Search Results

Search found 6031 results on 242 pages for 'imaginary numbers'.

Page 193/242 | < Previous Page | 189 190 191 192 193 194 195 196 197 198 199 200  | Next Page >

  • SQL Server Optimizer Malfunction?

    - by Tony Davis
    There was a sharp intake of breath from the audience when Adam Machanic declared the SQL Server optimizer to be essentially "stuck in 1997". It was during his fascinating "Query Tuning Mastery: Manhandling Parallelism" session at the recent PASS SQL Summit. Paraphrasing somewhat, Adam (blog | @AdamMachanic) offered a convincing argument that the optimizer often delivers flawed plans based on assumptions that are no longer valid with today’s hardware. In 1997, when Microsoft engineers re-designed the database engine for SQL Server 7.0, SQL Server got its initial implementation of a cost-based optimizer. Up to SQL Server 2000, the developer often had to deploy a steady stream of hints in SQL statements to combat the occasionally wilful plan choices made by the optimizer. However, with each successive release, the optimizer has evolved and improved in its decision-making. It is still prone to the occasional stumble when we tackle difficult problems, join large numbers of tables, perform complex aggregations, and so on, but for most of us, most of the time, the optimizer purrs along efficiently in the background. Adam, however, challenged further any assumption that the current optimizer is competent at providing the most efficient plans for our more complex analytical queries, and in particular of offering up correctly parallelized plans. He painted a picture of a present where complex analytical queries have become ever more prevalent; where disk IO is ever faster so that reads from disk come into buffer cache faster than ever; where the improving RAM-to-data ratio means that we have a better chance of finding our data in cache. Most importantly, we have more CPUs at our disposal than ever before. To get these queries to perform, we not only need to have the right indexes, but also to be able to split the data up into subsets and spread its processing evenly across all these available CPUs. Improvements such as support for ColumnStore indexes are taking things in the right direction, but, unfortunately, deficiencies in the current Optimizer mean that SQL Server is yet to be able to exploit properly all those extra CPUs. Adam’s contention was that the current optimizer uses essentially the same costing model for many of its core operations as it did back in the days of SQL Server 7, based on assumptions that are no longer valid. One example he gave was a "slow disk" bias that may have been valid back in 1997 but certainly is not on modern disk systems. Essentially, the optimizer assesses the relative cost of serial versus parallel plans based on the assumption that there is no IO cost benefit from parallelization, only CPU. It assumes that a single request will saturate the IO channel, and so a query would not run any faster if we parallelized IO because the disk system simply wouldn’t be able to handle the extra pressure. As such, the optimizer often decides that a serial plan is lower cost, often in cases where a parallel plan would improve performance dramatically. It was challenging and thought provoking stuff, as were his techniques for driving parallelism through query logic based on subsets of rows that define the "grain" of the query. I highly recommend you catch the session if you missed it. I’m interested to hear though, when and how often people feel the force of the optimizer’s shortcomings. Barring mistakes, such as stale statistics, how often do you feel the Optimizer fails to find the plan you think it should, and what are the most common causes? Is it fighting to induce it toward parallelism? Combating unexpected plans, arising from table partitioning? Something altogether more prosaic? Cheers, Tony.

    Read the article

  • Feynman's inbox

    - by user12607414
    Here is Richard Feynman writing on the ease of criticizing theories, and the difficulty of forming them: The problem is not just to say something might be wrong, but to replace it by something — and that is not so easy. As soon as any really definite idea is substituted it becomes almost immediately apparent that it does not work. The second difficulty is that there is an infinite number of possibilities of these simple types. It is something like this. You are sitting working very hard, you have worked for a long time trying to open a safe. Then some Joe comes along who knows nothing about what you are doing, except that you are trying to open the safe. He says ‘Why don’t you try the combination 10:20:30?’ Because you are busy, you have tried a lot of things, maybe you have already tried 10:20:30. Maybe you know already that the middle number is 32 not 20. Maybe you know as a matter of fact that it is a five digit combination… So please do not send me any letters trying to tell me how the thing is going to work. I read them — I always read them to make sure that I have not already thought of what is suggested — but it takes too long to answer them, because they are usually in the class ‘try 10:20:30’. (“Seeking New Laws”, page 161 in The Character of Physical Law.) As a sometime designer (and longtime critic) of widely used computer systems, I have seen similar difficulties appear when anyone undertakes to publicly design a piece of software that may be used by many thousands of customers. (I have been on both sides of the fence, of course.) The design possibilities are endless, but the deep design problems are usually hidden beneath a mass of superfluous detail. The sheer numbers can be daunting. Even if only one customer out of a thousand feels a need to express a passionately held idea, it can take a long time to read all the mail. And it is a fact of life that many of those strong suggestions are only weakly supported by reason or evidence. Opinions are plentiful, but substantive research is time-consuming, and hence rare. A related phenomenon commonly seen with software is bike-shedding, where interlocutors focus on surface details like naming and syntax… or (come to think of it) like lock combinations. On the other hand, software is easier than quantum physics, and the population of people able to make substantial suggestions about software systems is several orders of magnitude bigger than Feynman’s circle of colleagues. My own work would be poorer without contributions — sometimes unsolicited, sometimes passionately urged on me — from the open source community. If a Nobel prize winner thought it was worthwhile to read his mail on the faint chance of learning a good idea, I am certainly not going to throw mine away. (In case anyone is still reading this, and is wondering what provoked a meditation on the quality of one’s inbox contents, I’ll simply point out that the volume has been very high, for many months, on the Lambda-Dev mailing list, where the next version of the Java language is being discussed. Bravo to those of my colleagues who are surfing that wave.) I started this note thinking there was an odd parallel between the life of the physicist and that of a software designer. On second thought, I’ll bet that is the story for anybody who works in public on something requiring special training. (And that would be pretty much anything worth doing.) In any case, Feynman saw it clearly and said it well.

    Read the article

  • Personal Financial Management – The need for resuscitation

    - by Salil Ravindran
    Until a year or so ago, PFM (Personal Financial Management) was the blue eyed boy of every channel banking head. In an age when bank account portability is still fiction, PFM was expected to incentivise customers to switch banks. It still is, in some emerging economies, but if the state of PFM in matured markets is anything to go by, it is in a state of coma and badly requires resuscitation. Studies conducted around the year show an alarming decline and stagnation in PFM usage in mature markets. A Sept 2012 report by Aite Group – Strategies for PFM Success shows that 72% of users hadn’t used PFM and worse, 58% of them were not kicked about using it. Of the rest who had used it, only half did on a bank site. While there are multiple reasons for this lack of adoption, some are glaringly obvious. While pretty graphs and pie charts are important to provide a visual representation of my income and expense, it is simply not enough to encourage me to return. Static representation of data without any insightful analysis does not help me. Budgeting and Cash Flow is important but when I have an operative account, a couple of savings accounts, a mortgage loan and a couple of credit cards help me with what my affordability is in specific contexts rather than telling me I just busted my budget. Help me with relative importance of each budget category so that I know it is fine to go over budget on books for my daughter as against going over budget on eating out. Budget over runs and spend analysis are post facto and I am informed of my sins only when I return to online banking. That too, only if I decide to come to the PFM area. Fundamentally, PFM should be a part of my banking engagement rather than an analysis tool. It should be contextual so that I can make insight based decisions. So what can be done to resuscitate PFM? Amalgamation with banking activities – In most cases, PFM tools are integrated into online banking pages and they are like chapter 37 of a long story. PFM needs to be a way of banking rather than a tool. Available balances should shift to Spendable Balances. Budget and goal related insights should be integrated with transaction sessions to drive pre-event financial decisions. Personal Financial Guidance - Banks need to think ground level and see if their PFM offering is really helping customers achieve self actualisation. Banks need to recognise that most customers out there are non-proficient about making the best value of their money. Customers return when they know that they are being guided rather than being just informed on their finance. Integrating contextual financial offers and financial planning into PFM is one way ahead. Yet another way is to help customers tag unwanted spending thereby encouraging sound savings habits. Mobile PFM – Most banks have left all those numbers on online banking. With access mostly having moved to devices and the success of apps, moving PFM on to devices will give it a much needed shot in the arm. This is not only about presenting the same wine in a new bottle but also about leveraging the power of the device in pushing real time notifications to make pre-purchase decisions. The pursuit should be to analyse spend, budgets and financial goals real time and push them pre-event on to the device. So next time, I should know that I have over run my eating out budget before walking into that burger joint and not after. Increase participation and collaboration – Peer group experiences and comments are valued above those offered by the bank. Integrating social media into PFM engagement will let customers share and solicit their financial management experiences with their peer group. Peer comparisons help benchmark one’s savings and spending habits with those of the peer group and increases stickiness. While mature markets have gone through this learning in some way over the last one year, banks in maturing digital banking economies increasingly seem to be falling into this trap. Best practices lie in profiling and segmenting customers, being where they are and contextually guiding them to identify and achieve their financial goals. Banks could look at the likes of Simple and Movenbank to draw inpiration from.

    Read the article

  • XNA Multiplayer Games and Networking

    - by JoshReuben
    ·        XNA communication must by default be lightweight – if you are syncing game state between players from the Game.Update method, you must minimize traffic. That game loop may be firing 60 times a second and player 5 needs to know if his tank has collided with any player 3 and the angle of that gun turret. There are no WCF ServiceContract / DataContract niceties here, but at the same time the XNA networking stack simplifies the details. The payload must be simplistic - just an ordered set of numbers that you would map to meaningful enum values upon deserialization.   Overview ·        XNA allows you to create and join multiplayer game sessions, to manage game state across clients, and to interact with the friends list ·        Dependency on Gamer Services - to receive notifications such as sign-in status changes and game invitations ·        two types of online multiplayer games: system link game sessions (LAN) and LIVE sessions (WAN). ·        Minimum dev requirements: 1 Xbox 360 console + Creators Club membership to test network code - run 1 instance of game on Xbox 360, and 1 on a Windows-based computer   Network Sessions ·        A network session is made up of players in a game + up to 8 arbitrary integer properties describing the session ·        create custom enums – (e.g. GameMode, SkillLevel) as keys in NetworkSessionProperties collection ·        Player state: lobby, in-play   Session Types ·        local session - for split-screen gaming - requires no network traffic. ·        system link session - connects multiple gaming machines over a local subnet. ·        Xbox LIVE multiplayer session - occurs on the Internet. Ranked or unranked   Session Updates ·        NetworkSession class Update method - must be called once per frame. ·        performs the following actions: o   Sends the network packets. o   Changes the session state. o   Raises the managed events for any significant state changes. o   Returns the incoming packet data. ·        synchronize the session à packet-received and state-change events à no threading issues   Session Config ·        Session host - gaming machine that creates the session. XNA handles host migration ·        NetworkSession properties: AllowJoinInProgress , AllowHostMigration ·        NetworkSession groups: AllGamers, LocalGamers, RemoteGamers   Subscribe to NetworkSession events ·        GamerJoined ·        GamerLeft ·        GameStarted ·        GameEnded – use to return to lobby ·        SessionEnded – use to return to title screen   Create a Session session = NetworkSession.Create(         NetworkSessionType.SystemLink,         maximumLocalPlayers,         maximumGamers,         privateGamerSlots,         sessionProperties );   Start a Session if (session.IsHost) {     if (session.IsEveryoneReady)     {        session.StartGame();        foreach (var gamer in SignedInGamer.SignedInGamers)        {             gamer.Presence.PresenceMode =                 GamerPresenceMode.InCombat;   Find a Network Session AvailableNetworkSessionCollection availableSessions = NetworkSession.Find(     NetworkSessionType.SystemLink,       maximumLocalPlayers,     networkSessionProperties); availableSessions.AllowJoinInProgress = true;   Join a Network Session NetworkSession session = NetworkSession.Join(     availableSessions[selectedSessionIndex]);   Sending Network Data var packetWriter = new PacketWriter(); foreach (LocalNetworkGamer gamer in session.LocalGamers) {     // Get the tank associated with this player.     Tank myTank = gamer.Tag as Tank;     // Write the data.     packetWriter.Write(myTank.Position);     packetWriter.Write(myTank.TankRotation);     packetWriter.Write(myTank.TurretRotation);     packetWriter.Write(myTank.IsFiring);     packetWriter.Write(myTank.Health);       // Send it to everyone.     gamer.SendData(packetWriter, SendDataOptions.None);     }   Receiving Network Data foreach (LocalNetworkGamer gamer in session.LocalGamers) {     // Keep reading while packets are available.     while (gamer.IsDataAvailable)     {         NetworkGamer sender;          // Read a single packet.         gamer.ReceiveData(packetReader, out sender);          if (!sender.IsLocal)         {             // Get the tank associated with this packet.             Tank remoteTank = sender.Tag as Tank;              // Read the data and apply it to the tank.             remoteTank.Position = packetReader.ReadVector2();             …   End a Session if (session.AllGamers.Count == 1)         {             session.EndGame();             session.Update();         }   Performance •        Aim to minimize payload, reliable in order messages •        Send Data Options: o   Unreliable, out of order -(SendDataOptions.None) o   Unreliable, in order (SendDataOptions.InOrder) o   Reliable, out of order (SendDataOptions.Reliable) o   Reliable, in order (SendDataOptions.ReliableInOrder) o   Chat data (SendDataOptions.Chat) •        Simulate: NetworkSession.SimulatedLatency , NetworkSession.SimulatedPacketLoss •        Voice support – NetworkGamer properties: HasVoice ,IsTalking , IsMutedByLocalUser

    Read the article

  • Columnstore Case Study #1: MSIT SONAR Aggregations

    - by aspiringgeek
    Preamble This is the first in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in this deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. Why Columnstore? If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. App: MSIT SONAR Aggregations At MSIT, performance & configuration data is captured by SCOM. We archive much of the data in a partitioned data warehouse table in SQL Server 2012 for reporting via an application called SONAR.  By definition, this is a primary use case for columnstore—report queries requiring aggregation over large numbers of rows.  New data is refreshed each night by an automated table partitioning mechanism—a best practices scenario for columnstore. The Win Compared to performance using classic indexing which resulted in the expected query plan selection including partition elimination vs. SQL Server 2012 nonclustered columnstore, query performance increased significantly.  Logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Other than creating the columnstore index, no special modifications or tweaks to the app or databases schema were necessary to achieve the performance improvements.  Existing nonclustered indexes were rendered superfluous & were deleted, thus mitigating maintenance challenges such as defragging as well as conserving disk capacity. Details The table provides the raw data & summarizes the performance deltas. Logical Reads (8K pages) CPU (ms) Durn (ms) Columnstore 160,323 20,360 9,786 Conventional Table & Indexes 9,053,423 549,608 193,903 ? x56 x27 x20 The charts provide additional perspective of this data.  "Conventional vs. Columnstore Metrics" document the raw data.  Note on this linear display the magnitude of the conventional index performance vs. columnstore.  The “Metrics (?)” chart expresses these values as a ratio. Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the first in a series of reports on columnstore implementations, results from an initial implementation at MSIT in which logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Subsequent features in this series document performance enhancements that are even more significant. 

    Read the article

  • Social Targeting: This One's Just for You

    - by Mike Stiles
    Think of social targeting in terms of the archery competition we just saw in the Olympics. If someone loaded up 5 arrows and shot them straight up into the air all at once, hoping some would land near the target, the world would have united in laughter. But sadly for hysterical YouTube video viewing, that’s not what happened. The archers sought to maximize every arrow by zeroing in on the spot that would bring them the most points. Marketers have always sought to do the same. But they can only work with the tools that are available. A firm grasp of the desired target does little good if the ad products aren’t there to deliver that target. On the social side, both Facebook and Twitter have taken steps to enhance targeting for marketers. And why not? As the demand to monetize only goes up, they’re quite motivated to leverage and deliver their incredible user bases in ways that make economic sense for advertisers. You could target keywords on Twitter with promoted accounts, and get promoted tweets into search. They would surface for your followers and some users that Twitter thought were like them. Now you can go beyond keywords and target Twitter users based on 350 interests in 25 categories. How does a user wind up in one of these categories? Twitter looks at that user’s tweets, they look at whom they follow, and they run data through some sort of Twitter secret sauce. The result is, you have a much clearer shot at Twitter users who are most likely to welcome and be responsive to your tweets. And beyond the 350 interests, you can also create custom segments that find users who resemble followers of whatever Twitter handle you give it. That means you can now use boring tweets to sell like a madman, right? Not quite. This ad product is still quality-based, meaning if you’re not putting out tweets that lead to interest and thus, engagement, that tweet will earn a low quality score and wind up costing you more under Twitter’s auction system to maintain. That means, as the old knight in “Indiana Jones and the Last Crusade” cautions, “choose wisely” when targeting based on these interests and categories to make sure your interests truly do line up with theirs. On the Facebook side, they’re rolling out ad targeting that uses email addresses, phone numbers, game and app developers’ user ID’s, and eventually addresses for you bigger brands. Why? Because you marketers asked for it. Here you were with this amazing customer list but no way to reach those same customers should they be on Facebook. Now you can find and communicate with customers you gathered outside of social, and use Facebook to do it. Fair to say such users are a sensible target and will be responsive to your message since they’ve already bought something from you. And no you’re not giving your customer info to Facebook. They’ll use something called “hashing” to make sure you don’t see Facebook user data (beyond email, phone number, address, or user ID), and Facebook can’t see your customer data. The end result, social becomes far more workable and more valuable to marketers when it delivers on the promise that made it so exciting in the first place. That promise is the ability to move past casting wide nets to the masses and toward concentrating marketing dollars efficiently on the targets most likely to yield results.

    Read the article

  • The Future of Air Travel: Intelligence and Automation

    - by BobEvans
    Remember those white-knuckle flights through stormy weather where unexpected plunges in altitude result in near-permanent relocations of major internal organs? Perhaps there’s a better way, according to a recent Wall Street Journal article: “Pilots of a Honeywell International Inc. test plane stayed on their initial flight path, relying on the company's latest onboard radar technology to steer through the worst of the weather. The specially outfitted Boeing 757 barely shuddered as it gingerly skirted some of the most ferocious storm cells over Fort Walton Beach and then climbed above the rest in zero visibility.” Or how about the multifaceted check-in process, which might not wreak havoc on liver location but nevertheless makes you wonder if you’ve been trapped in some sort of covert psychological-stress test? Another WSJ article, called “The Self-Service Airport,” says there’s reason for hope there as well: “Airlines are laying the groundwork for the next big step in the airport experience: a trip from the curb to the plane without interacting with a single airline employee. At the airport of the near future, ‘your first interaction could be with a flight attendant,’ said Ben Minicucci, chief operating officer of Alaska Airlines, a unit of Alaska Air Group Inc.” And in the topsy-turvy world of air travel, it’s not just the passengers who’ve been experiencing bumpy rides: the airlines themselves are grappling with a range of challenges—some beyond their control, some not—that make profitability increasingly elusive in spite of heavy demand for their services. A recent piece in The Economist illustrates one of the mega-challenges confronting the airline industry via a striking set of contrasting and very large numbers: while the airlines pay $7 billion per year to third-party computerized reservation services, the airlines themselves earn a collective profit of only $3 billion per year. In that context, the anecdotes above point unmistakably to the future that airlines must pursue if they hope to be able to manage some of the factors outside of their control (e.g., weather) as well as all of those within their control (operating expenses, end-to-end visibility, safety, load optimization, etc.): more intelligence, more automation, more interconnectedness, and more real-time awareness of every facet of their operations. Those moves will benefit both passengers and the air carriers, says the WSJ piece on The Self-Service Airport: “Airlines say the advanced technology will quicken the airport experience for seasoned travelers—shaving a minute or two from the checked-baggage process alone—while freeing airline employees to focus on fliers with questions. ‘It's more about throughput with the resources you have than getting rid of humans,’ said Andrew O'Connor, director of airport solutions at Geneva-based airline IT provider SITA.” Oracle’s attempting to help airlines gain control over these challenges by blending together a range of its technologies into a solution called the Oracle Airline Data Model, which suggests the following steps: • To retain and grow their customer base, airlines need to focus on the customer experience. • To personalize and differentiate the customer experience, airlines need to effectively manage their passenger data. • The Oracle Airline Data Model can help airlines jump-start their customer-experience initiatives by consolidating passenger data into a customer data hub that drives realtime business intelligence and strategic customer insight. • Oracle’s Airline Data Model brings together multiple types of data that can jumpstart your data-warehousing project with rich out-of-the-box functionality. • Oracle’s Intelligent Warehouse for Airlines brings together the powerful capabilities of Oracle Exadata and the Oracle Airline Data Model to give you real-time strategic insights into passenger demand, revenues, sales channels and your flight network. The airline industry aside, the bullet points above offer a broad strategic outline for just about any industry because the customer experience is becoming pre-eminent in each and there is simply no way to deliver world-class customer experiences unless a company can capture, manage, and analyze all of the relevant data in real-time. I’ll leave you with two thoughts from the WSJ article about the new in-flight radar system from Honeywell: first, studies show that a single episode of serious turbulence can wrack up $150,000 in additional costs for an airline—so, it certainly behooves the carriers to gain the intelligence to avoid turbulence as much as possible. And second, it’s back to that top-priority customer-experience thing and the value that ever-increasing levels of intelligence can deliver. As the article says: “In the cabin, reporters watched screens showing the most intense parts of the nearly 10-mile wide storm, which churned some 7,000 feet below, in vibrant red and other colors. The screens also were filled with tiny symbols depicting likely locations of lightning and hail, which can damage planes and wreak havoc on the nerves of white-knuckle flyers.”  (Bob Evans is senior vice-president, communications, for Oracle.)  

    Read the article

  • The Three-Legged Milk Stool - Why Oracle Fusion Incentive Compensation makes the difference!

    - by Richard Lefebvre
    During the London Olympics, we were exposed to dozens of athletes who worked with sports psychologists to maximize their performance. Executives often hire business psychologists to coach their teams to excellence. In the same vein, Fusion Incentive Compensation can be used to get people to change their sales behavior so we can make our numbers. But what about using incentive compensation solutions in a non-sales scenario to drive change? Recently, I was working an opportunity where a company was having a low user adoption rate for Salesforce.com, which was causing problems for them. I suggested they use Fusion Incentive Comp to change the reps' behavior. We tossed around the idea of tracking user adoption by creating a variable bonus for reps based on how well they forecasted revenues in the new system. Another thought was to reward the reps for how often they logged into the system or for the percentage of leads that became opportunities and turned into revenue. A new twist on a great product. Fusion CRM's Sweet Spot I'm excited about the sales performance management (SPM) tools in Fusion CRM. This trio of Incentive Compensation, Territory Management, and Quota Management sets us apart from the competition because Oracle is the only vendor that provides all three of these capabilities on a single tech stack, in a single application, and with a single look and feel. The niche vendors offer standalone territory or incentive compensation solutions, but then the customer has to custom build the other tools and can end up with a Frankenstein-type environment. On average, companies overpay sales commissions by three to eight percent. You calculate that number for a company the size of Oracle for one quarter and it makes a pretty air-tight financial case for using SPM tools to figure accurate commissions. Plus when sales reps get the right compensation, they can be out selling rather than spending precious time figuring out what they didn't get paid or looking for another job. And one more thing ... Oracle knows incentive comp. We have been a Gartner Market Scope leader in this space for the last five years. Our solution gets high marks because of its scalability and because of its interoperability with other technologies. And now that we're leading with Fusion, our incentive compensation offering includes the innovations that the Fusion team built, plus enhancements from the E-Business Suite Incentive Comp team. It's a case of making a good thing even better. (See product video.) The "Wedge" Apps In a number of accounts that I'm working on, there is a non-Oracle CRM system of record. That gives me the perfect opportunity to introduce the benefits of our SPM tools and to get the customer using Fusion. Then the door is wide open for the company to uptake more of Fusion CRM, especially since all the integrations they need are out of the box. I really believe that implementing this wedge of SPM tools is the ticket to taking market share away from other vendors. It allows us to insert ourselves in an environment where no other CRM solution in the market has the extending capabilities of Fusion. Not Just Your Usual Suspects Usually the stakeholders that I talk to for Territory Management are tightly aligned with the sales management team. When I sell the quota planning tool, I'm talking to finance people on the ERP side of the house who are measuring quotas and forecasting revenue. And then Incentive Comp is of most interest to the sales operations people, and generally these people roll up to either HR or the payroll department. I think of our Fusion SPM tools as a three-legged stool straddling an organization's Sales, Finance, and HR departments. So when you're prospecting for opportunities -- yes, people with a CRM perspective will be very interested -- but don't limit yourselves to that constituency. You might find stakeholders in accounting, revenue planning, or HR compensation teams. You just might discover, as I did at United Airlines, that the HR organization is spearheading the CRM project because incentive compensation is what they need ... and they're the ones with the budget. Jason Loh Global Solutions Manager, Fusion CRM Sales Planning Oracle Corporation

    Read the article

  • Any tips on getting hired as a software project manager straight out of college?

    - by MHarrison
    I graduated with a BS in compsci last September, and I've been trying (unsuccessfully) to find a job as a project manager ever since. I fell in love with software engineering (the formal practice behind it all, not just coding) in school, and I've dedicated the last 3-4 years of my life to learning everything I can about project management and gaining experience. I've managed several projects (with teams around 12 people) while in school, and I worked with my university's software engineering research lab. My résumé is also decent - I worked as a programmer before I went to school (I'm 27 now), and I did Google Summer of Code for 3 summers. I also have general "people management" experience via working as the photo editor for my university's newspaper for 2 years. My first problem with the job hunt is not getting enough interviews. I use careers.stackoverflow.com, which is awesome because I usually get contacted by non-HR people who know what they're talking about, but there's just not enough companies using it for me to get interviews on a regular basis. I've also tried sites like monster.com, and in a fit of desperation, I sent out no less than 60 applications to project management positions. I've gotten 3 automated rejection letters and that's it. At least careers.stackoverflow gets me a phone interview with 8/10 places I apply to. But the main (and extremely frustrating) problem is the matter of experience. I've successfully managed projects from start to finish (in my software engineering classes we had real customers come in with a real software need and we built it for them), but I've never had to deal with budgets and money (I know this is why HR people immediately turn me away). Most of these positions require 5+ years PM experience, and I've seen absurd things like 12+ years required. Interviews are also maddening. I've had so many places who absolutely loved me and I made it to the final round of interviews, and I left thinking things went extremely well and they'd consider me. However, when I check in with them a week later, they tell me "We really liked you and your qualifications are excellent, but we're hoping to find someone with more experience." The bad interviews I can understand - like the PM position that would have had me managing developers both locally and overseas - I had 3 interviews with them and the ENTIRE interview process was them asking me CS brainteasers and having me waste time on things like writing quicksort on paper or writing binary search trees. Even when I tried steering the discussion towards more relevant PM stuff, they gave me some vague generic replies and went back to the "We want to be Google/MS" crap. But when I have a GOOD interview, they say my "qualifications are excellent" but they want "more experience"...that makes me want to tear my hair out. What else can I DO? While I'm aiming for technically-involved PM positions (not just crunching budget numbers), I really don't want a straight development job because I like creating software from the very high-level vs. spending a lot of time debugging memory leaks. In fact, I can't even GET development positions that I'm qualified for because I make the mistake of telling them that my future career goals are as PM (which usually results in them saying something like "Well we already have PMs and this position isn't really set up to get you there." - which I take to mean "No, that's my job, stay away.") My apologies on the long rant, but I'm seriously hellbent on getting hired as a PM since it's both my career goal and the passion that keeps me awake at night. Any suggestions on what the heck else I can do? I'm currently writing a blog where I talk about my philosophies about software engineering, and I'm writing up specs for an iOS app which I will design, code, and show employers, but this takes an awful lot of time that I don't have.

    Read the article

  • how to write the code for this program specially in mathematica? [closed]

    - by asd
    I implemented a solution to the problem below in Mathematica, but it takes a very long time (hours) to compute f of kis or the set B for large numbers. Somebody suggested that implementing this in C++ resulted in a solution in less than 10 minutes. Would C++ be a good language to learn to solve these problems, or can my Mathematica code be improved to fix the performance issues? I don't know anything about C or C++ and it should be difficult to start to learn this languages. I prefer to improve or write new code in mathematica. Problem Description Let $f$ be an arithmetic function and A={k1,k2,...,kn} are integers in increasing order. Now I want to start with k1 and compare f(ki) with f(k1). If f(ki)f(k1), put ki as k1. Now start with ki, and compare f(kj) with f(ki), for ji. If f(kj)f(ki), put kj as ki, and repeat this procedure. At the end we will have a sub sequence B={L1,...,Lm} of A by this property: f(L(i+1))f(L(i)), for any 1<=i<=m-1 For example, let f is the divisor function of integers. Here I put some part of my code and this is just a sample and the question in my program could be more larger than these: «««««««««««««««««««««««««««««««««««« f[n_] := DivisorSigma[0, n]; g[n_] := Product[Prime[i], {i, 1, PrimePi[n]}]; k1 = g[67757] g[353] g[59] g[19] g[11] g[7] g[5]^2 6^3 2^7; k2 = g[67757] g[353] g[59] g[19] g[11] g[7] g[5] 6^5 2^7; k3 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^4 2^7; k4 = g[67759] g[349] g[53] g[19] g[11] g[7] g[5] 6^5 2^6; k5 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^4 2^8; k6 = g[67759] g[349] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^7; k7 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^5 2^6; k8 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^4 2^9; k9 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^7; k10 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^5 2^7; k11 = g[67759] g[349] g[53] g[19] g[11] g[7] g[5]^2 6^4 2^6; k12 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^8; k13 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^4 2^6; k14 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^9; k15 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^4 2^7; k16 = g[67757] g[359] g[53] g[23] g[11] g[7] g[5] 6^4 2^8; k17 = g[67757] g[359] g[59] g[19] g[11] g[7] g[5] 6^4 2^7; k18 = g[67757] g[359] g[53] g[23] g[11] g[7] g[5] 6^4 2^9; k19 = g[67759] g[353] g[53] g[19] g[11] g[7] g[5] 6^4 2^6; k20 = g[67763] g[347] g[53] g[19] g[11] g[7] g[5] 6^4 2^7; k = Table[k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20]; i = 1; count = 0; For[j = i, j <= 20, j++, If[f[k[[j]]] - f[k[[i]]] > 0, i = j; Print["k",i]; count = count + 1]]; Print["count= ", count] ««««««««««««««««««««««««««««««««««««

    Read the article

  • Design Pattern for building a Budget

    - by Scott
    So I've looked at the Builder Pattern, Abstract Interfaces, other design patterns, etc. - and I think I'm over thinking the simplicity behind what I'm trying to do, so I'm asking you guys for some help with either recommending a design pattern I should use, or an architecture style I'm not familiar with that fits my task. So I have one model that represents a Budget in my code. At a high level, it looks like this: public class Budget { public int Id { get; set; } public List<MonthlySummary> Months { get; set; } public float SavingsPriority { get; set; } public float DebtPriority { get; set; } public List<Savings> SavingsCollection { get; set; } public UserProjectionParameters UserProjectionParameters { get; set; } public List<Debt> DebtCollection { get; set; } public string Name { get; set; } public List<Expense> Expenses { get; set; } public List<Income> IncomeCollection { get; set; } public bool AutoSave { get; set; } public decimal AutoSaveAmount { get; set; } public FundType AutoSaveType { get; set; } public decimal TotalExcess { get; set; } public decimal AccountMinimum { get; set; } } To go into more detail about some of the properties here shouldn't be necessary, but if you have any questions about those I will fill more out for you guys. Now, I'm trying to create code that builds one of these things based on a set of BudgetBuildParameters that the user will create and supply. There are going to be multiple types of these parameters. For example, on the sites homepage, there will be an example section where you can quickly see what your numbers look like, so they would be a much simpler set of SampleBudgetBuildParameters then say after a user registers and wants to create a fully filled out Budget using much more information in the DebtBudgetBuildParameters. Now a lot of these builds are going to be using similar code for certain tasks, but might want to also check the status of a users DebtCollection when formulating a monthly spending report, where as a Budget that only focuses on savings might not want to. I'd like to reduce code duplication (obviously) as much as possible, but in my head, every way I can think to do this would require using a base BudgetBuilderFactory to return the correct builder to the caller, and then creating say a SimpleBudgetBuilder that inherits from a BudgetBuilder, and put all duplicate code in the BudgetBuilder, and let the SimpleBudgetBuilder handle it's own cases. Problem is, a lot of the unique cases are unique to 2/4 builders, so there will be duplicate code somewhere in there obviously if I did that. Can anyone think of a better way to either explain a solution to this that may or may not be similar to mine, or a completely different pattern or way of thinking here? I really appreciate it.

    Read the article

  • Snap App Windows to Pre-Defined Screen Sections with Acer GridVista

    - by Asian Angel
    The window snapping feature in Windows 7 and the ability to organize monitor(s) into specific gridded sections have both become popular lately. If you love the idea of having both combined in a single software then join us as we look at Acer GridVista. Note: Acer GridVista works with Windows XP, Vista, & 7. It will also work with dual monitors. Setup Acer GridVista comes in a zip file format and at first you might assume that it is portable in nature but it is not. Once you unzip the enclosed folder you will need to double click on “Setup.exe” to install the program. Acer GridVista in Action Once you have installed the program and started it up all that you will notice at first is the new “System Tray Icon”. Here you can see the “Context Menu”… The only menu command that you will likely use most of the time is the “Grid Configuration Command”. Notice that for our single monitor setup that it lists “Display 1”. The “Single Setting” is enabled by default and you can easily choose the layout that best suits your needs. The enabled layout style will always be highlighted in yellow for easy reference. For our example we chose the “Triple (primary at right)” layout style. Each section will be specifically numbered as shown here. Do not worry…the grid and numbers only appear for a moment and then become invisible again until you move an app window into that section/area of your screen. On every regular app window that you open you will notice three new buttons in the upper right corner. Here is what each of these new buttons do: Acer GridVista Extensions (Transparent, Send To Window Grid, About Acer GridVista): Viewable in a drop-down menu Lock To Grid (Enable/Disable): Enabled by default –> Note: Set to disable on a particular window to keep it free of the “grid locking function” Always On Top (Enable/Disable): Disabled by default A good look at the “Extensions Drop-Down Menu” where you can set an app window to be transparent or send it to a specific screen section on your monitor(s). If you open an app it will not automatically lock into a specific section. To lock the window into a specific section drag-and-drop the app window into the desired section. Notice the red outline and highlighted number on “Section 2” below. The red outline and highlighted number serves as an indicator that if you release the app window at that moment it will lock into the outlined/highlighted section. Now that Notepad is locked into “Section 2” you can see that it is maximized within that section. Continue to drag-and-drop your app windows into the appropriate sections as desired…apps can still be reduced to the “Taskbar” the same as before. Options These are the options available for Acer GridVista… Conclusion If you have been wanting the ability to “snap” windows and organize them into specific screen areas then Acer GridVista is definitely a program that you should try out. Links Download Acer GridVista at Softpedia View detailed information at the Acer GridVista Homepage Similar Articles Productive Geek Tips Multitask Like a Pro with AquaSnapHelp Troubleshoot the Blue Screen of Death by Preventing Automatic RebootAdd Windows 7’s AeroSnap Feature to Vista and XPResize Windows to Specific Dimensions Easily With SizerKeyboard Ninja: Assign a Hotkey to any Window TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Playing Games In Chrome Made Easier Stop In The Name Of Love (Firefox addon) Chitika iPad Labs Gives Live iPad Sale Stats Heaven & Hell Finder Icon Using TrueCrypt to Secure Your Data Quickly Schedule Meetings With NeedtoMeet

    Read the article

  • SQL to select random mix of rows fairly [migrated]

    - by Matt Sieker
    Here's my problem: I have a set of tables in a database populated with data from a client that contains product information. In addition to the basic product information, there is also information about the manufacturer, and categories for those products (a product can be in one or more categories). These categories are then referred to as "Product Categories", and which stores these products are available at. These tables are updated once a week from a feed from the customer. Since for our purposes, some of the product categories are the same, or closely related for our purposes, there is another level of categories called "General Categories", a general category can have one or more product categories. For the scope of these tables, here's some rough numbers: Data Tables: Products: 475,000 Manufacturers: 1300 Stores: 150 General Categories: 245 Product Categories: 500 Mapping Tables: Product Category -> Product: 655,000 Stores -> Products: 50,000,000 Now, for the actual problem: As part of our software, we need to select n random products, given a store and a general category. However, we also need to ensure a good mix of manufacturers, as in some categories, a single manufacturer dominates the results, and selecting rows at random causes the results to strongly favor that manufacturer. The solution that is currently in place, works for most cases, involves selecting all of the rows that match the store and category criteria, partition them on manufacturer, and include their row number from within their partition, then select from that where the row number for that manufacturer is less than n, and use ROWCOUNT to clamp the total rows returned to n. This query looks something like this: SET ROWCOUNT 6 select p.Id, GeneralCategory_Id, Product_Id, ISNULL(m.DisplayName, m.Name) AS Vendor, MSRP, MemberPrice, FamilyImageName from (select p.Id, gc.Id GeneralCategory_Id, p.Id Product_Id, ctp.Store_id, Manufacturer_id, ROW_NUMBER() OVER (PARTITION BY Manufacturer_id ORDER BY NEWID()) AS 'VendorOrder', MSRP, MemberPrice, FamilyImageName from GeneralCategory gc inner join GeneralCategoriesToProductCategories gctpc ON gc.Id=gctpc.GeneralCategory_Id inner join ProductCategoryToProduct pctp on gctpc.ProductCategory_Id = pctp.ProductCategory_Id inner join Product p on p.Id = pctp.Product_Id inner join StoreToProduct ctp on p.Id = ctp.Product_id where gc.Id = @GeneralCategory and ctp.Store_id=@StoreId and p.Active=1 and p.MemberPrice >0) p inner join Manufacturer m on m.Id = p.Manufacturer_id where VendorOrder <=6 order by NEWID() SET ROWCOUNT 0 (I've tried to somewhat format it to make it cleaner, but I don't think it really helps) Running this query with an execution plan shows that for the majority of these tables, it's doing a Clustered Index Seek. There are two operations that take up roughly 90% of the time: Index Seek (Nonclustered) on StoreToProduct: 17%. This table just contains the key of the store, and the key of the product. It seems that NHibernate decided not to make a composite key when making this table, but I'm not concerned about this at this point, as compared to the other seek... Clustered Index Seek on Product: 69%. I really have no clue how I could make this one more performant. On categories without a lot of products, performance is acceptable (<50ms), however larger categories can take a few hundred ms, with the largest category taking 3s (which has about 170k products). It seems I have two ways to go from this point: Somehow optimize the existing query and table indices to lower the query time. As almost every expensive operation is already a clustered index scan, I don't know what could be done there. The inner query could be tuned to not return all of the possible rows for that category, but I am unsure how to do this, and maintain the requirements (random products, with a good mix of manufacturers) Denormalize this data for the purpose of this query when doing the once a week import. However, I am unsure how to do this and maintain the requirements. Does anyone have any input on either of these items?

    Read the article

  • Proving What You are Worth

    - by Ted Henson
    Here is a challenge for everyone. Just about everyone has been asked to provide or calculate the Return on Investment (ROI), so I will assume everyone has a method they use. The problem with stopping once you have an ROI is that those in the C-Suite probably do not care about the ROI as much as Return on Equity (ROE). Shareholders are mostly concerned with their return on the money the invested. Warren Buffett looks at ROE when deciding whether to make a deal or not. This article will outline how you can add more meaning to your ROI and show how you can potentially enhance the ROE of the company.   First I want to start with a base definition I am using for ROI and ROE. Return on investment (ROI) and return on equity (ROE) are ways to measure management effectiveness, parts of a system of measures that also includes profit margins for profitability, price-to-earnings ratio for valuation, and various debt-to-equity ratios for financial strength. Without a set of evaluation metrics, a company's financial performance cannot be fully examined by investors. ROI and ROE calculate the rate of return on a specific investment and the equity capital respectively, assessing how efficient financial resources have been used. Typically, the best way to improve financial efficiency is to reduce production cost, so that will be the focus. Now that the challenge has been made and items have been defined, let’s go deeper. Most research about implementation stops short at system start-up and seldom addresses post-implementation issues. However, we know implementation is a continuous improvement effort, and continued efforts after system start-up will influence the ultimate success of a system.   Most UPK ROI’s I have seen only include the cost savings in developing the training material. Some will also include savings based on reduced Help Desk calls. Using just those values you get a good ROI. To get an ROE you need to go a little deeper. Typically, the best way to improve financial efficiency is to reduce production cost, which is the purpose of implementing/upgrading an enterprise application. Let’s assume the new system is up and running and all users have been properly trained and are comfortable using the system. You provide senior management with your ROI that justifies the original cost. What you want to do now is develop a good base value to a measure the current efficiency. Using usage tracking you can look for various patterns. For example, you may find that users that are accessing UPK assistance are processing a procedure, such as entering an order, 5 minutes faster than those that don’t.  You do some research and discover each minute saved in processing a claim saves the company one dollar. That translates to the company saving five dollars on every transaction. Assuming 100,000 transactions are performed a year, and all users improve their performance, the company will be saving $500,000 a year. That $500,000 can be re-invested, used to reduce debt or paid to the shareholders.   With continued refinement during the life cycle, you should be able to find ways to reduce cost. These are the type of numbers and productivity gains that senior management and shareholders want to see. Being able to quantify savings and increase productivity may also help when seeking a raise or promotion.

    Read the article

  • How can I have multiple layers in my map array?

    - by Manl400
    How do I load Levels in my game, as in Layer 1 would be Objects, Layer 2 would be Characters and so on. I only need 3 layers, and they will all be put on top of each other. i.e having a flower with a transparent background to be put on grass or dirt on the layer below.I would like to Read From the same file too. How would i go about doing this? Any help would be appreciated. I load the map from a level file which are just numbers corresponding to a tile in the tilesheet. Here is the level file [Layer1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [Layer2] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [Layer3] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 And here is the code that interprets it void LoadMap(const char *filename, std::vector< std::vector <int> > &map) { std::ifstream openfile(filename); if(openfile.is_open()) { std::string line, value; int space; while(!openfile.eof()) { std::getline(openfile, line); if(line.find("[TileSet]") != std::string::npos) { state = TileSet; continue; } else if (line.find("[Layer1]") != std::string::npos) { state = Map; continue; } switch(state) { case TileSet: if(line.length() > 0) tileSet = al_load_bitmap(line.c_str()); break; case Map: std::stringstream str(line); std::vector<int> tempVector; while(!str.eof()) { std::getline(str, value, ' '); if(value.length() > 0) tempVector.push_back(atoi(value.c_str())); } map.push_back(tempVector); break; } } } else { } } and this is how it draws the map. Also the tile sheet is 1280 by 1280 and the tilesizeX and tilesizeY is 64 void DrawMap(std::vector <std::vector <int> > map) { int mapRowCount = map.size(); for(int i, j = 0; i < mapRowCount; i ++) { int mapColCount = map[i].size(); for (int j = 0; j < mapColCount; ++j) { int tilesetIndex = map[i][j]; int tilesetRow = floor(tilesetIndex / TILESET_COLCOUNT); int tilesetCol = tilesetIndex % TILESET_COLCOUNT; al_draw_bitmap_region(tileSet, tilesetCol * TileSizeX, tilesetRow * TileSizeY, TileSizeX, TileSizeY, j * TileSizeX, i * TileSizeX, NULL); } } } EDIT: http://i.imgur.com/Ygu0zRE.jpg

    Read the article

  • ReSharper 8.0 EAP now available

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/28/resharper-8.0-eap-now-available.aspxJetbrains have just released |ReSharper 8.0 Beta on their Early Access |Programme at http://www.jetbrains.com/resharper/whatsnew/?utm_source=resharper8b&utm_medium=newsletter&utm_campaign=resharper&utm_content=customersResharper 8.0 comes with the following new features:Support for Visual Studio 2013 Preview. Yes, ReSharper is known to work well with the fresh preview of Visual Studio 2013, and if you have already started digging into it, ReSharper 8.0 Beta is ready for the challenge.Faster code fixes. Thanks to the new Fix in Scope feature, you can choose to batch-fix some of the code issues that ReSharper detects in the scope of a project or the whole solution. Supported fixes include removing unused directives and redundant casts.Project dependency viewer. ReSharper is now able to visualize a project dependency graph for a bird's eye view of dependencies within your solution, all without compiling anything!Multifile templates. ReSharper's file templates can now be expanded to generate more than one file. For instance, this is handy for generating pairs of a main logic class and a class for extensions, or sets of partial files.Navigation improvements. These include a new action called Go to Everything to let you search for a file, type or method name from the same input box; support for line numbers in navigation actions; a new tool window called Assembly Explorer for browsing through assemblies; and two more contextual navigation actions: Navigate to Generic Substitutions and Navigate to Assembly Explorer.New solution-wide refactorings. The set of fresh refactorings is headlined by the highly requested Move Instance Method to move methods between classes without making them static. In addition, there are Inline Parameter and Pull Parameter. Last but not least, we're also introducing 4 new XAML-specific refactorings!Extraordinary XAML support. A plethora of new and improved functionality for all developers working with XAML code includes dedicated grid inspections and quick-fixes; Extract Style, Extract, Move and Inline Resource refactorings; atomic renaming of dependency properties; and a lot more.More accessible code completion. ReSharper 8 makes more of its IntelliSense magic available in automatic completion lists, including extension methods and an option to import a type. We're also introducing double completion which gives you additional completion items when you press the corresponding shortcut for the second time.A new level of extensibility. With the new NuGet-based Extension Manager, discovering, installing and uninstalling ReSharper extensions becomes extremely easy in Visual Studio 2010 and higher. When we say extensions, we mean not only full-fledged plug-ins but also sets of templates or SSR patterns that can now be shared much more easily.CSS support improvements. Smarter usage search for CSS attributes, new CSS-specific code inspections, configurable support for CSS3 and earlier versions, compatibility checks against popular browsers - there's a rough outline of what's new for CSS in ReSharper 8.A command-line version of ReSharper. ReSharper 8 goes beyond Visual Studio: we now provide a free standalone tool with hundreds of ReSharper inspections and additionally a duplicate code finder that you can integrate with your CI server or version control system.Multiple minor improvements in areas such as decompiling and code formatting, as well as support for the Blue Theme introduced in Visual Studio 2012 Update 2.

    Read the article

  • PCI Encryption Key Management

    - by Unicorn Bob
    (Full disclosure: I'm already an active participant here and at StackOverflow, but for reasons that should hopefully be obvious, I'm choosing to ask this particular question anonymously). I currently work for a small software shop that produces software that's sold commercially to manage small- to mid-size business in a couple of fairly specialized industries. Because these industries are customer-facing, a large portion of the software is related to storing and managing customer information. In particular, the storage (and securing) of customer credit card information. With that, of course, comes PCI compliance. To make a long story short, I'm left with a couple of questions about why certain things were done the way they were, and I'm unfortunately without much of a resource at the moment. This is a very small shop (I report directly to the owner, as does the only other full-time employee), and the owner doesn't have an answer to these questions, and the previous developer is...err...unavailable. Issue 1: Periodic Re-encryption As of now, the software prompts the user to do a wholesale re-encryption of all of the sensitive information in the database (basically credit card numbers and user passwords) if either of these conditions is true: There are any NON-encrypted pieces of sensitive information in the database (added through a manual database statement instead of through the business object, for example). This should not happen during the ordinary use of the software. The current key has been in use for more than a particular period of time. I believe it's 12 months, but I'm not certain of that. The point here is that the key "expires". This is my first foray into commercial solution development that deals with PCI, so I am unfortunately uneducated on the practices involved. Is there some aspect of PCI compliance that mandates (or even just strongly recommends) periodic key updating? This isn't a huge issue for me other than I don't currently have a good explanation to give to end users if they ask why they are being prompted to run it. Question 1: Is the concept of key expiration standard, and, if so, is that simply industry-standard or an element of PCI? Issue 2: Key Storage Here's my real issue...the encryption key is stored in the database, just obfuscated. The key is padded on the left and right with a few garbage bytes and some bits are twiddled, but fundamentally there's nothing stopping an enterprising person from examining our (dotfuscated) code, determining the pattern used to turn the stored key into the real key, then using that key to run amok. This seems like a horrible practice to me, but I want to make sure that this isn't just one of those "grin and bear it" practices that people in this industry have taken to. I have developed an alternative approach that would prevent such an attack, but I'm just looking for a sanity check here. Question 2: Is this method of key storage--namely storing the key in the database using an obfuscation method that exists in client code--normal or crazy? Believe me, I know that free advice is worth every penny that I've paid for it, nobody here is an attorney (or at least isn't offering legal advice), caveat emptor, etc. etc., but I'm looking for any input that you all can provide. Thank you in advance!

    Read the article

  • Profiling Startup Of VS2012 &ndash; JustTrace Profiler

    - by Alois Kraus
    JustTrace is made by Telerik which is mainly known for its collection of UI controls. The current version (2012.3.1127.0) does include a performance and memory profiler which does cost 614€ and is currently with a special offer for 306€ on sale. It does include one year of free upgrades. The uneven € numbers are calculated from the 799€ and 50% dicsount price. The UI is already in Metro style and simple to use. Multi process, attach, method recording filter are not supported. It looks like JustTrace is like Ants a Just My Code profiler. For stuff where you do not have the pdbs or you want to dig deeper into the BCL code you will not get far. After getting the profile data you get in the All Methods grid a plain list with hit count and own time. The method list for all methods is also suspiciously short which is a clear sign that you will not get far during the analysis of foreign code. But at least there is also a memory profiler included. For this I have to choose in the first window for Profiling Type “Memory Profiler” to check the memory consumption of VS.  There are some interesting number to see but I do really miss from YourKit the thread stack window. How am I supposed to get a clue when much memory is allocated and the CPU consumption is high in which places I should look? The Snapshot summary gives a rough overview which is ok for a first impression. Next is Assemblies? This gives you a list of all loaded assemblies. Not terribly useful.   The By Type view gives you exactly what it is supposed to do. You have to keep in mind that this list is filtered by the types you did check in the Assemblies list. The By Type instance list does only show types from assemblies which do not originate from Microsoft. By default mscorlib and System are not checked. That is the reason why for the first time my By Type window looked like The idea behind this feature is to show only your instances because you are ultimately responsible for the overall memory consumption. I am not sure if I do like this feature because by default it does hide too much. I do want to see at least how many strings and arrays are allocated. A simple namespace filter would also do it in my opinion. Now you can examine all string instances and look who in the object graph does keep a reference on them. That is nice but YourKit has the big plus that you can also look into the string contents.  I am also not sure how in the graph cycles are visualized and what will happen if you have thousands of objects referencing you. That's pretty much it about JustTrace. It can help the average developer to pinpoint performance and memory issues by just looking at his own code and instances. Showing them more will not help them because the sheer amount of information will overwhelm them. And you need to have a pretty good understanding how the GC and the CLR does work. When you have a performance issue at a customer machine it is sometimes very helpful to be able a bring a profiler onto the machine (no pdbs, …) and to get a full snapshot of all processes which are in the problematic use case involved. For these more advanced use cased JustTrace is certainly the wrong tool. Next: SpeedTrace

    Read the article

  • Come up with a real-world problem in which only the best solution will do (a problem from Introduction to algorithms) [closed]

    - by Mike
    EDITED (I realized that the question certainly needs a context) The problem 1.1-5 in the book of Thomas Cormen et al Introduction to algorithms is: "Come up with a real-world problem in which only the best solution will do. Then come up with one in which a solution that is “approximately” the best is good enough." I'm interested in its first statement. And (from my understanding) it is asked to name a real-world problem where only the exact solution will work as opposed to a real-world problem where good-enough solution will be ok. So what is the difference between the exact and good enough solution. Consider some physics problem for example the simulation of the fulid flow in the permeable medium. To make this simulation happen some simplyfing assumptions have to be made when deriving a mathematical model. Otherwise the model becomes at least complex and unsolvable. Virtually any particle in the universe has its influence on the fluid flow. But not all particles are equal. Those that form the permeable medium are much more influental than the ones located light years away. Then when the mathematical model needs to be solved an exact solution can rarely be found unless the mathematical model is simple enough (wich probably means the model isn't close to reality). We take an approximate numerical method and after hours of coding and days of verification come up with the program or algorithm which is a solution. And if the model and an algorithm give results close to a real problem by some degree that is good enough soultion. Its worth noting the difference between exact solution algorithm and exact computation result. When considering real-world problems and real-world computation machines I believe all physical problems solutions where any calculations are taken can not be exact because universal physical constants are represented approximately in the computer. Any numbers are represented with the limited precision, at least limited by amount of memory available to computing machine. I can imagine plenty of problems where good-enough, good to some degree solution will work, like train scheduling, automated trading, satellite orbit calculation, health care expert systems. In that cases exact solutions can't be derived due to constraints on computation time, limitations in computer memory or due to the nature of problems. I googled this question and like what this guy suggests: there're kinds of mathematical problems that need exact solutions (little note here: because the question is taken from the book "Introduction to algorithms" the term "solution" means an algorithm or a program, which in this case gives exact answer on each input). But that's probably more of theoretical interest. So I would like to narrow down the question to: What are the real-world practical problems where only the best (exact) solution algorithm or program will do (but not the good-enough solution)? There are problems like breaking of cryptographic ciphers where only exact solution matters in practice and again in practice the process of deciphering without knowing a secret should take reasonable amount of time. Returning to the original question this is the problem where good-enough (fast-enough) solution will do there's no practical need in instant crack though it's desired. So the quality of "best" can be understood in any sense: exact, fastest, requiring least memory, having minimal possible network traffic etc. And still I want this question to be theoretical if possible. In a sense that there may be example of computer X that has limited resource R of amount Y where the best solution to problem P is the one that takes not more than available Y for inputs of size N*Y. But that's the problem of finding solution for P on computer X which is... well, good enough. My final thought that we live in a world where it is required from programming solutions to practical purposes to be good enough. In rare cases really very very good but still not the best ones. Isn't it? :) If it's not can you provide an example? Or can you name any such unsolved problem of practical interest?

    Read the article

  • Using WKA in Large Coherence Clusters (Disabling Multicast)

    - by jpurdy
    Disabling hardware multicast (by configuring well-known addresses aka WKA) will place significant stress on the network. For messages that must be sent to multiple servers, rather than having a server send a single packet to the switch and having the switch broadcast that packet to the rest of the cluster, the server must send a packet to each of the other servers. While hardware varies significantly, consider that a server with a single gigabit connection can send at most ~70,000 packets per second. To continue with some concrete numbers, in a cluster with 500 members, that means that each server can send at most 140 cluster-wide messages per second. And if there are 10 cluster members on each physical machine, that number shrinks to 14 cluster-wide messages per second (or with only mild hyperbole, roughly zero). It is also important to keep in mind that network I/O is not only expensive in terms of the network itself, but also the consumption of CPU required to send (or receive) a message (due to things like copying the packet bytes, processing a interrupt, etc). Fortunately, Coherence is designed to rely primarily on point-to-point messages, but there are some features that are inherently one-to-many: Announcing the arrival or departure of a member Updating partition assignment maps across the cluster Creating or destroying a NamedCache Invalidating a cache entry from a large number of client-side near caches Distributing a filter-based request across the full set of cache servers (e.g. queries, aggregators and entry processors) Invoking clear() on a NamedCache The first few of these are operations that are primarily routed through a single senior member, and also occur infrequently, so they usually are not a primary consideration. There are cases, however, where the load from introducing new members can be substantial (to the point of destabilizing the cluster). Consider the case where cluster in the first paragraph grows from 500 members to 1000 members (holding the number of physical machines constant). During this period, there will be 500 new member introductions, each of which may consist of several cluster-wide operations (for the cluster membership itself as well as the partitioned cache services, replicated cache services, invocation services, management services, etc). Note that all of these introductions will route through that one senior member, which is sharing its network bandwidth with several other members (which will be communicating to a lesser degree with other members throughout this process). While each service may have a distinct senior member, there's a good chance during initial startup that a single member will be the senior for all services (if those services start on the senior before the second member joins the cluster). It's obvious that this could cause CPU and/or network starvation. In the current release of Coherence (3.7.1.3 as of this writing), the pure unicast code path also has less sophisticated flow-control for cluster-wide messages (compared to the multicast-enabled code path), which may also result in significant heap consumption on the senior member's JVM (from the message backlog). This is almost never a problem in practice, but with sufficient CPU or network starvation, it could become critical. For the non-operational concerns (near caches, queries, etc), the application itself will determine how much load is placed on the cluster. Applications intended for deployment in a pure unicast environment should be careful to avoid excessive dependence on these features. Even in an environment with multicast support, these operations may scale poorly since even with a constant request rate, the underlying workload will increase at roughly the same rate as the underlying resources are added. Unless there is an infrastructural requirement to the contrary, multicast should be enabled. If it can't be enabled, care should be taken to ensure the added overhead doesn't lead to performance or stability issues. This is particularly crucial in large clusters.

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

  • How to introduce a computer illiterate 50-year old to programming [closed]

    - by sunday
    The other day my dad asked me a question that I would have never expected from him. "How can I learn C++?" My dad is turning 56 this year and computers are a distant concept for him. He doesn't know how to use a phone very well besides calling numbers (no speed dial or contacts); though he has started to learn computers a little better - to the point that he knows how to open the internet (in Windows) and browse around (and has successfully completed several job applications entirely on his own online, of which he was offered positions too). But still, these are too narrow-windowed experiences to mean much, really. While he may not have the background, my dad knows how to read. And I mean reading as a skill, not just an ability. He has little to no college education (financial problems, family, etc.) and was fortunate enough to finish high school, but still taught himself to become a master electrician and has been one for almost 30 years now. He did the same with guitar, learning to play at a very professional level and has been praised for his skill. In high school, he picked up a weight lifting book - and was the only person in his high school at the time to qualify officially as an "athlete" by national standards. In all cases, he just needed something to read. Something to teach him. He absorbs information like a sponge. I have no doubt in my dad's motivation or capability of doing this, so my general goal is simply: Get my dad into the world of computers, and get him on the road to programming. I strongly believe that once I get him through the fundamentals, his drive and reading skill will keep him going on this own. So I'm asking you all: where should I start with all this? And what are the best resources out there? Should I get him to start Linux instead of Windows? Is C++ a bad idea? Remember, he needs to (IMO) learn computers first, and then get that first grasp (the "Hello world" experience) of programming. For money's sake and at top preference, I'd like free online resources that he can read, but by all means any good suggestions in print or paid-for-online are welcome (that I could possibly look into later to purchase). And also, I intend to start him off with C++ (no Python, Java, etc.), because I know it the best and will be able to help him along the way with code. (I have minimal knowledge right now in other languages). Edit: I'm getting a lot of persistent suggestions to use Python. The only reason I wanted to do C++ is that I KNOW it and can be THERE when my dad needs help. My VERY FIRST exposure to programming ever was Java. I learned Java, and I got good at it. I open to other suggestions, but please provide an effective application of your suggestions. EDIT #2: I understand my approach/thinking/knowledge could be lacking here. I'm a sophomore level undergraduate CS major. If you don't agree with anything in my post, tell me why - give me ideas, information - that's why I'm asking in the first place. To narrow down my general goal to specific reachable goals.

    Read the article

  • Concurrent Affairs

    - by Tony Davis
    I once wrote an editorial, multi-core mania, on the conundrum of ever-increasing numbers of processor cores, but without the concurrent programming techniques to get anywhere near exploiting their performance potential. I came to the.controversial.conclusion that, while the problem loomed for all procedural languages, it was not a big issue for the vast majority of programmers. Two years later, I still think most programmers don't concern themselves overly with this issue, but I do think that's a bigger problem than I originally implied. Firstly, is the performance boost from writing code that can fully exploit all available cores worth the cost of the additional programming complexity? Right now, with quad-core processors that, at best, can make our programs four times faster, the answer is still no for many applications. But what happens in a few years, as the number of cores grows to 100 or even 1000? At this point, it becomes very hard to ignore the potential gains from exploiting concurrency. Possibly, I was optimistic to assume that, by the time we have 100-core processors, and most applications really needed to exploit them, some technology would be around to allow us to do so with relative ease. The ideal solution would be one that allows programmers to forget about the problem, in much the same way that garbage collection removed the need to worry too much about memory allocation. From all I can find on the topic, though, there is only a remote likelihood that we'll ever have a compiler that takes a program written in a single-threaded style and "auto-magically" converts it into an efficient, correct, multi-threaded program. At the same time, it seems clear that what is currently the most common solution, multi-threaded programming with shared memory, is unsustainable. As soon as a piece of state can be changed by a different thread of execution, the potential number of execution paths through your program grows exponentially with the number of threads. If you have two threads, each executing n instructions, then there are 2^n possible "interleavings" of those instructions. Of course, many of those interleavings will have identical behavior, but several won't. Not only does this make understanding how a program works an order of magnitude harder, but it will also result in irreproducible, non-deterministic, bugs. And of course, the problem will be many times worse when you have a hundred or a thousand threads. So what is the answer? All of the possible alternatives require a change in the way we write programs and, currently, seem to be plagued by performance issues. Software transactional memory (STM) applies the ideas of database transactions, and optimistic concurrency control, to memory. However, working out how to break down your program into sufficiently small transactions, so as to avoid contention issues, isn't easy. Another approach is concurrency with actors, where instead of having threads share memory, each thread runs in complete isolation, and communicates with others by passing messages. It simplifies concurrent programs but still has performance issues, if the threads need to operate on the same large piece of data. There are doubtless other possible solutions that I haven't mentioned, and I would love to know to what extent you, as a developer, are considering the problem of multi-core concurrency, what solution you currently favor, and why. Cheers, Tony.

    Read the article

  • Appropriate design / technologies to handle dynamic string formatting?

    - by Mark W
    recently I was tasked with implementing a way of adding support for versioning of hardware packet specifications to one of our libraries. First a bit of information about the project. We have a hardware library which has classes for each of the various commands we support sending to our hardware. These hardware modules are essentially just lights with a few buttons, and a 2 or 4 digit display. The packets typically follow the format {SOH}AADD{ETX}, where AA is our sentinel action code, and DD is the device ID. These packet specs are different from one command to the next obviously, and the different firmware versions we have support different specifications. For example, on version 1 an action code of 14 may have a spec of {SOH}AADDTEXT{ETX} which would be AA = 14 literal, DD = device ID, TEXT = literal text to display on the device. Then we come out with a revision with adds an extended byte(s) onto the end of the packet like this {SOH}AADDTEXTE{ETX}. Assume the TEXT field is fixed width for this example. We have now added a new field onto the end which could be used to say specify the color or flash rate of the text/buttons. Currently this java library only supports one version of the commands, the latest. In our hardware library we would have a class for this command, say a DisplayTextArgs.java. That class would have fields for the device ID, the text, and the extended byte. The command class would expose a method which generates the string ("{SOH}AADDTEXTE{ETX}") using the value from the class. In practice we would create the Args class as needed, populate the fields, call the method to get our packet string, then ship that down across the CAN. Some of our other commands specification can vary for the same command, on the same version, depending on some runtime state. For example, another command for version 1 may be {SOH}AA{ETX}, where this action code clears all of the modules behind a specific controller device of their text. We may overload this packet to have option fields with multiple meanings like {SOH}AAOC{ETX} where OC is literal text, which tells the controller to only clear text on a specific module type, and to leave the others alone, or the spec could also have an option format of {SOH}AADD{ETX} to clear the text off a a specific device. Currently, in the method which generates the packet string, we would evaluate fields on the args class to determine which spec we will be using when formatting the packet. For this example, it would be along the lines of: if m_DeviceID != null then use {SOH}AADD{ETX} else if m_ClearOCs == true then use {SOH}AAOC{EXT} else use {SOH}AA{ETX} I had considered using XML, or a database to store String.format format strings, which were linked to firmware version numbers in some table. We would load them up at startup, and pass in the version number of the hardwares firmware we are currently using (I can query the devices for their firmware version, but the version is not included in all packets as part of the spec). This breaks down pretty quickly because of the dynamic nature of how we select which version of the command to use. I then considered using a rule engine to possibly build out expressions which could be interpreted at runtume, to evaluate the args class's state, and from that select the appropriate format string to use, but my brief look at rule engines for java scared me away with its complexity. While it seems like it might be a viable solution, it seems overly complex. So this is why I am here. I wouldn't say design is my strongest skill, and im having trouble figuring out the best way to approach this problem. I probably wont be able to radically change the args classes, but if the trade off was good enough, I may be able to convince my boss that the change is appropriate. What I would like from the community is some feedback on some best practices / design methodologies / API or other resources which I could use to accomplish: Logic to determine which set of commands to use for a given firmware version Of those command, which version of each command to use (based on the args classes state) Keep the rules logic decoupled from the application so as to avoid needing releases for every firmware version Be simple enough so I don't need weeks of study and trial and error to implement effectively.

    Read the article

  • Taking a look at the Mindscape Phone Elements for WP7.

    - by mbcrump
    I recently heard that Mindscape HQ had released the Windows Phone 7 Controls and had to take a look at them. 100 FREE LICENSE GIVEAWAY! Before we get to the screenshots, you will be pleased to learn that my usergroup called “Allaboutxaml” has partnered with Mindscape HQ and are giving away 100 license. You can check out the site here to get your free controls. But please hurry as after the 100 are gone then I will not have any more to give away! A few links to read first: The official blog post from Mindscape HQ detailing the release. They also have the links to download the trial and get started. The phone elements official forum! So, let’s get started. After you download the controls go ahead and double click the .exe to get started installing them. After everything is installed then you will have the following program group. I’d recommend clicking on the Phone Elements Directory to get started: Let’s go over each element: Bin – Just the .DLL that’s required to use Mindscape HQ WP7 Controls in your project. Documentation – a .CHM File that will show you how to get your project up and running quickly. Resources – Just a few image files Samples – This is a full WP7 project that details every controls. The thing that I was most interested in was how the controls look and is it easy to use. I always believed if your paying for controls then you should hold my hand through using them. You will be pleased to know that Mindscape made it very easy to use. First, the WP7 project in the “Samples” folder just works. Double click on the solution file and you are in an emulator looking at the controls. Since you have the source code for every control, it’s a matter of copying/pasting the code in your project to get it to work. What I did, was play with the controls in the emulator until I found one I could use. Then I looked at the Visual Studio solution and found the Page that contained the control. Mindscape makes this very easy to do with their layout: So, the one that I was interested in was the Looping List Box.  Here is a demo of it: I wanted to see how they were populating the numbers 1-100 so I found the code behind and noticed it was just this one line. LoopingListBox1.DataSource = new NumericDataSource() { MinValue = 1, MaxValue = 100 }; In case you are wondering, the NumericDataSource was created by MindScape and you can view the Declaration to find out more about it:   So, the controls are pretty much that easy to use. Play with the emulator and find the control you want to use. Find the XAML file in the Sample Solution and copy/paste the code. Let’s go ahead and take a look at the controls available: They also have a great variety of Charting controls: Overall it’s a nice set of WP7 controls. Feel free to leave a comment below on anything you would like to see and I will make sure that Mindscape HQ get the message. Don’t forget if you are the first 100 people reading this article then you will get a free license.  Subscribe to my feed CodeProject

    Read the article

< Previous Page | 189 190 191 192 193 194 195 196 197 198 199 200  | Next Page >