Search Results

Search found 38660 results on 1547 pages for 'sql index'.

Page 193/1547 | < Previous Page | 189 190 191 192 193 194 195 196 197 198 199 200  | Next Page >

  • So…is it a Seek or a Scan?

    - by Paul White
    You’re probably most familiar with the terms ‘Seek’ and ‘Scan’ from the graphical plans produced by SQL Server Management Studio (SSMS).  The image to the left shows the most common ones, with the three types of scan at the top, followed by four types of seek.  You might look to the SSMS tool-tip descriptions to explain the differences between them: Not hugely helpful are they?  Both mention scans and ranges (nothing about seeks) and the Index Seek description implies that it will not scan the index entirely (which isn’t necessarily true). Recall also yesterday’s post where we saw two Clustered Index Seek operations doing very different things.  The first Seek performed 63 single-row seeking operations; and the second performed a ‘Range Scan’ (more on those later in this post).  I hope you agree that those were two very different operations, and perhaps you are wondering why there aren’t different graphical plan icons for Range Scans and Seeks?  I have often wondered about that, and the first person to mention it after yesterday’s post was Erin Stellato (twitter | blog): Before we go on to make sense of all this, let’s look at another example of how SQL Server confusingly mixes the terms ‘Scan’ and ‘Seek’ in different contexts.  The diagram below shows a very simple heap table with two columns, one of which is the non-clustered Primary Key, and the other has a non-unique non-clustered index defined on it.  The right hand side of the diagram shows a simple query, it’s associated query plan, and a couple of extracts from the SSMS tool-tip and Properties windows. Notice the ‘scan direction’ entry in the Properties window snippet.  Is this a seek or a scan?  The different references to Scans and Seeks are even more pronounced in the XML plan output that the graphical plan is based on.  This fragment is what lies behind the single Index Seek icon shown above: You’ll find the same confusing references to Seeks and Scans throughout the product and its documentation. Making Sense of Seeks Let’s forget all about scans for a moment, and think purely about seeks.  Loosely speaking, a seek is the process of navigating an index B-tree to find a particular index record, most often at the leaf level.  A seek starts at the root and navigates down through the levels of the index to find the point of interest: Singleton Lookups The simplest sort of seek predicate performs this traversal to find (at most) a single record.  This is the case when we search for a single value using a unique index and an equality predicate.  It should be readily apparent that this type of search will either find one record, or none at all.  This operation is known as a singleton lookup.  Given the example table from before, the following query is an example of a singleton lookup seek: Sadly, there’s nothing in the graphical plan or XML output to show that this is a singleton lookup – you have to infer it from the fact that this is a single-value equality seek on a unique index.  The other common examples of a singleton lookup are bookmark lookups – both the RID and Key Lookup forms are singleton lookups (an RID lookup finds a single record in a heap from the unique row locator, and a Key Lookup does much the same thing on a clustered table).  If you happen to run your query with STATISTICS IO ON, you will notice that ‘Scan Count’ is always zero for a singleton lookup. Range Scans The other type of seek predicate is a ‘seek plus range scan’, which I will refer to simply as a range scan.  The seek operation makes an initial descent into the index structure to find the first leaf row that qualifies, and then performs a range scan (either backwards or forwards in the index) until it reaches the end of the scan range. The ability of a range scan to proceed in either direction comes about because index pages at the same level are connected by a doubly-linked list – each page has a pointer to the previous page (in logical key order) as well as a pointer to the following page.  The doubly-linked list is represented by the green and red dotted arrows in the index diagram presented earlier.  One subtle (but important) point is that the notion of a ‘forward’ or ‘backward’ scan applies to the logical key order defined when the index was built.  In the present case, the non-clustered primary key index was created as follows: CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col ASC) ) ; Notice that the primary key index specifies an ascending sort order for the single key column.  This means that a forward scan of the index will retrieve keys in ascending order, while a backward scan would retrieve keys in descending key order.  If the index had been created instead on key_col DESC, a forward scan would retrieve keys in descending order, and a backward scan would return keys in ascending order. A range scan seek predicate may have a Start condition, an End condition, or both.  Where one is missing, the scan starts (or ends) at one extreme end of the index, depending on the scan direction.  Some examples might help clarify that: the following diagram shows four queries, each of which performs a single seek against a column holding every integer from 1 to 100 inclusive.  The results from each query are shown in the blue columns, and relevant attributes from the Properties window appear on the right: Query 1 specifies that all key_col values less than 5 should be returned in ascending order.  The query plan achieves this by seeking to the start of the index leaf (there is no explicit starting value) and scanning forward until the End condition (key_col < 5) is no longer satisfied (SQL Server knows it can stop looking as soon as it finds a key_col value that isn’t less than 5 because all later index entries are guaranteed to sort higher). Query 2 asks for key_col values greater than 95, in descending order.  SQL Server returns these results by seeking to the end of the index, and scanning backwards (in descending key order) until it comes across a row that isn’t greater than 95.  Sharp-eyed readers may notice that the end-of-scan condition is shown as a Start range value.  This is a bug in the XML show plan which bubbles up to the Properties window – when a backward scan is performed, the roles of the Start and End values are reversed, but the plan does not reflect that.  Oh well. Query 3 looks for key_col values that are greater than or equal to 10, and less than 15, in ascending order.  This time, SQL Server seeks to the first index record that matches the Start condition (key_col >= 10) and then scans forward through the leaf pages until the End condition (key_col < 15) is no longer met. Query 4 performs much the same sort of operation as Query 3, but requests the output in descending order.  Again, we have to mentally reverse the Start and End conditions because of the bug, but otherwise the process is the same as always: SQL Server finds the highest-sorting record that meets the condition ‘key_col < 25’ and scans backward until ‘key_col >= 20’ is no longer true. One final point to note: seek operations always have the Ordered: True attribute.  This means that the operator always produces rows in a sorted order, either ascending or descending depending on how the index was defined, and whether the scan part of the operation is forward or backward.  You cannot rely on this sort order in your queries of course (you must always specify an ORDER BY clause if order is important) but SQL Server can make use of the sort order internally.  In the four queries above, the query optimizer was able to avoid an explicit Sort operator to honour the ORDER BY clause, for example. Multiple Seek Predicates As we saw yesterday, a single index seek plan operator can contain one or more seek predicates.  These seek predicates can either be all singleton seeks or all range scans – SQL Server does not mix them.  For example, you might expect the following query to contain two seek predicates, a singleton seek to find the single record in the unique index where key_col = 10, and a range scan to find the key_col values between 15 and 20: SELECT key_col FROM dbo.Example WHERE key_col = 10 OR key_col BETWEEN 15 AND 20 ORDER BY key_col ASC ; In fact, SQL Server transforms the singleton seek (key_col = 10) to the equivalent range scan, Start:[key_col >= 10], End:[key_col <= 10].  This allows both range scans to be evaluated by a single seek operator.  To be clear, this query results in two range scans: one from 10 to 10, and one from 15 to 20. Final Thoughts That’s it for today – tomorrow we’ll look at monitoring singleton lookups and range scans, and I’ll show you a seek on a heap table. Yes, a seek.  On a heap.  Not an index! If you would like to run the queries in this post for yourself, there’s a script below.  Thanks for reading! IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; -- ================ -- Singleton lookup -- ================ ; -- Single value equality seek in a unique index -- Scan count = 0 when STATISTIS IO is ON -- Check the XML SHOWPLAN SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 32 ; -- =========== -- Range Scans -- =========== ; -- Query 1 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col <= 5 ORDER BY E.key_col ASC ; -- Query 2 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col > 95 ORDER BY E.key_col DESC ; -- Query 3 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 10 AND E.key_col < 15 ORDER BY E.key_col ASC ; -- Query 4 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 20 AND E.key_col < 25 ORDER BY E.key_col DESC ; -- Final query (singleton + range = 2 range scans) SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 10 OR E.key_col BETWEEN 15 AND 20 ORDER BY E.key_col ASC ; -- === TIDY UP === DROP TABLE dbo.Example; © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Reading in a 5000 line text file on the Iphone

    - by howsyourface
    Gday, I am trying to create a tiled map for my game, i have had this previously working using other xml methods but i had memory leaks and all sorts of errors. However i had a map load time of about 2.5 - 3 seconds. So i rewrote all of the code using NSMutableStrings and NSStrings. After my best attempt at optomizing it i had a map load time of 10 - 11 seconds, which is far too slow. So i have now rewritten the code using char* arrays, only to now have a load time of 18 seconds -_-. Here is the latest code, i don't know much c so i could have easily botched the whole thing up. FILE* file = fopen(a, "r"); fseek(file, 0L, SEEK_END); length = ftell(file); fseek(file,0L, SEEK_SET); char fileText[length +1]; char buffer[1024];// = malloc(1024); while(fgets(buffer, 1024, file) != NULL) { strncat(fileText, buffer, strlen(buffer)); } fclose(file); [self parseMapFile:fileText]; - (void)parseMapFile:(char*)tiledXML { currentLayerID = 0; currentTileSetID = 0; tileX = 0; tileY = 0; int tmpGid; NSString* tmpName; int tmpTileWidth; int tmpTileHeight; int tilesetCounter = 0; NSString* tmpLayerName; int tmpLayerHeight; int tmpLayerWidth; int layerCounter = 0; tileX = 0; tileY = 0; int tmpFirstGid = 0; int x; int index; char* r; int counter = 0; while ((x = [self findSubstring:tiledXML substring:"\n"]) != 0) { counter ++; char result[x + 1]; r = &result[0]; [self substringIndex:tiledXML index:x newArray:result]; tiledXML += x+2; index = 0; if (counter == 1) { continue; } else if (counter == 2) { char result1[5]; index = [self getStringBetweenStrings:r substring1:"th=\"" substring2:"\"" newArray:result1]; if (r != 0); mapWidth = atoi(result1); r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"ht=\"" substring2:"\"" newArray:result1]; if (r != 0); mapHeight = atoi(result1); r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"th=\"" substring2:"\"" newArray:result1]; if (r != 0); tileWidth = atoi(result1); r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"ht=\"" substring2:"\"" newArray:result1]; if (r != 0); tileHeight = atoi(result1); continue; } char result2[50]; char result3[3]; if ((index = [self getStringBetweenStrings:r substring1:" gid=\"" substring2:"\"" newArray:result3]) != 0) { tmpGid = atoi(result3); free(result2); if(tmpGid == 0) { [currentLayer addTileAtX:tileX y:tileY tileSetID:-1 tileID:0 globalID:0]; } else { [currentLayer addTileAtX:tileX y:tileY tileSetID:[currentTileSet tileSetID] tileID:tmpGid - [currentTileSet firstGID] globalID:tmpGid]; } tileX ++; if (tileX > [currentLayer layerWidth]-1) { tileY ++; tileX = 0; } } else if ((index = [self getStringBetweenStrings:r substring1:"tgid=\"" substring2:"\"" newArray:result2]) != 0) { tmpFirstGid = atoi(result2); r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"me=\"" substring2:"\"" newArray:result2]; if (r != 0); tmpName = [NSString stringWithUTF8String:result2]; r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"th=\"" substring2:"\"" newArray:result2]; if (r != 0); tmpTileWidth = atoi(result2); r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"ht=\"" substring2:"\"" newArray:result2]; if (r != 0); tmpTileHeight = atoi(result2); } else if ((index = [self getStringBetweenStrings:r substring1:"rce=\"" substring2:"\"" newArray:result2]) != 0) { currentTileSet = [[TileSet alloc] initWithImageNamed:[NSString stringWithUTF8String:result2] name:tmpName tileSetID:tilesetCounter firstGID:tmpFirstGid tileWidth:tmpTileWidth tileHeight:tmpTileHeight spacing:0]; [tileSets addObject:currentTileSet]; [currentTileSet release]; tilesetCounter ++; } else if ((index = [self getStringBetweenStrings:r substring1:"r name=\"" substring2:"\"" newArray:result2]) != 0) { tileX = 0; tileY = 0; tmpLayerName = [NSString stringWithUTF8String:result2]; r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"th=\"" substring2:"\"" newArray:result2]; if (r != 0); tmpLayerWidth = atoi(result2); r += index +1; index = 0; index = [self getStringBetweenStrings:r substring1:"ht=\"" substring2:"\"" newArray:result2]; if (r != 0); tmpLayerHeight = atoi(result2); currentLayer = [[Layer alloc] initWithName:tmpLayerName layerID:layerCounter layerWidth:tmpLayerWidth layerHeight:tmpLayerHeight]; [layers addObject:currentLayer]; [currentLayer release]; layerCounter ++; } } } -(void)substringIndex:(char*)c index:(int)x newArray:(char*)result { result[0] = 0; for (int i = 0; i < strlen(c); i++) { result[i] = c[i]; if (i == x) { result[i+1] = '\0'; break; } } } -(int)findSubstring:(char*)c substring:(char*)s { int sCounter = 0; int index = 0; int d; for (int i = 0; i < strlen(c); i ++) { if (i > 500)//max line size break; if (c[i] == s[sCounter]) { d = strlen(s); sCounter ++; if (d > sCounter) { } else { index = i - (d); break; } } else sCounter = 0; } return index; } -(int)getStringBetweenStrings:(char*)c substring1:(char*)s substring2:(char*)s2 newArray:(char*)result { int sCounter = 0; int sCounter2 = 0; int index = 0; int index2 = 0; int d; for (int i = 0; i < strlen(c); i ++) { if (index != 0) { if (c[i] == s2[sCounter2]) { d = strlen(s2); sCounter2 ++; if (d > sCounter2) { } else { index2 = i - (d); break; } } else sCounter2 = 0; } else { if (c[i] == s[sCounter]) { d = strlen(s); sCounter ++; if (d > sCounter) { } else { index = i; } } else sCounter = 0; } } if (index != 0 && index2 != 0) [self substringIndex:(c + index+1) index:index2-index-1 newArray:result]; return index; } (I know it's a lot of code to be putting in here) I thought the by using basic char arrays i could drastically increase the performance, at least over the initial node based code that i was replacing. Thanks for all your efforts.

    Read the article

  • Unable to Install SQL Server 2008 on Win Server 2008 R2 Datacenter

    - by MikeKusold
    I have been trying for the past three days to install SQL Server 2008 with SharePoint integrated mode in VMware Player, however I keep getting the following error: Reporting Services in SharePoint integrated mode is not supported for WORKGROUP edition I setup ADDS and have my computer part of that domain (therefore not a WORKGROUP). I am currently at my wits end and any help would be appreciated. Current Roles installed: Application Server, Active Directory Domain Services, Web Server (IIS) Features: Desktop Experience, Group Policy Management, Ink and Handwriting Services, Remote Server Administration Tools, Windows Process Activation Service, .NET Framework 3.5.1 Features

    Read the article

  • How do I configure the number of worker threads used by SqlServer 2005 Agent

    - by Decker
    How can I increase the limit of worker threads from the default 10 for SQL Server 2005 SqlAgent? I have 9 jobs that run almost continuously and that leaves only one available thread for the rest of the scheduled jobs. Oftentimes, when no thread is available, I will see the jobs in "Waiting for worker thread" state. I'd like to increase the number to about 12 (which should do the trick for me). Any idea where this is set?

    Read the article

  • Linked SQL Server to Oracle

    - by Jerid
    Getting this error when executing SQL Server query only when connected via remote Desktop. When running the query from desktop, no problem. Is this a tsnNames issue? Linked server to Oracle 9i Server: Msg 7399, Level 16, State 1, Line 1 OLE DB provider 'MSDAORA' reported an error. [OLE/DB provider returned message: Unspecified error] [OLE/DB provider returned message: ORA-01041: internal error. hostdef extension doesn't exist ] OLE DB error trace [OLE/DB Provider 'MSDAORA' ICommandText::Execute returned 0x80004005: ].

    Read the article

  • Can't delete a SQL Database?

    - by rlb.usa
    I want to delete some SQL Databases on my server, but I'm having problems. My login has the roles: public dbcreator serveradmin When I right click the database and hit Delete, it says that Delete backup history failed for server 'MYSERVER' (Microsoft.SqlServer.Smo) Additional Information: The EXECUTE permission was denied on the object 'sp_delete_database_backuphistory' How do I delete these databases?

    Read the article

  • Do You Develop Your PL/SQL Directly in the Database?

    - by thatjeffsmith
    I know this sounds like a REALLY weird question for many of you. Let me make one thing clear right away though, I am NOT talking about creating and replacing PLSQL objects directly into a production environment. Do we really need to talk about developers in production again? No, what I am talking about is a developer doing their work from start to finish in a development database. These are generally available to a development team for building the next and greatest version of your databases and database applications. And of course you are using a third party source control system, right? Last week I was in Tampa, FL presenting at the monthly Suncoast Oracle User’s Group meeting. Had a wonderful time, great questions and back-and-forth. My favorite heckler was there, @oraclenered, AKA Chet Justice.  I was in the middle of talking about how it’s better to do your PLSQL work in the Procedure Editor when Chet pipes up - Don’t do it that way, that’s wrong Just press play to edit the PLSQL directly in the database Or something along those lines. I didn’t get what the heck he was talking about. I had been showing how the Procedure Editor gives you much better feedback and support when working with PLSQL. After a few back-and-forths I got to what Chet’s main objection was, and again I’m going to paraphrase: You should develop offline in your SQL worksheet. Don’t do anything in the database until it’s done. I didn’t understand. Were developers expected to be able to internalize and mentally model the PL/SQL engine, see where their errors were, etc in these offline scripts? No, please give Chet more credit than that. What is the ideal Oracle Development Environment? If I were back in the ‘real world’ of database development, I would do all of my development outside of the ‘dev’ instance. My development process looks a little something like this: Do I have a program that already does something like this – copy and paste Has some smart person already written something like this – copy and paste Start typing in the white-screen-of-panic and bungle along until I get something that half-works Tweek, debug, test until I have fooled my subconscious into thinking that it’s ‘good’ As you might understand, I don’t want my co-workers to see the evolution of my code. It would seriously freak them out and I probably wouldn’t have a job anymore (don’t remind me that I already worked myself out of development.) So here’s what I like to do: Run a Local Instance of Oracle on my Machine and Develop My Code Privately I take a copy of development – that’s what source control is for afterall – and run it where no one else can see it. I now get to be my own DBA. If I need a trace – no problem. If I want to run an ASH report, no worries. If I need to create a directory or run some DataPump jobs, that’s all on me. Now when I get my code ‘up to snuff,’ then I will check it into source control and compile it into the official development instance. So my teammates suddenly go from seeing no program, to a mostly complete program. Is this right? If not, it doesn’t seem wrong to me. And after talking to Chet in the car on the way to the local cigar bar, it seems that he’s of the same opinion. So what’s so wrong with coding directly into a development instance? I think ‘wrong’ is a bit strong here. But there are a few pitfalls that you might want to look out for. A few come to mind – and I’m sure Chet could add many more as my memory fails me at the moment. But here goes: Development instance isn’t properly backed up – would hate to lose that work Development is wiped once a week and copied over from Prod – don’t laugh Someone clobbers your code You accidentally on purpose clobber someone else’s code The more developers you have in a single fish pond, the greater chance something ‘bad’ will happen This Isn’t One of Those Posts Where I Tell You What You Should Be Doing I realize many shops won’t be open to allowing developers to stage their own local copies of Oracle. But I would at least be aware that many of your developers are probably doing this anyway – with or without your tacit approval. SQL Developer can do local file tracking, but you should be using Source Control too! I will say that I think it’s imperative that you control your source code outside the database, even if your development team is comprised of a single developer. Store your source code in a file, and control that file in something like Subversion. You would be shocked at the number of teams that do not use a source control system. I know I continue to be shocked no matter how many times I meet another team running by the seat-of-their-pants. I’d love to hear how your development process works. And of course I want to know how SQL Developer and the rest of our tools can better support your processes. And one last thing, if you want a fun and interactive presentation experience, be sure to have Chet in the room

    Read the article

  • Access to SQL Server when administrator account deleted

    - by Shiraz Bhaiji
    An interesting situation here. We have a database server, used for testing only, where someone went in and deleted the administrator login. Since this is a test server the was no other admin level login on the server. Is there a way to get access to the server again without reinstalling SQL Server? We do not need the data in the databases, these are droped and recreated everytime the tests are run.

    Read the article

  • MERGE Bug with Filtered Indexes

    - by Paul White
    A MERGE statement can fail, and incorrectly report a unique key violation when: The target table uses a unique filtered index; and No key column of the filtered index is updated; and A column from the filtering condition is updated; and Transient key violations are possible Example Tables Say we have two tables, one that is the target of a MERGE statement, and another that contains updates to be applied to the target.  The target table contains three columns, an integer primary key, a single character alternate key, and a status code column.  A filtered unique index exists on the alternate key, but is only enforced where the status code is ‘a’: CREATE TABLE #Target ( pk integer NOT NULL, ak character(1) NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) );   CREATE UNIQUE INDEX uq1 ON #Target (ak) INCLUDE (status_code) WHERE status_code = 'a'; The changes table contains just an integer primary key (to identify the target row to change) and the new status code: CREATE TABLE #Changes ( pk integer NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) ); Sample Data The sample data for the example is: INSERT #Target (pk, ak, status_code) VALUES (1, 'A', 'a'), (2, 'B', 'a'), (3, 'C', 'a'), (4, 'A', 'd');   INSERT #Changes (pk, status_code) VALUES (1, 'd'), (4, 'a');          Target                     Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ a           ¦    ¦  1 ¦ d           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ d           ¦ +-----------------------+ The target table’s alternate key (ak) column is unique, for rows where status_code = ‘a’.  Applying the changes to the target will change row 1 from status ‘a’ to status ‘d’, and row 4 from status ‘d’ to status ‘a’.  The result of applying all the changes will still satisfy the filtered unique index, because the ‘A’ in row 1 will be deleted from the index and the ‘A’ in row 4 will be added. Merge Test One Let’s now execute a MERGE statement to apply the changes: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; The MERGE changes the two target rows as expected.  The updated target table now contains: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦ <—changed from ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦ <—changed from ‘d’ +-----------------------+ Merge Test Two Now let’s repopulate the changes table to reverse the updates we just performed: TRUNCATE TABLE #Changes;   INSERT #Changes (pk, status_code) VALUES (1, 'a'), (4, 'd'); This will change row 1 back to status ‘a’ and row 4 back to status ‘d’.  As a reminder, the current state of the tables is:          Target                        Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ d           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ a           ¦ +-----------------------+ We execute the same MERGE statement: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; However this time we receive the following message: Msg 2601, Level 14, State 1, Line 1 Cannot insert duplicate key row in object 'dbo.#Target' with unique index 'uq1'. The duplicate key value is (A). The statement has been terminated. Applying the changes using UPDATE Let’s now rewrite the MERGE to use UPDATE instead: UPDATE t SET status_code = c.status_code FROM #Target AS t JOIN #Changes AS c ON t.pk = c.pk WHERE c.status_code <> t.status_code; This query succeeds where the MERGE failed.  The two rows are updated as expected: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ a           ¦ <—changed back to ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ d           ¦ <—changed back to ‘d’ +-----------------------+ What went wrong with the MERGE? In this test, the MERGE query execution happens to apply the changes in the order of the ‘pk’ column. In test one, this was not a problem: row 1 is removed from the unique filtered index by changing status_code from ‘a’ to ‘d’ before row 4 is added.  At no point does the table contain two rows where ak = ‘A’ and status_code = ‘a’. In test two, however, the first change was to change row 1 from status ‘d’ to status ‘a’.  This change means there would be two rows in the filtered unique index where ak = ‘A’ (both row 1 and row 4 meet the index filtering criteria ‘status_code = a’). The storage engine does not allow the query processor to violate a unique key (unless IGNORE_DUP_KEY is ON, but that is a different story, and doesn’t apply to MERGE in any case).  This strict rule applies regardless of the fact that if all changes were applied, there would be no unique key violation (row 4 would eventually be changed from ‘a’ to ‘d’, removing it from the filtered unique index, and resolving the key violation). Why it went wrong The query optimizer usually detects when this sort of temporary uniqueness violation could occur, and builds a plan that avoids the issue.  I wrote about this a couple of years ago in my post Beware Sneaky Reads with Unique Indexes (you can read more about the details on pages 495-497 of Microsoft SQL Server 2008 Internals or in Craig Freedman’s blog post on maintaining unique indexes).  To summarize though, the optimizer introduces Split, Filter, Sort, and Collapse operators into the query plan to: Split each row update into delete followed by an inserts Filter out rows that would not change the index (due to the filter on the index, or a non-updating update) Sort the resulting stream by index key, with deletes before inserts Collapse delete/insert pairs on the same index key back into an update The effect of all this is that only net changes are applied to an index (as one or more insert, update, and/or delete operations).  In this case, the net effect is a single update of the filtered unique index: changing the row for ak = ‘A’ from pk = 4 to pk = 1.  In case that is less than 100% clear, let’s look at the operation in test two again:          Target                     Changes                   Result +-----------------------+    +------------------+    +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦    ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦    ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ d           ¦    ¦  1 ¦ A  ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦    ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+    ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦                            ¦  4 ¦ A  ¦ d           ¦ +-----------------------+                            +-----------------------+ From the filtered index’s point of view (filtered for status_code = ‘a’ and shown in nonclustered index key order) the overall effect of the query is:   Before           After +---------+    +---------+ ¦ pk ¦ ak ¦    ¦ pk ¦ ak ¦ ¦----+----¦    ¦----+----¦ ¦  4 ¦ A  ¦    ¦  1 ¦ A  ¦ ¦  2 ¦ B  ¦    ¦  2 ¦ B  ¦ ¦  3 ¦ C  ¦    ¦  3 ¦ C  ¦ +---------+    +---------+ The single net change there is a change of pk from 4 to 1 for the nonclustered index entry ak = ‘A’.  This is the magic performed by the split, sort, and collapse.  Notice in particular how the original changes to the index key (on the ‘ak’ column) have been transformed into an update of a non-key column (pk is included in the nonclustered index).  By not updating any nonclustered index keys, we are guaranteed to avoid transient key violations. The Execution Plans The estimated MERGE execution plan that produces the incorrect key-violation error looks like this (click to enlarge in a new window): The successful UPDATE execution plan is (click to enlarge in a new window): The MERGE execution plan is a narrow (per-row) update.  The single Clustered Index Merge operator maintains both the clustered index and the filtered nonclustered index.  The UPDATE plan is a wide (per-index) update.  The clustered index is maintained first, then the Split, Filter, Sort, Collapse sequence is applied before the nonclustered index is separately maintained. There is always a wide update plan for any query that modifies the database. The narrow form is a performance optimization where the number of rows is expected to be relatively small, and is not available for all operations.  One of the operations that should disallow a narrow plan is maintaining a unique index where intermediate key violations could occur. Workarounds The MERGE can be made to work (producing a wide update plan with split, sort, and collapse) by: Adding all columns referenced in the filtered index’s WHERE clause to the index key (INCLUDE is not sufficient); or Executing the query with trace flag 8790 set e.g. OPTION (QUERYTRACEON 8790). Undocumented trace flag 8790 forces a wide update plan for any data-changing query (remember that a wide update plan is always possible).  Either change will produce a successfully-executing wide update plan for the MERGE that failed previously. Conclusion The optimizer fails to spot the possibility of transient unique key violations with MERGE under the conditions listed at the start of this post.  It incorrectly chooses a narrow plan for the MERGE, which cannot provide the protection of a split/sort/collapse sequence for the nonclustered index maintenance. The MERGE plan may fail at execution time depending on the order in which rows are processed, and the distribution of data in the database.  Worse, a previously solid MERGE query may suddenly start to fail unpredictably if a filtered unique index is added to the merge target table at any point. Connect bug filed here Tests performed on SQL Server 2012 SP1 CUI (build 11.0.3321) x64 Developer Edition © 2012 Paul White – All Rights Reserved Twitter: @SQL_Kiwi Email: [email protected]

    Read the article

  • Using SQL Source Control with Fortress or Vault &ndash; Part 1

    - by AjarnMark
    I am fanatical when it comes to managing the source code for my company.  Everything that we build (in source form) gets put into our source control management system.  And I’m not just talking about the UI and middle-tier code written in C# and ASP.NET, but also the back-end database stuff, which at times has been a pain.  We even script out our Scheduled Jobs and keep a copy of those under source control. The UI and middle-tier stuff has long been easy to manage as we mostly use Visual Studio which has integration with source control systems built in.  But the SQL code has been a little harder to deal with.  I have been doing this for many years, well before Microsoft came up with Data Dude, so I had already established a methodology that, while not as smooth as VS, nonetheless let me keep things well controlled, and allowed doing my database development in my tool of choice, Query Analyzer in days gone by, and now SQL Server Management Studio.  It just makes sense to me that if I’m going to do database development, let’s use the database tool set.  (Although, I have to admit I was pretty impressed with the demo of Juneau that Don Box did at the PASS Summit this year.)  So as I was saying, I had developed a methodology that worked well for us (and I’ll probably outline in a future post) but it could use some improvement. When Solutions and Projects were first introduced in SQL Management Studio, I thought we were finally going to get our same experience that we have in Visual Studio.  Well, let’s say I was underwhelmed by Version 1 in SQL 2005, and apparently so were enough other people that by the time SQL 2008 came out, Microsoft decided that Solutions and Projects would be deprecated and completely removed from a future version.  So much for that idea. Then I came across SQL Source Control from Red-Gate.  I have used several tools from Red-Gate in the past, including my favorites SQL Compare, SQL Prompt, and SQL Refactor.  SQL Prompt is worth its weight in gold, and the others are great, too.  Earlier this year, we upgraded from our earlier product bundles to the new Developer Bundle, and in the process added SQL Source Control to our collection.  I thought this might really be the golden ticket I was looking for.  But my hopes were quickly dashed when I discovered that it only integrated with Microsoft Team Foundation Server and Subversion as the source code repositories.  We have been using SourceGear’s Vault and Fortress products for years, and I wholeheartedly endorse them.  So I was out of luck for the time being, although there were a number of people voting for Vault/Fortress support on their feedback forum (as did I) so I had hope that maybe next year I could look at it again. But just a couple of weeks ago, I was pleasantly surprised to receive notice in my email that Red-Gate had an Early Access version of SQL Source Control that worked with Vault and Fortress, so I quickly downloaded it and have been putting it through its paces.  So far, I really like what I see, and I have been quite impressed with Red-Gate’s responsiveness when I have contacted them with any issues or concerns that I have had.  I have had several communications with Gyorgy Pocsi at Red-Gate and he has been immensely helpful and responsive. I must say that development with SQL Source Control is very different from what I have been used to.  This post is getting long enough, so I’ll save some of the details for a separate write-up, but the short story is that in my regular mode, it’s all about the script files.  Script files are King and you dare not make a change to the database other than by way of a script file, or you are in deep trouble.  With SQL Source Control, you make your changes to your development database however you like.  I still prefer writing most of my changes in T-SQL, but you can also use any of the GUI functionality of SSMS to make your changes, and SQL Source Control “manages” the script for you.  Basically, when you first link your database to source control, the tool generates scripts for every primary object (tables and their indexes are together in one script, not broken out into separate scripts like DB Projects do) and those scripts are checked into your source control.  So, if you needed to, you could still do a GET from your source control repository and build the database from scratch.  But for the day-to-day work, SQL Source Control uses the same technique as SQL Compare to determine what changes have been made to your development database and how to represent those in your repository scripts.  I think that once I retrain myself to just work in the database and quit worrying about having to find and open the right script file, that this will actually make us more efficient. And for deployment purposes, SQL Source Control integrates with the full SQL Compare utility to produce a synchronization script (or do a live sync).  This is similar in concept to Microsoft’s DACPAC, if you’re familiar with that. If you are not currently keeping your database development efforts under source control, definitely examine this tool.  If you already have a methodology that is working for you, then I still think this is worth a review and comparison to your current approach.  You may find it more efficient.  But remember that the version which integrates with Vault/Fortress is still in pre-release mode, so treat it with a little caution.  I have found it to be fairly stable, but there was one bug that I found which had inconvenient side-effects and could have really been frustrating if I had been running this on my normal active development machine.  However, I can verify that that bug has been fixed in a more recent build version (did I mention Red-Gate’s responsiveness?).

    Read the article

  • trying to install SQL 2008 on Windows 2008 server R2

    - by Nezdet
    Hi I was trying to install MSSQL 2008 server on Windows 2008 server R2 Standard Machine, but I got this message: Program Compatibility Assistant, And that I should apply SQL server 2008 SP 1 I don't get it? Why doesn't it not work with this version I have? How should I solve this problem?

    Read the article

  • I need Microsoft SQL Clustering/Replication/Scaling Best Practice Resources

    - by efk
    I'm trying to plan for our future scalability of our Microsoft SQL 2000/2005/2008 infrastructure. I'm having a hard time finding good information on how to best engineer such services, how to best keep these services available, and how to scale them as load increases. Can someone point me in the right direction? Books, online resources, videos, anything would be helpful.

    Read the article

  • Trying to upgrade SQL Server 2008 to R2 but SQL is sleeping or dead?

    - by oJM86o
    I've used the option to upgrade SQL Server 2008 to R2 but I noticed it gets to about 20-30% and it just sits on this screen: I've left it alone for over 2 hours, the PC is definately not frozen cause I can click the help or move the window around but it says "Install_sql_common_core_loc_Cpu64_1033_action: Install Files. Copying new files" for the past 2 hours. I have tried to do the install from a CD as well as a network drive, both with the same issue. Is there anything I can check or do ?

    Read the article

  • In retrospect, has it been a good idea to use three-valued logic for SQL NULL comparisons?

    - by Heinzi
    In SQL, NULL means "unknown value". Thus, every comparison with NULL yields NULL (unknown) rather than TRUE or FALSE. From a conceptional point of view, this three-valued logic makes sense. From a practical point of view, every learner of SQL has, one time or another, made the classic WHERE myField = NULL mistake or learned the hard way that NOT IN does not do what one would expect when NULL values are present. It is my impression (please correct me if I am wrong) that the cases where this three-valued logic helps (e.g. WHERE myField IS NOT NULL AND myField <> 2 can be shortened to WHERE myField <> 2) are rare and, in those cases, people tend to use the longer version anyway for clarity, just like you would add a comment when using a clever, non-obvious hack. Is there some obvious advantage that I am missing? Or is there a general consensus among the development community that this has been a mistake?

    Read the article

  • MYSQL Installation Problem...

    - by Gopal
    I was downloaded the MYSQL from this link http://dev.mysql.com/downloads/mysql/ But i cannot able to find the Installation file... How to create database & Table in mysql? It will work like SQL server or ? Need Help

    Read the article

< Previous Page | 189 190 191 192 193 194 195 196 197 198 199 200  | Next Page >