Search Results

Search found 16054 results on 643 pages for 'reference architecture'.

Page 191/643 | < Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >

  • Integrate Microsoft Translator into your ASP.Net application

    - by sreejukg
    In this article I am going to explain how easily you can integrate the Microsoft translator API to your ASP.Net application. Why we need a translation API? Once you published a website, you are opening a channel to the global audience. So making the web content available only in one language doesn’t cover all your audience. Especially when you are offering products/services it is important to provide contents in multiple languages. Users will be more comfortable when they see the content in their native language. How to achieve this, hiring translators and translate the content to all your user’s languages will cost you lot of money, and it is not a one time job, you need to translate the contents on the go. What is the alternative, we need to look for machine translation. Thankfully there are some translator engines available that gives you API level access, so that automatically you can translate the content and display to the user. Microsoft Translator API is an excellent set of web service APIs that allows developers to use the machine translation technology in their own applications. The Microsoft Translator API is offered through Windows Azure market place. In order to access the data services published in Windows Azure market place, you need to have an account. The registration process is simple, and it is common for all the services offered through the market place. Last year I had written an article about Bing Search API, where I covered the registration process. You can refer the article here. http://weblogs.asp.net/sreejukg/archive/2012/07/04/integrate-bing-search-api-to-asp-net-application.aspx Once you registered with Windows market place, you will get your APP ID. Now you can visit the Microsoft Translator page and click on the sign up button. http://datamarket.azure.com/dataset/bing/microsofttranslator As you can see, there are several options available for you to subscribe. There is a free version available, great. Click on the sign up button under the package that suits you. Clicking on the sign up button will bring the sign up form, where you need to agree on the terms and conditions and go ahead. You need to have a windows live account in order to sign up for any service available in Windows Azure market place. Once you signed up successfully, you will receive the thank you page. You can download the C# class library from here so that the integration can be made without writing much code. The C# file name is TranslatorContainer.cs. At any point of time, you can visit https://datamarket.azure.com/account/datasets to see the applications you are subscribed to. Click on the Use link next to each service will give you the details of the application. You need to not the primary account key and URL of the service to use in your application. Now let us start our ASP.Net project. I have created an empty ASP.Net web application using Visual Studio 2010 and named it Translator Sample, any name could work. By default, the web application in solution explorer looks as follows. Now right click the project and select Add -> Existing Item and then browse to the TranslatorContainer.cs. Now let us create a page where user enter some data and perform the translation. I have added a new web form to the project with name Translate.aspx. I have placed one textbox control for user to type the text to translate, the dropdown list to select the target language, a label to display the translated text and a button to perform the translation. For the dropdown list I have selected some languages supported by Microsoft translator. You can get all the supported languages with their codes from the below link. http://msdn.microsoft.com/en-us/library/hh456380.aspx The form looks as below in the design surface of Visual Studio. All the class libraries in the windows market place requires reference to System.Data.Services.Client, let us add the reference. You can find the documentation of how to use the downloaded class library from the below link. http://msdn.microsoft.com/en-us/library/gg312154.aspx Let us evaluate the translatorContainer.cs file. You can refer the code and it is self-explanatory. Note the namespace name used (Microsoft), you need to add the namespace reference to your page. I have added the following event for the translate button. The code is self-explanatory. You are creating an object of TranslatorContainer class by passing the translation service URL. Now you need to set credentials for your Translator container object, which will be your account key. The TranslatorContainer support a method that accept a text input, source language and destination language and returns DataServiceQuery<Translation>. Let us see this working, I just ran the application and entered Good Morning in the Textbox. Selected target language and see the output as follows. It is easy to build great translator applications using Microsoft translator API, and there is a reasonable amount of translation you can perform in your application for free. For enterprises, you can subscribe to the appropriate package and make your application multi-lingual.

    Read the article

  • UserAppDataPath in WPF

    - by psheriff
    In Windows Forms applications you were able to get to your user's roaming profile directory very easily using the Application.UserAppDataPath property. This folder allows you to store information for your program in a custom folder specifically for your program. The format of this directory looks like this: C:\Users\YOUR NAME\AppData\Roaming\COMPANY NAME\APPLICATION NAME\APPLICATION VERSION For example, on my Windows 7 64-bit system, this folder would look like this for a Windows Forms Application: C:\Users\PSheriff\AppData\Roaming\PDSA, Inc.\WindowsFormsApplication1\1.0.0.0 For some reason Microsoft did not expose this property from the Application object of WPF applications. I guess they think that we don't need this property in WPF? Well, sometimes we still do need to get at this folder. You have two choices on how to retrieve this property. Add a reference to the System.Windows.Forms.dll to your WPF application and use this property directly. Or, you can write your own method to build the same path. If you add a reference to the System.Windows.Forms.dll you will need to use System.Windows.Forms.Application.UserAppDataPath to access this property. Create a GetUserAppDataPath Method in WPF If you want to build this path you can do so with just a few method calls in WPF using Reflection. The code below shows this fairly simple method to retrieve the same folder as shown above. C#using System.Reflection; public string GetUserAppDataPath(){  string path = string.Empty;  Assembly assm;  Type at;  object[] r;   // Get the .EXE assembly  assm = Assembly.GetEntryAssembly();  // Get a 'Type' of the AssemblyCompanyAttribute  at = typeof(AssemblyCompanyAttribute);  // Get a collection of custom attributes from the .EXE assembly  r = assm.GetCustomAttributes(at, false);  // Get the Company Attribute  AssemblyCompanyAttribute ct =                 ((AssemblyCompanyAttribute)(r[0]));  // Build the User App Data Path  path = Environment.GetFolderPath(              Environment.SpecialFolder.ApplicationData);  path += @"\" + ct.Company;  path += @"\" + assm.GetName().Version.ToString();   return path;} Visual BasicPublic Function GetUserAppDataPath() As String  Dim path As String = String.Empty  Dim assm As Assembly  Dim at As Type  Dim r As Object()   ' Get the .EXE assembly  assm = Assembly.GetEntryAssembly()  ' Get a 'Type' of the AssemblyCompanyAttribute  at = GetType(AssemblyCompanyAttribute)  ' Get a collection of custom attributes from the .EXE assembly  r = assm.GetCustomAttributes(at, False)  ' Get the Company Attribute  Dim ct As AssemblyCompanyAttribute = _                 DirectCast(r(0), AssemblyCompanyAttribute)  ' Build the User App Data Path  path = Environment.GetFolderPath( _                 Environment.SpecialFolder.ApplicationData)  path &= "\" & ct.Company  path &= "\" & assm.GetName().Version.ToString()   Return pathEnd Function Summary Getting the User Application Data Path folder in WPF is fairly simple with just a few method calls using Reflection. Of course, there is absolutely no reason you cannot just add a reference to the System.Windows.Forms.dll to your WPF application and use that Application object. After all, System.Windows.Forms.dll is a part of the .NET Framework and can be used from WPF with no issues at all. NOTE: Visit http://www.pdsa.com/downloads to get more tips and tricks like this one. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **We frequently offer a FREE gift for readers of my blog. Visit http://www.pdsa.com/Event/Blog for your FREE gift!

    Read the article

  • What is the best practice with KML files when adding geositemap?

    - by Floran
    Im not sure how to deal with kml files. Now important particularly in reference to the Google Venice update. My site basically is a guide of many company listings (sort of Yellow Pages). I want each company listing to have a geolocation associated with it. Which of the options I present below is the way to go? OPTION 1: all locations in a single KML file with a reference to that KML file from a geositemap.xml MYGEOSITEMAP.xml <?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:geo="http://www.google.com/geo/schemas/sitemap/1.0"> <url><loc>http://www.mysite.com/locations.kml</loc> <geo:geo> <geo:format>kml</geo:format></geo:geo></url> </urlset> ALLLOCATIONS.kml <kml xmlns="http://www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/2005/Atom"> <Document> <name>MyCompany</name> <atom:author> <atom:name>MyCompany</atom:name> </atom:author> <atom:link href="http://www.mysite.com/locations/3454/MyCompany" rel="related" /> <Placemark> <name>MyCompany, Kalverstraat 26 Amsterdam 1000AG</name> <description><![CDATA[<address><a href="http://www.mysite.com/locations/3454/MyCompany">MyCompany</a><br />Address: Kalverstraat 26, Amsterdam 1000AG <br />Phone: 0646598787</address><p>hello there, im MyCompany</p>]]> </description><Point><coordinates>5.420686499999965,51.6298808,0</coordinates> </Point> </Placemark> </Document> </kml> <kml xmlns="http://www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/2005/Atom"> <Document> <name>MyCompany</name><atom:author><atom:name>MyCompany</atom:name></atom:author><atom:link href="http://www.mysite.com/locations/22/companyX" rel="related" /><Placemark><name>MyCompany, Rosestreet 45 Amsterdam 1001XF </name><description><![CDATA[<address><a href="http://www.mysite.com/locations/22/companyX">companyX</a><br />Address: Rosestreet 45, Amsterdam 1001XF <br />Phone: 0642195493</address><p>some text about companyX</p>]]></description><Point><coordinates>5.520686499889632,51.6197705,0</coordinates></Point></Placemark> </Document> </kml> OPTION 2: a separate KML file for each location and a reference to each KML file from a geositemap.xml (kml files placed in a \kmlfiles folder) MYGEOSITEMAP.xml <?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:geo="http://www.google.com/geo/schemas/sitemap/1.0"> <url><loc>http://www.mysite.com/kmlfiles/3454_MyCompany.kml</loc> <geo:geo> <geo:format>kml</geo:format></geo:geo></url> <url><loc>http://www.mysite.com/kmlfiles/22_companyX.kml</loc> <geo:geo> <geo:format>kml</geo:format></geo:geo></url> </urlset> *3454_MyCompany.kml* <kml xmlns="http://www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/2005/Atom"> <Document><name>MyCompany</name><atom:author><atom:name>MyCompany</atom:name></atom:author><atom:link href="http://www.mysite.com/locations/3454/MyCompany" rel="related" /><Placemark><name>MyCompany, Kalverstraat 26 Amsterdam 1000AG</name><description><![CDATA[<address><a href="http://www.mysite.com/locations/3454/MyCompany">MyCompany</a><br />Address: Kalverstraat 26, Amsterdam 1000AG <br />Phone: 0646598787</address><p>hello there, im MyCompany</p>]]></description><Point><coordinates>5.420686499999965,51.6298808,0</coordinates></Point></Placemark> </Document> </kml> *22_companyX.kml* <kml xmlns="http://www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/2005/Atom"> <Document><name>companyX</name><atom:author><atom:name>companyX</atom:name></atom:author><atom:link href="http://www.mysite.com/locations/22/companyX" rel="related" /><Placemark><name>companyX, Rosestreet 45 Amsterdam 1001XF </name><description><![CDATA[<address><a href="http://www.mysite.com/locations/22/companyX">companyX</a><br />Address: Rosestreet 45, Amsterdam 1001XF <br />Phone: 0642195493</address><p>some text about companyX</p>]]></description><Point><coordinates>5.520686499889632,51.6197705,0</coordinates></Point></Placemark> </Document> </kml> OPTION 3?

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • How does one find out which application is associated with an indicator icon?

    - by Amos Annoy
    It is trivial to do this in Ubuntu 10.04. The question is specific to Ubuntu 12.04. some pertinent references (src: answer to What is the difference between indicators and a system tray?: Here is the documentation for indicators: Application indicators | Ubuntu App Developer libindicate Reference Manual libappindicator Reference Manual also DesktopExperienceTeam/ApplicationIndicators - Ubuntu Wiki ref: How can the application that makes an indicator icon be identified? bookmark: How does one find out which application is associated with an indicator icon in Ubuntu 12.04? is a serious question for reasons & problems outlined below and for which a significant investment has been made and is necessary for remedial purposes. reviewing refs. to find an orchestrated resolution ... (an indicator ap. indicator maybe needed) This has nothing to do (does it?) with right click. How can an indicator's icon in Ubuntu 12.04 be matched with the program responsible for it's manifestation on the top panel? A list of running applications can include all processes using System Monitor. How is the correct matching process found for an indicator? How are the sub-indicator applications identified? These are the aps associated with the components of an indicators drop-down menu. (This was to be a separate question and quite naturally follows up the progression. It is included here as it is obvious there is no provisioning to track down offending either sub or indicator aps. easily.) (The examination of SM points out a rather poignant factor in the faster battery depletion and shortened run time - the ambient quiescent CPU rate in 12.04 is now well over 20% when previously, in 10.04, it was well under 10%, between 5% and 7%! - the huge inordinate cpu overhead originates from Xorg and compiz - after booting the system, only SM is run and All Processes are selected, sorting on %CPU - switching between Resources and Processes profiles the execution overhead problem - running another ap like gedit "Text Editor" briefly gives it CPU priority - going back to S&M several aps. are at the top of the list in order: gnome-system-monitor as expected, then: Xorg, compiz, unity-panel-service, hud-service, with dbus-daemon and kworker/x:y's mixed in with some expected daemons and background tasks like nm-applet - not only do Xorg and compiz require excessive CPU time but their entourage has to come along too! further exacerbating the problem - our compute bound tasks no longer work effectively in the field - reduced battery life, reduced CPU time for custom ap.s etc. - and all this precipitated from an examination of what is going on with the battery ap. indicator - this was and is not a flippant, rhetorical or idle musing but has consequences for the credible deployment of 12.04 to reduce the negative impact of its overhead in a production environment) (I have a problem with the battery indicator - it sometimes has % and other times hh:mm - it is necessary to know the ap. & v. to get more info on controlling same. ditto: There are issues with other indicator aps.: NM vs. iwlist/iwconfig conflict, BT ap. vs RF switch, Battery ap. w/ no suspend/sleep for poor battery runtime, ... the list goes on) Details from: How can I find Application Indicator ID's? suggests looking at: file:///usr/share/indicator-application/ordering-override.keyfile [Ordering Index Overrides] nm-applet=1 gnome-power-manager=2 ibus=3 gst-keyboard-xkb=4 gsd-keyboard-xkb=5 which solves the battery ap. identification, and presumably nm is NetworkManager for the rf icon, but the envelope, blue tooth and speaker indicator aps. are still a mystery. (Also, the ordering is not correlated.) Mind you, it was simple in the past to simply right click to get the About option to find the ap. & v. info. browsing around and about: file:///usr/share/indicator-application/ordering-override.keyfile examined: file:///usr/share/indicators file:///usr/share/indicators/messages/applications/ ... perhaps?/presumably? the information sought may be buried in file:///usr/share/indicators A reference in the comments was given to: What is the difference between indicators and a system tray? quoting from that source ... Unfortunately desktop indicators are not well documented yet: I couldn't find any specification doc ... Well ... the actual document https://wiki.ubuntu.com/DesktopExperienceTeam/ApplicationIndicators#Summary does not help much but it's existential information provides considerable insight ...

    Read the article

  • Why enumerator structs are a really bad idea

    - by Simon Cooper
    If you've ever poked around the .NET class libraries in Reflector, I'm sure you would have noticed that the generic collection classes all have implementations of their IEnumerator as a struct rather than a class. As you will see, this design decision has some rather unfortunate side effects... As is generally known in the .NET world, mutable structs are a Very Bad Idea; and there are several other blogs around explaining this (Eric Lippert's blog post explains the problem quite well). In the BCL, the generic collection enumerators are all mutable structs, as they need to keep track of where they are in the collection. This bit me quite hard when I was coding a wrapper around a LinkedList<int>.Enumerator. It boils down to this code: sealed class EnumeratorWrapper : IEnumerator<int> { private readonly LinkedList<int>.Enumerator m_Enumerator; public EnumeratorWrapper(LinkedList<int> linkedList) { m_Enumerator = linkedList.GetEnumerator(); } public int Current { get { return m_Enumerator.Current; } } object System.Collections.IEnumerator.Current { get { return Current; } } public bool MoveNext() { return m_Enumerator.MoveNext(); } public void Reset() { ((System.Collections.IEnumerator)m_Enumerator).Reset(); } public void Dispose() { m_Enumerator.Dispose(); } } The key line here is the MoveNext method. When I initially coded this, I thought that the call to m_Enumerator.MoveNext() would alter the enumerator state in the m_Enumerator class variable and so the enumeration would proceed in an orderly fashion through the collection. However, when I ran this code it went into an infinite loop - the m_Enumerator.MoveNext() call wasn't actually changing the state in the m_Enumerator variable at all, and my code was looping forever on the first collection element. It was only after disassembling that method that I found out what was going on The MoveNext method above results in the following IL: .method public hidebysig newslot virtual final instance bool MoveNext() cil managed { .maxstack 1 .locals init ( [0] bool CS$1$0000, [1] valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator CS$0$0001) L_0000: nop L_0001: ldarg.0 L_0002: ldfld valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator EnumeratorWrapper::m_Enumerator L_0007: stloc.1 L_0008: ldloca.s CS$0$0001 L_000a: call instance bool [System]System.Collections.Generic.LinkedList`1/Enumerator::MoveNext() L_000f: stloc.0 L_0010: br.s L_0012 L_0012: ldloc.0 L_0013: ret } Here, the important line is 0002 - m_Enumerator is accessed using the ldfld operator, which does the following: Finds the value of a field in the object whose reference is currently on the evaluation stack. So, what the MoveNext method is doing is the following: public bool MoveNext() { LinkedList<int>.Enumerator CS$0$0001 = this.m_Enumerator; bool CS$1$0000 = CS$0$0001.MoveNext(); return CS$1$0000; } The enumerator instance being modified by the call to MoveNext is the one stored in the CS$0$0001 variable on the stack, and not the one in the EnumeratorWrapper class instance. Hence why the state of m_Enumerator wasn't getting updated. Hmm, ok. Well, why is it doing this? If you have a read of Eric Lippert's blog post about this issue, you'll notice he quotes a few sections of the C# spec. In particular, 7.5.4: ...if the field is readonly and the reference occurs outside an instance constructor of the class in which the field is declared, then the result is a value, namely the value of the field I in the object referenced by E. And my m_Enumerator field is readonly! Indeed, if I remove the readonly from the class variable then the problem goes away, and the code works as expected. The IL confirms this: .method public hidebysig newslot virtual final instance bool MoveNext() cil managed { .maxstack 1 .locals init ( [0] bool CS$1$0000) L_0000: nop L_0001: ldarg.0 L_0002: ldflda valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator EnumeratorWrapper::m_Enumerator L_0007: call instance bool [System]System.Collections.Generic.LinkedList`1/Enumerator::MoveNext() L_000c: stloc.0 L_000d: br.s L_000f L_000f: ldloc.0 L_0010: ret } Notice on line 0002, instead of the ldfld we had before, we've got a ldflda, which does this: Finds the address of a field in the object whose reference is currently on the evaluation stack. Instead of loading the value, we're loading the address of the m_Enumerator field. So now the call to MoveNext modifies the enumerator stored in the class rather than on the stack, and everything works as expected. Previously, I had thought enumerator structs were an odd but interesting feature of the BCL that I had used in the past to do linked list slices. However, effects like this only underline how dangerous mutable structs are, and I'm at a loss to explain why the enumerators were implemented as structs in the first place. (interestingly, the SortedList<TKey, TValue> enumerator is a struct but is private, which makes it even more odd - the only way it can be accessed is as a boxed IEnumerator!). I would love to hear people's theories as to why the enumerators are implemented in such a fashion. And bonus points if you can explain why LinkedList<int>.Enumerator.Reset is an explicit implementation but Dispose is implicit... Note to self: never ever ever code a mutable struct.

    Read the article

  • How to make creating viewmodels at runtime less painful

    - by Mr Happy
    I apologize for the long question, it reads a bit as a rant, but I promise it's not! I've summarized my question(s) below In the MVC world, things are straightforward. The Model has state, the View shows the Model, and the Controller does stuff to/with the Model (basically), a controller has no state. To do stuff the Controller has some dependencies on web services, repository, the lot. When you instantiate a controller you care about supplying those dependencies, nothing else. When you execute an action (method on Controller), you use those dependencies to retrieve or update the Model or calling some other domain service. If there's any context, say like some user wants to see the details of a particular item, you pass the Id of that item as parameter to the Action. Nowhere in the Controller is there any reference to any state. So far so good. Enter MVVM. I love WPF, I love data binding. I love frameworks that make data binding to ViewModels even easier (using Caliburn Micro a.t.m.). I feel things are less straightforward in this world though. Let's do the exercise again: the Model has state, the View shows the ViewModel, and the ViewModel does stuff to/with the Model (basically), a ViewModel does have state! (to clarify; maybe it delegates all the properties to one or more Models, but that means it must have a reference to the model one way or another, which is state in itself) To do stuff the ViewModel has some dependencies on web services, repository, the lot. When you instantiate a ViewModel you care about supplying those dependencies, but also the state. And this, ladies and gentlemen, annoys me to no end. Whenever you need to instantiate a ProductDetailsViewModel from the ProductSearchViewModel (from which you called the ProductSearchWebService which in turn returned IEnumerable<ProductDTO>, everybody still with me?), you can do one of these things: call new ProductDetailsViewModel(productDTO, _shoppingCartWebService /* dependcy */);, this is bad, imagine 3 more dependencies, this means the ProductSearchViewModel needs to take on those dependencies as well. Also changing the constructor is painful. call _myInjectedProductDetailsViewModelFactory.Create().Initialize(productDTO);, the factory is just a Func, they are easily generated by most IoC frameworks. I think this is bad because Init methods are a leaky abstraction. You also can't use the readonly keyword for fields that are set in the Init method. I'm sure there are a few more reasons. call _myInjectedProductDetailsViewModelAbstractFactory.Create(productDTO); So... this is the pattern (abstract factory) that is usually recommended for this type of problem. I though it was genius since it satisfies my craving for static typing, until I actually started using it. The amount of boilerplate code is I think too much (you know, apart from the ridiculous variable names I get use). For each ViewModel that needs runtime parameters you'll get two extra files (factory interface and implementation), and you need to type the non-runtime dependencies like 4 extra times. And each time the dependencies change, you get to change it in the factory as well. It feels like I don't even use a DI container anymore. (I think Castle Windsor has some kind of solution for this [with it's own drawbacks, correct me if I'm wrong]). do something with anonymous types or dictionary. I like my static typing. So, yeah. Mixing state and behavior in this way creates a problem which don't exist at all in MVC. And I feel like there currently isn't a really adequate solution for this problem. Now I'd like to observe some things: People actually use MVVM. So they either don't care about all of the above, or they have some brilliant other solution. I haven't found an in-depth example of MVVM with WPF. For example, the NDDD-sample project immensely helped me understand some DDD concepts. I'd really like it if someone could point me in the direction of something similar for MVVM/WPF. Maybe I'm doing MVVM all wrong and I should turn my design upside down. Maybe I shouldn't have this problem at all. Well I know other people have asked the same question so I think I'm not the only one. To summarize Am I correct to conclude that having the ViewModel being an integration point for both state and behavior is the reason for some difficulties with the MVVM pattern as a whole? Is using the abstract factory pattern the only/best way to instantiate a ViewModel in a statically typed way? Is there something like an in depth reference implementation available? Is having a lot of ViewModels with both state/behavior a design smell?

    Read the article

  • Adventures in Lab Management Configuration: Part 2 of 3

    - by Enrique Lima
    The first post was the high level overview. Now it is time for the details on what was done to the existing CMMI Project based on CMMI v 4.2. The first step was to go into Visual Studio, then from the Team Project Collection Settings and then to the Process Template Manager.  Once there, it was a matter of selecting the appropriate template (MSF for CMMI Process Improvement v5.0) and download to a point I could reference later (for example C:\Templates). Then on to using the steps from the guidance post. Since I was using an x64 deployment, I will make reference to the path as <toolpath>, however the actual path to reference in a 64-bit environment is “C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE”. As I mentioned on the previous post, make sure to first perform a backup of the Configuration, Collection and Warehouse DBs.  If you did not apply any changes to the names and such, then you will find those as tfs_Configuration, tfs_DefaultCollection and tfs_Warehouse. Now, the work needed with the witadmin tool: That includes the uploading of the structures that differ from v4.2 to v5.0 There is likely going to be an issue with the naming of some fields. For example, TFS 2010 likes something along the lines of “Area ID”, whereas TFS 2008 would have had it as “AreaID”.  So, this will need to be corrected.  Some posts will have you go through this after the errors pop up.  I would recommend doing this process prior to executing the importwitd process.  witadmin listfields /collection:<path to collection> > c:\ListFields.txt Review the following fields: AreaID, review the Name property and validate if it states “AreaID”, the you will need to rename the Name field to reflect “Area ID”. ExternalLinkCount, RelatedLinkCount, HyperLinkCount, AttachedFileCount and IterationID would be the other fields to check. To correct the issue, then execute the following: witadmin changefield /collection:<path to collection> /n:"System.ExternalLinkCount" /name:"External Link Count" Repeat for Area ID, Related Link Count, Hyperlink Count, Attached File Count and Iteration ID.  Once this is done, proceed with the commands below. witadmin importwitd /collection:<path to collection> /p:<project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\WorkItem Tracking\TypeDefinitions\TestCase.xml" witadmin importwitd /collection:<path to collection> /p:<project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\WorkItem Tracking\TypeDefinitions\SharedStep.xml" witadmin importcategories /collection:<path to collection> /p:<project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\WorkItem Tracking\categories.xml" Modifications to the Bug Definition: First step is to export the existing definition. witadmin exportwitd /collection<path to collection> /p:<project> /n:bug /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyBug.xml" Make modifications to recently exported MyBug.xml file.  Details for the modification are here:  http://msdn.microsoft.com/en-us/library/ff452591.aspx#ModifyTask Once the changes are done, proceed with the import command witadmin importwitd /collection:<path to collection> /p: <project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyBug.xml" Repeat the process for the the Scenario or Requirement Type Definition witadmin exportwitd /collection<path to collection> /p:<project> /n:requirement /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyRequirement.xml" Make modifications to recently exported MyRequirement.xml file.  Details for the modification are here:  http://msdn.microsoft.com/en-us/library/ff452591.aspx#ModifyTask Once the changes are done, proceed with the import command witadmin importwitd /collection:<path to collection> /p: <project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyRequirement.xml" Provide the Bug Field Mapping definition, after creating the file as specified here: http://msdn.microsoft.com/en-us/library/ff452591.aspx#TCMBugFieldMapping tcm bugfieldmapping /import /mappingfile:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\bugfieldmappings.xml" /collection:<path to collection> /teamproject:<project name>

    Read the article

  • Subterranean IL: Generics and array covariance

    - by Simon Cooper
    Arrays in .NET are curious beasts. They are the only built-in collection types in the CLR, and SZ-arrays (single dimension, zero-indexed) have their own commands and IL syntax. One of their stranger properties is they have a kind of built-in covariance long before generic variance was added in .NET 4. However, this causes a subtle but important problem with generics. First of all, we need to briefly recap on array covariance. SZ-array covariance To demonstrate, I'll tweak the classes I introduced in my previous posts: public class IncrementableClass { public int Value; public virtual void Increment(int incrementBy) { Value += incrementBy; } } public class IncrementableClassx2 : IncrementableClass { public override void Increment(int incrementBy) { base.Increment(incrementBy); base.Increment(incrementBy); } } In the CLR, SZ-arrays of reference types are implicitly convertible to arrays of the element's supertypes, all the way up to object (note that this does not apply to value types). That is, an instance of IncrementableClassx2[] can be used wherever a IncrementableClass[] or object[] is required. When an SZ-array could be used in this fashion, a run-time type check is performed when you try to insert an object into the array to make sure you're not trying to insert an instance of IncrementableClass into an IncrementableClassx2[]. This check means that the following code will compile fine but will fail at run-time: IncrementableClass[] array = new IncrementableClassx2[1]; array[0] = new IncrementableClass(); // throws ArrayTypeMismatchException These checks are enforced by the various stelem* and ldelem* il instructions in such a way as to ensure you can't insert a IncrementableClass into a IncrementableClassx2[]. For the rest of this post, however, I'm going to concentrate on the ldelema instruction. ldelema This instruction pops the array index (int32) and array reference (O) off the stack, and pushes a pointer (&) to the corresponding array element. However, unlike the ldelem instruction, the instruction's type argument must match the run-time array type exactly. This is because, once you've got a managed pointer, you can use that pointer to both load and store values in that array element using the ldind* and stind* (load/store indirect) instructions. As the same pointer can be used for both input and output to the array, the type argument to ldelema must be invariant. At the time, this was a perfectly reasonable restriction, and maintained array type-safety within managed code. However, along came generics, and with it the constrained callvirt instruction. So, what happens when we combine array covariance and constrained callvirt? .method public static void CallIncrementArrayValue() { // IncrementableClassx2[] arr = new IncrementableClassx2[1] ldc.i4.1 newarr IncrementableClassx2 // arr[0] = new IncrementableClassx2(); dup newobj instance void IncrementableClassx2::.ctor() ldc.i4.0 stelem.ref // IncrementArrayValue<IncrementableClass>(arr, 0) // here, we're treating an IncrementableClassx2[] as IncrementableClass[] dup ldc.i4.0 call void IncrementArrayValue<class IncrementableClass>(!!0[],int32) // ... ret } .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } And the result: Unhandled Exception: System.ArrayTypeMismatchException: Attempted to access an element as a type incompatible with the array. at IncrementArrayValue[T](T[] arr, Int32 index) at CallIncrementArrayValue() Hmm. We're instantiating the generic method as IncrementArrayValue<IncrementableClass>, but passing in an IncrementableClassx2[], hence the ldelema instruction is failing as it's expecting an IncrementableClass[]. On features and feature conflicts What we've got here is a conflict between existing behaviour (ldelema ensuring type safety on covariant arrays) and new behaviour (managed pointers to object references used for every constrained callvirt on generic type instances). And, although this is an edge case, there is no general workaround. The generic method could be hidden behind several layers of assemblies, wrappers and interfaces that make it a requirement to use array covariance when calling the generic method. Furthermore, this will only fail at runtime, whereas compile-time safety is what generics were designed for! The solution is the readonly. prefix instruction. This modifies the ldelema instruction to ignore the exact type check for arrays of reference types, and so it lets us take the address of array elements using a covariant type to the actual run-time type of the array: .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 readonly. ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } But what about type safety? In return for ignoring the type check, the resulting controlled mutability pointer can only be used in the following situations: As the object parameter to ldfld, ldflda, stfld, call and constrained callvirt instructions As the pointer parameter to ldobj or ldind* As the source parameter to cpobj In other words, the only operations allowed are those that read from the pointer; stind* and similar that alter the pointer itself are banned. This ensures that the array element we're pointing to won't be changed to anything untoward, and so type safety within the array is maintained. This is a typical example of the maxim that whenever you add a feature to a program, you have to consider how that feature interacts with every single one of the existing features. Although an edge case, the readonly. prefix instruction ensures that generics and array covariance work together and that compile-time type safety is maintained. Tune in next time for a look at the .ctor generic type constraint, and what it means.

    Read the article

  • Creating ADF Faces Comamnd Button at Runtime

    - by Frank Nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In ADF Faces, the command button is an instance of RichCommandButton and can be created at runtime. While creating the button is not difficult at all, adding behavior to it requires knowing about how to dynamically create and add an action listener reference. The example code below shows two methods: The first method, handleButtonPress is a public method exposed on a managed bean. public void handleButtonPress(ActionEvent event){   System.out.println("Event handled");   //optional: partially refresh changed components if command   //issued as a partial submit } The second method is called in response to a user interaction or on page load and dynamically creates and adds a command button. When the button is pressed, the managed bean method – the action handler – defined above is called. The action handler is referenced using EL in the created MethodExpression instance. If the managed bean is in viewScope, backingBeanScope or pageFlowsScope, then you need to add these scopes as a prefix to the EL (as you would when configuring the managed bean reference at design time) //Create command button and add it as a child to the parent component that is passed as an //argument to this method private void reateCommandButton(UIComponent parent){   RichCommandButton edit = new RichCommandButton();   //make the request partial   edit.setPartialSubmit(true);   edit.setText("Edit");                             //compose the method expression to invoke the event handler   FacesContext fctx = FacesContext.getCurrentInstance();   Application application = fctx.getApplication();   ExpressionFactory elFactory = application.getExpressionFactory();   ELContext elContext = facesCtx.getELContext();   MethodExpression methodExpressio = null;   //Make sure the EL expression references a valid managed bean method. Ensure   //the bean scope is properly addressed    methodExpression =  elFactory.createMethodExpression(                              elContext,"#{myRequestScopeBean.handleButtonPress}",                             Object.class,new Class[] {ActionEvent.class});   //Create the command buttonaction listener reference   MethodExpressionActionListener al = null;          al= new MethodExpressionActionListener(methodExpression);    edit.addActionListener(al);     //add new command button to parent component and PPR the component for     //the button to show    parent.getChildren().add(edit);    AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();     adfFacesContext.addPartialTarget(parent);  }

    Read the article

  • MVVM - how to make creating viewmodels at runtime less painfull

    - by Mr Happy
    I apologize for the long question, it reads a bit as a rant, but I promise it's not! I've summarized my question(s) below In the MVC world, things are straightforward. The Model has state, the View shows the Model, and the Controller does stuff to/with the Model (basically), a controller has no state. To do stuff the Controller has some dependencies on web services, repository, the lot. When you instantiate a controller you care about supplying those dependencies, nothing else. When you execute an action (method on Controller), you use those dependencies to retrieve or update the Model or calling some other domain service. If there's any context, say like some user wants to see the details of a particular item, you pass the Id of that item as parameter to the Action. Nowhere in the Controller is there any reference to any state. So far so good. Enter MVVM. I love WPF, I love data binding. I love frameworks that make data binding to ViewModels even easier (using Caliburn Micro a.t.m.). I feel things are less straightforward in this world though. Let's do the exercise again: the Model has state, the View shows the ViewModel, and the ViewModel does stuff to/with the Model (basically), a ViewModel does have state! (to clarify; maybe it delegates all the properties to one or more Models, but that means it must have a reference to the model one way or another, which is state in itself) To do stuff the ViewModel has some dependencies on web services, repository, the lot. When you instantiate a ViewModel you care about supplying those dependencies, but also the state. And this, ladies and gentlemen, annoys me to no end. Whenever you need to instantiate a ProductDetailsViewModel from the ProductSearchViewModel (from which you called the ProductSearchWebService which in turn returned IEnumerable<ProductDTO>, everybody still with me?), you can do one of these things: call new ProductDetailsViewModel(productDTO, _shoppingCartWebService /* dependcy */);, this is bad, imagine 3 more dependencies, this means the ProductSearchViewModel needs to take on those dependencies as well. Also changing the constructor is painfull. call _myInjectedProductDetailsViewModelFactory.Create().Initialize(productDTO);, the factory is just a Func, they are easily generated by most IoC frameworks. I think this is bad because Init methods are a leaky abstraction. You also can't use the readonly keyword for fields that are set in the Init method. I'm sure there are a few more reasons. call _myInjectedProductDetailsViewModelAbstractFactory.Create(productDTO); So... this is the pattern (abstract factory) that is usually recommended for this type of problem. I though it was genious since it satisfies my craving for static typing, until I actually started using it. The amount of boilerplate code is I think too much (you know, apart from the ridiculous variable names I get use). For each ViewModel that needs runtime parameters you'll get two extra files (factory interface and implementation), and you need to type the non-runtime dependencies like 4 extra times. And each time the dependencies change, you get to change it in the factory as well. It feels like I don't even use an DI container anymore. (I think Castle Windsor has some kind of solution for this [with it's own drawbacks, correct me if I'm wrong]). do something with anonymous types or dictionary. I like my static typing. So, yeah. Mixing state and behavior in this way creates a problem which don't exist at all in MVC. And I feel like there currently isn't a really adequate solution for this problem. Now I'd like to observe some things: People actually use MVVM. So they either don't care about all of the above, or they have some brilliant other solution. I haven't found an indepth example of MVVM with WPF. For example, the NDDD-sample project immensely helped me understand some DDD concepts. I'd really like it if someone could point me in the direction of something similar for MVVM/WPF. Maybe I'm doing MVVM all wrong and I should turn my design upside down. Maybe I shouldn't have this problem at all. Well I know other people have asked the same question so I think I'm not the only one. To summarize Am I correct to conclude that having the ViewModel being an integration point for both state and behavior is the reason for some difficulties with the MVVM pattern as a whole? Is using the abstract factory pattern the only/best way to instantiate a ViewModel in a statically typed way? Is there something like an in depth reference implementation available? Is having a lot of ViewModels with both state/behavior a design smell?

    Read the article

  • jqGrid - dynamically load different drop down values for different rows depending on another column value

    - by Renso
    Goal: As we all know the jqGrid examples in the demo and the Wiki always refer to static values for drop down boxes. This of course is a personal preference but in dynamic design these values should be populated from the database/xml file, etc, ideally JSON formatted. Can you do this in jqGrid, yes, but with some custom coding which we will briefly show below (refer to some of my other blog entries for a more detailed discussion on this topic). What you CANNOT do in jqGrid, referrign here up and to version 3.8.x, is to load different drop down values for different rows in the jqGrid. Well, not without some trickery, which is what this discussion is about. Issue: Of course the issue is that jqGrid has been designed for high performance and thus I have no issue with them loading a  reference to a single drop down values list for every column. This way if you have 500 rows or one, each row only refers to a single list for that particuolar column. Nice! SO how easy would it be to simply traverse the grid once loaded on gridComplete or loadComplete and simply load the select tag's options from scratch, via ajax, from memory variable, hard coded etc? Impossible! Since their is no embedded SELECT tag within each cell containing the drop down values (remeber it only has a reference to that list in memory), all you will see when you inspect the cell prior to clicking on it, or even before and on beforeEditCell, is an empty <TD></TD>. When trying to load that list via a click event on that cell will temporarily load the list but jqGrid's last internal callback event will remove it and replace it with the old one, and you are back to square one. Solution: Yes, after spending a few hours on this found a solution to the problem that does not require any updates to jqGrid source code, thank GOD! Before we get into the coding details, the solution here can of course be customized to suite your specific needs, this one loads the entire drop down list that would be needed across all rows once into global variable. I then parse this object that contains all the properties I need to filter the rows depending on which ones I want the user to see based off of another cell value in that row. This only happens when clicking the cell, so no performance penalty. You may of course to load it via ajax when the user clicks the cell, but I found it more effecient to load the entire list as part of jqGrid's normal editoptions: { multiple: false, value: listingStatus } colModel options which again keeps only a reference to the sinlge list, no duplciation. Lets get into the meat and potatoes of it.         var acctId = $('#Id').val();         var data = $.ajax({ url: $('#ajaxGetAllMaterialsTrackingLookupDataUrl').val(), data: { accountId: acctId }, dataType: 'json', async: false, success: function(data, result) { if (!result) alert('Failure to retrieve the Alert related lookup data.'); } }).responseText;         var lookupData = eval('(' + data + ')');         var listingCategory = lookupData.ListingCategory;         var listingStatus = lookupData.ListingStatus;         var catList = '{';         $(lookupData.ListingCategory).each(function() {             catList += this.Id + ':"' + this.Name + '",';         });         catList += '}';         var lastsel;         var ignoreAlert = true;         $(item)         .jqGrid({             url: listURL,             postData: '',             datatype: "local",             colNames: ['Id', 'Name', 'Commission<br />Rep', 'Business<br />Group', 'Order<br />Date', 'Edit', 'TBD', 'Month', 'Year', 'Week', 'Product', 'Product<br />Type', 'Online/<br />Magazine', 'Materials', 'Special<br />Placement', 'Logo', 'Image', 'Text', 'Contact<br />Info', 'Everthing<br />In', 'Category', 'Status'],             colModel: [                 { name: 'Id', index: 'Id', hidden: true, hidedlg: true },                 { name: 'AccountName', index: 'AccountName', align: "left", resizable: true, search: true, width: 100 },                 { name: 'OnlineName', index: 'OnlineName', align: 'left', sortable: false, width: 80 },                 { name: 'ListingCategoryName', index: 'ListingCategoryName', width: 85, editable: true, hidden: false, edittype: "select", editoptions: { multiple: false, value: eval('(' + catList + ')') }, editrules: { required: false }, formatoptions: { disabled: false} }             ],             jsonReader: {                 root: "List",                 page: "CurrentPage",                 total: "TotalPages",                 records: "TotalRecords",                 userdata: "Errors",                 repeatitems: false,                 id: "0"             },             rowNum: $rows,             rowList: [10, 20, 50, 200, 500, 1000, 2000],             imgpath: jQueryImageRoot,             pager: $(item + 'Pager'),             shrinkToFit: true,             width: 1455,             recordtext: 'Traffic lines',             sortname: 'OrderDate',             viewrecords: true,             sortorder: "asc",             altRows: true,             cellEdit: true,             cellsubmit: "remote",             cellurl: editURL + '?rows=' + $rows + '&page=1',             loadComplete: function() {               },             gridComplete: function() {             },             loadError: function(xhr, st, err) {             },             afterEditCell: function(rowid, cellname, value, iRow, iCol) {                 var select = $(item).find('td.edit-cell select');                 $(item).find('td.edit-cell select option').each(function() {                     var option = $(this);                     var optionId = $(this).val();                     $(lookupData.ListingCategory).each(function() {                         if (this.Id == optionId) {                                                       if (this.OnlineName != $(item).getCell(rowid, 'OnlineName')) {                                 option.remove();                                 return false;                             }                         }                     });                 });             },             search: true,             searchdata: {},             caption: "List of all Traffic lines",             editurl: editURL + '?rows=' + $rows + '&page=1',             hiddengrid: hideGrid   Here is the JSON data returned via the ajax call during the jqGrid function call above (NOTE it must be { async: false}: {"ListingCategory":[{"Id":29,"Name":"Document Imaging & Management","OnlineName":"RF Globalnet"} ,{"Id":1,"Name":"Ancillary Department Hardware","OnlineName":"Healthcare Technology Online"} ,{"Id":2,"Name":"Asset Tracking","OnlineName":"Healthcare Technology Online"} ,{"Id":3,"Name":"Asset Tracking","OnlineName":"Healthcare Technology Online"} ,{"Id":4,"Name":"Asset Tracking","OnlineName":"Healthcare Technology Online"} ,{"Id":5,"Name":"Document Imaging & Management","OnlineName":"Healthcare Technology Online"} ,{"Id":6,"Name":"Document Imaging & Management","OnlineName":"Healthcare Technology Online"} ,{"Id":7,"Name":"EMR/EHR Software","OnlineName":"Healthcare Technology Online"}]} I only need the Id and Name for the drop down list, but the third column in the JSON object is important, it is the only that I match up with the OnlineName in the jqGrid column, and then in the loop during afterEditCell simply remove the ones I don't want the user to see. That's it!

    Read the article

  • How to make creating viewmodels at runtime less painfull

    - by Mr Happy
    I apologize for the long question, it reads a bit as a rant, but I promise it's not! I've summarized my question(s) below In the MVC world, things are straightforward. The Model has state, the View shows the Model, and the Controller does stuff to/with the Model (basically), a controller has no state. To do stuff the Controller has some dependencies on web services, repository, the lot. When you instantiate a controller you care about supplying those dependencies, nothing else. When you execute an action (method on Controller), you use those dependencies to retrieve or update the Model or calling some other domain service. If there's any context, say like some user wants to see the details of a particular item, you pass the Id of that item as parameter to the Action. Nowhere in the Controller is there any reference to any state. So far so good. Enter MVVM. I love WPF, I love data binding. I love frameworks that make data binding to ViewModels even easier (using Caliburn Micro a.t.m.). I feel things are less straightforward in this world though. Let's do the exercise again: the Model has state, the View shows the ViewModel, and the ViewModel does stuff to/with the Model (basically), a ViewModel does have state! (to clarify; maybe it delegates all the properties to one or more Models, but that means it must have a reference to the model one way or another, which is state in itself) To do stuff the ViewModel has some dependencies on web services, repository, the lot. When you instantiate a ViewModel you care about supplying those dependencies, but also the state. And this, ladies and gentlemen, annoys me to no end. Whenever you need to instantiate a ProductDetailsViewModel from the ProductSearchViewModel (from which you called the ProductSearchWebService which in turn returned IEnumerable<ProductDTO>, everybody still with me?), you can do one of these things: call new ProductDetailsViewModel(productDTO, _shoppingCartWebService /* dependcy */);, this is bad, imagine 3 more dependencies, this means the ProductSearchViewModel needs to take on those dependencies as well. Also changing the constructor is painfull. call _myInjectedProductDetailsViewModelFactory.Create().Initialize(productDTO);, the factory is just a Func, they are easily generated by most IoC frameworks. I think this is bad because Init methods are a leaky abstraction. You also can't use the readonly keyword for fields that are set in the Init method. I'm sure there are a few more reasons. call _myInjectedProductDetailsViewModelAbstractFactory.Create(productDTO); So... this is the pattern (abstract factory) that is usually recommended for this type of problem. I though it was genious since it satisfies my craving for static typing, until I actually started using it. The amount of boilerplate code is I think too much (you know, apart from the ridiculous variable names I get use). For each ViewModel that needs runtime parameters you'll get two extra files (factory interface and implementation), and you need to type the non-runtime dependencies like 4 extra times. And each time the dependencies change, you get to change it in the factory as well. It feels like I don't even use an DI container anymore. (I think Castle Windsor has some kind of solution for this [with it's own drawbacks, correct me if I'm wrong]). do something with anonymous types or dictionary. I like my static typing. So, yeah. Mixing state and behavior in this way creates a problem which don't exist at all in MVC. And I feel like there currently isn't a really adequate solution for this problem. Now I'd like to observe some things: People actually use MVVM. So they either don't care about all of the above, or they have some brilliant other solution. I haven't found an indepth example of MVVM with WPF. For example, the NDDD-sample project immensely helped me understand some DDD concepts. I'd really like it if someone could point me in the direction of something similar for MVVM/WPF. Maybe I'm doing MVVM all wrong and I should turn my design upside down. Maybe I shouldn't have this problem at all. Well I know other people have asked the same question so I think I'm not the only one. To summarize Am I correct to conclude that having the ViewModel being an integration point for both state and behavior is the reason for some difficulties with the MVVM pattern as a whole? Is using the abstract factory pattern the only/best way to instantiate a ViewModel in a statically typed way? Is there something like an in depth reference implementation available? Is having a lot of ViewModels with both state/behavior a design smell?

    Read the article

  • Adaptive Connections For ADFBC

    - by Duncan Mills
    Some time ago I wrote an article on Adaptive Bindings showing how the pageDef for a an ADF UI does not have to be wedded to a fixed data control or collection / View Object. This article has proved pretty popular, so as a follow up I wanted to cover another "Adaptive" feature of your ADF applications, the ability to make multiple different connections from an Application Module, at runtime. Now, I'm sure you'll be aware that if you define your application to use a data-source rather than a hard-coded JDBC connection string, then you have the ability to change the target of that data-source after deployment to point to a different database. So that's great, but the reality of that is that this single connection is effectively fixed within the application right?  Well no, this it turns out is a common misconception. To be clear, yes a single instance of an ADF Application Module is associated with a single connection but there is nothing to stop you from creating multiple instances of the same Application Module within the application, all pointing at different connections.  If fact this has been possible for a long time using a custom extension point with code that which extends oracle.jbo.http.HttpSessionCookieFactory. This approach, however, involves writing code and no-one likes to write any more code than they need to, so, is there an easier way? Yes indeed.  It is in fact  a little publicized feature that's available in all versions of 11g, the ELEnvInfoProvider. What Does it Do?  The ELEnvInfoProvider  is  a pre-existing class (the full path is  oracle.jbo.client.ELEnvInfoProvider) which you can plug into your ApplicationModule configuration using the jbo.envinfoprovider property. Visuallty you can set this in the editor, or you can also set it directly in the bc4j.xcfg (see below for an example) . Once you have plugged in this envinfoprovider, here's the fun bit, rather than defining the hard-coded name of a datasource instead you can plug in a EL expression for the connection to use.  So what's the benefit of that? Well it allows you to defer the selection of a connection until the point in time that you instantiate the AM. To define the expression itself you'll need to do a couple of things: First of all you'll need a managed bean of some sort – e.g. a sessionScoped bean defined in your ViewController project. This will need a getter method that returns the name of the connection. Now this connection itself needs to be defined in your Application Server, and can be managed through Enterprise Manager, WLST or through MBeans. (You may need to read the documentation [http://docs.oracle.com/cd/E28280_01/web.1111/b31974/deployment_topics.htm#CHDJGBDD] here on how to configure connections at runtime if you're not familiar with this)   The EL expression (e.g. ${connectionManager.connection} is then defined in the configuration by editing the bc4j.xcfg file (there is a hyperlink directly to this file on the configuration editing screen in the Application Module editor). You simply replace the hardcoded JDBCName value with the expression.  So your cfg file would end up looking something like this (notice the reference to the ELEnvInfoProvider that I talked about earlier) <BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">   <AppModuleConfigBag ApplicationName="oracle.demo.model.TargetAppModule">   <AppModuleConfig DeployPlatform="LOCAL"  JDBCName="${connectionManager.connection}" jbo.project="oracle.demo.model.Model" name="TargetAppModuleLocal" ApplicationName="oracle.demo.model.TargetAppModule"> <AM-Pooling jbo.doconnectionpooling="true"/> <Database jbo.locking.mode="optimistic">       <Security AppModuleJndiName="oracle.demo.model.TargetAppModule"/>    <Custom jbo.envinfoprovider="oracle.jbo.client.ELEnvInfoProvider"/> </AppModuleConfig> </AppModuleConfigBag> </BC4JConfig> Still Don't Quite Get It? So far you might be thinking, well that's fine but what difference does it make if the connection is resolved "just in time" rather than up front and changed as required through Enterprise Manager? Well a trivial example would be where you have a single application deployed to your application server, but for different users you want to connect to different databases. Because, the evaluation of the connection is deferred until you first reference the AM you have a decision point that can take the user identity into account. However, think about it for a second.  Under what circumstances does a new AM get instantiated? Well at the first reference of the AM within the application yes, but also whenever a Task Flow is entered -  if the data control scope for the Task Flow is ISOLATED.  So the reality is, that on a single screen you can embed multiple Task Flows, all of which are pointing at different database connections concurrently. Hopefully you'll find this feature useful, let me know... 

    Read the article

  • Mac 10.5 Python libsvm 64 bit vs 32 bit

    - by shadowsoul
    I have a Mac 10.5 when I type "python" in terminal, it says Enthought Python Distribution -- www.enthought.com Version: 7.3-2 (64-bit) Python 2.7.3 |EPD 7.3-2 (64-bit)| (default, Apr 12 2012, 11:14:05) [GCC 4.0.1 (Apple Inc. build 5493)] on darwin Type "credits", "demo" or "enthought" for more information. then I go to my libsvm/python folder and type "make" which results in make -C .. lib if [ "Darwin" = "Darwin" ]; then \ SHARED_LIB_FLAG="-dynamiclib -W1,-install_name,libsvm.so.2"; \ else \ SHARED_LIB_FLAG="-shared -W1,-soname,libsvm.so.2"; \ fi; \ g++ ${SHARED_LIB_FLAG} svm.o -o libsvm.so.2 when I try to do "from svmutil import *" I get the error: OSError: dlopen(.../libsvm-3.12/python/../libsvm.so.2, 6): no suitable image found. Did find: .../libsvm-3.12/python/../libsvm.so.2: mach-o, but wrong architecture when I do "lipo -info libsvm.so.2", I get: Non-fat file: libsvm.so.2 is architecture: i386 So it looks like I'm running 64-bit python but libsvm ends up as a 32-bit program. Any way I can get it to compile as a 64-bit program?

    Read the article

  • What characteristic of networking/TCP causes linear relation between TCP activity and latency?

    - by DeLongey
    The core of this problem is that our application uses websockets for real-time interfaces. We are testing our app in a new environment but strangely we're noticing an increasing delay in TCP websocket packets associated with an increase in websocket activity. For example, if one websocket event occurs without any other activity in a 1-minute period, the response from the server is instantaneous. However, if we slowly increase client activity the latency in server response increases with a linear relationship (each packet will take more time to reach the client with more activity). For those wondering this is NOT app-related since our logs show that our server is running and responding to requests in under 100ms as desired. The delay starts once the server processes the request and creates the TCP packet and sends it to the client (and not the other way around). Architecture This new environment runs with a Virtual IP address and uses keepalived on a load balancer to balance the traffic between instances. Two boxes sit behind the balancer and all traffic runs through it. Our host provider manages the balancer and we do not have control over that part of the architecture. Theory Could this somehow be related to something buffering the packets in the new environment? Thanks for your help.

    Read the article

  • How to install QEMU on Damn Small Linux?

    - by user2934303
    i'm trying to install QEMU on a Damn Small Linux installation in order to emulate pentium features in a 486 computer. Though DSL was descontinued, it's the only linux that runs reasonably on the 486 processor, most recent kernels doesn't even boot on 486 architecture. I tried Tiny Core Linux, but it doesn't work in 486, so i seem to have no escape here. The most recent image of DSL is from 2008, it uses kernel 2.4.x, and i couldn't find a way to compile QEMU on it. Firstly, it lacks several compile tools needed for compiling it, and, it have several dependency problems. I tried some pre-compiled packages, but the only one that worked was a QEMU 5.2 RPM package (it didn't had dependency problems), and it was way too old, it wasn't capable of running windows yet, it just gave me the option of emulating a code, not a full OS as windows, and it also didn't give me the option to choose which architecture i wanted it to emulate (-cpu option). Can anyone help me with this? Also, if someone can think of some alternative to it, i'd be grateful. Thanks.

    Read the article

  • How to auto-cc a system email account any time a user creates an appointment

    - by Ferdy
    I will not bother explaining my full architecture or reasons for wanting this in order to keep this question short: Is it possible to auto-cc a certain email account any time a Exchange user creates an appointment or meeting in his own calendar? Is it possible using rules? Our Exchange 2007 server is outsourced, I cannot change the configuration or install plugins server-side Preferably, it still should work server-side, because users may use the Outlook client but also Outlook Web Access Is there any other way, perhaps using group policies? My conclusion so far is that the only viable way to accomplish this is to build an Outlook add-on. The problem there is that it will need to be managed for thousands of desktop users and that the add-on will not work when using another client (OWA, mobile). An alternative architecture could be to pull the information from the user's calendar on a scheduled basis. Given that we are talking about a lot of users, scalability is a major issue, this has also been confirmed by Microsoft. Can you confirm that my thinking is correct or do you have any other solutions?

    Read the article

  • Installing Tcl and Tix in OSX

    - by Nate
    Hello, I'm having trouble installing Tix on OSX the version of Tix I am using is 8.4.3. I try to install it by following the instructions in the README % ./configure % make % make install And iat the very start of make it gives me: xXpm.o tixUnixWm.o -L/Library/Frameworks/Tcl.framework -ltclstub8.5 -L/Library/Frameworks/Tk.framework -ltkstub8.5 ld: warning: in /Library/Frameworks/Tcl.framework/libtclstub8.5.a, missing required architecture x86_64 in file ld: warning: in /Library/Frameworks/Tk.framework/libtkstub8.5.a, missing required architecture x86_64 in file Undefined symbols: (A whole long list of things) at the very end ld: symbol(s) not found collect2: ld returned 1 exit status make: *** [libTix8.4.3.dylib] Error 1 Edit: Here's all the errors in the middle.. ld: warning: in /Library/Frameworks/Tcl.framework/libtclstub8.5.a, missing required architecture x86_64 in file ld: warning: in /Library/Frameworks/Tk.framework/libtkstub8.5.a, missing required architecture x86_64 in file Undefined symbols: "_Tk_InitStubs", referenced from: _Tix_Init in tixInit.o "_Tcl_InitStubs", referenced from: _Tix_Init in tixInit.o "_tclStubsPtr", referenced from: _FreeParseOptions in tixClass.o _FreeParseOptions in tixClass.o _Tix_UninitializedClassCmd in tixClass.o _Tix_UninitializedClassCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_InstanceCmd in tixClass.o _Tix_CreateInstanceCmd in tixClass.o _SetupAttribute in tixClass.o _SetupAttribute in tixClass.o _SetupAttribute in tixClass.o _ClassTableDeleteProc in tixClass.o _CreateClassRecord in tixClass.o _InitClass in tixClass.o _InitClass in tixClass.o _InitClass in tixClass.o _InitClass in tixClass.o _InitClass in tixClass.o _InitClass in tixClass.o _InitClass in tixClass.o _InitClass in tixClass.o _Tix_ClassCmd in tixClass.o _EventProc in tixCmds.o _IdleHandler in tixCmds.o _MapEventProc in tixCmds.o _MapEventProc in tixCmds.o _Tix_GetDefaultCmd in tixCmds.o _Tix_GetDefaultCmd in tixCmds.o _Tix_TmpLineCmd in tixCmds.o _Tix_ParentWindow in tixCmds.o _Tix_ParentWindow in tixCmds.o _Tix_DoWhenMappedCmd in tixCmds.o _Tix_DoWhenMappedCmd in tixCmds.o _Tix_DoWhenMappedCmd in tixCmds.o _Tix_DoWhenIdleCmd in tixCmds.o _Tix_DoWhenIdleCmd in tixCmds.o _Tix_DoWhenIdleCmd in tixCmds.o _Tix_DoWhenIdleCmd in tixCmds.o _Tix_DoWhenIdleCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_HandleOptionsCmd in tixCmds.o _Tix_Get3DBorderCmd in tixCmds.o _Tix_Get3DBorderCmd in tixCmds.o _Tix_Get3DBorderCmd in tixCmds.o _tixStrDup in tixCompat.o _Tix_ArgcError in tixError.o _Tix_ValueMissingError in tixError.o _Tix_UnknownPublicMethodError in tixError.o _FreeClientStruct in tixGeometry.o _StructureProc in tixGeometry.o _StructureProc in tixGeometry.o _Tix_ManageGeometryCmd in tixGeometry.o _Tix_ManageGeometryCmd in tixGeometry.o _Tix_ManageGeometryCmd in tixGeometry.o _GeoLostSlaveProc in tixGeometry.o _GeoLostSlaveProc in tixGeometry.o _GeoReqProc in tixGeometry.o _Tix_SafeInit in tixInit.o _Tix_Init in tixInit.o _Tix_GetContext in tixMethod.o _Tix_SuperClass in tixMethod.o _Tix_FindConfigSpecByName in tixOption.o _Tix_ChangeOptions in tixOption.o _Tix_QueryOneOption in tixOption.o _Tix_GetVar in tixOption.o _Tix_SetScrollBarView in tixScroll.o _Tix_SetScrollBarView in tixScroll.o _Tix_UpdateScrollBar in tixScroll.o _Tix_CreateCommands in tixUtils.o _Tix_CreateCommands in tixUtils.o _DeleteHashTableProc in tixUtils.o _TixGetHashTable in tixUtils.o _Tix_SetRcFileName in tixUtils.o _Tix_CreateSubWindow in tixUtils.o _ReliefParseProc in tixUtils.o _Tix_HandleSubCmds in tixUtils.o _Tix_HandleSubCmds in tixUtils.o _Tix_HandleSubCmds in tixUtils.o _Tix_ZAlloc in tixUtils.o _Tix_GlobalVarEval in tixUtils.o _Tix_Exit in tixUtils.o _Tix_Exit in tixUtils.o _Tix_CreateWidgetCmd in tixWidget.o _Tix_CreateWidgetCmd in tixWidget.o _Tix_GrSelModify in tixGrSel.o _Tix_GrFreeSortItems in tixGrSort.o _SortCompareProc in tixGrSort.o _SortCompareProc in tixGrSort.o _SortCompareProc in tixGrSort.o _Tix_GrGetSortItems in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GrSort in tixGrSort.o _Tix_GetChars in tixGrUtl.o _Tix_GrConfigSize in tixGrUtl.o _Tix_GrConfigSize in tixGrUtl.o _Tix_GrConfigSize in tixGrUtl.o _Tix_GrConfigSize in tixGrUtl.o _Tix_HLCancelResizeWhenIdle in tixHList.o _Tix_HLFindElement in tixHList.o _CurSelection in tixHList.o _Tix_HLGeometryInfo in tixHList.o _Tix_HLGeometryInfo in tixHList.o _Tix_HLGeometryInfo in tixHList.o _UpdateOneScrollBar in tixHList.o _AllocElement in tixHList.o _WidgetCommand in tixHList.o _Tix_HLEntryCget in tixHList.o _Tix_HLResizeWhenIdle in tixHList.o _Tix_HLResizeWhenIdle in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _NewElement in tixHList.o _WidgetConfigure in tixHList.o _WidgetConfigure in tixHList.o _Tix_HListCmd in tixHList.o _Tix_HListCmd in tixHList.o _Tix_HListCmd in tixHList.o _Tix_HListCmd in tixHList.o _Tix_HListCmd in tixHList.o _UpdateScrollBars in tixHList.o _FreeElement in tixHList.o _FreeElement in tixHList.o _Tix_HLDelete in tixHList.o _Tix_HLDelete in tixHList.o _WidgetDestroy in tixHList.o _WidgetDestroy in tixHList.o _Tix_HLXView in tixHList.o _Tix_HLXView in tixHList.o _Tix_HLXView in tixHList.o _Tix_HLXView in tixHList.o _Tix_HLXView in tixHList.o _Tix_HLSetSite in tixHList.o _Tix_HLSetSite in tixHList.o _Tix_HLSetSite in tixHList.o _ConfigElement in tixHList.o _Tix_HLAddChild in tixHList.o _Tix_HLAdd in tixHList.o _Tix_HLComputeGeometry in tixHList.o _Tix_HLResizeNow in tixHList.o _Tix_HLNearest in tixHList.o _SubWindowEventProc in tixHList.o _WidgetEventProc in tixHList.o _WidgetEventProc in tixHList.o _WidgetEventProc in tixHList.o _WidgetEventProc in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLItemInfo in tixHList.o _Tix_HLSelection in tixHList.o _Tix_HLSelection in tixHList.o _Tix_HLSelection in tixHList.o _Tix_HLSelection in tixHList.o _Tix_HLYView in tixHList.o _Tix_HLYView in tixHList.o _Tix_HLYView in tixHList.o _Tix_HLSeeElement in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _Tix_HLSee in tixHList.o _Tix_HLInfo in tixHList.o _Tix_HLInfo in tixHList.o _Tix_HLInfo in tixHList.o _Tix_HLInfo in tixHList.o _Tix_HLInfo in tixHList.o _Tix_HLInfo in tixHList.o _Tix_HLAllocColumn in tixHLCol.o _Tix_HLColWidth in tixHLCol.o _Tix_HLColWidth in tixHLCol.o _Tix_HLColWidth in tixHLCol.o _Tix_HLColWidth in tixHLCol.o _Tix_HLGetColumn in tixHLCol.o _Tix_HLGetColumn in tixHLCol.o _Tix_HLGetColumn in tixHLCol.o _Tix_HLItemExists in tixHLCol.o _Tix_HLItemExists in tixHLCol.o _Tix_HLItemDelete in tixHLCol.o _Tix_HLItemCreate in tixHLCol.o _Tix_HLIndExists in tixHLInd.o _Tix_HLIndExists in tixHLInd.o _Tix_HLIndCGet in tixHLInd.o _Tix_HLIndSize in tixHLInd.o _Tix_HLIndSize in tixHLInd.o _Tix_HLIndDelete in tixHLInd.o _Tix_HLIndCreate in tixHLInd.o _Tix_HLIndConfig in tixHLInd.o _Tix_HLGetHeader in tixHLHdr.o _Tix_HLCreateHeaders in tixHLHdr.o _Tix_HLCreateHeaders in tixHLHdr.o _Tix_HLHdrExist in tixHLHdr.o _Tix_HLHdrExist in tixHLHdr.o _Tix_HLHdrSize in tixHLHdr.o _Tix_HLHdrSize in tixHLHdr.o _Tix_HLFreeHeaders in tixHLHdr.o _Tix_HLHdrCreate in tixHLHdr.o _DeleteTab in tixNBFrame.o _DeleteTab in tixNBFrame.o _WidgetDestroy in tixNBFrame.o _FindTab in tixNBFrame.o _ImageProc in tixNBFrame.o _TabConfigure in tixNBFrame.o _WidgetEventProc in tixNBFrame.o _WidgetEventProc in tixNBFrame.o _WidgetEventProc in tixNBFrame.o _WidgetConfigure in tixNBFrame.o _Tix_NoteBookFrameCmd in tixNBFrame.o _Tix_NoteBookFrameCmd in tixNBFrame.o _Tix_NoteBookFrameCmd in tixNBFrame.o _Tix_NoteBookFrameCmd in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _ResizeWhenIdle in tixTList.o _ResizeWhenIdle in tixTList.o _WidgetConfigure in tixTList.o _WidgetConfigure in tixTList.o _Tix_TListCmd in tixTList.o _Tix_TListCmd in tixTList.o _UpdateScrollBars in tixTList.o _WidgetCommand in tixTList.o _Tix_TLGeometryInfo in tixTList.o _Tix_TLGeometryInfo in tixTList.o _Tix_TLGeometryInfo in tixTList.o _Tix_TLSpecialEntryInfo in tixTList.o _Tix_TLSpecialEntryInfo in tixTList.o _Tix_TLSpecialEntryInfo in tixTList.o _FreeEntry in tixTList.o _WidgetComputeGeometry in tixTList.o _WidgetComputeGeometry in tixTList.o _WidgetComputeGeometry in tixTList.o _Tix_TLGetNearest in tixTList.o _Tix_TranslateIndex in tixTList.o _Tix_TLEntryCget in tixTList.o _WidgetDestroy in tixTList.o _WidgetDestroy in tixTList.o _Tix_TLGetNeighbor in tixTList.o _Tix_TLGetNeighbor in tixTList.o _Tix_TLInfo in tixTList.o _Tix_TLInfo in tixTList.o _Tix_TLInfo in tixTList.o _Tix_TLInfo in tixTList.o _Tix_TLIndex in tixTList.o _Tix_TLNearest in tixTList.o _WidgetEventProc in tixTList.o _WidgetEventProc in tixTList.o _WidgetEventProc in tixTList.o _ConfigElement in tixTList.o _Tix_TLEntryConfig in tixTList.o _Tix_TLInsert in tixTList.o _Tix_TLInsert in tixTList.o _Tix_TLInsert in tixTList.o _Tix_TLView in tixTList.o _Tix_TLView in tixTList.o _Tix_TLSetSite in tixTList.o _Tix_TLSetSite in tixTList.o _Tix_TLSetSite in tixTList.o _Tix_TLSee in tixTList.o _Tix_TLSee in tixTList.o _Tix_TLSelection in tixTList.o _Tix_TLSelection in tixTList.o _Tix_TLSelection in tixTList.o _Tix_TLSelection in tixTList.o _ImgCmpGet in tixImgCmp.o _FreeLine in tixImgCmp.o _AddNewLine in tixImgCmp.o _FreeItem in tixImgCmp.o _AddNewText in tixImgCmp.o _AddNewSpace in tixImgCmp.o _AddNewImage in tixImgCmp.o _AddNewBitmap in tixImgCmp.o _ImgCmpFreeResources in tixImgCmp.o _ImgCmpDelete in tixImgCmp.o _ImgCmpConfigureMaster in tixImgCmp.o _ImgCmpConfigureMaster in tixImgCmp.o _ImgCmpConfigureMaster in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCreate in tixImgCmp.o _ImgCmpCreate in tixImgCmp.o _ImageProc in tixImgCmp.o _ImgXpmDelete in tixImgXpm.o _ImgXpmDelete in tixImgXpm.o _Tix_DefinePixmap in tixImgXpm.o _Tix_DefinePixmap in tixImgXpm.o _ImgXpmFree in tixImgXpm.o _ImgXpmFree in tixImgXpm.o _ImgXpmGetDataFromString in tixImgXpm.o _ImgXpmGetDataFromString in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmGet in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmCmd in tixImgXpm.o _ImgXpmCmd in tixImgXpm.o _ImgXpmCmd in tixImgXpm.o _ImgXpmCmd in tixImgXpm.o _ImgXpmCreate in tixImgXpm.o _ImgXpmCreate in tixImgXpm.o _TixpInitPixmapInstance in tixUnixXpm.o _TixpXpmAllocTmpBuffer in tixUnixXpm.o _TixpXpmAllocTmpBuffer in tixUnixXpm.o _TixpXpmFreeTmpBuffer in tixUnixXpm.o _TixpXpmFreeTmpBuffer in tixUnixXpm.o _TixpXpmFreeInstanceData in tixUnixXpm.o "_tclIntStubsPtr", referenced from: _Tix_CreateWidgetCmd in tixWidget.o "_tkIntStubsPtr", referenced from: _XLowerWindow in tixUnixWm.o "_tkIntXlibStubsPtr", referenced from: _IdleHandler in tixGrid.o _IdleHandler in tixGrid.o _IdleHandler in tixGrid.o _Tix_GrFormatGrid in tixGrFmt.o _Tix_GrFormatGrid in tixGrFmt.o _Tix_GrFormatGrid in tixGrFmt.o _Tix_GrFormatGrid in tixGrFmt.o _DrawElements in tixHList.o _DrawElements in tixHList.o _DrawElements in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _Tix_HLDrawHeader in tixHLHdr.o _Tix_HLDrawHeader in tixHLHdr.o _WidgetDisplay in tixNBFrame.o _Tix_TextStyleSetTemplate in tixDiText.o _Tix_TextStyleSetTemplate in tixDiText.o _Tix_TextItemFree in tixDiText.o _Tix_TextItemConfigure in tixDiText.o _Tix_WindowItemUnmap in tixDiWin.o _Tix_WindowItemUnmap in tixDiWin.o _Tix_WindowStyleFree in tixDiWin.o _Tix_WindowStyleConfigure in tixDiWin.o _Tix_WindowStyleSetTemplate in tixDiWin.o _Tix_WindowStyleSetTemplate in tixDiWin.o _Tix_WindowStyleSetTemplate in tixDiWin.o _Tix_WindowStyleSetTemplate in tixDiWin.o _Tix_WindowItemFree in tixDiWin.o _Tix_WindowItemFree in tixDiWin.o _Tix_WindowItemDisplay in tixDiWin.o _Tix_WindowItemDisplay in tixDiWin.o _Tix_WindowItemDisplay in tixDiWin.o _Tix_WindowItemDisplay in tixDiWin.o _Tix_WindowItemConfigure in tixDiWin.o _SubWindowLostSlaveProc in tixDiWin.o _UnmapClient in tixForm.o _UnmapClient in tixForm.o _TixFm_AddToMaster in tixForm.o _TixFm_GetFormInfo in tixForm.o _TixFm_FindClientPtrByName in tixForm.o _GetMasterInfo in tixForm.o _TixFm_Check in tixForm.o _TixFm_Slaves in tixForm.o _ArrangeGeometry in tixForm.o _ArrangeGeometry in tixForm.o _ArrangeGeometry in tixForm.o _TixFm_SetClient in tixForm.o _TixFm_SetClient in tixForm.o _TixFm_SetClient in tixForm.o _TixFm_SetClient in tixForm.o _TixFm_Spring in tixForm.o _TixFm_SetGrid in tixForm.o _TixFm_LostSlaveProc in tixForm.o _TixFm_ForgetOneClient in tixForm.o _TixFm_DeleteMaster in tixForm.o _ConfigureAttachment in tixFormMisc.o _ConfigureAttachment in tixFormMisc.o _ConfigureAttachment in tixFormMisc.o _ConfigureAttachment in tixFormMisc.o _TixFm_Configure in tixFormMisc.o _TixFm_Configure in tixFormMisc.o _TixFm_Configure in tixFormMisc.o _TixFm_Configure in tixFormMisc.o _TixFm_Configure in tixFormMisc.o _TixFm_Configure in tixFormMisc.o _WidgetCmdDeletedProc in tixGrid.o _Tix_GrCGet in tixGrid.o _WidgetDestroy in tixGrid.o _WidgetDestroy in tixGrid.o _WidgetConfigure in tixGrid.o _Tix_GrConfig in tixGrid.o _Tix_GrConfig in tixGrid.o _Tix_GridCmd in tixGrid.o _Tix_GrView in tixGrid.o _IdleHandler in tixGrid.o _IdleHandler in tixGrid.o _IdleHandler in tixGrid.o _IdleHandler in tixGrid.o _IdleHandler in tixGrid.o _IdleHandler in tixGrid.o _Tix_GrFillCells in tixGrFmt.o _Tix_GrFillCells in tixGrFmt.o _Tix_GrFreeUnusedColors in tixGrFmt.o _Tix_GrFreeUnusedColors in tixGrFmt.o _GetInfo in tixGrFmt.o _Tix_GrSaveColor in tixGrFmt.o _Tix_GrFormatGrid in tixGrFmt.o _Tix_GrFormatGrid in tixGrFmt.o _Tix_GrFormatBorder in tixGrFmt.o _Tix_GrConfigSize in tixGrUtl.o _Tix_GrConfigSize in tixGrUtl.o _Tix_GrConfigSize in tixGrUtl.o _Tix_HLCGet in tixHList.o _WidgetCmdDeletedProc in tixHList.o _DrawElements in tixHList.o _DrawElements in tixHList.o _DrawElements in tixHList.o _WidgetConfigure in tixHList.o _Tix_HLConfig in tixHList.o _Tix_HLConfig in tixHList.o _Tix_HListCmd in tixHList.o _WidgetDestroy in tixHList.o _WidgetDestroy in tixHList.o _Tix_HLXView in tixHList.o _Tix_HLComputeGeometry in tixHList.o _Tix_HLYView in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _WidgetDisplay in tixHList.o _Tix_HLColWidth in tixHLCol.o _Tix_HLItemCGet in tixHLCol.o _Tix_HLItemConfig in tixHLCol.o _Tix_HLItemConfig in tixHLCol.o _Tix_HLIndCGet in tixHLInd.o _Tix_HLIndConfig in tixHLInd.o _Tix_HLIndConfig in tixHLInd.o _Tix_HLCreateHeaders in tixHLHdr.o _Tix_HLFreeHeaders in tixHLHdr.o _Tix_HLDrawHeader in tixHLHdr.o _Tix_HLDrawHeader in tixHLHdr.o _WidgetCmdDeletedProc in tixNBFrame.o _DeleteTab in tixNBFrame.o _DeleteTab in tixNBFrame.o _WidgetDestroy in tixNBFrame.o _WidgetDestroy in tixNBFrame.o _WidgetComputeGeometry in tixNBFrame.o _WidgetDisplay in tixNBFrame.o _WidgetDisplay in tixNBFrame.o _WidgetDisplay in tixNBFrame.o _WidgetDisplay in tixNBFrame.o _WidgetDisplay in tixNBFrame.o _WidgetDisplay in tixNBFrame.o _WidgetDisplay in tixNBFrame.o _TabConfigure in tixNBFrame.o _WidgetConfigure in tixNBFrame.o _Tix_NoteBookFrameCmd in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCommand in tixNBFrame.o _WidgetCmdDeletedProc in tixTList.o _Tix_TLCGet in tixTList.o _WidgetConfigure in tixTList.o _Tix_TLConfig in tixTList.o _Tix_TLConfig in tixTList.o _Tix_TListCmd in tixTList.o _Tix_TListCmd in tixTList.o _Tix_TListCmd in tixTList.o _Tix_TListCmd in tixTList.o _WidgetDisplay in tixTList.o _WidgetDisplay in tixTList.o _WidgetDisplay in tixTList.o _WidgetDisplay in tixTList.o _WidgetDisplay in tixTList.o _FreeEntry in tixTList.o _WidgetDestroy in tixTList.o _WidgetDestroy in tixTList.o _ImgCmpGet in tixImgCmp.o _FreeLine in tixImgCmp.o _AddNewLine in tixImgCmp.o _FreeItem in tixImgCmp.o _FreeItem in tixImgCmp.o _FreeItem in tixImgCmp.o _FreeItem in tixImgCmp.o _FreeItem in tixImgCmp.o _FreeItem in tixImgCmp.o _FreeItem in tixImgCmp.o _AddNewText in tixImgCmp.o _AddNewSpace in tixImgCmp.o _AddNewImage in tixImgCmp.o _AddNewBitmap in tixImgCmp.o _ImgCmpFreeResources in tixImgCmp.o _ImgCmpFreeResources in tixImgCmp.o _ImgCmpFreeResources in tixImgCmp.o _ImgCmpCmdDeletedProc in tixImgCmp.o _CalculateMasterSize in tixImgCmp.o _ImgCmpDisplay in tixImgCmp.o _ImgCmpDisplay in tixImgCmp.o _ImgCmpConfigureMaster in tixImgCmp.o _ImgCmpConfigureMaster in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgCmpCmd in tixImgCmp.o _ImgXpmDelete in tixImgXpm.o _ImgXpmCmdDeletedProc in tixImgXpm.o _ImgXpmFree in tixImgXpm.o _ImgXpmFree in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmConfigureInstance in tixImgXpm.o _ImgXpmGet in tixImgXpm.o _ImgXpmGet in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmConfigureMaster in tixImgXpm.o _ImgXpmCmd in tixImgXpm.o _ImgXpmCmd in tixImgXpm.o _ImgXpmCmd in tixImgXpm.o _TixpDrawTmpLine in tixUnixDraw.o _TixpStartSubRegionDraw in tixUnixDraw.o _TixpEndSubRegionDraw in tixUnixDraw.o _TixpSubRegDrawImage in tixUnixDraw.o _TixpSubRegDrawImage in tixUnixDraw.o _TixpXpmRealizePixmap in tixUnixXpm.o _TixpXpmRealizePixmap in tixUnixXpm.o _TixpXpmRealizePixmap in tixUnixXpm.o _TixpXpmRealizePixmap in tixUnixXpm.o _TixpXpmRealizePixmap in tixUnixXpm.o _TixpXpmFreeInstanceData in tixUnixXpm.o _TixpXpmFreeInstanceData in tixUnixXpm.o ld: symbol(s) not found collect2: ld returned 1 exit status make: *** [libTix8.4.3.dylib] Error 1 Thanks -N

    Read the article

  • How to create RPM for 32-bit arch from a 64-bit arch server?

    - by Gnanam
    Our production server is running CentOS5 64-bit arch. Because there are no RPM available currently for SQLite latest version (v3.7.3), I created RPM using rpmbuild the very first time by following the instructions given here. I was able to successfully create RPM for 64-bit (x86_64) architecture. But am not able to create RPM for 32-bit (i386) architecture. It failed with the following errors: ... ... ... + ./configure --build=x86_64-redhat-linux-gnu --host=x86_64-redhat-linux-gnu --target=i386-redhat-linux-gnu --program-prefix= --prefix=/usr --exec-prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin --sysconfdir=/etc --datadir=/usr/share --includedir=/usr/include --libdir=/usr/lib64 --libexecdir=/usr/libexec --localstatedir=/var --sharedstatedir=/usr/com --mandir=/usr/share/man --infodir=/usr/share/info --enable-threadsafe checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for gawk... gawk checking whether make sets $(MAKE)... yes checking for style of include used by make... GNU checking for x86_64-redhat-linux-gnu-gcc... no checking for gcc... gcc checking for C compiler default output file name... configure: error: C compiler cannot create executables See `config.log' for more details. error: Bad exit status from /var/tmp/rpm-tmp.73141 (%build) RPM build errors: Bad exit status from /var/tmp/rpm-tmp.73141 (%build) This is the command I called: rpmbuild --target i386 -ba sqlite.spec My question is, how do I create RPM for 32-bit arch from a 64-bit arch server?

    Read the article

  • Cannot Install Phusion Passenger 3.0.13 with Nginx 1.2.1

    - by LightBe Corp
    I installed gem Passenger which installed 3.0.13. Then I executed passenger-install-nginx-module which is what the Nginx instructions on http://www.modrails.com said to do. It installs the latest stable version which is 1.2.1 according to the Nginx official wiki page. I said to install Nginx to /usr/local/nginx (which is the default if you go to the nginx wiki website). I get the following errors: Undefined symbols for architecture x86_64: "_pcre_free_study", referenced from: _ngx_pcre_free_studies in ngx_regex.o ld: symbol(s) not found for architecture x86_64 collect2: ld returned 1 exit status make[1]: *** [objs/nginx] Error 1 make: *** [build] Error 2 -------------------------------------------- It looks like something went wrong Please read our Users guide for troubleshooting tips: /Users/server1/.rvm/gems/[email protected]/gems/passenger-3.0.13/doc/Users guide Nginx.html If that doesn't help, please use our support facilities at: http://www.modrails.com/ We'll do our best to help you. I have done searches for several hours trying to find a resolution. I tried the Google Group for Phusion Passenger but did not find anything. I do not know if there is a mismatch in version numbers or not. The documentation says nothing about this error.

    Read the article

  • 503 Error After Microsoft Request Routing Is Installed - 32 bit 64 bit madness

    - by KenB
    I have a requirement to install the Microsoft Request Routing component for IIS 7.5 running on a Windows 2008 R2 SP1 64Bit machine. After installing Microsoft Request Routing via the Web Platform installer our ASP.NET 4.0 application gets a "HTTP Error 503. The service is unavailable." The Windows event log error details says: The Module DLL 'C:\Program Files\IIS\Application Request Routing\requestRouter.dll' could not be loaded due to a configuration problem. The current configuration only supports loading images built for a AMD64 processor architecture. The data field contains the error number. To learn more about this issue, including how to troubleshooting this kind of processor architecture mismatch error, see http://go.microsoft.com/fwlink/?LinkId=29349. I can make this error go away by changing the application pool to run in 32 bit mode by changing the "Enable 32-Bit Applications" setting to true. However I would prefer not to have to do that to resolve the issue. My questions are: Why is the Microsoft Request Routing feature trying to load a 32 bit version, isn't there a 64 bit version for it? How do I resolve this issue without having to change my application pool to a 32 bit mode?

    Read the article

  • sql server uninstallation issue

    - by angel
    I'm unable to remove SQL Server 2008 sp1 completely from my system. I'm using windows 7 ultimate. Everytime I try uninstalling it i get the following error. How can I remove it? here is the log: Overall summary: Final result: Failed: see details below Exit code (Decimal): -2068643839 Exit facility code: 1203 Exit error code: 1 Exit message: Failed: see details below Start time: 2013-06-24 21:10:38 End time: 2013-06-24 21:21:17 Requested action: Uninstall Log with failure: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\sql_rs_Cpu64_1.log Exception help link: http://go.microsoft.com/fwlink?LinkId=20476&ProdName=Microsoft+SQL+Server&EvtSrc=setup.rll&EvtID=50000&ProdVer=10.0.1600.22 Machine Properties: Machine name: ABHI-PC Machine processor count: 4 OS version: Windows Vista OS service pack: Service Pack 1 OS region: United States OS language: English (United States) OS architecture: x64 Process architecture: 64 Bit OS clustered: No Product features discovered: Product Instance Instance ID Feature Language Edition Version Clustered Sql Server 2008 MSSQLSERVER MSRS10.MSSQLSERVER Reporting Services 1033 Enterprise Edition 10.0.1600.22 No Sql Server 2008 Management Tools - Basic 10.0.1600.22 No Package properties: Description: SQL Server Database Services 2008 SQLProductFamilyCode: {628F8F38-600E-493D-9946-F4178F20A8A9} ProductName: SQL2008 Type: RTM Version: 10 SPLevel: 0 Installation edition: ENTERPRISE User Input Settings: ACTION: Uninstall CONFIGURATIONFILE: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\ConfigurationFile.ini FEATURES: RS,SSMS,SNAC_SDK,CE_RUNTIME,CE_TOOLS,SNAC HELP: False INDICATEPROGRESS: False INSTANCEID: INSTANCENAME: MSSQLSERVER MEDIASOURCE: QUIET: False QUIETSIMPLE: False X86: False Configuration file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\ConfigurationFile.ini Detailed results: Feature: SQL Client Connectivity Status: Skipped MSI status: Passed Configuration status: Passed Feature: SQL Client Connectivity SDK Status: Skipped MSI status: Passed Configuration status: Passed Feature: Reporting Services Status: Failed: see logs for details MSI status: Passed Configuration status: Failed: see details below Configuration error code: 0xFFD65603 Configuration error description: Input string was not in a correct format. Configuration log: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\Detail.txt Feature: SQL Compact Edition Tools Status: Passed MSI status: Passed Configuration status: Passed Feature: SQL Compact Edition Runtime Status: Skipped MSI status: Passed Configuration status: Passed Feature: Management Tools - Basic Status: Failed: see logs for details MSI status: Passed Configuration status: Passed Rules with failures: Global rules: There are no scenario-specific rules. Rules report file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\SystemConfigurationCheck_Report.htm

    Read the article

  • Understanding where an amazon ec2 instance run?

    - by kenzo450D
    I am currently using the aws api from my local desktop. I can successfully take backups of my amazon volumes, and even create an ami from it. Now when i wanted to run the instance to be built from this ami, where does the instance run? In their Elastic Cloud or the computer from which the command was issued. Suppose I want to create the new instance in a new region? (locations as defined in ec2-describe-regions) How would I do that? It seems i have a bad knowledge about how the relation between amazon volumes and instances? Please explain it. I am only allowed to use the CLI tools to do all of my work. I made a new snapshot of the existing instance, made an ami using ec2-register, made a keypair, and then followed these steps, http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-an-instance.html#launching-an-instance-cli but i got an error as this Client.InvalidParameterValue: The requested instance type's architecture (i386) does not match the architecture in the manifest for aki-fc37bacc (x86_64) my local computer is 32bit. But I do not want to load instance on the local computer but on amazon servers?

    Read the article

  • An easy way to create Side by Side registrationless COM Manifests with Visual Studio

    - by Rick Strahl
    Here's something I didn't find out until today: You can use Visual Studio to easily create registrationless COM manifest files for you with just a couple of small steps. Registrationless COM lets you use COM component without them being registered in the registry. This means it's possible to deploy COM components along with another application using plain xcopy semantics. To be sure it's rarely quite that easy - you need to watch out for dependencies - but if you know you have COM components that are light weight and have no or known dependencies it's easy to get everything into a single folder and off you go. Registrationless COM works via manifest files which carry the same name as the executable plus a .manifest extension (ie. yourapp.exe.manifest) I'm going to use a Visual FoxPro COM object as an example and create a simple Windows Forms app that calls the component - without that component being registered. Let's take a walk down memory lane… Create a COM Component I start by creating a FoxPro COM component because that's what I know and am working with here in my legacy environment. You can use VB classic or C++ ATL object if that's more to your liking. Here's a real simple Fox one: DEFINE CLASS SimpleServer as Session OLEPUBLIC FUNCTION HelloWorld(lcName) RETURN "Hello " + lcName ENDDEFINE Compile it into a DLL COM component with: BUILD MTDLL simpleserver FROM simpleserver RECOMPILE And to make sure it works test it quickly from Visual FoxPro: server = CREATEOBJECT("simpleServer.simpleserver") MESSAGEBOX( server.HelloWorld("Rick") ) Using Visual Studio to create a Manifest File for a COM Component Next open Visual Studio and create a new executable project - a Console App or WinForms or WPF application will all do. Go to the References Node Select Add Reference Use the Browse tab and find your compiled DLL to import  Next you'll see your assembly in the project. Right click on the reference and select Properties Click on the Isolated DropDown and select True Compile and that's all there's to it. Visual Studio will create a App.exe.manifest file right alongside your application's EXE. The manifest file created looks like this: xml version="1.0" encoding="utf-8"? assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd" manifestVersion="1.0" xmlns:asmv1="urn:schemas-microsoft-com:asm.v1" xmlns:asmv2="urn:schemas-microsoft-com:asm.v2" xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1" xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2" xmlns="urn:schemas-microsoft-com:asm.v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" asmv2:size="27293" hash xmlns="urn:schemas-microsoft-com:asm.v2" dsig:Transforms dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" / dsig:Transforms dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" / dsig:DigestValuepuq+ua20bbidGOWhPOxfquztBCU=dsig:DigestValue hash typelib tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" version="1.0" helpdir="" resourceid="0" flags="HASDISKIMAGE" / comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file assembly Now let's finish our super complex console app to test with: using System; using System.Collections.Generic; using System.Text; namespace ConsoleApplication1 {     class Program     {         static voidMain(string[] args)         { Type type = Type.GetTypeFromProgID("simpleserver.simpleserver",true); dynamic server = Activator.CreateInstance(type); Console.WriteLine(server.HelloWorld("rick")); Console.ReadLine(); } } } Now run the Console Application… As expected that should work. And why not? The COM component is still registered, right? :-) Nothing tricky about that. Let's unregister the COM component and then re-run and see what happens. Go to the Command Prompt Change to the folder where the DLL is installed Unregister with: RegSvr32 -u simpleserver.dll      To be sure that the COM component no longer works, check it out with the same test you used earlier (ie. o = CREATEOBJECT("SimpleServer.SimpleServer") in your development environment or VBScript etc.). Make sure you run the EXE and you don't re-compile the application or else Visual Studio will complain that it can't find the COM component in the registry while compiling. In fact now that we have our .manifest file you can remove the COM object from the project. When you run run the EXE from Windows Explorer or a command prompt to avoid the recompile. Watch out for embedded Manifest Files Now recompile your .NET project and run it… and it will most likely fail! The problem is that .NET applications by default embeds a manifest file into the compiled EXE application which results in the externally created manifest file being completely ignored. Only one manifest can be applied at a time and the compiled manifest takes precedency. Uh, thanks Visual Studio - not very helpful… Note that if you use another development tool like Visual FoxPro to create your EXE this won't be an issue as long as the tool doesn't automatically add a manifest file. Creating a Visual FoxPro EXE for example will work immediately with the generated manifest file as is. If you are using .NET and Visual Studio you have a couple of options of getting around this: Remove the embedded manifest file Copy the contents of the generated manifest file into a project manifest file and compile that in To remove an embedded manifest in a Visual Studio project: Open the Project Properties (Alt-Enter on project node) Go down to Resources | Manifest and select | Create Application without a Manifest   You can now add use the external manifest file and it will actually be respected when the app runs. The other option is to let Visual Studio create the manifest file on disk and then explicitly add the manifest file into the project. Notice on the dialog above I did this for app.exe.manifest and the manifest actually shows up in the list. If I select this file it will be compiled into the EXE and be used in lieu of any external files and that works as well. Remove the simpleserver.dll reference so you can compile your code and run the application. Now it should work without COM registration of the component. Personally I prefer external manifests because they can be modified after the fact - compiled manifests are evil in my mind because they are immutable - once they are there they can't be overriden or changed. So I prefer an external manifest. However, if you are absolutely sure nothing needs to change and you don't want anybody messing with your manifest, you can also embed it. The option to either is there. Watch for Manifest Caching While working trying to get this to work I ran into some problems at first. Specifically when it wasn't working at first (due to the embedded schema) I played with various different manifest layouts in different files etc.. There are a number of different ways to actually represent manifest files including offloading to separate folder (more on that later). A few times I made deliberate errors in the schema file and I found that regardless of what I did once the app failed or worked no amount of changing of the manifest file would make it behave differently. It appears that Windows is caching the manifest data for a given EXE or DLL. It takes a restart or a recompile of either the EXE or the DLL to clear the caching. Recompile your servers in order to see manifest changes unless there's an outright failure of an invalid manifest file. If the app starts the manifest is being read and caches immediately. This can be very confusing especially if you don't know that it's happening. I found myself always recompiling the exe after each run and before making any changes to the manifest file. Don't forget about Runtimes of COM Objects In the example I used above I used a Visual FoxPro COM component. Visual FoxPro is a runtime based environment so if I'm going to distribute an application that uses a FoxPro COM object the runtimes need to be distributed as well. The same is true of classic Visual Basic applications. Assuming that you don't know whether the runtimes are installed on the target machines make sure to install all the additional files in the EXE's directory alongside the COM DLL. In the case of Visual FoxPro the target folder should contain: The EXE  App.exe The Manifest file (unless it's compiled in) App.exe.manifest The COM object DLL (simpleserver.dll) Visual FoxPro Runtimes: VFP9t.dll (or VFP9r.dll for non-multithreaded dlls), vfp9rENU.dll, msvcr71.dll All these files should be in the same folder. Debugging Manifest load Errors If you for some reason get your manifest loading wrong there are a couple of useful tools available - SxSTrace and SxSParse. These two tools can be a huge help in debugging manifest loading errors. Put the following into a batch file (SxS_Trace.bat for example): sxstrace Trace -logfile:sxs.bin sxstrace Parse -logfile:sxs.bin -outfile:sxs.txt Then start the batch file before running your EXE. Make sure there's no caching happening as described in the previous section. For example, if I go into the manifest file and explicitly break the CLSID and/or ProgID I get a detailed report on where the EXE is looking for the manifest and what it's reading. Eventually the trace gives me an error like this: INFO: Parsing Manifest File C:\wwapps\Conf\SideBySide\Code\app.EXE.     INFO: Manifest Definition Identity is App.exe,processorArchitecture="x86",type="win32",version="1.0.0.0".     ERROR: Line 13: The value {AAaf2c2811-0657-4264-a1f5-06d033a969ff} of attribute clsid in element comClass is invalid. ERROR: Activation Context generation failed. End Activation Context Generation. pinpointing nicely where the error lies. Pay special attention to the various attributes - they have to match exactly in the different sections of the manifest file(s). Multiple COM Objects The manifest file that Visual Studio creates is actually quite more complex than is required for basic registrationless COM object invokation. The manifest file can be simplified a lot actually by stripping off various namespaces and removing the type library references altogether. Here's an example of a simplified manifest file that actually includes references to 2 COM servers: xml version="1.0" encoding="utf-8"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name = "sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" threadingModel="apartment" / file assembly Simple enough right? Routing to separate Manifest Files and Folders In the examples above all files ended up in the application's root folder - all the DLLs, support files and runtimes. Sometimes that's not so desirable and you can actually create separate manifest files. The easiest way to do this is to create a manifest file that 'routes' to another manifest file in a separate folder. Basically you create a new 'assembly identity' via a named id. You can then create a folder and another manifest with the id plus .manifest that points at the actual file. In this example I create: App.exe.manifest A folder called App.deploy A manifest file in App.deploy All DLLs and runtimes in App.deploy Let's start with that master manifest file. This file only holds a reference to another manifest file: App.exe.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / dependency dependentAssembly assemblyIdentity name="App.deploy" version="1.0.0.0" type="win32" / dependentAssembly dependency assembly   Note this file only contains a dependency to App.deploy which is another manifest id. I can then create App.deploy.manifest in the current folder or in an App.deploy folder. In this case I'll create App.deploy and in it copy the DLLs and support runtimes. I then create App.deploy.manifest. App.deploy.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.deploy" type="win32" version="1.0.0.0" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name="sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" threadingModel="Apartment" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" / file assembly   In this manifest file I then host my COM DLLs and any support runtimes. This is quite useful if you have lots of DLLs you are referencing or if you need to have separate configuration and application files that are associated with the COM object. This way the operation of your main application and the COM objects it interacts with is somewhat separated. You can see the two folders here:   Routing Manifests to different Folders In theory registrationless COM should be pretty easy in painless - you've seen the configuration manifest files and it certainly doesn't look very complicated, right? But the devil's in the details. The ActivationContext API (SxS - side by side activation) is very intolerant of small errors in the XML or formatting of the keys, so be really careful when setting up components, especially if you are manually editing these files. If you do run into trouble SxsTrace/SxsParse are a huge help to track down the problems. And remember that if you do have problems that you'll need to recompile your EXEs or DLLs for the SxS APIs to refresh themselves properly. All of this gets even more fun if you want to do registrationless COM inside of IIS :-) But I'll leave that for another blog post…© Rick Strahl, West Wind Technologies, 2005-2011Posted in COM  .NET  FoxPro   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >