Search Results

Search found 28459 results on 1139 pages for 'task base programming'.

Page 192/1139 | < Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >

  • The simplest concurrency pattern

    - by Ilya Kogan
    Please, would you help me in reminding me of one of the simplest parallel programming techniques. How do I do the following in C#: Initial state: semaphore counter = 0 Thread 1: // Block until semaphore is signalled semaphore.Wait(); // wait until semaphore counter is 1 Thread 2: // Allow thread 1 to run: semaphore.Signal(); // increments from 0 to 1 It's not a mutex because there is no critical section, or rather you can say there is an infinite critical section. So what is it?

    Read the article

  • What is Chain Matrix Multiplication ?

    - by Hellnar
    Hello, I am trying to understand what is a chain matrix multiplication and how it is different from a regular multiplication. I have checked several sourcers yet all seem to be very academically explained for me to understand. I guess it is a form of dynamic programming algorithm to achieve the operation in an optimised way but I didn't go any further. Thanks

    Read the article

  • Explain Type Classes in Haskell

    - by Tsubasa Gomamoto
    Hi, I am a C++ / Java programmer and the main paradigm I happen to use in everyday programming is OOP. In some thread I read a comment that Type classes are more intuitive in nature than OOP. Can someone explain the concept of type classes in simple words so that an OOP guy like me can understand it?

    Read the article

  • Which term to use when referring to functional data structures: persistent or immutable?

    - by Bob
    In the context of functional programming which is the correct term to use: persistent or immutable? When I Google "immutable data structures" I get a Wikipedia link to an article on "Persistent data structure" which even goes on to say: such data structures are effectively immutable Which further confuses things for me. Do functional programs rely on persistent data structures or immutable data structures? Or are they always the same thing?

    Read the article

  • Can you make a living as a system programmer?

    - by Helper Method
    Is there still a market for C system programmers? I love Java and some of the newer JVM languages but at the same time I really enjoy low-level system programming under Unix, using C and the GNU toolchain (it makes you feel elitist ;-)). Now I wonder a) is there still a market for C system programmers and b) how much do you earn compared to an app programmer c) is it that much fun in a large scale project?

    Read the article

  • Post bacc CS certificate of Java Certification?

    - by gwozdz
    I have a BS in biology, MS in Environmental Science, but I've been writing software in C++ and Java throughout grad school and a bit in my current job. I'd love to transition to a programming career. I've thought about getting what's called a "Post baccalaureate Certificate" or Java certification in lieu of another degree in CS. Which is more useful in terms of getting a job?

    Read the article

  • Picking the right language

    - by simion
    I am a student at University so my experience is limited, hence the question. If someone says to you, here is a task to code, what are you looking at in order to choose the language or paradigm in which you will do it in? Hope the question makes sense?

    Read the article

  • Derived template override return type of member function C++

    - by Ruud v A
    I am writing matrix classes. Take a look at this definition: template <typename T, unsigned int dimension_x, unsigned int dimension_y> class generic_matrix { ... generic_matrix<T, dimension_x - 1, dimension_y - 1> minor(unsigned int x, unsigned int y) const { ... } ... } template <typename T, unsigned int dimension> class generic_square_matrix : public generic_matrix<T, dimension, dimension> { ... generic_square_matrix(const generic_matrix<T, dimension, dimension>& other) { ... } ... void foo(); } The generic_square_matrix class provides additional functions like matrix multiplication. Doing this is no problem: generic_square_matrix<T, 4> m = generic_matrix<T, 4, 4>(); It is possible to assign any square matrix to M, even though the type is not generic_square_matrix, due to the constructor. This is possible because the data does not change across children, only the supported functions. This is also possible: generic_square_matrix<T, 4> m = generic_square_matrix<T, 5>().minor(1,1); Same conversion applies here. But now comes the problem: generic_square_matrix<T, 4>().minor(1,1).foo(); //problem, foo is not in generic_matrix<T, 3, 3> To solve this I would like generic_square_matrix::minor to return a generic_square_matrix instead of a generic_matrix. The only possible way to do this, I think is to use template specialisation. But since a specialisation is basically treated like a separate class, I have to redefine all functions. I cannot call the function of the non-specialised class as you would do with a derived class, so I have to copy the entire function. This is not a very nice generic-programming solution, and a lot of work. C++ almost has a solution for my problem: a virtual function of a derived class, can return a pointer or reference to a different class than the base class returns, if this class is derived from the class that the base class returns. generic_square_matrix is derived from generic_matrix, but the function does not return a pointer nor reference, so this doesn't apply here. Is there a solution to this problem (possibly involving an entirely other structure; my only requirements are that the dimensions are a template parameter and that square matrices can have additional functionality). Thanks in advance, Ruud

    Read the article

  • Lambda functions

    - by Oden
    Hey, I'm really interested in the way of using lambda functions. Does it make sense to use them in a high-level programming language? If yes, why? Is this really just a function embedded in a function (like this) or is there more behind?

    Read the article

  • Directly Jump to another C++ function

    - by maligree
    I'm porting a small academic OS from TriCore to ARM Cortex (Thumb-2 instruction set). For the scheduler to work, I sometimes need to JUMP directly to another function without modifying the stack nor the link register. On TriCore (or, rather, on tricore-g++), this wrapper template (for any three-argument-function) works: template< class A1, class A2, class A3 > inline void __attribute__((always_inline)) JUMP3( void (*func)( A1, A2, A3), A1 a1, A2 a2, A3 a3 ) { typedef void (* __attribute__((interrupt_handler)) Jump3)( A1, A2, A3); ( (Jump3)func )( a1, a2, a3 ); } //example for using the template: JUMP3( superDispatch, this, me, next ); This would generate the assembler instruction J (a.k.a. JUMP) instead of CALL, leaving the stack and CSAs unchanged when jumping to the (otherwise normal) C++ function superDispatch(SchedulerImplementation* obj, Task::Id from, Task::Id to). Now I need an equivalent behaviour on ARM Cortex (or, rather, for arm-none-linux-gnueabi-g++), i.e. generate a B (a.k.a. BRANCH) instruction instead of BLX (a.k.a. BRANCH with link and exchange). But there is no interrupt_handler attribute for arm-g++ and I could not find any equivalent attribute. So I tried to resort to asm volatile and writing the asm code directly: template< class A1, class A2, class A3 > inline void __attribute__((always_inline)) JUMP3( void (*func)( A1, A2, A3), A1 a1, A2 a2, A3 a3 ) { asm volatile ( "mov.w r0, %1;" "mov.w r1, %2;" "mov.w r2, %3;" "b %0;" : : "r"(func), "r"(a1), "r"(a2), "r"(a3) : "r0", "r1", "r2" ); } So far, so good, in my theory, at least. Thumb-2 requires function arguments to be passed in the registers, i.e. r0..r2 in this case, so it should work. But then the linker dies with undefined reference to `r6' on the closing bracket of the asm statement ... and I don't know what to make of it. OK, I'm not the expert in C++, and the asm syntax is not very straightforward... so has anybody got a hint for me? A hint to the correct __attribute__ for arm-g++ would be one way, a hint to fix the asm code would be another. Another way maybe would be to tell the compiler that a1..a3 should already be in the registers r0..r2 when the asm statement is entered (I looked into that a bit, but did not find any hint).

    Read the article

  • How can I represent a line of music notes in a way that allows fast insertion at any index?

    - by chairbender
    For "fun", and to learn functional programming, I'm developing a program in Clojure that does algorithmic composition using ideas from this theory of music called "Westergaardian Theory". It generates lines of music (where a line is just a single staff consisting of a sequence of notes, each with pitches and durations). It basically works like this: Start with a line consisting of three notes (the specifics of how these are chosen are not important). Randomly perform one of several "operations" on this line. The operation picks randomly from all pairs of adjacent notes that meet a certain criteria (for each pair, the criteria only depends on the pair and is independent of the other notes in the line). It inserts 1 or several notes (depending on the operation) between the chosen pair. Each operation has its own unique criteria. Continue randomly performing these operations on the line until the line is the desired length. The issue I've run into is that my implementation of this is quite slow, and I suspect it could be made faster. I'm new to Clojure and functional programming in general (though I'm experienced with OO), so I'm hoping someone with more experience can point out if I'm not thinking in a functional paradigm or missing out on some FP technique. My current implementation is that each line is a vector containing maps. Each map has a :note and a :dur. :note's value is a keyword representing a musical note like :A4 or :C#3. :dur's value is a fraction, representing the duration of the note (1 is a whole note, 1/4 is a quarter note, etc...). So, for example, a line representing the C major scale starting on C3 would look like this: [ {:note :C3 :dur 1} {:note :D3 :dur 1} {:note :E3 :dur 1} {:note :F3 :dur 1} {:note :G3 :dur 1} {:note :A4 :dur 1} {:note :B4 :dur 1} ] This is a problematic representation because there's not really a quick way to insert into an arbitrary index of a vector. But insertion is the most frequently performed operation on these lines. My current terrible function for inserting notes into a line basically splits the vector using subvec at the point of insertion, uses conj to join the first part + notes + last part, then uses flatten and vec to make them all be in a one-dimensional vector. For example if I want to insert C3 and D3 into the the C major scale at index 3 (where the F3 is), it would do this (I'll use the note name in place of the :note and :dur maps): (conj [C3 D3 E3] [C3 D3] [F3 G3 A4 B4]), which creates [C3 D3 E3 [C3 D3] [F3 G3 A4 B4]] (vec (flatten previous-vector)) which gives [C3 D3 E3 C3 D3 F3 G3 A4 B4] The run time of that is O(n), AFAIK. I'm looking for a way to make this insertion faster. I've searched for information on Clojure data structures that have fast insertion but haven't found anything that would work. I found "finger trees" but they only allow fast insertion at the start or end of the list. Edit: I split this into two questions. The other part is here.

    Read the article

< Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >