Search Results

Search found 6177 results on 248 pages for 'reputation points'.

Page 190/248 | < Previous Page | 186 187 188 189 190 191 192 193 194 195 196 197  | Next Page >

  • Ti Launchpad

    - by raysmithequip
    Just thought I would get a couple of notes up here for reference to anyone that is interested...it is now Feb 2011 and I have not been posting here enough to remember this blog. Back in Nov 2010 I ordered the Ti launchpad msp430, it is a little target board kit replete with a mini USB cable, two very inexpensive programmable mcu's and a couple of pin headers with a couple of led's on board, a spi connector some on board jumpers and two programmable micro switches....all for less than $5.00...INCLUDING SHIPPING!!....not bad when the ardruino's are running around 20.00 for the target board, atmega328 and cable off of eBay...I wont even mention the microchip pic right now.  Naw, for $5.00 the Ti launchpad kit is about the cheapest fun around...if-uns your a geek that is... Well, the launchpad was backordered for almost two months, came like Xmas eve in fact...I had almost forgotten it!! And really, it was way late and not my idea of an Xmas present for myself.  That would of been the web expressions 4 I bought a few weeks back.  With all the holidays, I did not even look at it till last week, in fact I passed the wrapped board around at my local ham club meeting during points of personal privilege....some oh's and ahhs but mostly duhs...I actually ordered it to avoid downloading the huge code compressor studio 4 (CCS) that was supposed to be included on the cd.  No cd.  I had already downloaded IAR  another programming IDE for these little micro bugs. In my spare time I toyed with IAR and the launchpad board but after about two days of playing delete the driver with windows I decided to just download CCS 4, the code limited version, and give that a shot......CCS 4, is a good rewrite from the earlier versions, it is based on Eclipse as an IDE and includes the drivers for the msp430 target board I received in the kit.  Once installed I quickly configured the debugger for the target chip which was already plugged into the dip socket at the factory, msp430G2131 from he drop down list and clicked ok...I was in!! The CCS4 is full of bells and whistles compared to the IAR, which I would of preferred for the simplicity.  But the code compressor studio really does have it all!!..the code limited version is free, and of all things will give you java script editor box.  The whole layout in debugger mode reminds me of any modern programmer IDE...I mean sure give me Tex anytime but you simply must admire all the boxes and options included in the GUI.  It was a simple matter to check the assembly code in the flash and ram memory that came preloaded for the launchpad kit.  Assembly.  I am right now looking for my old assembly textbooks...sure I remember how to use mov and add etc but a couple of the commands are a little more than vague anymore.  Still, these little mcu's are about 50 cents each and might just work in a couple of projects I have lined up for the near future.  I may document the code here.  Luckily, I plan to write the code in c++ for the main project but if it has to be assembly, no prob.  For reference, the program that came already on the 2131 in the kit was a temperature indicator that alternately flashed red and green leds and changed the intensity of either depending on whether the temp was rising or falling...neat.  Neat enough that it might be worthwhile banging out a little GUI in windows 7 to test the new user device system calls, maybe put a temp gauge widget up on the desktop...just to keep from getting bored.  If you see some assembly code on this blog, you know I was doing something with one of the many mcu's out there.....thats all for now, more to follow...a bit later, of course.

    Read the article

  • SQL Authority News – Presenting at SQL Bangalore on May 3, 2014 – Performing an Effective Presentation

    - by Pinal Dave
    SQL Bangalore is a wonderful community and we always have a great response when we present on technology. It is SQL User Group and we discuss everything SQL there. This month we have SQL Server 2014 theme and we are going to have a community launch on this subject. We have the best of the best speakers presenting on SQL Server 2014 technology. Looking at the whole line of celebrity speakers, I have decided not to present on SQL Server. I will be presenting on the performance tuning subject, but with the twist of soft skills. I will be presenting on “Performing an Effective Presentation“. Trust me, you do not want to miss this presentation, I will be presenting on how to present effectively when presenting SQL Server topics. What this session will NOT have I personally believe that we all are good presenters most of the time. We can all easily call out if someone is bad presenter. There is no point talking about basics like bigger bullet points, talk loudly, talk with confidence, use better analogies etc. In simple words – this is not going to some philosophy session and boring notes. What this session will have Well, this session will tell stories of my life. It will tell how we can present about technology and SQL Server with the help of stories and personal experience. I am going to tell stories about two legends  who have inspired me. Right after that we will be doing two exercises together where we will learn quickly and effectively, how to become better speaker – instantly! There is no video recording of this session. If you want to get resources from this session, please sign up my newsletter at http://bit.ly/sqllearn Here are few of the slides from this presentation: Here is the details about the event and location Venue:Microsoft Corporation, Signature Building,Embassy Golf Links Business Park, Intermediate Ring Road, Domlur, Bangalore – 560071 The agenda is amazing – we have top line SQL Speakers. Everyone is welcome and don’t forget to get your friend along for this event. Loads to learn and tons to share !!! Keynote (20 mins) by Anupam Tiwari – Business Program Manager – GTSC Backup Enhancements with SQL Server 2014 by Amit Banerjee – PFE Microsoft Performance Enhancements with SQL Server 2014 by Sourabh Agarwal - PFE Microsoft LUNCH BREAK Performing an effective Presentation by Pinal Dave – Community Member (SQLAuthority.com) InMemory Enhancements with SQL Server 2014 by Balmukund Lakhani – Support Escalation Engg. Microsoft Some more lesser known enhancements with SQL Server 2014 by Vinod Kumar – Technical Architect Microsoft MTC Power Packed – Power BI with SQL Server by Kane Conway – Support Escalation Engg. Microsoft I am very big fan of Amit, Balmukund and Vinod – I have always watched their session and this time, I am going to once again attend their session without missing a single min. They are SQL legends, I am going to be there and learn when they are sharing their knowledge.  Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, T SQL

    Read the article

  • What You Can Learn from the NFL Referee Lockout

    - by Christina McKeon
    American football is a lot like religion. The fans are devoted followers that take brand loyalty to a whole new level. These fans that worship their teams each week showed that they are powerful customers whose voice has an impact. Yesterday, these fans proved that their opinion could force the hand of a large and powerful institution. With a three-month NFL referee lockout that seemed like it was nowhere close to resolution, the Green Bay Packers and the Seattle Seahawks competed last Monday night. For those of you that might have been out of the news cycle the past few days, Green Bay lost the game due to a controversial call that many experts and analysts agree should have resulted in Green Bay winning the game. Outrage ensued. The NFL had pulled replacement referees from the high school ranks, and these replacements did not have the knowledge and experience to handle high intensity NFL games. Fans protested about their customer experience. Their anger-filled rants were heard in social media, in the headlines of newspapers, on radio, and on national TV. Suddenly, the NFL was moved to reach an agreement with the referees. That agreement was reached late in the night on Wednesday with many believing that the referees had the upper hand forcing the owners into submission. Some might argue that the referees benefited, not the fans. Since the fans wanted qualified and competent referees, I would say the fans did benefit. The referees are scheduled to return to the field this Sunday, so the fans got what they wanted. What can you learn from this negative customer experience? Customers are in control. NFL owners thought they were controlling this situation with the upper hand over referees. The owners figured out they weren’t in control when their fans reacted negatively. Customers can make or break you more now than ever before, which is why it is more important to connect with them, engage them in a personal manner, and create rewarding relationships. Protect your brand. Whether knowingly or unknowingly, the NFL put their brand and each team’s brand at risk with replacement referees. Think about each business decision you make, and how it may impact your brand at different points in time. A decision that results in a gain today could result in a larger loss down the road. Customer experience matters. The NFL likely foresaw declining revenues in ticket sales, merchandising, advertising, and other areas if the lockout continued. While fans primarily spoke with their minds in the days following the Green Bay debacle, their wallets would be the next things to speak. Customer experience directly affects your success and is one of the few areas where you can differentiate your business. What would you do if your brand got such negative attention? Would you be prepared to navigate such stormy waters? Would you be able to prevent such a fiasco? If you don’t have a good answer to these questions, consider joining us October 3-5, 2012 at the Oracle Customer Experience Summit in San Francisco. You’ll have the opportunity to learn even more about customer experience from industry experts such as best-selling author Seth Godin, Paul Hagen and Kerry Bodine from Forrester Research, Inc., George Kembel from the Stanford d.School, Bruce Temkin of The Temkin Group, and Gene Alvarez from Gartner Inc.. There will also be plenty of your peers and customer experience experts available for networking and discussions.

    Read the article

  • WebLogic Server Performance and Tuning: Part II - Thread Management

    - by Gokhan Gungor
    WebLogic Server, like any other java application server, provides resources so that your applications use them to provide services. Unfortunately none of these resources are unlimited and they must be managed carefully. One of these resources is threads which are pooled to provide better throughput and performance along with the fast response time and to avoid deadlocks. Threads are execution points that WebLogic Server delivers its power and execute work. Managing threads is very important because it may affect the overall performance of the entire system. In previous releases of WebLogic Server 9.0 we had multiple execute queues and user defined thread pools. There were different queues for different type of work which had fixed number of execute threads.  Tuning of this thread pools and finding the proper number of threads was time consuming which required many trials. WebLogic Server 9.0 and the following releases use a single thread pool and a single priority-based execute queue. All type of work is executed in this single thread pool. Its size (thread count) is automatically decreased or increased (self-tuned). The new “self-tuning” system simplifies getting the proper number of threads and utilizing them.Work manager allows your applications to run concurrently in multiple threads. Work manager is a mechanism that allows you to manage and utilize threads and create rules/guidelines to follow when assigning requests to threads. We can set a scheduling guideline or priority a request with a work manager and then associate this work manager with one or more applications. At run-time, WebLogic Server uses these guidelines to assign pending work/requests to execution threads. The position of a request in the execute queue is determined by its priority. There is a default work manager that is provided. The default work manager should be sufficient for most applications. However there can be cases you want to change this default configuration. Your application(s) may be providing services that need mixture of fast response time and long running processes like batch updates. However wrong configuration of work managers can lead a performance penalty while expecting improvement.We can define/configure work managers at;•    Domain Level: config.xml•    Application Level: weblogic-application.xml •    Component Level: weblogic-ejb-jar.xml or weblogic.xml(For a specific web application use weblogic.xml)We can use the following predefined rules/constraints to manage the work;•    Fair Share Request Class: Specifies the average thread-use time required to process requests. The default is 50.•    Response Time Request Class: Specifies a response time goal in milliseconds.•    Context Request Class: Assigns request classes to requests based on context information.•    Min Threads Constraint: Limits the number of concurrent threads executing requests.•    Max Threads Constraint: Guarantees the number of threads the server will allocate to requests.•    Capacity Constraint: Causes the server to reject requests only when it has reached its capacity. Let’s create a work manager for our application for a long running work.Go to WebLogic console and select Environment | Work Managers from the domain structure tree. Click New button and select Work manager and click next. Enter the name for the work manager and click next. Then select the managed server instances(s) or clusters from available targets (the one that your long running application is deployed) and finish. Click on MyWorkManager, and open the Configuration tab and check Ignore Stuck Threads and save. This will prevent WebLogic to tread long running processes (that is taking more than a specified time) as stuck and enable to finish the process.

    Read the article

  • Slick2D Rendering Lots of Polygons

    - by Hazzard
    I'm writing an little isometric game using Slick. The world terrain is made up of lots of quadrilaterals. In a small world that is 128 by 128 squares, over 16,000 quadrilaterals need to be rendered. This puts my pretty powerful computer down to 30 fps. I've though about caching "chunks" of the world so only single chunks would ever need updating at a time, but I don't know how to do this, and I am sure there are other ways to optimize it besides that. Maybe I'm doing the whole thing wrong, surely fancy 3D games that run fine on my machine are more intensive than this. My question is how can I improve the FPS and am I doing something wrong? Or does it actually take that much power to render those polygons? -- Here is the source code for the render method in my game state. It iterates through a 2d array or heights and draws polygons based on the height. public void render(GameContainer container, StateBasedGame game, Graphics gfx) throws SlickException { gfx.translate(offsetX * d + container.getWidth() / 2, offsetY * d + container.getHeight() / 2); gfx.scale(d, d); for (int y = 0; y < placeholder.length; y++) {// x & y are isometric // diag for (int x = 0; x < placeholder[0].length; x++) { Polygon poly; int hor = TestState.TILE_WIDTH * (x - y);// hor and ver are orthagonal int W = TestState.TILE_HEIGHT * (x + y) - 1 * heights[y + 1][x];//points to go off of int S = TestState.TILE_HEIGHT * (x + y) - 1 * heights[y + 1][x + 1]; int E = TestState.TILE_HEIGHT * (x + y) - 1 * heights[y][x + 1]; int N = TestState.TILE_HEIGHT * (x + y) - 1 * heights[y][x]; if (placeholder[y][x] == null) { poly = new Polygon();//Create actual surface polygon poly.addPoint(-TestState.TILE_WIDTH + hor, W); poly.addPoint(hor, S + TestState.TILE_HEIGHT); poly.addPoint(TestState.TILE_WIDTH + hor, E); poly.addPoint(hor, N - TestState.TILE_HEIGHT); float z = ((float) heights[y][x + 1] - heights[y + 1][x]) / 32 + 0.5f; placeholder[y][x] = new Tile(poly, new Color(z, z, z)); //ShapeRenderer.fill(placeholder[y][x]); } if (true) {//ONLY draw tile if it's on screen gfx.setColor(placeholder[y][x].getColor()); ShapeRenderer.fill(placeholder[y][x]); //gfx.fill(placeholder[y][x]); //placeholder[y][x]. //DRAW EDGES if (y + 1 == placeholder.length) {//draw South foundation edges gfx.setColor(Color.gray); Polygon found = new Polygon(); found.addPoint(-TestState.TILE_WIDTH + hor, W); found.addPoint(hor, S + TestState.TILE_HEIGHT); found.addPoint(hor, TestState.TILE_HEIGHT * (x + y + 1)); found.addPoint(-TestState.TILE_WIDTH + hor, TestState.TILE_HEIGHT * (x + y)); gfx.fill(found); } if (x + 1 == placeholder[0].length) {//north gfx.setColor(Color.darkGray); Polygon found = new Polygon(); found.addPoint(TestState.TILE_WIDTH + hor, E); found.addPoint(hor, S + TestState.TILE_HEIGHT); found.addPoint(hor, TestState.TILE_HEIGHT * (x + y + 1)); found.addPoint(TestState.TILE_WIDTH + hor, TestState.TILE_HEIGHT * (x + y)); gfx.fill(found); }//*/ } } } }

    Read the article

  • Impressions of Pivotal Tracker

    Pivotal Tracker is a free, online agile project management system. Ive been using it recently to better communicate to customers about the current state of our project. In Pivotal Tracker, the unit of work is a story and stories are arranged into iterations or delivery cycles. Stories can be any level of granularity you want, but the idea is to use stories to communicate clearly to customers, so you dont want to write a novel. You especially dont want to write a list of detailed programming tasks. A good story for a point of sale system might be: Allow managers to override the price of an item while ringing up a customer. A less useful story: Script out the process of adding a manager flag to the user table and stage that script into the deploy directory. Stories are estimated using a point scale, by default 1, 2 or 3. Iterations are then automatically laid out by combining enough tasks to fill the point total for that period of time. You have to start with a guess on how many points your team can do in an iteration, then adjust with real data as you complete iterations. This is basic agile methodology, but where Pivotal Tracker adds value is that it automatically and graphically lays out iterations for you on your project site. This makes communication and planning easy. Compiling release notes is no longer painful as it has been clear from the outset what work is going on. While I much prefer Pivotal Trackers customer facing interface over what we used previously (TFS), I see a couple of gaps. First, I have not able to make much headway with the reporting tools. Despite my complaints about TFS, it can produce some nice reports. Second, its not clear where if at all, Id keep track of purely internal tasks. Im talking about server maintenance, cleaning up source control, checking back on some code which you never quite felt right about. Theres no purpose in cluttering up an iteration backlog with these items, but if you dont track them, you lose them. Im not sure what a good answer for that is. One gap I thought Id see, which I dont, is more granular dev tasks. If Im implementing a story, Ill write out the steps and track my progress, but really, those steps arent useful to anybody but me. The only time Ive found that level of detail really useful is when my tasks are defined at too high a level anyway or when Im working with someone who needs more coaching and might not be able to finish a story in time without some scaffolding to get them going. You can learn more about Pivotal Tracker at: http://www.pivotaltracker.com/learnmore.   --- Relevant Links --- A good intro to stories: http://www.agilemodeling.com/artifacts/userStory.htmDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 6

    - by MarkPearl
    Learning Outcomes Discuss the physical characteristics of magnetic disks Describe how data is organized and accessed on a magnetic disk Discuss the parameters that play a role in the performance of magnetic disks Describe different optical memory devices Magnetic Disk The way data is stored on and retried from magnetic disks Data is recorded on and later retrieved form the disk via a conducting coil named the head (in many systems there are two heads) The writ mechanism exploits the fact that electricity flowing through a coil produces a magnetic field. Electric pulses are sent to the write head, and the resulting magnetic patterns are recorded on the surface below with different patterns for positive and negative currents The physical characteristics of a magnetic disk   Summarize from book   The factors that play a role in the performance of a disk Seek time – the time it takes to position the head at the track Rotational delay / latency – the time it takes for the beginning of the sector to reach the head Access time – the sum of the seek time and rotational delay Transfer time – the time it takes to transfer data RAID The rate of improvement in secondary storage performance has been considerably less than the rate for processors and main memory. Thus secondary storage has become a bit of a bottleneck. RAID works on the concept that if one disk can be pushed so far, additional gains in performance are to be had by using multiple parallel components. Points to note about RAID… RAID is a set of physical disk drives viewed by the operating system as a single logical drive Data is distributed across the physical drives of an array in a scheme known as striping Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure (not supported by RAID 0 or RAID 1) Interesting to note that the increase in the number of drives, increases the probability of failure. To compensate for this decreased reliability RAID makes use of stored parity information that enables the recovery of data lost due to a disk failure.   The RAID scheme consists of 7 levels…   Category Level Description Disks Required Data Availability Large I/O Data Transfer Capacity Small I/O Request Rate Striping 0 Non Redundant N Lower than single disk Very high Very high for both read and write Mirroring 1 Mirrored 2N Higher than RAID 2 – 5 but lower than RAID 6 Higher than single disk Up to twice that of a signle disk for read Parallel Access 2 Redundant via Hamming Code N + m Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Parallel Access 3 Bit interleaved parity N + 1 Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Independent Access 4 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, significantly lower than single disk for write Similar to RAID 0 for read, significantly lower than single disk for write Independent Access 5 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, lower than single disk for write Similar to RAID 0 for read, generally  lower than single disk for write Independent Access 6 Block interleaved parity N + 2 Highest of all listed alternatives Similar to RAID 0 for read; lower than RAID 5 for write Similar to RAID 0 for read, significantly lower than RAID 5  for write   Read page 215 – 221 for detailed explanation on RAID levels Optical Memory There are a variety of optical-disk systems available. Read through the table on page 222 – 223 Some of the devices include… CD CD-ROM CD-R CD-RW DVD DVD-R DVD-RW Blue-Ray DVD Magnetic Tape Most modern systems use serial recording – data is lade out as a sequence of bits along each track. The typical recording used in serial is referred to as serpentine recording. In this technique when data is being recorded, the first set of bits is recorded along the whole length of the tape. When the end of the tape is reached the heads are repostioned to record a new track, and the tape is again recorded on its whole length, this time in the opposite direction. That process continued back and forth until the tape is full. To increase speed, the read-write head is capable of reading and writing a number of adjacent tracks simultaneously. Data is still recorded serially along individual tracks, but blocks in sequence are stored on adjacent tracks as suggested. A tape drive is a sequential access device. Magnetic tape was the first kind of secondary memory. It is still widely used as the lowest-cost, slowest speed member of the memory hierarchy.

    Read the article

  • Oracle MAA Part 1: When One Size Does Not Fit All

    - by JoeMeeks
    The good news is that Oracle Maximum Availability Architecture (MAA) best practices combined with Oracle Database 12c (see video) introduce first-in-the-industry database capabilities that truly make unplanned outages and planned maintenance transparent to users. The trouble with such good news is that Oracle’s enthusiasm in evangelizing its latest innovations may leave some to wonder if we’ve lost sight of the fact that not all database applications are created equal. Afterall, many databases don’t have the business requirements for high availability and data protection that require all of Oracle’s ‘stuff’. For many real world applications, a controlled amount of downtime and/or data loss is OK if it saves money and effort. Well, not to worry. Oracle knows that enterprises need solutions that address the full continuum of requirements for data protection and availability. Oracle MAA accomplishes this by defining four HA service level tiers: BRONZE, SILVER, GOLD and PLATINUM. The figure below shows the progression in service levels provided by each tier. Each tier uses a different MAA reference architecture to deploy the optimal set of Oracle HA capabilities that reliably achieve a given service level (SLA) at the lowest cost.  Each tier includes all of the capabilities of the previous tier and builds upon the architecture to handle an expanded fault domain. Bronze is appropriate for databases where simple restart or restore from backup is ‘HA enough’. Bronze is based upon a single instance Oracle Database with MAA best practices that use the many capabilities for data protection and HA included with every Oracle Enterprise Edition license. Oracle-optimized backups using Oracle Recovery Manager (RMAN) provide data protection and are used to restore availability should an outage prevent the database from being able to restart. Silver provides an additional level of HA for databases that require minimal or zero downtime in the event of database instance or server failure as well as many types of planned maintenance. Silver adds clustering technology - either Oracle RAC or RAC One Node. RMAN provides database-optimized backups to protect data and restore availability should an outage prevent the cluster from being able to restart. Gold raises the game substantially for business critical applications that can’t accept vulnerability to single points-of-failure. Gold adds database-aware replication technologies, Active Data Guard and Oracle GoldenGate, which synchronize one or more replicas of the production database to provide real time data protection and availability. Database-aware replication greatly increases HA and data protection beyond what is possible with storage replication technologies. It also reduces cost while improving return on investment by actively utilizing all replicas at all times. Platinum introduces all of the sexy new Oracle Database 12c capabilities that Oracle staff will gush over with great enthusiasm. These capabilities include Application Continuity for reliable replay of in-flight transactions that masks outages from users; Active Data Guard Far Sync for zero data loss protection at any distance; new Oracle GoldenGate enhancements for zero downtime upgrades and migrations; and Global Data Services for automated service management and workload balancing in replicated database environments. Each of these technologies requires additional effort to implement. But they deliver substantial value for your most critical applications where downtime and data loss are not an option. The MAA reference architectures are inherently designed to address conflicting realities. On one hand, not every application has the same objectives for availability and data protection – the Not One Size Fits All title of this blog post. On the other hand, standard infrastructure is an operational requirement and a business necessity in order to reduce complexity and cost. MAA reference architectures address both realities by providing a standard infrastructure optimized for Oracle Database that enables you to dial-in the level of HA appropriate for different service level requirements. This makes it simple to move a database from one HA tier to the next should business requirements change, or from one hardware platform to another – whether it’s your favorite non-Oracle vendor or an Oracle Engineered System. Please stay tuned for additional blog posts in this series that dive into the details of each MAA reference architecture. Meanwhile, more information on Oracle HA solutions and the Maximum Availability Architecture can be found at: Oracle Maximum Availability Architecture - Webcast Maximize Availability with Oracle Database 12c - Technical White Paper

    Read the article

  • World Record Siebel PSPP Benchmark on SPARC T4 Servers

    - by Brian
    Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers. The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users. This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour. The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers. Performance Landscape Systems Txn/hr Users Call Center Order Management Response Times (sec) 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web 3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB 239,748 29,000 0.165 0.925 Oracle: Call Center + Order Management Transactions: 197,128 + 42,620 Users: 20300 + 8700 Configuration Summary Web Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 10 8/11 iPlanet Web Server 7 Application Server Configuration: 3 x SPARC T4-2 servers, each with 2 x SPARC T4 processor, 2.85 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 10 8/11 Siebel CRM 8.1.1.5 SIA Database Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.2) Storage Configuration: 1 x Sun Storage F5100 Flash Array 80 x 24 GB flash modules Benchmark Description Siebel 8.1 PSPP benchmark includes Call Center and Order Management: Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling. High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively. Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process. High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively. Key Points and Best Practices No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects. See Also Siebel White Papers SPARC T4-1 Server oracle.com OTN SPARC T4-2 Server oracle.com OTN Siebel CRM oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • Where Have All the Ugly Forms Gone? Users and ADF Took Care Of It

    - by ultan o'broin
    Sometimes I hear that our application demos are a bit too "cutsey" and that we never talk about with any user roles that have lots of data entry as a requirement. Some (no names) consider those old clunker forms, with the myriad rows of fields, to be super-productive for data clerks. We do have such roles covered in Oracle Fusion Applications for sure. But consider what is really the issue here: productivity. Check out how the Oracle Fusion Financials Applications User Experience team went about designing for productivity when receiving and entering invoice data, for example. See how Fusion Financials caters so well for input and control of data? Central to all this is knowing the users and how they work: what tasks do they need to perform, and when. Read more about Fusion Financials productivity in the white paper, Get It Done Fast, Get It Done Right: The Oracle Fusion Financials User Experience. Now and then, I see forms that weren't designed for end user activity at all. Instead, they were designed by developers or by the IT department around the database schema. Forms with literally dozens of fields on the same page, sometimes. Forms that give the impression there was only task involved, when there may have been several. At times, completing one of these huge forms accurately became so tedious that, under pressure, it made more sense for the user to complete it quickly as possible and then let somebody else check it for accuracy and fill in the gaps from data emailed along in spreadsheet form. Data accuracy is critical in our business. Not good. Not efficient. Not productive. So here are a few basics on forms design for data entry-type user roles. A great place for developers to start exploring what is possible with forms layout is the Rich Client User Experience (RCUX) guidance on Form Layout, using ADF components. User-Centered Forms Design Considerations The starting point--something you must always keep in mind with your own design--is design for the end user. Find a representative end user, and keep that user engaged throughout the design, deployment, and test process. Consider these points in user testing those forms: Are there automated or technical solutions to entering the data that avoid manual input in the first place? For example, imports, uploads, OCR, whatever. Some day we will be able to tell Siri to do it, but leave that for now. Design your form to reflect the task involved (i.e., the business process) and not the database schema. On the form, group like fields together, logically. Eliminate duplicate data entry or prepopulate from previous data entry. Allow users to complete fields in the order they wish (i.e., no interdependency). Allow for tabbing between fields (keyboard is faster than mouse), so know how the browser supports this (see that RCUX guideline). Allow for final validation at the page level not at field-level entry. Way better for heads-down users. For example, ADF messages allow you to see a list of all validation errors on a page on a final submit or navigation action and to easily navigate to the point of error. Better still, be error tolerant. Allow users to enter data in formats they comfortable with. Bind any relevant user preference setting to the input format allowed (for example, the locale date format). Explore what data entry conversion can do for you automatically too (see the ADF converter demos, convenience patterns can also be written). Only ask for data input when it's needed. Get rid of, or hide optional fields. Cut down on the number of mandatory fields, and mark them clearly (use a *). Clearly label the fields in plain language. I am sure you may have a few more tips on forms design for data entry users. Remember the user before finding the comments.

    Read the article

  • Scenarios for Throwing Exceptions

    - by Joe Mayo
    I recently came across a situation where someone had an opinion that differed from mine of when an exception should be thrown. This particular case was an issue opened on LINQ to Twitter for an Exception on EndSession.  The premise of the issue was that the poster didn’t feel an exception should be raised, regardless of authentication status.  As first, this sounded like a valid point.  However, I went back to review my code and decided not to make any changes. Here's my rationale: 1. The exception doesn’t occur if the user is authenticated when EndAccountSession is called. 2. The exception does occur if the user is not authenticated when EndAccountSession is called. 3. The exception represents the fact that EndAccountSession is not able to fulfill its intended purpose - to end the session.  If a session never existed, then it would not be possible to perform the requested action.  Therefore, an exception is appropriate. To help illustrate how to handle this situation, I've modified the following code in Program.cs in the LinqToTwitterDemo project to illustrate the situation: static void EndSession(ITwitterAuthorizer auth) { using (var twitterCtx = new TwitterContext(auth, "https://api.twitter.com/1/", "https://search.twitter.com/")) { try { //Log twitterCtx.Log = Console.Out; var status = twitterCtx.EndAccountSession(); Console.WriteLine("Request: {0}, Error: {1}" , status.Request , status.Error); } catch (TwitterQueryException tqe) { var webEx = tqe.InnerException as WebException; if (webEx != null) { var webResp = webEx.Response as HttpWebResponse; if (webResp != null && webResp.StatusCode == HttpStatusCode.Unauthorized) Console.WriteLine("Twitter didn't recognize you as having been logged in. Therefore, your request to end session is illogical.\n"); } var status = tqe.Response; Console.WriteLine("Request: {0}, Error: {1}" , status.Request , status.Error); } } } As expected, LINQ to Twitter wraps the exception in a TwitterQueryException as the InnerException.  The TwitterQueryException serves a very useful purpose through it's Response property.  Notice in the example above that the response has Request and Error proprieties.  These properties correspond to the information that Twitter returns as part of it's response payload.  This is often useful while debugging to help you understand why Twitter was unable to perform the  requested action.  Other times, it's cryptic, but that's another story.  At least you have some way of knowing in your code how to anticipate and handle these situations, along with having extra information to debug with. To sum things up, there are two points to make: when and why an exception should be raised and when to wrap and re-throw an exception in a custom exception type. I felt it was necessary to allow the exception to be raised because the called method was unable to perform the task it was designed for.  I also felt that it is inappropriate for a general library to do anything with exceptions because that could potentially hide a problem from the caller.  A related point is that it should be the exclusive decision of the application that uses the library on what to do with an exception.  Another aspect of this situation is that I wrapped the exception in a custom exception and re-threw.  This is a tough call because I don’t want to hide any stack trace information.  However, the need to make the exception more meaningful by including vital information returned from Twitter swayed me in the direction to design an interface that was as helpful as possible to library consumers.  As shown in the code above, you can dig into the exception and pull out a lot of good information, such as the fact that the underlying HTTP response was a 401 Unauthorized.  In all, trade-offs are seldom perfect for all cases, but combining the fact that the method was unable to perform its intended function, this is a library, and the extra information can be more helpful, it seemed to be the better design. @JoeMayo

    Read the article

  • A more elegant way of embedding a SOAP security header in Silverlight 4

    - by Your DisplayName here!
    The current situation with Silverlight is, that there is no support for the WCF federation binding. This means that all security token related interactions have to be done manually. Requesting the token from an STS is not really the bad part, sending it along with outgoing SOAP messages is what’s a little annoying. So far you had to wrap all calls on the channel in an OperationContextScope wrapping an IContextChannel. This “programming model” was a little disruptive (in addition to all the async stuff that you are forced to do). It seems that starting with SL4 there is more support for traditional WCF extensibility points – especially IEndpointBehavior, IClientMessageInspector. I never read somewhere that these are new features in SL4 – but I am pretty sure they did not exist in SL3. With the above mentioned interfaces at my disposal, I thought I have another go at embedding a security header – and yeah – I managed to make the code much prettier (and much less bizarre). Here’s the code for the behavior/inspector: public class IssuedTokenHeaderInspector : IClientMessageInspector {     RequestSecurityTokenResponse _rstr;       public IssuedTokenHeaderInspector(RequestSecurityTokenResponse rstr)     {         _rstr = rstr;     }       public void AfterReceiveReply(ref Message reply, object correlationState)     { }       public object BeforeSendRequest(ref Message request, IClientChannel channel)     {         request.Headers.Add(new IssuedTokenHeader(_rstr));                  return null;     } }   public class IssuedTokenHeaderBehavior : IEndpointBehavior {     RequestSecurityTokenResponse _rstr;       public IssuedTokenHeaderBehavior(RequestSecurityTokenResponse rstr)     {         if (rstr == null)         {             throw new ArgumentNullException();         }           _rstr = rstr;     }       public void ApplyClientBehavior(       ServiceEndpoint endpoint, ClientRuntime clientRuntime)     {         clientRuntime.MessageInspectors.Add(new IssuedTokenHeaderInspector(_rstr));     }       // rest omitted } This allows to set up a proxy with an issued token header and you don’t have to worry anymore with embedding the header manually with every call: var client = GetWSTrustClient();   var rst = new RequestSecurityToken(WSTrust13Constants.KeyTypes.Symmetric) {     AppliesTo = new EndpointAddress("https://rp/") };   client.IssueCompleted += (s, args) => {     _proxy = new StarterServiceContractClient();     _proxy.Endpoint.Behaviors.Add(new IssuedTokenHeaderBehavior(args.Result));   };   client.IssueAsync(rst); Since SL4 also support the IExtension<T> interface, you can also combine this with Nicholas Allen’s AutoHeaderExtension.

    Read the article

  • Generate texture for a heightmap

    - by James
    I've recently been trying to blend multiple textures based on the height at different points in a heightmap. However i've been getting poor results. I decided to backtrack and just attempt to recreate one single texture from an SDL_Surface (i'm using SDL) and just send that into opengl. I'll put my code for creating the texture and reading the colour values. It is a 24bit TGA i'm loading, and i've confirmed that the rest of my code works because i was able to send the surfaces pixels directly to my createTextureFromData function and it drew fine. struct RGBColour { RGBColour() : r(0), g(0), b(0) {} RGBColour(unsigned char red, unsigned char green, unsigned char blue) : r(red), g(green), b(blue) {} unsigned char r; unsigned char g; unsigned char b; }; // main loading code SDLSurfaceReader* reader = new SDLSurfaceReader(m_renderer); reader->readSurface("images/grass.tga"); // new texture unsigned char* newTexture = new unsigned char[reader->m_surface->w * reader->m_surface->h * 3 * reader->m_surface->w]; for (int y = 0; y < reader->m_surface->h; y++) { for (int x = 0; x < reader->m_surface->w; x += 3) { int index = (y * reader->m_surface->w) + x; RGBColour colour = reader->getColourAt(x, y); newTexture[index] = colour.r; newTexture[index + 1] = colour.g; newTexture[index + 2] = colour.b; } } unsigned int id = m_renderer->createTextureFromData(newTexture, reader->m_surface->w, reader->m_surface->h, RGB); // functions for reading pixels RGBColour SDLSurfaceReader::getColourAt(int x, int y) { Uint32 pixel; Uint8 red, green, blue; RGBColour rgb; pixel = getPixel(m_surface, x, y); SDL_LockSurface(m_surface); SDL_GetRGB(pixel, m_surface->format, &red, &green, &blue); SDL_UnlockSurface(m_surface); rgb.r = red; rgb.b = blue; rgb.g = green; return rgb; } // this function taken from SDL documentation // http://www.libsdl.org/cgi/docwiki.cgi/Introduction_to_SDL_Video#getpixel Uint32 SDLSurfaceReader::getPixel(SDL_Surface* surface, int x, int y) { int bpp = m_surface->format->BytesPerPixel; Uint8 *p = (Uint8*)m_surface->pixels + y * m_surface->pitch + x * bpp; switch (bpp) { case 1: return *p; case 2: return *(Uint16*)p; case 3: if (SDL_BYTEORDER == SDL_BIG_ENDIAN) return p[0] << 16 | p[1] << 8 | p[2]; else return p[0] | p[1] << 8 | p[2] << 16; case 4: return *(Uint32*)p; default: return 0; } } I've been stumped at this, and I need help badly! Thanks so much for any advice.

    Read the article

  • Using Appendbuffers in unity for terrain generation

    - by Wardy
    Like many others I figured I would try and make the most of the monster processing power of the GPU but I'm having trouble getting the basics in place. CPU code: using UnityEngine; using System.Collections; public class Test : MonoBehaviour { public ComputeShader Generator; public MeshTopology Topology; void OnEnable() { var computedMeshPoints = ComputeMesh(); CreateMeshFrom(computedMeshPoints); } private Vector3[] ComputeMesh() { var size = (32*32) * 4; // 4 points added for each x,z pos var buffer = new ComputeBuffer(size, 12, ComputeBufferType.Append); Generator.SetBuffer(0, "vertexBuffer", buffer); Generator.Dispatch(0, 1, 1, 1); var results = new Vector3[size]; buffer.GetData(results); buffer.Dispose(); return results; } private void CreateMeshFrom(Vector3[] generatedPoints) { var filter = GetComponent<MeshFilter>(); var renderer = GetComponent<MeshRenderer>(); if (generatedPoints.Length > 0) { var mesh = new Mesh { vertices = generatedPoints }; var colors = new Color[generatedPoints.Length]; var indices = new int[generatedPoints.Length]; //TODO: build this different based on topology of the mesh being generated for (int i = 0; i < indices.Length; i++) { indices[i] = i; colors[i] = Color.blue; } mesh.SetIndices(indices, Topology, 0); mesh.colors = colors; mesh.RecalculateNormals(); mesh.Optimize(); mesh.RecalculateBounds(); filter.sharedMesh = mesh; } else { filter.sharedMesh = null; } } } GPU code: #pragma kernel Generate AppendStructuredBuffer<float3> vertexBuffer : register(u0); void genVertsAt(uint2 xzPos) { //TODO: put some height generation code here. // could even run marching cubes / dual contouring code. float3 corner1 = float3( xzPos[0], 0, xzPos[1] ); float3 corner2 = float3( xzPos[0] + 1, 0, xzPos[1] ); float3 corner3 = float3( xzPos[0], 0, xzPos[1] + 1); float3 corner4 = float3( xzPos[0] + 1, 0, xzPos[1] + 1 ); vertexBuffer.Append(corner1); vertexBuffer.Append(corner2); vertexBuffer.Append(corner3); vertexBuffer.Append(corner4); } [numthreads(32, 1, 32)] void Generate (uint3 threadId : SV_GroupThreadID, uint3 groupId : SV_GroupID) { uint2 currentXZ = unint2( groupId.x * 32 + threadId.x, groupId.z * 32 + threadId.z); genVertsAt(currentXZ); } Can anyone explain why when I call "buffer.GetData(results);" on the CPU after the compute dispatch call my buffer is full of Vector3(0,0,0), I'm not expecting any y values yet but I would expect a bunch of thread indexes in the x,z values for the Vector3 array. I'm not getting any errors in any of this code which suggests it's correct syntax-wise but maybe the issue is a logical bug. Also: Yes, I know I'm generating 4,000 Vector3's and then basically round tripping them. However, the purpose of this code is purely to learn how round tripping works between CPU and GPU in Unity.

    Read the article

  • Taking HRMS to the Cloud to Simplify Human Resources Management

    - by HCM-Oracle
    By Anke Mogannam With human capital management (HCM) a top-of-mind issue for executives in every industry, human resources (HR) organizations are poised to have their day in the sun—proving not just their administrative worth but their strategic value as well.  To make good on that promise, however, HR must modernize. Indeed, if HR is to act as an agent of change—providing the swift reallocation of employees  and the rapid absorption of employee data required for enterprises to shift course on a dime—it must first deal with the disruptive change at its own front door. And increasingly, that means choosing the right technology and human resources management system (HRMS) for managing the entire employee lifecycle. Unfortunately, for most organizations, this task has proved easier said than done. This is because while much has been written about advances in HRMS technology, until recently, most of those advances took the form of disparate on-premises solutions designed to serve very specific purposes. Although this may have resulted in key competencies in certain areas, it also meant that processes for core HR functions like payroll and benefits were being carried out in separate systems from those used for talent management, workforce optimization, training, and so on. With no integration—and no single system of record—processes were disconnected, ease of use was impeded, user experience was diminished, and vital data was left untapped.  Today, however, that scenario has begun to change, and end-to-end cloud-based HCM solutions have moved from wished-for innovations to real-life solutions. Why, then, have HR organizations been so slow in adopting them? The answer—it would seem—is, “It’s complicated.” So complicated, in fact, that 45 percent of the respondents to PwC’s “Annual HR Technology Survey” (for 2013) reported having no formal HR software roadmap, and 40 percent stated that they “did not know” whether their organizations would be increasing their use of cloud or software as a service (SaaS) for HR.  Clearly, HR organizations need help sorting through the morass of HR software options confronting them. But just as clearly, there’s an enormous opportunity awaiting those that do. The trick will come in charting a course that allows HR to leverage existing technology while investing in the cloud-based solutions that will deliver the end-to-end processes, easy-to-understand analytics, and superior adaptability required to simplify—and add value to—every aspect of employee management. The Opportunity therefore is to cut costs, drive Innovation, and increase engagement by moving to cloud-based HCM.  Then you will benefit from one Interface, leverage many access points, and  gain at-a-glance insight across your entire workforce. With many legacy on-premises HR systems not being efficient anymore and cloud-based, integrated systems that span the range of HR functions finally reaching maturity, the time is ripe for moving core HR to the cloud. Indeed, for the first time ever there are more HRMS replacement initiatives than HRMS upgrade initiatives under way, and the majority of them involve moving to the cloud per Cedar Crestone’s 2013-2014 HRMS survey. To learn how you can launch your own cloud HCM initiative and begin using HR to power the enterprise, visit Oracle HRMS in the Cloud and Oracle’s new customer 2 cloud program. Anke Mogannam brings more than 16 years of marketing and human capital management experience in the technology industries to her role at Oracle where she is part of the Human Capital Management applications marketing team. In that role, Anke drives content marketing, messaging, go-to-market activities, integrated marketing campaigns, and field enablement. Prior to joining Oracle, Anke held several roles in communications, marketing, HCM product strategy and product management at PeopleSoft, SAP, Workday and Saba. Follow her on Twitter @amogannam

    Read the article

  • Virtualized data centre&ndash;Part three: Architecture

    - by marc dekeyser
    Having the basics (like discussed in the previous articles) is all good and well, but how do we get started on this?! It can be quite daunting after all!   From my own point of view I can absolutely confirm your worries and concerns, but also tell you that it is not as hard as it seems! Deciding on what kind of motherboard to buy, processor and how much memory is an activity you will spend quite some time doing research on. And that is not even mentioning storage! All in all it comes down to setting you expectations and your budget. Probably adjusting your expectations according to your budget :). Processors As a rule of thumb you want VT-D (virtualization) technology built in to the processor allowing you to have 64 bit machines running on your host. Memory The more the better! If you are building a home lab don’t bother with ECC unless you are going to run machines that absolutely should be on all the time and your comfort depends on it! Motherboard Depends on what you are going to do with storage: If you are going the NAS way then the number of SATA port/RAID capabilities do not really matter. If you decide to have a single server with lots of dedicated storage it obviously matters how much SATA ports you will have, alternatively you could use a RAID controller (but these set you back a pretty penny if you want one. DELL 6i’s are usually available for a good bargain if you can find one!). Easiest is to get one with a built-in graphics card (on-board) as you are just adding more heat, power usage and possible points of failure. Networking Just like your choice of motherboard the networking side tends to depend on how you want to go. A single virtualization  host with local storage can usually get away with having a single network card, a cluster or server which uses iSCSI storage tends to have more than one teamed up :). Storage The dreaded beast from the dark! The horror which lives in the forest! The most difficult decision you are going to make in the building of your lab. Why you might ask? Simple my friend, having the right choice of storage can make or break your virtualization solution. The performance of you storage choice will have an important impact on the responsiveness of your virtual machines and the deployment of new machines. It also makes a run with your budget! If you decide to go the NAS route you will be dropping a lot more money than if you would be having just a bunch of disks sitting in a server and manually distributing the virtual machines over the disks. Platform I’m a Microsoftee so Hyper-V is a dead giveaway for me. If you are interested in using VMware I won’t stop you but the rest of my posts will be oriented on Server 2012 Hyper-V (aka 3.0)! What did I use? Before someone asks me this in the comments I’ll give you a quick run down of what I am using. - Intel 2.4 quad core processors (i something something) - 24 GB DDR3 Memory - Single disk in each server (might look at this as I move the servers to 2012) - Synology DS1812+ NAS - 3 network interfaces where possible - HP1800 procurve managed switch I decided to spring for the NAS as I will also be using it for backups and media storage (which is working out quite nicely with my Xbox 360 I must say). At the time of building my 2 boxes (over a year and a half ago) these set me back about 900 euros each so I can image you can build the same or better for a lower price. Next article will be diagramming what I want to achieve and starting a build on the Hyper V 3.0 cluster!

    Read the article

  • Java EE 7 Roadmap

    - by Linda DeMichiel
    The Java EE 6 Platform, released in December 2009, has seen great uptake from the community with its POJO-based programming model, lightweight Web Profile, and extension points. There are now 13 Java EE 6 compliant appserver implementations today! When we announced the Java EE 7 JSR back in early 2011, our plans were that we would release it by Q4 2012. This target date was slightly over three years after the release of Java EE 6, but at the same time it meant that we had less than two years to complete a fairly comprehensive agenda — to continue to invest in significant enhancements in simplification, usability, and functionality in updated versions of the JSRs that are currently part of the platform; to introduce new JSRs that reflect emerging needs in the community; and to add support for use in cloud environments. We have since announced a minor adjustment in our dates (to the spring of 2013) in order to accommodate the inclusion of JSRs of importance to the community, such as Web Sockets and JSON-P. At this point, however, we have to make a choice. Despite our best intentions, our progress has been slow on the cloud side of our agenda. Partially this has been due to a lack of maturity in the space for provisioning, multi-tenancy, elasticity, and the deployment of applications in the cloud. And partially it is due to our conservative approach in trying to get things "right" in view of limited industry experience in the cloud area when we started this work. Because of this, we believe that providing solid support for standardized PaaS-based programming and multi-tenancy would delay the release of Java EE 7 until the spring of 2014 — that is, two years from now and over a year behind schedule. In our opinion, that is way too long. We have therefore proposed to the Java EE 7 Expert Group that we adjust our course of action — namely, stick to our current target release dates, and defer the remaining aspects of our agenda for PaaS enablement and multi-tenancy support to Java EE 8. Of course, we continue to believe that Java EE is well-suited for use in the cloud, although such use might not be quite ready for full standardization. Even today, without Java EE 7, Java EE vendors such as Oracle, Red Hat, IBM, and CloudBees have begun to offer the ability to run Java EE applications in the cloud. Deferring the remaining cloud-oriented aspects of our agenda has several important advantages: It allows Java EE Platform vendors to gain more experience with their implementations in this area and thus helps us avoid risks entailed by trying to standardize prematurely in an emerging area. It means that the community won't need to wait longer for those features that are ready at the cost of those features that need more time. Because we have already laid some of the infrastructure for cloud support in Java EE 7, including resource definition metadata, improved security configuration, JPA schema generation, etc., it will allow us to expedite a Java EE 8 release. We therefore plan to target the Java EE 8 Platform release for the spring of 2015. This shift in the scope of Java EE 7 allows us to better retain our focus on enhancements in simplification and usability and to deliver on schedule those features that have been most requested by developers. These include the support for HTML 5 in the form of Web Sockets and JSON-P; the simplified JMS 2.0 APIs; improved Managed Bean alignment, including transactional interceptors; the JAX-RS 2.0 client API; support for method-level validation; a much more comprehensive expression language; and more. We feel strongly that this is the right thing to do, and we hope that you will support us in this proposed direction.

    Read the article

  • FFmpeg creates emtpy (black) frames

    - by resamsel
    I have a set of images from a timelapse shot (172 JPG files) that I want to convert into a movie. I tried several parameters with FFmpeg, but all I get is a video with black frames (though it has the expected length). ffmpeg -f image2 -vcodec mjpeg -y -i img_%03d.jpg timelapse2.mpg The command above creates this video: http://sdm-net.org/data/timelapse2.mpg What I'm expecting is something like this (created with Time Lapse Assembler.app): https://vimeo.com/39038362 - This is my fallback option, but I'd really like to create timelapse movies from a script. I'm on OSX Lion (10.7.3) with FFmpeg version (0.10) installed via Homebrew. I also tried to find a proper version of mencoder for OSX, but this doesn't seem to be an easy task. Also, ImageMagick's convert doesn't seem to work nicely, it creates really bad output and it seems there's not much I can do about it... Edit: With libx264 and an mp4 container: ffmpeg -f image2 -y -i img_%03d.jpg -vcodec libx264 timelapse4.mp4 Output: ffmpeg version 0.10 Copyright (c) 2000-2012 the FFmpeg developers built on Mar 26 2012 13:47:02 with clang 3.0 (tags/Apple/clang-211.12) configuration: --prefix=/usr/local/Cellar/ffmpeg/0.10 --enable-shared --enable-gpl --enable-version3 --enable-nonfree --enable-hardcoded-tables --enable-libfreetype --cc=/usr/bin/clang --enable-libx264 --enable-libfaac --enable-libmp3lame --enable-librtmp --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libxvid --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libass --disable-ffplay libavutil 51. 34.101 / 51. 34.101 libavcodec 53. 60.100 / 53. 60.100 libavformat 53. 31.100 / 53. 31.100 libavdevice 53. 4.100 / 53. 4.100 libavfilter 2. 60.100 / 2. 60.100 libswscale 2. 1.100 / 2. 1.100 libswresample 0. 6.100 / 0. 6.100 libpostproc 52. 0.100 / 52. 0.100 Input #0, image2, from 'img_%03d.jpg': Duration: 00:00:06.88, start: 0.000000, bitrate: N/A Stream #0:0: Video: mjpeg, yuvj420p, 3888x2592 [SAR 72:72 DAR 3:2], 25 fps, 25 tbr, 25 tbn, 25 tbc [buffer @ 0x7f8ec9415f20] w:3888 h:2592 pixfmt:yuvj420p tb:1/1000000 sar:72/72 sws_param: [libx264 @ 0x7f8ec981d800] using SAR=1/1 [libx264 @ 0x7f8ec981d800] frame MB size (243x162) > level limit (36864) [libx264 @ 0x7f8ec981d800] MB rate (984150) > level limit (983040) [libx264 @ 0x7f8ec981d800] using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.2 AVX [libx264 @ 0x7f8ec981d800] profile High, level 5.1 [libx264 @ 0x7f8ec981d800] 264 - core 120 - H.264/MPEG-4 AVC codec - Copyleft 2003-2011 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mp4, to 'timelapse4.mp4': Metadata: encoder : Lavf53.31.100 Stream #0:0: Video: h264 (![0][0][0] / 0x0021), yuvj420p, 3888x2592 [SAR 72:72 DAR 3:2], q=-1--1, 25 tbn, 25 tbc Stream mapping: Stream #0:0 -> #0:0 (mjpeg -> libx264) Press [q] to stop, [?] for help frame= 172 fps= 18 q=-1.0 Lsize= 259kB time=00:00:06.80 bitrate= 312.3kbits/s video:256kB audio:0kB global headers:0kB muxing overhead 1.089647% [libx264 @ 0x7f8ec981d800] frame I:1 Avg QP: 9.60 size:212820 [libx264 @ 0x7f8ec981d800] frame P:43 Avg QP:30.50 size: 291 [libx264 @ 0x7f8ec981d800] frame B:128 Avg QP:31.00 size: 285 [libx264 @ 0x7f8ec981d800] consecutive B-frames: 0.6% 0.0% 1.7% 97.7% [libx264 @ 0x7f8ec981d800] mb I I16..4: 22.5% 77.2% 0.3% [libx264 @ 0x7f8ec981d800] mb P I16..4: 0.0% 0.0% 0.0% P16..4: 0.0% 0.0% 0.0% 0.0% 0.0% skip:100.0% [libx264 @ 0x7f8ec981d800] mb B I16..4: 0.0% 0.0% 0.0% B16..8: 0.0% 0.0% 0.0% direct: 0.0% skip:100.0% L0: 1.2% L1:98.8% BI: 0.0% [libx264 @ 0x7f8ec981d800] 8x8 transform intra:77.2% inter:100.0% [libx264 @ 0x7f8ec981d800] coded y,uvDC,uvAC intra: 41.2% 23.4% 0.6% inter: 0.0% 0.0% 0.0% [libx264 @ 0x7f8ec981d800] i16 v,h,dc,p: 40% 25% 35% 1% [libx264 @ 0x7f8ec981d800] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 36% 32% 30% 1% 0% 0% 0% 0% 0% [libx264 @ 0x7f8ec981d800] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 51% 40% 6% 1% 1% 0% 1% 0% 1% [libx264 @ 0x7f8ec981d800] i8c dc,h,v,p: 60% 21% 19% 0% [libx264 @ 0x7f8ec981d800] Weighted P-Frames: Y:0.0% UV:0.0% [libx264 @ 0x7f8ec981d800] ref P L0: 92.3% 0.0% 0.0% 7.7% [libx264 @ 0x7f8ec981d800] ref B L0: 50.0% 0.0% 50.0% [libx264 @ 0x7f8ec981d800] ref B L1: 99.4% 0.6% [libx264 @ 0x7f8ec981d800] kb/s:304.49 Output timelapse4.mp4 (beacause of spam protection I can only post two links with my reputation): http sdm-net.org/data/timelapse4.mp4

    Read the article

  • Social Targeting: This One's Just for You

    - by Mike Stiles
    Think of social targeting in terms of the archery competition we just saw in the Olympics. If someone loaded up 5 arrows and shot them straight up into the air all at once, hoping some would land near the target, the world would have united in laughter. But sadly for hysterical YouTube video viewing, that’s not what happened. The archers sought to maximize every arrow by zeroing in on the spot that would bring them the most points. Marketers have always sought to do the same. But they can only work with the tools that are available. A firm grasp of the desired target does little good if the ad products aren’t there to deliver that target. On the social side, both Facebook and Twitter have taken steps to enhance targeting for marketers. And why not? As the demand to monetize only goes up, they’re quite motivated to leverage and deliver their incredible user bases in ways that make economic sense for advertisers. You could target keywords on Twitter with promoted accounts, and get promoted tweets into search. They would surface for your followers and some users that Twitter thought were like them. Now you can go beyond keywords and target Twitter users based on 350 interests in 25 categories. How does a user wind up in one of these categories? Twitter looks at that user’s tweets, they look at whom they follow, and they run data through some sort of Twitter secret sauce. The result is, you have a much clearer shot at Twitter users who are most likely to welcome and be responsive to your tweets. And beyond the 350 interests, you can also create custom segments that find users who resemble followers of whatever Twitter handle you give it. That means you can now use boring tweets to sell like a madman, right? Not quite. This ad product is still quality-based, meaning if you’re not putting out tweets that lead to interest and thus, engagement, that tweet will earn a low quality score and wind up costing you more under Twitter’s auction system to maintain. That means, as the old knight in “Indiana Jones and the Last Crusade” cautions, “choose wisely” when targeting based on these interests and categories to make sure your interests truly do line up with theirs. On the Facebook side, they’re rolling out ad targeting that uses email addresses, phone numbers, game and app developers’ user ID’s, and eventually addresses for you bigger brands. Why? Because you marketers asked for it. Here you were with this amazing customer list but no way to reach those same customers should they be on Facebook. Now you can find and communicate with customers you gathered outside of social, and use Facebook to do it. Fair to say such users are a sensible target and will be responsive to your message since they’ve already bought something from you. And no you’re not giving your customer info to Facebook. They’ll use something called “hashing” to make sure you don’t see Facebook user data (beyond email, phone number, address, or user ID), and Facebook can’t see your customer data. The end result, social becomes far more workable and more valuable to marketers when it delivers on the promise that made it so exciting in the first place. That promise is the ability to move past casting wide nets to the masses and toward concentrating marketing dollars efficiently on the targets most likely to yield results.

    Read the article

  • The Future of Air Travel: Intelligence and Automation

    - by BobEvans
    Remember those white-knuckle flights through stormy weather where unexpected plunges in altitude result in near-permanent relocations of major internal organs? Perhaps there’s a better way, according to a recent Wall Street Journal article: “Pilots of a Honeywell International Inc. test plane stayed on their initial flight path, relying on the company's latest onboard radar technology to steer through the worst of the weather. The specially outfitted Boeing 757 barely shuddered as it gingerly skirted some of the most ferocious storm cells over Fort Walton Beach and then climbed above the rest in zero visibility.” Or how about the multifaceted check-in process, which might not wreak havoc on liver location but nevertheless makes you wonder if you’ve been trapped in some sort of covert psychological-stress test? Another WSJ article, called “The Self-Service Airport,” says there’s reason for hope there as well: “Airlines are laying the groundwork for the next big step in the airport experience: a trip from the curb to the plane without interacting with a single airline employee. At the airport of the near future, ‘your first interaction could be with a flight attendant,’ said Ben Minicucci, chief operating officer of Alaska Airlines, a unit of Alaska Air Group Inc.” And in the topsy-turvy world of air travel, it’s not just the passengers who’ve been experiencing bumpy rides: the airlines themselves are grappling with a range of challenges—some beyond their control, some not—that make profitability increasingly elusive in spite of heavy demand for their services. A recent piece in The Economist illustrates one of the mega-challenges confronting the airline industry via a striking set of contrasting and very large numbers: while the airlines pay $7 billion per year to third-party computerized reservation services, the airlines themselves earn a collective profit of only $3 billion per year. In that context, the anecdotes above point unmistakably to the future that airlines must pursue if they hope to be able to manage some of the factors outside of their control (e.g., weather) as well as all of those within their control (operating expenses, end-to-end visibility, safety, load optimization, etc.): more intelligence, more automation, more interconnectedness, and more real-time awareness of every facet of their operations. Those moves will benefit both passengers and the air carriers, says the WSJ piece on The Self-Service Airport: “Airlines say the advanced technology will quicken the airport experience for seasoned travelers—shaving a minute or two from the checked-baggage process alone—while freeing airline employees to focus on fliers with questions. ‘It's more about throughput with the resources you have than getting rid of humans,’ said Andrew O'Connor, director of airport solutions at Geneva-based airline IT provider SITA.” Oracle’s attempting to help airlines gain control over these challenges by blending together a range of its technologies into a solution called the Oracle Airline Data Model, which suggests the following steps: • To retain and grow their customer base, airlines need to focus on the customer experience. • To personalize and differentiate the customer experience, airlines need to effectively manage their passenger data. • The Oracle Airline Data Model can help airlines jump-start their customer-experience initiatives by consolidating passenger data into a customer data hub that drives realtime business intelligence and strategic customer insight. • Oracle’s Airline Data Model brings together multiple types of data that can jumpstart your data-warehousing project with rich out-of-the-box functionality. • Oracle’s Intelligent Warehouse for Airlines brings together the powerful capabilities of Oracle Exadata and the Oracle Airline Data Model to give you real-time strategic insights into passenger demand, revenues, sales channels and your flight network. The airline industry aside, the bullet points above offer a broad strategic outline for just about any industry because the customer experience is becoming pre-eminent in each and there is simply no way to deliver world-class customer experiences unless a company can capture, manage, and analyze all of the relevant data in real-time. I’ll leave you with two thoughts from the WSJ article about the new in-flight radar system from Honeywell: first, studies show that a single episode of serious turbulence can wrack up $150,000 in additional costs for an airline—so, it certainly behooves the carriers to gain the intelligence to avoid turbulence as much as possible. And second, it’s back to that top-priority customer-experience thing and the value that ever-increasing levels of intelligence can deliver. As the article says: “In the cabin, reporters watched screens showing the most intense parts of the nearly 10-mile wide storm, which churned some 7,000 feet below, in vibrant red and other colors. The screens also were filled with tiny symbols depicting likely locations of lightning and hail, which can damage planes and wreak havoc on the nerves of white-knuckle flyers.”  (Bob Evans is senior vice-president, communications, for Oracle.)  

    Read the article

  • FBX Importer - Texture Name

    - by CmasterG
    I have a problem with the FBX SDK. I read in the data for the vertex position and the uv coordinates. It works fine, but now I want to read for each polygon to which texture it belongs, so that I can have models with multiple textures. Can anyone tell me how I can get the texture name (file name) for my polygon. My code to read in vertex position and uv coordinates is the following: int i, j, lPolygonCount = pMesh->GetPolygonCount(); FbxVector4* lControlPoints = pMesh->GetControlPoints(); int vertexId = 0; for (i = 0; i < lPolygonCount; i++) { int lPolygonSize = pMesh->GetPolygonSize(i); for (j = 0; j < lPolygonSize; j++) { int lControlPointIndex = pMesh->GetPolygonVertex(i, j); FbxVector4 pos = lControlPoints[lControlPointIndex]; current_model[vertex_index].x = pos.mData[0] - pivot_offset[0]; current_model[vertex_index].y = pos.mData[1] - pivot_offset[1]; current_model[vertex_index].z = pos.mData[2]- pivot_offset[2]; FbxVector4 vertex_normal; pMesh->GetPolygonVertexNormal(i,j, vertex_normal); current_model[vertex_index].nx = vertex_normal.mData[0]; current_model[vertex_index].ny = vertex_normal.mData[1]; current_model[vertex_index].nz = vertex_normal.mData[2]; //read in UV data FbxStringList lUVSetNameList; pMesh->GetUVSetNames(lUVSetNameList); //get lUVSetIndex-th uv set const char* lUVSetName = lUVSetNameList.GetStringAt(0); const FbxGeometryElementUV* lUVElement = pMesh->GetElementUV(lUVSetName); if(!lUVElement) continue; // only support mapping mode eByPolygonVertex and eByControlPoint if( lUVElement->GetMappingMode() != FbxGeometryElement::eByPolygonVertex && lUVElement->GetMappingMode() != FbxGeometryElement::eByControlPoint ) return; //index array, where holds the index referenced to the uv data const bool lUseIndex = lUVElement->GetReferenceMode() != FbxGeometryElement::eDirect; const int lIndexCount= (lUseIndex) ? lUVElement->GetIndexArray().GetCount() : 0; FbxVector2 lUVValue; //get the index of the current vertex in control points array int lPolyVertIndex = pMesh->GetPolygonVertex(i,j); //the UV index depends on the reference mode //int lUVIndex = lUseIndex ? lUVElement->GetIndexArray().GetAt(lPolyVertIndex) : lPolyVertIndex; int lUVIndex = pMesh->GetTextureUVIndex(i, j); lUVValue = lUVElement->GetDirectArray().GetAt(lUVIndex); current_model[vertex_index].tu = (float)lUVValue.mData[0]; current_model[vertex_index].tv = (float)lUVValue.mData[1]; vertex_index ++; } } float v1[3], v2[3], v3[3]; v1[0] = current_model[vertex_index - 3].x; v1[1] = current_model[vertex_index - 3].y; v1[2] = current_model[vertex_index - 3].z; v2[0] = current_model[vertex_index - 2].x; v2[1] = current_model[vertex_index - 2].y; v2[2] = current_model[vertex_index - 2].z; v3[0] = current_model[vertex_index - 1].x; v3[1] = current_model[vertex_index - 1].y; v3[2] = current_model[vertex_index - 1].z; collision_model->addTriangle(v1,v2,v3);

    Read the article

  • Welcome To The Nashorn Blog

    - by jlaskey
    Welcome to all.  Time to break the ice and instantiate The Nashorn Blog.  I hope to contribute routinely, but we are very busy, at this point, preparing for the next development milestone and, of course, getting ready for open source. So, if there are long gaps between postings please forgive. We're just coming back from JavaOne and are stoked by the positive response to all the Nashorn sessions. It was great for the team to have the front and centre slide from Georges Saab early in the keynote. It seems we have support coming from all directions. Most of the session videos are posted. Check out the links. Nashorn: Optimizing JavaScript and Dynamic Language Execution on the JVM. Unfortunately, Marcus - the code generation juggernaut,  got saddled with the first session of the first day. Still, he had a decent turnout. The talk focused on issues relating to optimizations we did to get good performance from the JVM. Much yet to be done but looking good. Nashorn: JavaScript on the JVM. This was the main talk about Nashorn. I delivered the little bit of this and a little bit of that session with an overview, a follow up on the open source announcement, a run through a few of the Nashorn features and some demos. The room was SRO, about 250±. High points: Sam Pullara, from Twitter, came forward to describe how painless it was to get Mustache.js up and running (20x over Rhino), and,  John Ceccarelli, from NetBeans came forward to describe how Nashorn has become an integral part of Netbeans. A healthy Q & A at the end was very encouraging. Meet the Nashorn JavaScript Team. Michel, Attila, Marcus and myself hosted a Q & A. There was only a handful of people in the room (we assume it was because of a conflicting session ;-) .) Most of the questions centred around Node.jar, which leads me to believe, Nashorn + Node.jar is what has the most interest. Akhil, Mr. Node.jar, sitting in the audience, fielded the Node.jar questions. Nashorn, Node, and Java Persistence. Doug Clarke, Akhil and myself, discussed the title topics, followed by a lengthy Q & A (security had to hustle us out.) 80 or so in the room. Lots of questions about Node.jar. It was great to see Doug's use of Nashorn + JPA. Nashorn in action, with such elegance and grace. Putting the Metaobject Protocol to Work: Nashorn’s Java Bindings. Attila discussed how he applied Dynalink to Nashorn. Good turn out for this session as well. I have a feeling that once people discover and embrace this hidden gem, great things will happen for all languages running on the JVM. Finally, there were quite a few JavaOne sessions that focused on non-Java languages and their impact on the JVM. I've always believed that one's tool belt should carry a variety of programming languages, not just for domain/task applicability, but also to enhance your thinking and approaches to problem solving. For the most part, future blog entries will focus on 'how to' in Nashorn, but if you have any suggestions for topics you want discussed, please drop a line.  Cheers. 

    Read the article

  • AI to move custom-shaped spaceships (shape affecting movement behaviour)

    - by kaoD
    I'm designing a networked turn based 3D-6DOF space fleet combat strategy game which relies heavily on ship customization. Let me explain the game a bit, since you need to know a bit about it to set the question. What I aim for is the ability to create your own fleet of ships with custom shapes and attached modules (propellers, tractor beams...) which would give advantages and disadvantages to each ship, so you have lots of different fleet distributions. E.g., long ship with two propellers at the side would let the ship spin around that plane easily, bigger ships would move slowly unless you place lots of propellers at the back (therefore spending more "construction" points and energy when moving, and it will only move fast towards that direction.) I plan to balance all the game around this feature. The game would revolve around two phases: orders and combat phase. During the orders phase, you command the different ships. When all players finish the order phase, the combat phase begins and the ship orders get resolved in real-time for some time, then the action pauses and there's a new orders phase. The problem comes when I think about player input. To move a ship, you need to turn on or off different propellers if you want to steer, travel forward, brake, rotate in place... These propellers don't have to work at their whole power, so you can achieve more movement combinations with less propellers. I think this approach is a bit boring. The player doesn't want to fiddle with motors or anything, you just want to MOVE and KILL. The way I intend the player to give orders to these ships is by a destination and a rotation, and then the AI would calculate the correct propeller power to achive that movement and rotation. Propulsion doesn't have to be the same throught the entire turn calculation (after the orders have been given) so it would be cool if the ships reacted as they move, adjusting the power of the propellers for their needs dynamically, but it may be too hard to implement and it's not really needed for the game to work. In both cases, how would that AI decide which propellers to activate for the best (or at least not worst) trajectory to be achieved? I though about some approaches: Learning AI: The ship types would learn about their movement by trial and error, adjusting their behaviour with more uses, and finally becoming "smart". I don't want to get involved THAT far in AI coding, and I think it can be frustrating for the player (even if you can let it learn without playing.) Pre-calculated timestep movement: Upon ship creation, ALL possible movements are calculated for each propeller configuration and power for a given delta-time. Memory intensive, ugly, bad. Pre-calculated trajectories: The same as above but not for each delta-time but the whole trajectory, which would then be fitted as much as possible. Requires a fixed propeller configuration for the whole combat phase and is still memory intensive, ugly and bad. Continuous brute forcing: The AI continously checks ALL possible propeller configurations throughout the entire combat phase, precalculates a few time steps and decides which is the best one based on that. Con: what's good now might not be that good later, and it's too CPU intensive, ugly, and bad too. Single brute forcing: Same as above, but only brute forcing at the beginning of the simulation, so it needs constant propeller configuration throughout the entire combat phase. Coninuous angle check: This is not a full movement method, but maybe a way to discard "stupid" propeller configurations. Given the current propeller's normal vector and the final one, you can approximate the power needed for the propeller based on the angle. You must do this continuously throughout the whole combat phase. I figured this one out recently so I didn't put in too much thought. A priori, it has the "what's good now might not be that good later" drawback too, and it doesn't care about the other propellers which may act together to make a better propelling configuration. I'm really stuck here. Any ideas?

    Read the article

  • Know your Data Lineage

    - by Simon Elliston Ball
    An academic paper without the footnotes isn’t an academic paper. Journalists wouldn’t base a news article on facts that they can’t verify. So why would anyone publish reports without being able to say where the data has come from and be confident of its quality, in other words, without knowing its lineage. (sometimes referred to as ‘provenance’ or ‘pedigree’) The number and variety of data sources, both traditional and new, increases inexorably. Data comes clean or dirty, processed or raw, unimpeachable or entirely fabricated. On its journey to our report, from its source, the data can travel through a network of interconnected pipes, passing through numerous distinct systems, each managed by different people. At each point along the pipeline, it can be changed, filtered, aggregated and combined. When the data finally emerges, how can we be sure that it is right? How can we be certain that no part of the data collection was based on incorrect assumptions, that key data points haven’t been left out, or that the sources are good? Even when we’re using data science to give us an approximate or probable answer, we cannot have any confidence in the results without confidence in the data from which it came. You need to know what has been done to your data, where it came from, and who is responsible for each stage of the analysis. This information represents your data lineage; it is your stack-trace. If you’re an analyst, suspicious of a number, it tells you why the number is there and how it got there. If you’re a developer, working on a pipeline, it provides the context you need to track down the bug. If you’re a manager, or an auditor, it lets you know the right things are being done. Lineage tracking is part of good data governance. Most audit and lineage systems require you to buy into their whole structure. If you are using Hadoop for your data storage and processing, then tools like Falcon allow you to track lineage, as long as you are using Falcon to write and run the pipeline. It can mean learning a new way of running your jobs (or using some sort of proxy), and even a distinct way of writing your queries. Other Hadoop tools provide a lot of operational and audit information, spread throughout the many logs produced by Hive, Sqoop, MapReduce and all the various moving parts that make up the eco-system. To get a full picture of what’s going on in your Hadoop system you need to capture both Falcon lineage and the data-exhaust of other tools that Falcon can’t orchestrate. However, the problem is bigger even that that. Often, Hadoop is just one piece in a larger processing workflow. The next step of the challenge is how you bind together the lineage metadata describing what happened before and after Hadoop, where ‘after’ could be  a data analysis environment like R, an application, or even directly into an end-user tool such as Tableau or Excel. One possibility is to push as much as you can of your key analytics into Hadoop, but would you give up the power, and familiarity of your existing tools in return for a reliable way of tracking lineage? Lineage and auditing should work consistently, automatically and quietly, allowing users to access their data with any tool they require to use. The real solution, therefore, is to create a consistent method by which to bring lineage data from these data various disparate sources into the data analysis platform that you use, rather than being forced to use the tool that manages the pipeline for the lineage and a different tool for the data analysis. The key is to keep your logs, keep your audit data, from every source, bring them together and use the data analysis tools to trace the paths from raw data to the answer that data analysis provides.

    Read the article

  • Seperation of project responsibilities in new project

    - by dreza
    We have very recently started a new project (MVC 3.0) and some of our early discussion has been around how the work and development will be split amongst the team members to ensure we get the least amount of overlap of work and so help make it a bit easier for each developer to get on and do their work. The project is expected to take about 6 months - 1 year (although not all developers are likely to be on and might filter off towards the end), Our team is going to be small so this will help out a bit I believe. The team will essentially consist of: 3 x developers (1 a slightly more experienced and will be the lead) 1 x project manager / product owner / tester An external company responsbile for doing our design work General project/development decisions so far have included: Develop in an Agile way using SCRUM techniques (We are still very much learning this approach as a company) Use MVVM archectecture Use Ninject and DI where possible Attempt to use as TDD as much as possible to drive development. Keep our controllers as skinny as possible Keep our views as simple as possible During our discussions two approaches have been broached as too how to seperate the workload given our objectives outlined above. OPTION 1: A framework seperation where each person is responsible for conceptual areas with overlap and discussion primarily in the integration areas. The integration areas would the responsibily of both developers as required. View prototypes (**Graphic designer**) | - Mockups | Views (Razor and view helpers etc) & Javascript (**Developer 1**) | - View models (Integration point) | Controllers and Application logic (**Developer 2**) | - Models (Integration point) | Domain model and persistence (**Developer 3**) PROS: Integration points are quite clear and so developers can work without dependencies on others fairly easily Code practices such as naming conventions and style is more easily managed in regards to consistancy as primarily only one developer will be handling an area CONS: Completion of an entire feature becomes a bit grey as no single person is responsible for an entire feature (story?) A person might not have a full appreciation for all areas of the project and so code overlap might be lacking if suddenly that person left. OPTION 2: A more task orientated approach where each person is responsible for the completion of the entire task from view - controller - model. PROS: A person is responsible for one entire feature so it's "complete" state can be clearly defined Code overlap into different areas will occur so each individual has good coverage over the entire application CONS: Overlap of development will occur in all the modules and developers can develop/extend without a true understanding of what the original code owner was intending. This could potentially lead more easily to code bloat? Following a convention might be harder as developers are adding to all areas of the project If a developer sets up a way of doing things would it be harder to enforce the other developers to follow that convention or even build on it (or even discuss it?). Dunno.. Bugs could more easily be introduced into areas not thought about by the developer It's easier to possibly to carry a team member in so far as one member just hacks code together to complete a task whilst another takes time to build a foundation that could be used by others and so help make future tasks easier i.e. starts building a framework? QUESTION: As it might appear I'm more in favor of option 1, however I'm interested to see how others might have approached this or what is the standard or best or preferred way of undertaking a project. Or indeed any different approach to handling this?

    Read the article

< Previous Page | 186 187 188 189 190 191 192 193 194 195 196 197  | Next Page >