes as part of the mongo-2.6.3.jar file and which we added to our project earlier.  The complete javadoc for 2.6.3 can be seen here. Notice, this class also uses Bean Validation constraints and will be honored by the JSF layer. Finally, create "MovieSessionBean" stateless EJB with all the business logic such that it looks like: package org.glassfish.samples;import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.Mongo;import java.net.UnknownHostException;import java.util.ArrayList;import java.util.List;import javax.annotation.PostConstruct;import javax.ejb.Stateless;import javax.inject.Inject;import javax.inject.Named;/** * @author arun */@Stateless@Namedpublic class MovieSessionBean { @Inject Movie movie; DBCollection movieColl; @PostConstruct private void initDB() throws UnknownHostException { Mongo m = new Mongo(); DB db = m.getDB("movieDB"); movieColl = db.getCollection("movies"); if (movieColl == null) { movieColl = db.createCollection("movies", null); } } public void createMovie() { BasicDBObject doc = movie.toDBObject(); movieColl.insert(doc); } public List<Movie> getMovies() { List<Movie> movies = new ArrayList(); DBCursor cur = movieColl.find(); System.out.println("getMovies: Found " + cur.size() + " movie(s)"); for (DBObject dbo : cur.toArray()) { movies.add(Movie.fromDBObject(dbo)); } return movies; }} The database is initialized in @PostConstruct. Instead of a working with a database table, NoSQL databases work with a schema-less document. The "Movie" class is the document in our case and stored in the collection "movies". The collection allows us to perform query functions on all movies. The "getMovies" method invokes "find" method on the collection which is equivalent to the SQL query "select * from movies" and then returns a List<Movie>. Also notice that there is no "persistence.xml" in the project. Right-click and run the project to see the output as: Enter some values in the text box and click on enter to see the result as: If you reached here then you've successfully used MongoDB in your Java EE 6 application, congratulations! Some food for thought and further play ... SQL to MongoDB mapping shows mapping between traditional SQL -> Mongo query language. Tutorial shows fun things you can do with MongoDB. Try the interactive online shell  The cookbook provides common ways of using MongoDB In terms of this project, here are some tasks that can be tried: Encapsulate database management in a JPA persistence provider. Is it even worth it because the capabilities are going to be very different ? MongoDB uses "BSonObject" class for JSON representation, add @XmlRootElement on a POJO and how a compatible JSON representation can be generated. This will make the fromXXX and toXXX methods redundant.

    Read the article

  • TOTD #166: Using NoSQL database in your Java EE 6 Applications on GlassFish - MongoDB for now!

    - by arungupta
    The Java EE 6 platform includes Java Persistence API to work with RDBMS. The JPA specification defines a comprehensive API that includes, but not restricted to, how a database table can be mapped to a POJO and vice versa, provides mechanisms how a PersistenceContext can be injected in a @Stateless bean and then be used for performing different operations on the database table and write typesafe queries. There are several well known advantages of RDBMS but the NoSQL movement has gained traction over past couple of years. The NoSQL databases are not intended to be a replacement for the mainstream RDBMS. As Philosophy of NoSQL explains, NoSQL database was designed for casual use where all the features typically provided by an RDBMS are not required. The name "NoSQL" is more of a category of databases that is more known for what it is not rather than what it is. The basic principles of NoSQL database are: No need to have a pre-defined schema and that makes them a schema-less database. Addition of new properties to existing objects is easy and does not require ALTER TABLE. The unstructured data gives flexibility to change the format of data any time without downtime or reduced service levels. Also there are no joins happening on the server because there is no structure and thus no relation between them. Scalability and performance is more important than the entire set of functionality typically provided by an RDBMS. This set of databases provide eventual consistency and/or transactions restricted to single items but more focus on CRUD. Not be restricted to SQL to access the information stored in the backing database. Designed to scale-out (horizontal) instead of scale-up (vertical). This is important knowing that databases, and everything else as well, is moving into the cloud. RBDMS can scale-out using sharding but requires complex management and not for the faint of heart. Unlike RBDMS which require a separate caching tier, most of the NoSQL databases comes with integrated caching. Designed for less management and simpler data models lead to lower administration as well. There are primarily three types of NoSQL databases: Key-Value stores (e.g. Cassandra and Riak) Document databases (MongoDB or CouchDB) Graph databases (Neo4J) You may think NoSQL is panacea but as I mentioned above they are not meant to replace the mainstream databases and here is why: RDBMS have been around for many years, very stable, and functionally rich. This is something CIOs and CTOs can bet their money on without much worry. There is a reason 98% of Fortune 100 companies run Oracle :-) NoSQL is cutting edge, brings excitement to developers, but enterprises are cautious about them. Commercial databases like Oracle are well supported by the backing enterprises in terms of providing support resources on a global scale. There is a full ecosystem built around these commercial databases providing training, performance tuning, architecture guidance, and everything else. NoSQL is fairly new and typically backed by a single company not able to meet the scale of these big enterprises. NoSQL databases are good for CRUDing operations but business intelligence is extremely important for enterprises to stay competitive. RDBMS provide extensive tooling to generate this data but that was not the original intention of NoSQL databases and is lacking in that area. Generating any meaningful information other than CRUDing require extensive programming. Not suited for complex transactions such as banking systems or other highly transactional applications requiring 2-phase commit. SQL cannot be used with NoSQL databases and writing simple queries can be involving. Enough talking, lets take a look at some code. This blog has published multiple blogs on how to access a RDBMS using JPA in a Java EE 6 application. This Tip Of The Day (TOTD) will show you can use MongoDB (a document-oriented database) with a typical 3-tier Java EE 6 application. Lets get started! The complete source code of this project can be downloaded here. Download MongoDB for your platform from here (1.8.2 as of this writing) and start the server as: arun@ArunUbuntu:~/tools/mongodb-linux-x86_64-1.8.2/bin$./mongod./mongod --help for help and startup optionsSun Jun 26 20:41:11 [initandlisten] MongoDB starting : pid=11210port=27017 dbpath=/data/db/ 64-bit Sun Jun 26 20:41:11 [initandlisten] db version v1.8.2, pdfile version4.5Sun Jun 26 20:41:11 [initandlisten] git version:433bbaa14aaba6860da15bd4de8edf600f56501bSun Jun 26 20:41:11 [initandlisten] build sys info: Linuxbs-linux64.10gen.cc 2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 2017:48:28 EST 2009 x86_64 BOOST_LIB_VERSION=1_41Sun Jun 26 20:41:11 [initandlisten] waiting for connections on port 27017Sun Jun 26 20:41:11 [websvr] web admin interface listening on port 28017 The default directory for the database is /data/db and needs to be created as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db You can specify a different directory using "--dbpath" option. Refer to Quickstart for your specific platform. Using NetBeans, create a Java EE 6 project and make sure to enable CDI and add JavaServer Faces framework. Download MongoDB Java Driver (2.6.3 of this writing) and add it to the project library by selecting "Properties", "LIbraries", "Add Library...", creating a new library by specifying the location of the JAR file, and adding the library to the created project. Edit the generated "index.xhtml" such that it looks like: <h1>Add a new movie</h1><h:form> Name: <h:inputText value="#{movie.name}" size="20"/><br/> Year: <h:inputText value="#{movie.year}" size="6"/><br/> Language: <h:inputText value="#{movie.language}" size="20"/><br/> <h:commandButton actionListener="#{movieSessionBean.createMovie}" action="show" title="Add" value="submit"/></h:form> This page has a simple HTML form with three text boxes and a submit button. The text boxes take name, year, and language of a movie and the submit button invokes the "createMovie" method of "movieSessionBean" and then render "show.xhtml". Create "show.xhtml" ("New" -> "Other..." -> "Other" -> "XHTML File") such that it looks like: <head> <title><h1>List of movies</h1></title> </head> <body> <h:form> <h:dataTable value="#{movieSessionBean.movies}" var="m" > <h:column><f:facet name="header">Name</f:facet>#{m.name}</h:column> <h:column><f:facet name="header">Year</f:facet>#{m.year}</h:column> <h:column><f:facet name="header">Language</f:facet>#{m.language}</h:column> </h:dataTable> </h:form> This page shows the name, year, and language of all movies stored in the database so far. The list of movies is returned by "movieSessionBean.movies" property. Now create the "Movie" class such that it looks like: import com.mongodb.BasicDBObject;import com.mongodb.BasicDBObject;import com.mongodb.DBObject;import javax.enterprise.inject.Model;import javax.validation.constraints.Size;/** * @author arun */@Modelpublic class Movie { @Size(min=1, max=20) private String name; @Size(min=1, max=20) private String language; private int year; // getters and setters for "name", "year", "language" public BasicDBObject toDBObject() { BasicDBObject doc = new BasicDBObject(); doc.put("name", name); doc.put("year", year); doc.put("language", language); return doc; } public static Movie fromDBObject(DBObject doc) { Movie m = new Movie(); m.name = (String)doc.get("name"); m.year = (int)doc.get("year"); m.language = (String)doc.get("language"); return m; } @Override public String toString() { return name + ", " + year + ", " + language; }} Other than the usual boilerplate code, the key methods here are "toDBObject" and "fromDBObject". These methods provide a conversion from "Movie" -> "DBObject" and vice versa. The "DBObject" is a MongoDB class that comes as part of the mongo-2.6.3.jar file and which we added to our project earlier.  The complete javadoc for 2.6.3 can be seen here. Notice, this class also uses Bean Validation constraints and will be honored by the JSF layer. Finally, create "MovieSessionBean" stateless EJB with all the business logic such that it looks like: package org.glassfish.samples;import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.Mongo;import java.net.UnknownHostException;import java.util.ArrayList;import java.util.List;import javax.annotation.PostConstruct;import javax.ejb.Stateless;import javax.inject.Inject;import javax.inject.Named;/** * @author arun */@Stateless@Namedpublic class MovieSessionBean { @Inject Movie movie; DBCollection movieColl; @PostConstruct private void initDB() throws UnknownHostException { Mongo m = new Mongo(); DB db = m.getDB("movieDB"); movieColl = db.getCollection("movies"); if (movieColl == null) { movieColl = db.createCollection("movies", null); } } public void createMovie() { BasicDBObject doc = movie.toDBObject(); movieColl.insert(doc); } public List<Movie> getMovies() { List<Movie> movies = new ArrayList(); DBCursor cur = movieColl.find(); System.out.println("getMovies: Found " + cur.size() + " movie(s)"); for (DBObject dbo : cur.toArray()) { movies.add(Movie.fromDBObject(dbo)); } return movies; }} The database is initialized in @PostConstruct. Instead of a working with a database table, NoSQL databases work with a schema-less document. The "Movie" class is the document in our case and stored in the collection "movies". The collection allows us to perform query functions on all movies. The "getMovies" method invokes "find" method on the collection which is equivalent to the SQL query "select * from movies" and then returns a List<Movie>. Also notice that there is no "persistence.xml" in the project. Right-click and run the project to see the output as: Enter some values in the text box and click on enter to see the result as: If you reached here then you've successfully used MongoDB in your Java EE 6 application, congratulations! Some food for thought and further play ... SQL to MongoDB mapping shows mapping between traditional SQL -> Mongo query language. Tutorial shows fun things you can do with MongoDB. Try the interactive online shell  The cookbook provides common ways of using MongoDB In terms of this project, here are some tasks that can be tried: Encapsulate database management in a JPA persistence provider. Is it even worth it because the capabilities are going to be very different ? MongoDB uses "BSonObject" class for JSON representation, add @XmlRootElement on a POJO and how a compatible JSON representation can be generated. This will make the fromXXX and toXXX methods redundant.

    Read the article

  • Using RIA DomainServices with ASP.NET and MVC 2

    - by Bobby Diaz
    Recently, I started working on a new ASP.NET MVC 2 project and I wanted to reuse the data access (LINQ to SQL) and business logic methods (WCF RIA Services) that had been developed for a previous project that used Silverlight for the front-end.  I figured that I would be able to instantiate the various DomainService classes from within my controller’s action methods, because after all, the code for those services didn’t look very complicated.  WRONG!  I didn’t realize at first that some of the functionality is handled automatically by the framework when the domain services are hosted as WCF services.  After some initial searching, I came across an invaluable post by Joe McBride, which described how to get RIA Service .svc files to work in an MVC 2 Web Application, and another by Brad Abrams.  Unfortunately, Brad’s solution was for an earlier preview release of RIA Services and no longer works with the version that I am running (PDC Preview). I have not tried the RC version of WCF RIA Services, so I am not sure if any of the issues I am having have been resolved, but I wanted to come up with a way to reuse the shared libraries so I wouldn’t have to write a non-RIA version that basically did the same thing.  The classes I came up with work with the scenarios I have encountered so far, but I wanted to go ahead and post the code in case someone else is having the same trouble I had.  Hopefully this will save you a few headaches! 1. Querying When I first tried to use a DomainService class to perform a query inside one of my controller’s action methods, I got an error stating that “This DomainService has not been initialized.”  To solve this issue, I created an extension method for all DomainServices that creates the required DomainServiceContext and passes it to the service’s Initialize() method.  Here is the code for the extension method; notice that I am creating a sort of mock HttpContext for those cases when the service is running outside of IIS, such as during unit testing!     public static class ServiceExtensions     {         /// <summary>         /// Initializes the domain service by creating a new <see cref="DomainServiceContext"/>         /// and calling the base DomainService.Initialize(DomainServiceContext) method.         /// </summary>         /// <typeparam name="TService">The type of the service.</typeparam>         /// <param name="service">The service.</param>         /// <returns></returns>         public static TService Initialize<TService>(this TService service)             where TService : DomainService         {             var context = CreateDomainServiceContext();             service.Initialize(context);             return service;         }           private static DomainServiceContext CreateDomainServiceContext()         {             var provider = new ServiceProvider(new HttpContextWrapper(GetHttpContext()));             return new DomainServiceContext(provider, DomainOperationType.Query);         }           private static HttpContext GetHttpContext()         {             var context = HttpContext.Current;   #if DEBUG             // create a mock HttpContext to use during unit testing...             if ( context == null )             {                 var writer = new StringWriter();                 var request = new SimpleWorkerRequest("/", "/",                     String.Empty, String.Empty, writer);                   context = new HttpContext(request)                 {                     User = new GenericPrincipal(new GenericIdentity("debug"), null)                 };             } #endif               return context;         }     }   With that in place, I can use it almost as normally as my first attempt, except with a call to Initialize():     public ActionResult Index()     {         var service = new NorthwindService().Initialize();         var customers = service.GetCustomers();           return View(customers);     } 2. Insert / Update / Delete Once I got the records showing up, I was trying to insert new records or update existing data when I ran into the next issue.  I say issue because I wasn’t getting any kind of error, which made it a little difficult to track down.  But once I realized that that the DataContext.SubmitChanges() method gets called automatically at the end of each domain service submit operation, I could start working on a way to mimic the behavior of a hosted domain service.  What I came up with, was a base class called LinqToSqlRepository<T> that basically sits between your implementation and the default LinqToSqlDomainService<T> class.     [EnableClientAccess()]     public class NorthwindService : LinqToSqlRepository<NorthwindDataContext>     {         public IQueryable<Customer> GetCustomers()         {             return this.DataContext.Customers;         }           public void InsertCustomer(Customer customer)         {             this.DataContext.Customers.InsertOnSubmit(customer);         }           public void UpdateCustomer(Customer currentCustomer)         {             this.DataContext.Customers.TryAttach(currentCustomer,                 this.ChangeSet.GetOriginal(currentCustomer));         }           public void DeleteCustomer(Customer customer)         {             this.DataContext.Customers.TryAttach(customer);             this.DataContext.Customers.DeleteOnSubmit(customer);         }     } Notice the new base class name (just change LinqToSqlDomainService to LinqToSqlRepository).  I also added a couple of DataContext (for Table<T>) extension methods called TryAttach that will check to see if the supplied entity is already attached before attempting to attach it, which would cause an error! 3. LinqToSqlRepository<T> Below is the code for the LinqToSqlRepository class.  The comments are pretty self explanatory, but be aware of the [IgnoreOperation] attributes on the generic repository methods, which ensures that they will be ignored by the code generator and not available in the Silverlight client application.     /// <summary>     /// Provides generic repository methods on top of the standard     /// <see cref="LinqToSqlDomainService&lt;TContext&gt;"/> functionality.     /// </summary>     /// <typeparam name="TContext">The type of the context.</typeparam>     public abstract class LinqToSqlRepository<TContext> : LinqToSqlDomainService<TContext>         where TContext : System.Data.Linq.DataContext, new()     {         /// <summary>         /// Retrieves an instance of an entity using it's unique identifier.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="keyValues">The key values.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual TEntity GetById<TEntity>(params object[] keyValues) where TEntity : class         {             var table = this.DataContext.GetTable<TEntity>();             var mapping = this.DataContext.Mapping.GetTable(typeof(TEntity));               var keys = mapping.RowType.IdentityMembers                 .Select((m, i) => m.Name + " = @" + i)                 .ToArray();               return table.Where(String.Join(" && ", keys), keyValues).FirstOrDefault();         }           /// <summary>         /// Creates a new query that can be executed to retrieve a collection         /// of entities from the <see cref="DataContext"/>.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <returns></returns>         [IgnoreOperation]         public virtual IQueryable<TEntity> GetEntityQuery<TEntity>() where TEntity : class         {             return this.DataContext.GetTable<TEntity>();         }           /// <summary>         /// Inserts the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Insert<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.InsertOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Insert);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity) where TEntity : class         {             return this.Update(entity, null);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <param name="original">The original.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity, TEntity original)             where TEntity : class         {             if ( original == null )             {                 original = GetOriginal(entity);             }               var table = this.DataContext.GetTable<TEntity>();             table.TryAttach(entity, original);               return this.Submit(entity, original, DomainOperation.Update);         }           /// <summary>         /// Deletes the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Delete<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.TryAttach(entity);             //table.DeleteOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Delete);         }           protected virtual bool Submit(Object entity, Object original, DomainOperation operation)         {             var entry = new ChangeSetEntry(0, entity, original, operation);             var changes = new ChangeSet(new ChangeSetEntry[] { entry });             return base.Submit(changes);         }           private TEntity GetOriginal<TEntity>(TEntity entity) where TEntity : class         {             var context = CreateDataContext();             var table = context.GetTable<TEntity>();             return table.FirstOrDefault(e => e == entity);         }     } 4. Conclusion So there you have it, a fully functional Repository implementation for your RIA Domain Services that can be consumed by your ASP.NET and MVC applications.  I have uploaded the source code along with unit tests and a sample web application that queries the Customers table from inside a Controller, as well as a Silverlight usage example. As always, I welcome any comments or suggestions on the approach I have taken.  If there is enough interest, I plan on contacting Colin Blair or maybe even the man himself, Brad Abrams, to see if this is something worthy of inclusion in the WCF RIA Services Contrib project.  What do you think? Enjoy!

    Read the article

  • The fastest way to resize images from ASP.NET. And it’s (more) supported-ish.

    - by Bertrand Le Roy
    I’ve shown before how to resize images using GDI, which is fairly common but is explicitly unsupported because we know of very real problems that this can cause. Still, many sites still use that method because those problems are fairly rare, and because most people assume it’s the only way to get the job done. Plus, it works in medium trust. More recently, I’ve shown how you can use WPF APIs to do the same thing and get JPEG thumbnails, only 2.5 times faster than GDI (even now that GDI really ultimately uses WIC to read and write images). The boost in performance is great, but it comes at a cost, that you may or may not care about: it won’t work in medium trust. It’s also just as unsupported as the GDI option. What I want to show today is how to use the Windows Imaging Components from ASP.NET APIs directly, without going through WPF. The approach has the great advantage that it’s been tested and proven to scale very well. The WIC team tells me you should be able to call support and get answers if you hit problems. Caveats exist though. First, this is using interop, so until a signed wrapper sits in the GAC, it will require full trust. Second, the APIs have a very strong smell of native code and are definitely not .NET-friendly. And finally, the most serious problem is that older versions of Windows don’t offer MTA support for image decoding. MTA support is only available on Windows 7, Vista and Windows Server 2008. But on 2003 and XP, you’ll only get STA support. that means that the thread safety that we so badly need for server applications is not guaranteed on those operating systems. To make it work, you’d have to spin specialized threads yourself and manage the lifetime of your objects, which is outside the scope of this article. We’ll assume that we’re fine with al this and that we’re running on 7 or 2008 under full trust. Be warned that the code that follows is not simple or very readable. This is definitely not the easiest way to resize an image in .NET. Wrapping native APIs such as WIC in a managed wrapper is never easy, but fortunately we won’t have to: the WIC team already did it for us and released the results under MS-PL. The InteropServices folder, which contains the wrappers we need, is in the WicCop project but I’ve also included it in the sample that you can download from the link at the end of the article. In order to produce a thumbnail, we first have to obtain a decoding frame object that WIC can use. Like with WPF, that object will contain the command to decode a frame from the source image but won’t do the actual decoding until necessary. Getting the frame is done by reading the image bytes through a special WIC stream that you can obtain from a factory object that we’re going to reuse for lots of other tasks: var photo = File.ReadAllBytes(photoPath); var factory = (IWICComponentFactory)new WICImagingFactory(); var inputStream = factory.CreateStream(); inputStream.InitializeFromMemory(photo, (uint)photo.Length); var decoder = factory.CreateDecoderFromStream( inputStream, null, WICDecodeOptions.WICDecodeMetadataCacheOnLoad); var frame = decoder.GetFrame(0); We can read the dimensions of the frame using the following (somewhat ugly) code: uint width, height; frame.GetSize(out width, out height); This enables us to compute the dimensions of the thumbnail, as I’ve shown in previous articles. We now need to prepare the output stream for the thumbnail. WIC requires a special kind of stream, IStream (not implemented by System.IO.Stream) and doesn’t directlyunderstand .NET streams. It does provide a number of implementations but not exactly what we need here. We need to output to memory because we’ll want to persist the same bytes to the response stream and to a local file for caching. The memory-bound version of IStream requires a fixed-length buffer but we won’t know the length of the buffer before we resize. To solve that problem, I’ve built a derived class from MemoryStream that also implements IStream. The implementation is not very complicated, it just delegates the IStream methods to the base class, but it involves some native pointer manipulation. Once we have a stream, we need to build the encoder for the output format, which could be anything that WIC supports. For web thumbnails, our only reasonable options are PNG and JPEG. I explored PNG because it’s a lossless format, and because WIC does support PNG compression. That compression is not very efficient though and JPEG offers good quality with much smaller file sizes. On the web, it matters. I found the best PNG compression option (adaptive) to give files that are about twice as big as 100%-quality JPEG (an absurd setting), 4.5 times bigger than 95%-quality JPEG and 7 times larger than 85%-quality JPEG, which is more than acceptable quality. As a consequence, we’ll use JPEG. The JPEG encoder can be prepared as follows: var encoder = factory.CreateEncoder( Consts.GUID_ContainerFormatJpeg, null); encoder.Initialize(outputStream, WICBitmapEncoderCacheOption.WICBitmapEncoderNoCache); The next operation is to create the output frame: IWICBitmapFrameEncode outputFrame; var arg = new IPropertyBag2[1]; encoder.CreateNewFrame(out outputFrame, arg); Notice that we are passing in a property bag. This is where we’re going to specify our only parameter for encoding, the JPEG quality setting: var propBag = arg[0]; var propertyBagOption = new PROPBAG2[1]; propertyBagOption[0].pstrName = "ImageQuality"; propBag.Write(1, propertyBagOption, new object[] { 0.85F }); outputFrame.Initialize(propBag); We can then set the resolution for the thumbnail to be 96, something we weren’t able to do with WPF and had to hack around: outputFrame.SetResolution(96, 96); Next, we set the size of the output frame and create a scaler from the input frame and the computed dimensions of the target thumbnail: outputFrame.SetSize(thumbWidth, thumbHeight); var scaler = factory.CreateBitmapScaler(); scaler.Initialize(frame, thumbWidth, thumbHeight, WICBitmapInterpolationMode.WICBitmapInterpolationModeFant); The scaler is using the Fant method, which I think is the best looking one even if it seems a little softer than cubic (zoomed here to better show the defects): Cubic Fant Linear Nearest neighbor We can write the source image to the output frame through the scaler: outputFrame.WriteSource(scaler, new WICRect { X = 0, Y = 0, Width = (int)thumbWidth, Height = (int)thumbHeight }); And finally we commit the pipeline that we built and get the byte array for the thumbnail out of our memory stream: outputFrame.Commit(); encoder.Commit(); var outputArray = outputStream.ToArray(); outputStream.Close(); That byte array can then be sent to the output stream and to the cache file. Once we’ve gone through this exercise, it’s only natural to wonder whether it was worth the trouble. I ran this method, as well as GDI and WPF resizing over thirty twelve megapixel images for JPEG qualities between 70% and 100% and measured the file size and time to resize. Here are the results: Size of resized images   Time to resize thirty 12 megapixel images Not much to see on the size graph: sizes from WPF and WIC are equivalent, which is hardly surprising as WPF calls into WIC. There is just an anomaly for 75% for WPF that I noted in my previous article and that disappears when using WIC directly. But overall, using WPF or WIC over GDI represents a slight win in file size. The time to resize is more interesting. WPF and WIC get similar times although WIC seems to always be a little faster. Not surprising considering WPF is using WIC. The margin of error on this results is probably fairly close to the time difference. As we already knew, the time to resize does not depend on the quality level, only the size does. This means that the only decision you have to make here is size versus visual quality. This third approach to server-side image resizing on ASP.NET seems to converge on the fastest possible one. We have marginally better performance than WPF, but with some additional peace of mind that this approach is sanctioned for server-side usage by the Windows Imaging team. It still doesn’t work in medium trust. That is a problem and shows the way for future server-friendly managed wrappers around WIC. The sample code for this article can be downloaded from: http://weblogs.asp.net/blogs/bleroy/Samples/WicResize.zip The benchmark code can be found here (you’ll need to add your own images to the Images directory and then add those to the project, with content and copy if newer in the properties of the files in the solution explorer): http://weblogs.asp.net/blogs/bleroy/Samples/WicWpfGdiImageResizeBenchmark.zip WIC tools can be downloaded from: http://code.msdn.microsoft.com/wictools To conclude, here are some of the resized thumbnails at 85% fant:

    Read the article

  • JQGrdi PDF Export

    - by thanigai
    Originally posted on: http://geekswithblogs.net/thanigai/archive/2013/06/17/jqgrdi-pdf-export.aspxJQGrid PDF Export The aim of this article is to address the PDF export from client side grid frameworks. The solution is done using the ASP.Net MVC 4 and VisualStudio 2012. The article assumes the developer to have a fair amount of knowledge on ASP.Net MVC and C#. Tools Used Visual Studio 2012 ASP.Net MVC 4 Nuget Package Manager JQGrid  is one of the client grid framework built on top of the JQuery framework. It helps in building a beautiful grid with paging, sorting and exiting options. There are also other features available as extension plugins and developers can write their own if needed. You can download the JQgrid from the  JQGrid  homepage or as NUget package. I have given below the command to download the JQGrid through the package manager console. From the tools menu select “Library Package Manager” and then select “Package Manager Console”. I have given the screenshot below. This command will pull down the latest JQGrid package and adds them in the script folder. Once the script is downloaded and referenced in the project update the bundleconfig file to add the script reference in the pages. Bundleconfig can be found in the  App_Start  folder in the project structure. bundles .Add (newStyleBundle(“~/Content/jqgrid”).Include (“~/Content/ui.jqgrid.css”)); bundles.Add( newScriptBundle( “~/bundles/jquerygrid”) .Include( “~/Scripts/jqGrid/jquery.jqGrid*”)); Once added the config’s refer the bundles to the Views/Shared/LayoutPage.cshtml. Add the following lines to the head section of the page. @Styles.Render(“~/Content/jqgrid”) Add the following lines to the end of the page before html close tags. @Scripts.Render(“~/bundles/jquery”) @Scripts.Render(“~/bundles/jqueryui”) @Scripts.Render(“ ~/bundles/jquerygrid”)              That’s all to be done from the view perspective. Once these steps are done the developer can start coding for the JQGrid. In this example we will modify the HomeController for the demo. The index action will be the default action. We will add an argument for this index action. Let it be nullable bool. It’s just to mark the pdf request. In the Index.cshtml we will add a table tag with an id “ gridTable “. We will use this table for making the grid. Since JQGrid is an extension for the JQUery we will initialize the grid setting at the  script  section of the page. This script section is marked at the end of the page to improve performance. The script section is placed just below the bundle reference for JQuery and JQueryUI. This is the one of improvement factors from “ why slow” provided by yahoo. < tableid=“gridTable”class=“scroll”></ table> < inputtype=“button”value=“Export PDF”onclick=“exportPDF();“/>  @section scripts { <scripttype=“text/javascript”> $(document).ready(function(){$(“#gridTable”).jqGrid({datatype:“json”,url:‘@Url.Action(“GetCustomerDetails”)‘,mtype:‘GET’,colNames:["CustomerID","CustomerName","Location","PrimaryBusiness"],colModel:[{name:"CustomerID",width:40,index:"CustomerID",align:"center"},{name:"CustomerName",width:40,index:"CustomerName",align:"center"},{name:"Location",width:40,index:"Location",align:"center"},{name:"PrimaryBusiness",width:40,index:"PrimaryBusiness",align:"center"},],height:250,autowidth:true,sortorder:“asc”,rowNum:10,rowList:[5,10,15,20],sortname:“CustomerID”,viewrecords:true});});  function exportPDF (){ document . location = ‘ @ Url . Action ( “Index” ) ?pdf=true’ ; } </ script >  } The exportPDF methos just sets the document location to the Index action method with PDF Boolean as true just to mark for download PDF. An inmemory list collection is used for demo purpose. The  GetCustomerDetailsmethod is the server side action method that will provide the data as JSON list. We will see the method explanation below. [ HttpGet] publicJsonResultGetCustomerDetails(){ varresult=new { total=1, page=1, records=customerList.Count(), rows=( customerList.Select( e=>new { id=e.CustomerID, cell=newstring[]{ e.CustomerID.ToString(), e.CustomerName, e.Location, e.PrimaryBusiness}})) .ToArray()}; returnJson( result,  JsonRequestBehavior.AllowGet); }   JQGrid can understand the response data from server in certain format. The server method shown above is taking care of formatting the response so that JQGrid understand the data properly. The response data should contain totalpages, current page, full record count, rows of data with id and remaining columns as string array. The response is built using an anonymous object and will be sent as a MVC JsonResult. Since we are using HttpGet it’s better to mark the attribute as HttpGet and also the JSON requestbehavious as AllowGet. The inmemory list is initialized in the homecontroller constructor for reference. Public class HomeController : Controller{ private readonly Ilist < CustomerViewModel > customerList ; public HomeController (){ customerList=newList<CustomerViewModel>() { newCustomerViewModel{ CustomerID=100, CustomerName=“Sundar”, Location=“Chennai”, PrimaryBusiness=“Teacing”}, newCustomerViewModel{ CustomerID=101, CustomerName=“Sudhagar”, Location=“Chennai”, PrimaryBusiness=“Software”}, newCustomerViewModel{ CustomerID=102, CustomerName=“Thivagar”, Location=“China”, PrimaryBusiness=“SAP”}, }; }  publicActionResultIndex( bool?pdf){ if ( !pdf.HasValue){ returnView( customerList);} else{ stringfilePath=Server.MapPath( “Content”)  +“Sample.pdf”; ExportPDF( customerList,  new string[]{  “CustomerID”,  “CustomerName”,  “Location”,  “PrimaryBusiness” },  filePath); return File ( filePath ,  “application/pdf” , “list.pdf” ); }}   The index actionmethod has a Boolean argument named “pdf”. It’s used to indicate for PDF download. When the application starts this method is first hit for initial page request. For PDF operation a filename is generated and then sent to the  ExportPDF  method which will take care of generating the PDF from the datasource. The  ExportPDF method is listed below.  Private static void ExportPDF<TSource>(IList<TSource>customerList,string [] columns, string filePath){ FontheaderFont=FontFactory.GetFont( “Verdana”,  10,  Color.WHITE); Fontrowfont=FontFactory.GetFont( “Verdana”,  10,  Color.BLUE); Documentdocument=newDocument( PageSize.A4);  PdfWriter writer = PdfWriter . GetInstance ( document ,  new FileStream ( filePath ,  FileMode . OpenOrCreate )); document.Open(); PdfPTabletable=newPdfPTable( columns.Length); foreach ( varcolumnincolumns){ PdfPCellcell=newPdfPCell( newPhrase( column,  headerFont)); cell.BackgroundColor=Color.BLACK; table.AddCell( cell); }  foreach  ( var item in customerList ) { foreach ( varcolumnincolumns){ stringvalue=item.GetType() .GetProperty( column) .GetValue( item) .ToString(); PdfPCellcell5=newPdfPCell( newPhrase( value,  rowfont)); table.AddCell( cell5); } }  document.Add( table); document.Close(); }   iTextSharp is one of the pioneer in PDF export. It’s an opensource library readily available as NUget library. This command will pulldown latest available library. I am using the version 4.1.2.0. The latest version may have changed. There are three main things in this library. Document This is the document class which takes care of creating the document sheet with particular size. We have used A4 size. There is also an option to define the rectangle size. This document instance will be further used in next methods for reference. PdfWriter PdfWriter takes the filename and the document as the reference. This class enables the document class to generate the PDF content and save them in a file. Font Using the FONT class the developer can control the font features. Since I need a nice looking font I am giving the Verdana font. Following this PdfPTable and PdfPCell are used for generating the normal table layout. We have created two set of fonts for header and footer. Font headerFont=FontFactory .GetFont(“Verdana”, 10, Color .WHITE); Font rowfont=FontFactory .GetFont(“Verdana”, 10, Color .BLUE);   We are getting the header columns as string array. Columns argument array is looped and header is generated. We are using the headerfont for this purpose. PdfWriter writer=PdfWriter .GetInstance(document, newFileStream (filePath, FileMode.OpenOrCreate)); document.Open(); PdfPTabletable=newPdfPTable( columns.Length); foreach ( varcolumnincolumns){ PdfPCellcell=newPdfPCell( newPhrase( column,  headerFont)); cell.BackgroundColor=Color.BLACK; table.AddCell( cell); }   Then reflection is used to generate the row wise details and form the grid. foreach  (var item in customerList){ foreach ( varcolumnincolumns) { stringvalue=item.GetType() .GetProperty( column) .GetValue( item) .ToString(); PdfPCellcell5=newPdfPCell( newPhrase( value,  rowfont)); table.AddCell( cell5); } } document . Add ( table ); document . Close ();   Once the process id done the pdf table is added to the document and document is closed to write all the changes to the filepath given. Then the control moves to the controller which will take care of sending the response as a JSON result with a filename. If the file name is not given then the PDF will open in the same page otherwise a popup will open up asking whether to save the file or open file. Return File(filePath, “application/pdf”,“list.pdf”);   The final result screen is shown below. PDF file opened below to show the output. Conclusion: This is how the export pdf is done for JQGrid. The problem area that is addressed here is the clientside grid frameworks won’t support PDF’s export. In that time it’s better to have a fine grained control over the data and generated PDF. iTextSharp has helped us to achieve our goal.

    Read the article

  • Where'd My Data Go? (and/or...How Do I Get Rid of It?)

    - by David Paquette
    Want to get a better idea of how cascade deletes work in Entity Framework Code First scenarios? Want to see it in action? Stick with us as we quickly demystify what happens when you tell your data context to nuke a parent entity. This post is authored by Calgary .NET User Group Leader David Paquette with help from Microsoft MVP in Asp.Net James Chambers. We got to spend a great week back in March at Prairie Dev Con West, chalk full of sessions, presentations, workshops, conversations and, of course, questions.  One of the questions that came up during my session: "How does Entity Framework Code First deal with cascading deletes?". James and I had different thoughts on what the default was, if it was different from SQL server, if it was the same as EF proper and if there was a way to override whatever the default was.  So we built a set of examples and figured out that the answer is simple: it depends.  (Download Samples) Consider the example of a hockey league. You have several different entities in the league including games, teams that play the games and players that make up the teams. Each team also has a mascot.  If you delete a team, we need a couple of things to happen: The team, games and mascot will be deleted, and The players for that team will remain in the league (and therefore the database) but they should no longer be assigned to a team. So, let's make this start to come together with a look at the default behaviour in SQL when using an EDMX-driven project. The Reference – Understanding EF's Behaviour with an EDMX/DB First Approach First up let’s take a look at the DB first approach.  In the database, we defined 4 tables: Teams, Players, Mascots, and Games.  We also defined 4 foreign keys as follows: Players.Team_Id (NULL) –> Teams.Id Mascots.Id (NOT NULL) –> Teams.Id (ON DELETE CASCADE) Games.HomeTeam_Id (NOT NULL) –> Teams.Id Games.AwayTeam_Id (NOT NULL) –> Teams.Id Note that by specifying ON DELETE CASCADE for the Mascots –> Teams foreign key, the database will automatically delete the team’s mascot when the team is deleted.  While we want the same behaviour for the Games –> Teams foreign keys, it is not possible to accomplish this using ON DELETE CASCADE in SQL Server.  Specifying a ON DELETE CASCADE on these foreign keys would cause a circular reference error: The series of cascading referential actions triggered by a single DELETE or UPDATE must form a tree that contains no circular references. No table can appear more than one time in the list of all cascading referential actions that result from the DELETE or UPDATE – MSDN When we create an entity data model from the above database, we get the following:   In order to get the Games to be deleted when the Team is deleted, we need to specify End1 OnDelete action of Cascade for the HomeGames and AwayGames associations.   Now, we have an Entity Data Model that accomplishes what we set out to do.  One caveat here is that Entity Framework will only properly handle the cascading delete when the the players and games for the team have been loaded into memory.  For a more detailed look at Cascade Delete in EF Database First, take a look at this blog post by Alex James.   Building The Same Sample with EF Code First Next, we're going to build up the model with the code first approach.  EF Code First is defined on the Ado.Net team blog as such: Code First allows you to define your model using C# or VB.Net classes, optionally additional configuration can be performed using attributes on your classes and properties or by using a Fluent API. Your model can be used to generate a database schema or to map to an existing database. Entity Framework Code First follows some conventions to determine when to cascade delete on a relationship.  More details can be found on MSDN: If a foreign key on the dependent entity is not nullable, then Code First sets cascade delete on the relationship. If a foreign key on the dependent entity is nullable, Code First does not set cascade delete on the relationship, and when the principal is deleted the foreign key will be set to null. The multiplicity and cascade delete behavior detected by convention can be overridden by using the fluent API. For more information, see Configuring Relationships with Fluent API (Code First). Our DbContext consists of 4 DbSets: public DbSet<Team> Teams { get; set; } public DbSet<Player> Players { get; set; } public DbSet<Mascot> Mascots { get; set; } public DbSet<Game> Games { get; set; } When we set the Mascot –> Team relationship to required, Entity Framework will automatically delete the Mascot when the Team is deleted.  This can be done either using the [Required] data annotation attribute, or by overriding the OnModelCreating method of your DbContext and using the fluent API. Data Annotations: public class Mascot { public int Id { get; set; } public string Name { get; set; } [Required] public virtual Team Team { get; set; } } Fluent API: protected override void OnModelCreating(DbModelBuilder modelBuilder) { modelBuilder.Entity<Mascot>().HasRequired(m => m.Team); } The Player –> Team relationship is automatically handled by the Code First conventions. When a Team is deleted, the Team property for all the players on that team will be set to null.  No additional configuration is required, however all the Player entities must be loaded into memory for the cascading to work properly. The Game –> Team relationship causes some grief in our Code First example.  If we try setting the HomeTeam and AwayTeam relationships to required, Entity Framework will attempt to set On Cascade Delete for the HomeTeam and AwayTeam foreign keys when creating the database tables.  As we saw in the database first example, this causes a circular reference error and throws the following SqlException: Introducing FOREIGN KEY constraint 'FK_Games_Teams_AwayTeam_Id' on table 'Games' may cause cycles or multiple cascade paths. Specify ON DELETE NO ACTION or ON UPDATE NO ACTION, or modify other FOREIGN KEY constraints. Could not create constraint. To solve this problem, we need to disable the default cascade delete behaviour using the fluent API: protected override void OnModelCreating(DbModelBuilder modelBuilder) { modelBuilder.Entity<Mascot>().HasRequired(m => m.Team); modelBuilder.Entity<Team>() .HasMany(t => t.HomeGames) .WithRequired(g => g.HomeTeam) .WillCascadeOnDelete(false); modelBuilder.Entity<Team>() .HasMany(t => t.AwayGames) .WithRequired(g => g.AwayTeam) .WillCascadeOnDelete(false); base.OnModelCreating(modelBuilder); } Unfortunately, this means we need to manually manage the cascade delete behaviour.  When a Team is deleted, we need to manually delete all the home and away Games for that Team. foreach (Game awayGame in jets.AwayGames.ToArray()) { entities.Games.Remove(awayGame); } foreach (Game homeGame in homeGames) { entities.Games.Remove(homeGame); } entities.Teams.Remove(jets); entities.SaveChanges();   Overriding the Defaults – When and How To As you have seen, the default behaviour of Entity Framework Code First can be overridden using the fluent API.  This can be done by overriding the OnModelCreating method of your DbContext, or by creating separate model override files for each entity.  More information is available on MSDN.   Going Further These were simple examples but they helped us illustrate a couple of points. First of all, we were able to demonstrate the default behaviour of Entity Framework when dealing with cascading deletes, specifically how entity relationships affect the outcome. Secondly, we showed you how to modify the code and control the behaviour to get the outcome you're looking for. Finally, we showed you how easy it is to explore this kind of thing, and we're hoping that you get a chance to experiment even further. For example, did you know that: Entity Framework Code First also works seamlessly with SQL Azure (MSDN) Database creation defaults can be overridden using a variety of IDatabaseInitializers  (Understanding Database Initializers) You can use Code Based migrations to manage database upgrades as your model continues to evolve (MSDN) Next Steps There's no time like the present to start the learning, so here's what you need to do: Get up-to-date in Visual Studio 2010 (VS2010 | SP1) or Visual Studio 2012 (VS2012) Build yourself a project to try these concepts out (or download the sample project) Get into the community and ask questions! There are a ton of great resources out there and community members willing to help you out (like these two guys!). Good luck! About the Authors David Paquette works as a lead developer at P2 Energy Solutions in Calgary, Alberta where he builds commercial software products for the energy industry.  Outside of work, David enjoys outdoor camping, fishing, and skiing. David is also active in the software community giving presentations both locally and at conferences. David also serves as the President of Calgary .Net User Group. James Chambers crafts software awesomeness with an incredible team at LogiSense Corp, based in Cambridge, Ontario. A husband, father and humanitarian, he is currently residing in the province of Manitoba where he resists the urge to cheer for the Jets and maintains he allegiance to the Calgary Flames. When he's not active with the family, outdoors or volunteering, you can find James speaking at conferences and user groups across the country about web development and related technologies.

    Read the article

  • EWS - How to search for items [message] between dates ?

    - by SomFred
    Hi, I am trying to search for message items between two dates from the inbox folder. I use the following restrictionType but it throws this error: firmt.RootFolder = null What am I doing wrong? There is some messages between the mentionned dates ;-) Thanks for your suggestions. using (ExchangeServiceBinding esb = new ExchangeServiceBinding()) { esb.Url = ConfigurationManager.AppSettings["ExchangeWebServicesURL"].ToString(); esb.RequestServerVersionValue = new RequestServerVersion(); esb.RequestServerVersionValue.Version = ExchangeVersionType.Exchange2007_SP1; esb.PreAuthenticate = true; esb.Credentials = new NetworkCredential(email, password); FindItemType findItemRequest = new FindItemType(); // paging IndexedPageViewType ipvt = new IndexedPageViewType(); ipvt.BasePoint = IndexBasePointType.Beginning; ipvt.MaxEntriesReturned = nombreMessage; ipvt.MaxEntriesReturnedSpecified = true; ipvt.Offset = offset; findItemRequest.Item = ipvt; // filter by dates AndType andType = new AndType(); List<SearchExpressionType> searchExps = new List<SearchExpressionType>(); RestrictionType restriction = new RestrictionType(); PathToUnindexedFieldType pteft = new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.itemDateTimeSent }; IsGreaterThanOrEqualToType IsGreaterThanOrEqualTo = new IsGreaterThanOrEqualToType { Item = pteft, FieldURIOrConstant = new FieldURIOrConstantType { Item = new ConstantValueType { Value = DateTime.Today.AddDays(-6d).ToString() } } }; searchExps.Add(IsGreaterThanOrEqualTo); IsLessThanOrEqualToType IsLessThanOrEqualTo = new IsLessThanOrEqualToType { Item = pteft, FieldURIOrConstant = new FieldURIOrConstantType { Item = new ConstantValueType { Value = DateTime.Today.AddDays(1d).ToString() } } }; searchExps.Add(IsLessThanOrEqualTo); andType.Items = searchExps.ToArray(); restriction.Item = andType; findItemRequest.Restriction = restriction; //// Define the sort order of items. FieldOrderType[] fieldsOrder = new FieldOrderType[1]; fieldsOrder[0] = new FieldOrderType(); PathToUnindexedFieldType dateOrder = new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.itemDateTimeReceived }; fieldsOrder[0].Item = dateOrder; fieldsOrder[0].Order = SortDirectionType.Descending; findItemRequest.SortOrder = fieldsOrder; findItemRequest.Traversal = ItemQueryTraversalType.Shallow; // define which item properties are returned in the response findItemRequest.ItemShape = new ItemResponseShapeType { BaseShape = DefaultShapeNamesType.IdOnly }; // identify which folder to search DistinguishedFolderIdType[] folderIDArray = new DistinguishedFolderIdType[1]; folderIDArray[0] = new DistinguishedFolderIdType { Id = DistinguishedFolderIdNameType.inbox }; // add folders to request findItemRequest.ParentFolderIds = folderIDArray; // find the messages FindItemResponseType findItemResponse = esb.FindItem(findItemRequest); //------------- ArrayOfResponseMessagesType responseMessages = findItemResponse.ResponseMessages; ResponseMessageType responseMessage = responseMessages.Items[0]; if (responseMessage is FindItemResponseMessageType) { FindItemResponseMessageType firmt = (responseMessage as FindItemResponseMessageType); *******FindItemParentType fipt = firmt.RootFolder;******** object obj = fipt.Item; // FindItem contains an array of items. ArrayOfRealItemsType realitems = (obj as ArrayOfRealItemsType); ItemType[] items = realitems.Items; // if no messages were found, then return null -- we're done if (items == null || items.Count() <= 0) return null; // FindItem never gets "all" the properties, so now that we've found them all, we need to get them all. BaseItemIdType[] itemIds = new BaseItemIdType[items.Count()]; for (int i = 0; i < items.Count(); i++) itemIds[i] = items[i].ItemId; GetItemType getItemType = new GetItemType { ItemIds = itemIds, ItemShape = new ItemResponseShapeType { BaseShape = DefaultShapeNamesType.AllProperties, BodyType = BodyTypeResponseType.Text, BodyTypeSpecified = true, AdditionalProperties = new BasePathToElementType[] { new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.itemDateTimeSent }, new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.messageFrom }, new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.messageIsRead }, new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.messageSender }, new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.messageToRecipients }, new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.messageCcRecipients }, new PathToUnindexedFieldType { FieldURI = UnindexedFieldURIType.messageBccRecipients } } } }; GetItemResponseType getItemResponse = esb.GetItem(getItemType); messages = ReadItems(getItemResponse, items.Count()); }

    Read the article

  • WCF Data Service BeginSaveChanges not saving changes in Silverlight app

    - by Enigmativity
    I'm having a hell of a time getting WCF Data Services to work within Silverlight. I'm using the VS2010 RC. I've struggled with the cross domain issue requiring the use of clientaccesspolicy.xml & crossdomain.xml files in the web server root folder, but I just couldn't get this to work. I've resorted to putting both the Silverlight Web App & the WCF Data Service in the same project to get past this issue, but any advice here would be good. But now that I can actually see my data coming from the database and being displayed in a data grid within Silverlight I thought my troubles were over - but no. I can edit the data and the in-memory entity is changing, but when I call BeginSaveChanges (with the appropriate async EndSaveChangescall) I get no errors, but no data updates in the database. Here's my WCF Data Services code: public class MyDataService : DataService<MyEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("*", EntitySetRights.All); config.SetServiceOperationAccessRule("*", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } protected override void OnStartProcessingRequest(ProcessRequestArgs args) { base.OnStartProcessingRequest(args); HttpContext context = HttpContext.Current; HttpCachePolicy c = HttpContext.Current.Response.Cache; c.SetCacheability(HttpCacheability.ServerAndPrivate); c.SetExpires(HttpContext.Current.Timestamp.AddSeconds(60)); c.VaryByHeaders["Accept"] = true; c.VaryByHeaders["Accept-Charset"] = true; c.VaryByHeaders["Accept-Encoding"] = true; c.VaryByParams["*"] = true; } } I've pinched the OnStartProcessingRequest code from Scott Hanselman's article Creating an OData API for StackOverflow including XML and JSON in 30 minutes. Here's my code from my Silverlight app: private MyEntities _wcfDataServicesEntities; private CollectionViewSource _customersViewSource; private ObservableCollection<Customer> _customers; private void UserControl_Loaded(object sender, RoutedEventArgs e) { if (!System.ComponentModel.DesignerProperties.GetIsInDesignMode(this)) { _wcfDataServicesEntities = new MyEntities(new Uri("http://localhost:7156/MyDataService.svc/")); _customersViewSource = this.Resources["customersViewSource"] as CollectionViewSource; DataServiceQuery<Customer> query = _wcfDataServicesEntities.Customer; query.BeginExecute(result => { _customers = new ObservableCollection<Customer>(); Array.ForEach(query.EndExecute(result).ToArray(), _customers.Add); Dispatcher.BeginInvoke(() => { _customersViewSource.Source = _customers; }); }, null); } } private void button1_Click(object sender, RoutedEventArgs e) { _wcfDataServicesEntities.BeginSaveChanges(r => { var response = _wcfDataServicesEntities.EndSaveChanges(r); string[] results = new[] { response.BatchStatusCode.ToString(), response.IsBatchResponse.ToString() }; _customers[0].FinAssistCompanyName = String.Join("|", results); }, null); } The response string I get back data binds to my grid OK and shows "-1|False". My intent is to get a proof-of-concept working here and then do the appropriate separation of concerns to turn this into a simple line-of-business app. I've spent hours and hours on this. I'm being driven insane. Any ideas how to get this working?

    Read the article

  • Parsing a JSON Response from a .Net webservice

    - by Maskau
    Just to get this out in the open I am new to JAVA, KSOAP, and JSON. So I'll try to explain this the best I can. A while ago I created a webservice to be consumed by Blackberry Apps that we're built using the plug in for Visual Studio. Now the project I am working on, I want to consume the same webservice for Android devices. For the most part I have the base code for the Android app done and working. Here's my problem: I can successfully call the webservice and get a response. I know from creating the webservice that it sends a JSON response. My problem is trying to parse through the JSON response. I have found a few examples that I have been suiting to my needs however I am hung up on one thing. In the JSON each element is preceeded by "anyType" which is forcing my code to return no results (Ultimately I am binding the data to an ArrayList) Here's what I get if I "getProperty(0).toString()... anyType{Artist=anyType{TrackName=Champagne Supernova;}; Here is the code I am using to parse the JSON Object.... SoapObject gr = (SoapObject)envelope.getResponse(); String ro = gr.getProperty(0).toString(); //Added just to see structure of response Artist_Result.add(gr.toString()); if (ro.startsWith("{")) { JSONObject JSONObj = new JSONObject(ro); Iterator<String> itr = JSONObj.keys(); while (itr.hasNext()) { String key = (String)itr.next(); String value = JSONObj.getString(key); //bundleResult.putString(key, value); Artist_Result.add(value); } } else if (ro.startsWith("[")) { JSONArr = new JSONArray(ro); for (int i = 0; i < JSONArr.length(); i++) { JSONObj = (JSONObject)JSONArr.get(i); //bundleResult.putString(String.valueOf(i), JSONObj.toString()); Artist_Result.add(JSONObj.toString()); } } WebService Code: [WebMethod] [return: System.Xml.Serialization.XmlArrayItemAttribute(typeof(Artist))] public Artist[] GetArtist(string ArtistQuery) { // All the SQL Stuff Here SqlDataReader sReader; sReader = cmd.ExecuteReader(); List<Artist> Artists = new List<Artist>(); while (sReader.Read()) { Artist result = new Artist(); result.TrackName = sReader.GetString(0); Artists.Add(result); } sReader.Close(); sqlConn.Close(); return Artists.ToArray(); } public class Artist { public string TrackName; } Sample of XML Output from a browser: <?xml version="1.0" encoding="utf-8" ?> - <ArrayOfArtist xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://bb.mcrcog.com/"> - <Artist> <TrackName>Champagne Supernova</TrackName> </Artist> - <Artist> <TrackName>Don't Look Back In Anger</TrackName> </Artist> - <Artist> <TrackName>D'you Know What I Mean</TrackName> </Artist> - <Artist> <TrackName>Go Let It Out</TrackName> </Artist> I have a feeling I will need to implement a Class, and Getters/Setters on the Android side. I'm just not sure how to go about doing that. Any help would be greatly appreciated!

    Read the article

  • Microsoft SyncFramework - Sync different tables into one

    - by evnu
    Hello, we are trying to get the Microsoft SyncFramework running in our application to synchronize an oracle db with a mobile device. Problem The queries that we need to gather the data on the oracle db take much time (and we haven't found a way to speed them up yet), so we try to split them up in as much portions as possible. One big part of the whole problem is, that we need different information out of one big table, that bloats a query if combined. Unfortunately, the SyncFramework allows only one TableAdapter per SyncTable. Now this is a problem for our application: If we were able to use more than one TableAdapter per SyncTable, we could easily spread the queries in a more efficient way. Using one query per Table which combines all the needed data takes way too much time. Ideas I thought of creating different TableAdapters for each one of the required queries and then merge the resulting datasets afterwards (preferably on the server). This seems to work, but is a rather awkward solution. Does someone of you know a better solution? Or do you have some ideas that could help? Thanks in advance, evnu EDIT: So, I implemented the merge solution. If you are interested, take a look at the following code. I'll give more details if there are questions. <WebMethod()> _ Public Function GetChanges(ByVal groupMetadata As SyncGroupMetadata, ByVal syncSession As SyncSession) As SyncContext Dim stream As MemoryStream Dim format As BinaryFormatter = New BinaryFormatter Dim anchors As Dictionary(Of String, Byte()) ' keep track of the tables that will be updated Dim addTables As Dictionary(Of String, List(Of SyncTableMetadata)) = New Dictionary(Of String, List(Of SyncTableMetadata)) ' list of all present anchors Dim allAnchors As Dictionary(Of String, Byte()) = New Dictionary(Of String, Byte()) ' fill allAnchors - deserialize all given anchors For Each Table As SyncTableMetadata In groupMetadata.TablesMetadata If Table.LastReceivedAnchor Is Nothing Or Table.LastReceivedAnchor.IsNull Then Continue For stream = New MemoryStream(Table.LastReceivedAnchor.Anchor) anchors = format.Deserialize(stream) For Each item As KeyValuePair(Of String, Byte()) In anchors allAnchors.Add(item.Key, item.Value) Next stream.Dispose() Next For Each Table As SyncTableMetadata In groupMetadata.TablesMetadata If allAnchors.ContainsKey(Table.TableName) Then Table.LastReceivedAnchor.Anchor = allAnchors(Table.TableName) End If Dim addSyncTables As List(Of SyncTableMetadata) If syncSession.SyncParameters.Contains(Table.TableName) Then Dim tableNames() As String = syncSession.SyncParameters(Table.TableName).Value.ToString.Split(":") addSyncTables = New List(Of SyncTableMetadata) For Each tableName As String In tableNames Dim newSynctable As SyncTableMetadata = New SyncTableMetadata newSynctable.TableName = tableName If allAnchors.ContainsKey(tableName) Then Dim anker As SyncAnchor = New SyncAnchor(allAnchors(tableName)) newSynctable.LastReceivedAnchor = anker Else newSynctable.LastReceivedAnchor = Nothing End If newSynctable.SyncDirection = Table.SyncDirection addSyncTables.Add(newSynctable) Next addTables.Add(Table.TableName, addSyncTables) End If Next ' add the newly created synctables For Each item As KeyValuePair(Of String, List(Of SyncTableMetadata)) In addTables For Each Table As SyncTableMetadata In item.Value groupMetadata.TablesMetadata.Add(Table) Next Next ' fire queries Dim context As SyncContext = servSyncProvider.GetChanges(groupMetadata, syncSession) ' merge resulting datasets For Each item As KeyValuePair(Of String, List(Of SyncTableMetadata)) In addTables For Each Table As SyncTableMetadata In item.Value If context.DataSet.Tables.Contains(Table.TableName) Then If Not context.DataSet.Tables.Contains(item.Key) Then Dim tmp As DataTable = context.DataSet.Tables(Table.TableName).Copy tmp.TableName = item.Key context.DataSet.Tables.Add(tmp) Else context.DataSet.Tables(item.Key).Merge(context.DataSet.Tables(Table.TableName)) context.DataSet.Tables.Remove(Table.TableName) End If End If Next Next ' create new anchors Dim allAnchorsDict As Dictionary(Of String, Byte()) = New Dictionary(Of String, Byte()) For Each Table As SyncTableMetadata In groupMetadata.TablesMetadata allAnchorsDict.Add(Table.TableName, context.NewAnchor.Anchor) Next stream = New MemoryStream format.Serialize(stream, allAnchorsDict) context.NewAnchor.Anchor = stream.ToArray stream.Dispose() Return context End Function

    Read the article

  • Using DateTime in a SqlParameter for Stored Procedure, format error

    - by Matt
    I'm trying to call a stored procedure (on a SQL 2005 server) from C#, .NET 2.0 using DateTime as a value to a SqlParameter. The SQL type in the stored procedure is 'datetime'. Executing the sproc from SQL Management Studio works fine. But everytime I call it from C# I get an error about the date format. When I run SQL Profiler to watch the calls, I then copy paste the exec call to see whats going on. These are my observations and notes about what I've attempted: 1) If I pass the DateTime in directly as a DateTime or converted to SqlDateTime, the field is surrounding by a PAIR of single quotes, such as @Date_Of_Birth=N''1/8/2009 8:06:17 PM'' 2) If I pass the DateTime in as a string, I only get the single quotes 3) Using SqlDateTime.ToSqlString() does not result in a UTC formatted datetime string (even after converting to universal time) 4) Using DateTime.ToString() does not result in a UTC formatted datetime string. 5) Manually setting the DbType for the SqlParameter to DateTime does not change the above observations. So, my questions then, is how on earth do I get C# to pass the properly formatted time in the SqlParameter? Surely this is a common use case, why is it so difficult to get working? I can't seem to convert DateTime to a string that is SQL compatable (e.g. '2009-01-08T08:22:45') EDIT RE: BFree, the code to actually execute the sproc is as follows: using (SqlCommand sprocCommand = new SqlCommand(sprocName)) { sprocCommand.Connection = transaction.Connection; sprocCommand.Transaction = transaction; sprocCommand.CommandType = System.Data.CommandType.StoredProcedure; sprocCommand.Parameters.AddRange(parameters.ToArray()); sprocCommand.ExecuteNonQuery(); } To go into more detail about what I have tried: parameters.Add(new SqlParameter("@Date_Of_Birth", DOB)); parameters.Add(new SqlParameter("@Date_Of_Birth", DOB.ToUniversalTime())); parameters.Add(new SqlParameter("@Date_Of_Birth", DOB.ToUniversalTime().ToString())); SqlParameter param = new SqlParameter("@Date_Of_Birth", System.Data.SqlDbType.DateTime); param.Value = DOB.ToUniversalTime(); parameters.Add(param); SqlParameter param = new SqlParameter("@Date_Of_Birth", SqlDbType.DateTime); param.Value = new SqlDateTime(DOB.ToUniversalTime()); parameters.Add(param); parameters.Add(new SqlParameter("@Date_Of_Birth", new SqlDateTime(DOB.ToUniversalTime()).ToSqlString())); Additional EDIT The one I thought most likely to work: SqlParameter param = new SqlParameter("@Date_Of_Birth", System.Data.SqlDbType.DateTime); param.Value = DOB; Results in this value in the exec call as seen in the SQL Profiler @Date_Of_Birth=''2009-01-08 15:08:21:813'' If I modify this to be @Date_Of_Birth='2009-01-08T15:08:21' It works, but it won't parse with pair of single quotes, and it wont convert to a datetime correctly with the space between the date and time and with the milliseconds on the end. Update and Success First and foremost, thank you everyone for the answers. I post this for the sake of completeness and accuracy on SO - because I certainly do not do it for my pride... I had copy/pasted the code above after the request from below. I trimmed things here and there to be concise. Turns out my problem was in the code I left out, which I'm sure any one of you would have spotted in an instant. I had wrapped my sproc calls inside a transaction. Turns out that I was simply not doing transaction.Commit()!!!!! I'm ashamed to say it, but there you have it. I still don't know what's going on with the syntax I get back from the profiler. A coworker watched with his own instance of the profiler from his computer, and it returned proper syntax. Watching the very SAME executions from my profiler showed the incorrect syntax. It acted as a red-herring, making me believe there was a query syntax problem instead of the much more simple and true answer, which was that I need to commit the transaction! I marked an answer below as correct, and threw in some up-votes on others because they did, after all, answer the question, even if they didn't fix my specific (brain lapse) issue. Thanks again for the help.

    Read the article

  • how do I access XHR responseBody from Javascript?

    - by Cheeso
    I've got a web page that uses XMLHttpRequest to download a binary resource. Because it's binary I'm trying to use xhr.responseBody to access the bytes. I've seen a few posts suggesting that it's impossible to access the bytes directly from Javascript. This sounds crazy to me. Weirdly, xhr.responseBody is accessible from VBScript, so the suggestion is that I must define a method in VBScript in the webpage, and then call that method from Javascript. See jsdap for one example. var IE_HACK = (/msie/i.test(navigator.userAgent) && !/opera/i.test(navigator.userAgent)); if (IE_HACK) document.write('<script type="text/vbscript">\n\ Function BinaryToArray(Binary)\n\ Dim i\n\ ReDim byteArray(LenB(Binary))\n\ For i = 1 To LenB(Binary)\n\ byteArray(i-1) = AscB(MidB(Binary, i, 1))\n\ Next\n\ BinaryToArray = byteArray\n\ End Function\n\ </script>'); var xml = (window.XMLHttpRequest) ? new XMLHttpRequest() // Mozilla/Safari/IE7+ : (window.ActiveXObject) ? new ActiveXObject("MSXML2.XMLHTTP") // IE6 : null; // Commodore 64? xml.open("GET", url, true); if (xml.overrideMimeType) { xml.overrideMimeType('text/plain; charset=x-user-defined'); } else { xml.setRequestHeader('Accept-Charset', 'x-user-defined'); } xml.onreadystatechange = function() { if (xml.readyState == 4) { if (!binary) { callback(xml.responseText); } else if (IE_HACK) { // call a VBScript method to copy every single byte callback(BinaryToArray(xml.responseBody).toArray()); } else { callback(getBuffer(xml.responseText)); } } }; xml.send(''); Is this really true? The best way? copying every byte? For a large binary stream that's not gonna be very efficient. There is also a possible technique using ADODB.Stream, which is a COM equivalent of a MemoryStream. See here for an example. It does not require VBScript but does require a separate COM object. if (typeof (ActiveXObject) != "undefined" && typeof (httpRequest.responseBody) != "undefined") { // Convert httpRequest.responseBody byte stream to shift_jis encoded string var stream = new ActiveXObject("ADODB.Stream"); stream.Type = 1; // adTypeBinary stream.Open (); stream.Write (httpRequest.responseBody); stream.Position = 0; stream.Type = 1; // adTypeBinary; stream.Read.... /// ???? what here } I don't think that's gonna work - ADODB.Stream is disabled on most machines these days. In The IE8 developer tools - the IE equivalent of Firebug - I can see the responseBody is an array of bytes and I can even see the bytes themselves. The data is right there. I don't understand why I can't get to it. Is it possible for me to read it with responseText? hints? (other than defining a VBScript method)

    Read the article

  • How to get selected values from a dynamically created DropDownList Array after PostBack (Button Click)

    - by user739280
    I have a CheckBoxList that contains Employee Names on a Wizard Step. When employees are selected and the active step is changed, the Wizard1_ActiveStepChanged function is called and it dynamically creates a DropDownList Array for each employee that is selected. Each DropDownList specifies a condition of the employee. The DropDownList is created properly. When the user clicks submit, the DropDownList array is deleted and no selected values can be pulled from the array. I understand this is an issue with the PostBack and can be fixed with ViewState, but I am trying to figure out what I can do to fix it. ViewState is enabled for the checkboxlist and the DropDownList. This is what I have in the body of my System.Web.UI.Page class private int empcount; private DropDownList[] DDL_Emp { get { return (DropDownList[])ViewState["DDL_Emp"]; } set { ViewState["DDL_Emp"] = value; } } The relevant code: protected void Wizard1_ActiveStepChanged(object sender, EventArgs e) { if (Request.QueryString["type"] == "Accident" && BulletedList1.Items.Count > 0) { this.empcount = 0; for (int i = 0; i < CBL_EmpInvolved.Items.Count; i++) { if (CBL_EmpInvolved.Items[i].Selected) { this.empcount++; } } if(this.empcount > 0) { this.DDL_Emp = new DropDownList[this.empcount]; for (int i = 0, j=0; i < CBL_EmpInvolved.Items.Count; i++) { if (CBL_EmpInvolved.Items[i].Selected) { List<ListItem> cond = new List<ListItem>(); cond.Add(new ListItem("Disabled", CBL_EmpInvolved.Items[i].Value)); cond.Add(new ListItem("Diseased - Fatality", CBL_EmpInvolved.Items[i].Value)); cond.Add(new ListItem("On Treatment - Short Term Disability", CBL_EmpInvolved.Items[i].Value)); cond.Add(new ListItem("On Treatment - Long Term Disability", CBL_EmpInvolved.Items[i].Value)); cond.Add(new ListItem("Treated - Back to Work", CBL_EmpInvolved.Items[i].Value)); cond.Add(new ListItem("Treated - Relocated", CBL_EmpInvolved.Items[i].Value)); cond.Add(new ListItem("Treated - Transferred", CBL_EmpInvolved.Items[i].Value)); this.DDL_Emp[j] = new DropDownList(); this.DDL_Emp[j].ID = "DD_LabCondition_" + CBL_EmpInvolved.Items[i].Value; this.DDL_Emp[j].EnableViewState = true; this.DDL_Emp[j].Visible = true; this.DDL_Emp[j].Items.AddRange(cond.ToArray()); this.DDL_Emp[j].Items.Insert(0, new ListItem("-- Select condition of employee: " + CBL_EmpInvolved.Items[i].Text, "")); PH_LabCondition.Controls.Add(this.DDL_Emp[j]); j++; } } PH_LabCondition.Visible = true; MV_LabCondition.Visible = true; Label1_ReportTitle.Text += "Control Count: " + PH_LabCondition.Controls.Count.ToString(); } MV_LabCondition.ActiveViewIndex = 1; MV_LostTime.ActiveViewIndex = 1; } } This code is giving me the following error now: Type 'System.Web.UI.WebControls.DropDownList' in Assembly 'System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a' is not marked as serializable. I've tried changing buttons to images, playing with the AutoPostBack feature. I'm lost on how to get my dropdownlist array saved to the ViewState and accessing it after the postback.

    Read the article

  • Creating a GraphicsPath from a semi-transparent bitmap

    - by Moozhe
    I want to create a GraphicsPath and a list of Points to form the outline of the non-transparent area of a bitmap. If needed, I can guarantee that each image has only one solid collection of nontransparent pixels. So for example, I should be able to record the points either clockwise or counter-clockwise along the edge of the pixels and perform a full closed loop. The speed of this algorithm is not important. However, the efficiency of the resulting points is semi-important if I can skip some points to reduce in a smaller and less complex GraphicsPath. I will list my current code below which works perfectly with most images. However, some images which are more complex end up with paths which seem to connect in the wrong order. I think I know why this occurs, but I can't come up with a solution. public static Point[] GetOutlinePoints(Bitmap image) { List<Point> outlinePoints = new List<Point>(); BitmapData bitmapData = image.LockBits(new Rectangle(0, 0, image.Width, image.Height), ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb); byte[] originalBytes = new byte[image.Width * image.Height * 4]; Marshal.Copy(bitmapData.Scan0, originalBytes, 0, originalBytes.Length); for (int x = 0; x < bitmapData.Width; x++) { for (int y = 0; y < bitmapData.Height; y++) { byte alpha = originalBytes[y * bitmapData.Stride + 4 * x + 3]; if (alpha != 0) { Point p = new Point(x, y); if (!ContainsPoint(outlinePoints, p)) outlinePoints.Add(p); break; } } } for (int y = 0; y < bitmapData.Height; y++) { for (int x = bitmapData.Width - 1; x >= 0; x--) { byte alpha = originalBytes[y * bitmapData.Stride + 4 * x + 3]; if (alpha != 0) { Point p = new Point(x, y); if (!ContainsPoint(outlinePoints, p)) outlinePoints.Add(p); break; } } } for (int x = bitmapData.Width - 1; x >= 0; x--) { for (int y = bitmapData.Height - 1; y >= 0; y--) { byte alpha = originalBytes[y * bitmapData.Stride + 4 * x + 3]; if (alpha != 0) { Point p = new Point(x, y); if (!ContainsPoint(outlinePoints, p)) outlinePoints.Add(p); break; } } } for (int y = bitmapData.Height - 1; y >= 0; y--) { for (int x = 0; x < bitmapData.Width; x++) { byte alpha = originalBytes[y * bitmapData.Stride + 4 * x + 3]; if (alpha != 0) { Point p = new Point(x, y); if (!ContainsPoint(outlinePoints, p)) outlinePoints.Add(p); break; } } } // Added to close the loop outlinePoints.Add(outlinePoints[0]); image.UnlockBits(bitmapData); return outlinePoints.ToArray(); } public static bool ContainsPoint(IEnumerable<Point> points, Point value) { foreach (Point p in points) { if (p == value) return true; } return false; } And when I turn the points into a path: GraphicsPath outlinePath = new GraphicsPath(); outlinePath.AddLines(_outlinePoints); Here's an example showing what I want. The red outline should be an array of points which can be made into a GraphicsPath in order to perform hit detection, draw an outline pen, and fill it with a brush.

    Read the article

  • Passing integer lists in a sql query, best practices

    - by Artiom Chilaru
    I'm currently looking at ways to pass lists of integers in a SQL query, and try to decide which of them is best in which situation, what are the benefots of each, and what are the pitfalls, what should be avoided :) Right now I know of 3 ways that we currently use in our application. 1) Table valued parameter: Create a new Table Valued Parameter in sql server: CREATE TYPE [dbo].[TVP_INT] AS TABLE( [ID] [int] NOT NULL ) Then run the query against it: using (var conn = new SqlConnection(DataContext.GetDefaultConnectionString)) { var comm = conn.CreateCommand(); comm.CommandType = CommandType.Text; comm.CommandText = @" UPDATE DA SET [tsLastImportAttempt] = CURRENT_TIMESTAMP FROM [Account] DA JOIN @values IDs ON DA.ID = IDs.ID"; comm.Parameters.Add(new SqlParameter("values", downloadResults.Select(d => d.ID).ToDataTable()) { TypeName = "TVP_INT" }); conn.Open(); comm.ExecuteScalar(); } The major disadvantages of this method is the fact that Linq doesn't support table valued params (if you create an SP with a TVP param, linq won't be able to run it) :( 2) Convert the list to Binary and use it in Linq! This is a bit better.. Create an SP, and you can run it within linq :) To do this, the SP will have an IMAGE parameter, and we'll be using a user defined function (udf) to convert this to a table.. We currently have implementations of this function written in C++ and in assembly, both have pretty much the same performance :) Basically, each integer is represented by 4 bytes, and passed to the SP. In .NET we have an extension method that convers an IEnumerable to a byte array The extension method: public static Byte[] ToBinary(this IEnumerable intList) { return ToBinaryEnum(intList).ToArray(); } private static IEnumerable<Byte> ToBinaryEnum(IEnumerable<Int32> intList) { IEnumerator<Int32> marker = intList.GetEnumerator(); while (marker.MoveNext()) { Byte[] result = BitConverter.GetBytes(marker.Current); Array.Reverse(result); foreach (byte b in result) yield return b; } } The SP: CREATE PROCEDURE [Accounts-UpdateImportAttempts] @values IMAGE AS BEGIN UPDATE DA SET [tsLastImportAttempt] = CURRENT_TIMESTAMP FROM [Account] DA JOIN dbo.udfIntegerArray(@values, 4) IDs ON DA.ID = IDs.Value4 END And we can use it by running the SP directly, or in any linq query we need using (var db = new DataContext()) { db.Accounts_UpdateImportAttempts(downloadResults.Select(d => d.ID).ToBinary()); // or var accounts = db.Accounts .Where(a => db.udfIntegerArray(downloadResults.Select(d => d.ID).ToBinary(), 4) .Select(i => i.Value4) .Contains(a.ID)); } This method has the benefit of using compiled queries in linq (which will have the same sql definition, and query plan, so will also be cached), and can be used in SPs as well. Both these methods are theoretically unlimited, so you can pass millions of ints at a time :) 3) The simple linq .Contains() It's a more simple approach, and is perfect in simple scenarios. But is of course limited by this. using (var db = new DataContext()) { var accounts = db.Accounts .Where(a => downloadResults.Select(d => d.ID).Contains(a.ID)); } The biggest drawback of this method is that each integer in the downloadResults variable will be passed as a separate int.. In this case, the query is limited by sql (max allowed parameters in a sql query, which is a couple of thousand, if I remember right). So I'd like to ask.. What do you think is the best of these, and what other methods and approaches have I missed?

    Read the article

< Previous Page | 15 16 17 18 19 20 21  | Next Page >