Search Results

Search found 24675 results on 987 pages for 'table'.

Page 193/987 | < Previous Page | 189 190 191 192 193 194 195 196 197 198 199 200  | Next Page >

  • sports league database design

    - by John
    Hello, I'm developing a database to store statistics for a sports league. I'd like to show several tables: - league table that indicates the position of the team in the current and previous fixture - table that shows the position of a team in every fixture in the championship I have a matches table: Matches (IdMatch, IdTeam1, IdTeam2, GoalsTeam1, GoalsTeam2) Whith this table I can calculate the total points of every team based on the matches the team played. But every time I want to show the league table I have to calculate the points. Also I have a problem to calculate in which position classified a team in the last 10 fixtures cause I have to make 10 queries. To store the league table for every fixture in a database table is another approach, but every time I change a match already played I have to recalculate every fixture from there... Is there a better approach for this problem? Thanks

    Read the article

  • mysql codeigniter active record m:m deletion

    - by sea_1987
    Hi There, I have a table 2 tables that have a m:m relationship, what I can wanting is that when I delete a row from one of the tables I want the row in the joining table to be deleted as well, my sql is as follow, Table 1 CREATE TABLE IF NOT EXISTS `job_feed` ( `id` int(11) NOT NULL AUTO_INCREMENT, `body` text NOT NULL, `date_posted` int(10) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3 ; Table 2 CREATE TABLE IF NOT EXISTS `job_feed_has_employer_details` ( `job_feed_id` int(11) NOT NULL, `employer_details_id` int(11) NOT NULL, PRIMARY KEY (`job_feed_id`,`employer_details_id`), KEY `fk_job_feed_has_employer_details_job_feed1` (`job_feed_id`), KEY `fk_job_feed_has_employer_details_employer_details1` (`employer_details_id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; So what I am wanting to do is, if the a row is deleted from table1 and has an id of 1 I want the row in table to that also has that idea as part of the relationship also. I want to do this in keeping with codeigniters active record class I currently have this, public function deleteJobFeed($feed_id) { $this->db->where('id', $feed_id) ->delete('job_feed'); return $feed_id; }

    Read the article

  • How to use jQuery "$.when" method?

    - by Uder Moreira
    I don't understand from jQuery documentation how "$.when" method works. I'm am new in jQuery, so sorry if my question is too simple. I am trying to do something like this: var tableProgress; tableProgress = "<table id='table-progress'><tr><td></td></tr></table>" $.when( $("#send-one").html('done. ' + tableProgress) ).done( function() { $('#table-progress').dataTable(); } ); It does not work, I think it's because .dataTable() pluggin can't find the table so I am trying to use jQuery $.when. What I need is: use .datatable pluggin in a table that is inserted in $("#send-one").html('done. ' + tableProgress) but, using .datatable() directly may not be synchronous to the insertion. I also tryied: $("#send-one").html('done. ' + tableProgress); $('#table-progress').dataTable(); Could you please help me?

    Read the article

  • Sql server Stored Procedure

    - by user177883
    I m passing a variable to stored procedure, i want the proc to make a look up to another table and get the primary key of the table and insert that value to the table. Table A: pk_id int, user varchar Table B: userKey int When i invoke sp_howto, and pass user to it, i want to it to get the pk_id from table A and insert it to table B userKey. @res = select userKey from TableA where user=@user insert into tableB (userKey) values (@res) Does this work? and what if I have many keys I want to populate like this?

    Read the article

  • Using sed with html data

    - by StackedCrooked
    I'm having some problems using sed in combination with html. The following sample illustrates the problem: HTML="<html><body>ENTRY</body><html>" TABLE="<table></table>" echo $HTML | sed -e s/ENTRY/$TABLE/ This outputs: sed: -e expression #1, char 18: unknown option to `s' If I leave out the / from $TABLE so that it becomes <table><table> it works ok. Any ideas on how to fix it?

    Read the article

  • Performance problem on a query.

    - by yapiskan
    Hi, I have a performance problem on a query. First table is a Customer table which has millions records in it. Customer table has a column of email address and some other information about customer. Second table is a CommunicationInfo table which contains just Email addresses. And What I want in here is; how many times the email address in CommunicationInfo table repeats in Customers table. What could be the the most performer query. The basic query that I can explain this situation is; Select ci.Email, count(*) from Customer c left join CommunicationInfo ci on c.Email1 = ci.Email or c.Email2 = ci.Email Group by ci.Email But sure, it takes about 5, 6 minutes in execution. Thanks in Advance.

    Read the article

  • How to deal with 2 almost identical tables

    - by jgritty
    I have a table of baseball stats, something like this: CREATE TABLE batting_stats( ab INTEGER, pa INTEGER, r INTEGER, h INTEGER, hr INTEGER, rbi INTEGER, playerID INTEGER, FOREIGN KEY(playerID) REFERENCES player(playerID) ); But then I have a table of stats that are basically exactly the same, but for a team: CREATE TABLE team_batting_stats( ab INTEGER, pa INTEGER, r INTEGER, h INTEGER, hr INTEGER, rbi INTEGER, teamID INTEGER, FOREIGN KEY(teamID) REFERENCES team(teamID) ); My first instinct is to scrap the Foreign key and generalize the ID, but I still have a problem, I have these 2 tables, and they can't have overlapping IDs: CREATE TABLE player( playerID INTEGER PRIMARY KEY, firstname TEXT, lastname TEXT, number INTEGER, teamID INTEGER, FOREIGN KEY(teamID) REFERENCES team(teamID) ); CREATE TABLE team( teamID INTEGER PRIMARY KEY, name TEXT, city TEXT, ); I feel like I'm overlooking something obvious that could solve this problem and reduce stats to a single table.

    Read the article

  • SQL SERVER – How to Recover SQL Database Data Deleted by Accident

    - by Pinal Dave
    In Repair a SQL Server database using a transaction log explorer, I showed how to use ApexSQL Log, a SQL Server transaction log viewer, to recover a SQL Server database after a disaster. In this blog, I’ll show you how to use another SQL Server disaster recovery tool from ApexSQL in a situation when data is accidentally deleted. You can download ApexSQL Recover here, install, and play along. With a good SQL Server disaster recovery strategy, data recovery is not a problem. You have a reliable full database backup with valid data, a full database backup and subsequent differential database backups, or a full database backup and a chain of transaction log backups. But not all situations are ideal. Here we’ll address some sub-optimal scenarios, where you can still successfully recover data. If you have only a full database backup This is the least optimal SQL Server disaster recovery strategy, as it doesn’t ensure minimal data loss. For example, data was deleted on Wednesday. Your last full database backup was created on Sunday, three days before the records were deleted. By using the full database backup created on Sunday, you will be able to recover SQL database records that existed in the table on Sunday. If there were any records inserted into the table on Monday or Tuesday, they will be lost forever. The same goes for records modified in this period. This method will not bring back modified records, only the old records that existed on Sunday. If you restore this full database backup, all your changes (intentional and accidental) will be lost and the database will be reverted to the state it had on Sunday. What you have to do is compare the records that were in the table on Sunday to the records on Wednesday, create a synchronization script, and execute it against the Wednesday database. If you have a full database backup followed by differential database backups Let’s say the situation is the same as in the example above, only you create a differential database backup every night. Use the full database backup created on Sunday, and the last differential database backup (created on Tuesday). In this scenario, you will lose only the data inserted and updated after the differential backup created on Tuesday. If you have a full database backup and a chain of transaction log backups This is the SQL Server disaster recovery strategy that provides minimal data loss. With a full chain of transaction logs, you can recover the SQL database to an exact point in time. To provide optimal results, you have to know exactly when the records were deleted, because restoring to a later point will not bring back the records. This method requires restoring the full database backup first. If you have any differential log backup created after the last full database backup, restore the most recent one. Then, restore transaction log backups, one by one, it the order they were created starting with the first created after the restored differential database backup. Now, the table will be in the state before the records were deleted. You have to identify the deleted records, script them and run the script against the original database. Although this method is reliable, it is time-consuming and requires a lot of space on disk. How to easily recover deleted records? The following solution enables you to recover SQL database records even if you have no full or differential database backups and no transaction log backups. To understand how ApexSQL Recover works, I’ll explain what happens when table data is deleted. Table data is stored in data pages. When you delete table records, they are not immediately deleted from the data pages, but marked to be overwritten by new records. Such records are not shown as existing anymore, but ApexSQL Recover can read them and create undo script for them. How long will deleted records stay in the MDF file? It depends on many factors, as time passes it’s less likely that the records will not be overwritten. The more transactions occur after the deletion, the more chances the records will be overwritten and permanently lost. Therefore, it’s recommended to create a copy of the database MDF and LDF files immediately (if you cannot take your database offline until the issue is solved) and run ApexSQL Recover on them. Note that a full database backup will not help here, as the records marked for overwriting are not included in the backup. First, I’ll delete some records from the Person.EmailAddress table in the AdventureWorks database.   I can delete these records in SQL Server Management Studio, or execute a script such as DELETE FROM Person.EmailAddress WHERE BusinessEntityID BETWEEN 70 AND 80 Then, I’ll start ApexSQL Recover and select From DELETE operation in the Recovery tab.   In the Select the database to recover step, first select the SQL Server instance. If it’s not shown in the drop-down list, click the Server icon right to the Server drop-down list and browse for the SQL Server instance, or type the instance name manually. Specify the authentication type and select the database in the Database drop-down list.   In the next step, you’re prompted to add additional data sources. As this can be a tricky step, especially for new users, ApexSQL Recover offers help via the Help me decide option.   The Help me decide option guides you through a series of questions about the database transaction log and advises what files to add. If you know that you have no transaction log backups or detached transaction logs, or the online transaction log file has been truncated after the data was deleted, select No additional transaction logs are available. If you know that you have transaction log backups that contain the delete transactions you want to recover, click Add transaction logs. The online transaction log is listed and selected automatically.   Click Add if to add transaction log backups. It would be best if you have a full transaction log chain, as explained above. The next step for this option is to specify the time range.   Selecting a small time range for the time of deletion will create the recovery script just for the accidentally deleted records. A wide time range might script the records deleted on purpose, and you don’t want that. If needed, you can check the script generated and manually remove such records. After that, for all data sources options, the next step is to select the tables. Be careful here, if you deleted some data from other tables on purpose, and don’t want to recover them, don’t select all tables, as ApexSQL Recover will create the INSERT script for them too.   The next step offers two options: to create a recovery script that will insert the deleted records back into the Person.EmailAddress table, or to create a new database, create the Person.EmailAddress table in it, and insert the deleted records. I’ll select the first one.   The recovery process is completed and 11 records are found and scripted, as expected.   To see the script, click View script. ApexSQL Recover has its own script editor, where you can review, modify, and execute the recovery script. The insert into statements look like: INSERT INTO Person.EmailAddress( BusinessEntityID, EmailAddressID, EmailAddress, rowguid, ModifiedDate) VALUES( 70, 70, N'[email protected]' COLLATE SQL_Latin1_General_CP1_CI_AS, 'd62c5b4e-c91f-403f-b630-7b7e0fda70ce', '20030109 00:00:00.000' ); To execute the script, click Execute in the menu.   If you want to check whether the records are really back, execute SELECT * FROM Person.EmailAddress WHERE BusinessEntityID BETWEEN 70 AND 80 As shown, ApexSQL Recover recovers SQL database data after accidental deletes even without the database backup that contains the deleted data and relevant transaction log backups. ApexSQL Recover reads the deleted data from the database data file, so this method can be used even for databases in the Simple recovery model. Besides recovering SQL database records from a DELETE statement, ApexSQL Recover can help when the records are lost due to a DROP TABLE, or TRUNCATE statement, as well as repair a corrupted MDF file that cannot be attached to as SQL Server instance. You can find more information about how to recover SQL database lost data and repair a SQL Server database on ApexSQL Solution center. There are solutions for various situations when data needs to be recovered. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL Server Split() Function

    - by HighAltitudeCoder
    Title goes here   Ever wanted a dbo.Split() function, but not had the time to debug it completely?  Let me guess - you are probably working on a stored procedure with 50 or more parameters; two or three of them are parameters of differing types, while the other 47 or so all of the same type (id1, id2, id3, id4, id5...).  Worse, you've found several other similar stored procedures with the ONLY DIFFERENCE being the number of like parameters taped to the end of the parameter list. If this is the situation you find yourself in now, you may be wondering, "why am I working with three different copies of what is basically the same stored procedure, and why am I having to maintain changes in three different places?  Can't I have one stored procedure that accomplishes the job of all three? My answer to you: YES!  Here is the Split() function I've created.    /******************************************************************************                                       Split.sql   ******************************************************************************/ /******************************************************************************   Split a delimited string into sub-components and return them as a table.   Parameter 1: Input string which is to be split into parts. Parameter 2: Delimiter which determines the split points in input string. Works with space or spaces as delimiter. Split() is apostrophe-safe.   SYNTAX: SELECT * FROM Split('Dvorak,Debussy,Chopin,Holst', ',') SELECT * FROM Split('Denver|Seattle|San Diego|New York', '|') SELECT * FROM Split('Denver is the super-awesomest city of them all.', ' ')   ******************************************************************************/ USE AdventureWorks GO   IF EXISTS       (SELECT *       FROM sysobjects       WHERE xtype = 'TF'       AND name = 'Split'       ) BEGIN       DROP FUNCTION Split END GO   CREATE FUNCTION Split (       @InputString                  VARCHAR(8000),       @Delimiter                    VARCHAR(50) )   RETURNS @Items TABLE (       Item                          VARCHAR(8000) )   AS BEGIN       IF @Delimiter = ' '       BEGIN             SET @Delimiter = ','             SET @InputString = REPLACE(@InputString, ' ', @Delimiter)       END         IF (@Delimiter IS NULL OR @Delimiter = '')             SET @Delimiter = ','   --INSERT INTO @Items VALUES (@Delimiter) -- Diagnostic --INSERT INTO @Items VALUES (@InputString) -- Diagnostic         DECLARE @Item                 VARCHAR(8000)       DECLARE @ItemList       VARCHAR(8000)       DECLARE @DelimIndex     INT         SET @ItemList = @InputString       SET @DelimIndex = CHARINDEX(@Delimiter, @ItemList, 0)       WHILE (@DelimIndex != 0)       BEGIN             SET @Item = SUBSTRING(@ItemList, 0, @DelimIndex)             INSERT INTO @Items VALUES (@Item)               -- Set @ItemList = @ItemList minus one less item             SET @ItemList = SUBSTRING(@ItemList, @DelimIndex+1, LEN(@ItemList)-@DelimIndex)             SET @DelimIndex = CHARINDEX(@Delimiter, @ItemList, 0)       END -- End WHILE         IF @Item IS NOT NULL -- At least one delimiter was encountered in @InputString       BEGIN             SET @Item = @ItemList             INSERT INTO @Items VALUES (@Item)       END         -- No delimiters were encountered in @InputString, so just return @InputString       ELSE INSERT INTO @Items VALUES (@InputString)         RETURN   END -- End Function GO   ---- Set Permissions --GRANT SELECT ON Split TO UserRole1 --GRANT SELECT ON Split TO UserRole2 --GO   The syntax is basically as follows: SELECT <fields> FROM Table 1 JOIN Table 2 ON ... JOIN Table 3 ON ... WHERE LOGICAL CONDITION A AND LOGICAL CONDITION B AND LOGICAL CONDITION C AND TABLE2.Id IN (SELECT * FROM Split(@IdList, ',')) @IdList is a parameter passed into the stored procedure, and the comma (',') is the delimiter you have chosen to split the parameter list on. You can also use it like this: SELECT <fields> FROM Table 1 JOIN Table 2 ON ... JOIN Table 3 ON ... WHERE LOGICAL CONDITION A AND LOGICAL CONDITION B AND LOGICAL CONDITION C HAVING COUNT(SELECT * FROM Split(@IdList, ',') Similarly, it can be used in other aggregate functions at run-time: SELECT MIN(SELECT * FROM Split(@IdList, ','), <fields> FROM Table 1 JOIN Table 2 ON ... JOIN Table 3 ON ... WHERE LOGICAL CONDITION A AND LOGICAL CONDITION B AND LOGICAL CONDITION C GROUP BY <fields> Now that I've (hopefully effectively) explained the benefits to using this function and implementing it in one or more of your database objects, let me warn you of a caveat that you are likely to encounter.  You may have a team member who waits until the right moment to ask you a pointed question: "Doesn't this function just do the same thing as using the IN function?  Why didn't you just use that instead?  In other words, why bother with this function?" What's happening is, one or more team members has failed to understand the reason for implementing this kind of function in the first place.  (Note: this is THE MOST IMPORTANT ASPECT OF THIS POST). Allow me to outline a few pros to implementing this function, so you may effectively parry this question.  Touche. 1) Code consolidation.  You don't have to maintain what is basically the same code and logic, but with varying numbers of the same parameter in several SQL objects.  I'm not going to go into the cons related to using this function, because the afore mentioned team member is probably more than adept at pointing these out.  Remember, the real positive contribution is ou are decreasing the liklihood that your team fails to update all (x) duplicate copies of what are basically the same stored procedure, and so on...  This is the classic downside to duplicate code.  It is a virus, and you should kill it. You might be better off rejecting your team member's question, and responding with your own: "Would you rather maintain the same logic in multiple different stored procedures, and hope that the team doesn't forget to always update all of them at the same time?".  In his head, he might be thinking "yes, I would like to maintain several different copies of the same stored procedure", although you probably will not get such a direct response.  2) Added flexibility - you can use the Split function elsewhere, and for splitting your data in different ways.  Plus, you can use any kind of delimiter you wish.  How can you know today the ways in which you might want to examine your data tomorrow?  Segue to my next point. 3) Because the function takes a delimiter parameter, you can split the data in any number of ways.  This greatly increases the utility of such a function and enables your team to work with the data in a variety of different ways in the future.  You can split on a single char, symbol, word, or group of words.  You can split on spaces.  (The list goes on... test it out). Finally, you can dynamically define the behavior of a stored procedure (or other SQL object) at run time, through the use of this function.  Rather than have several objects that accomplish almost the same thing, why not have only one instead?

    Read the article

  • SQL SERVER – SSMS: Disk Usage Report

    - by Pinal Dave
    Let us start with humor!  I think we the series on various reports, we come to a logical point. We covered all the reports at server level. This means the reports we saw were targeted towards activities that are related to instance level operations. These are mostly like how a doctor diagnoses a patient. At this point I am reminded of a dialog which I read somewhere: Patient: Doc, It hurts when I touch my head. Doc: Ok, go on. What else have you experienced? Patient: It hurts even when I touch my eye, it hurts when I touch my arms, it even hurts when I touch my feet, etc. Doc: Hmmm … Patient: I feel it hurts when I touch anywhere in my body. Doc: Ahh … now I get it. You need a plaster to your finger John. Sometimes the server level gives an indicator to what is happening in the system, but we need to get to the root cause for a specific database. So, this is the first blog in series where we would start discussing about database level reports. To launch database level reports, expand selected server in Object Explorer, expand the Databases folder, and then right-click any database for which we want to look at reports. From the menu, select Reports, then Standard Reports, and then any of database level reports. In this blog, we would talk about four “disk” reports because they are similar: Disk Usage Disk Usage by Top Tables Disk Usage by Table Disk Usage by Partition Disk Usage This report shows multiple information about the database. Let us discuss them one by one.  We have divided the output into 5 different sections. Section 1 shows the high level summary of the database. It shows the space used by database files (mdf and ldf). Under the hood, the report uses, various DMVs and DBCC Commands, it is using sys.data_spaces and DBCC SHOWFILESTATS. Section 2 and 3 are pie charts. One for data file allocation and another for the transaction log file. Pie chart for “Data Files Space Usage (%)” shows space consumed data, indexes, allocated to the SQL Server database, and unallocated space which is allocated to the SQL Server database but not yet filled with anything. “Transaction Log Space Usage (%)” used DBCC SQLPERF (LOGSPACE) and shows how much empty space we have in the physical transaction log file. Section 4 shows the data from Default Trace and looks at Event IDs 92, 93, 94, 95 which are for “Data File Auto Grow”, “Log File Auto Grow”, “Data File Auto Shrink” and “Log File Auto Shrink” respectively. Here is an expanded view for that section. If default trace is not enabled, then this section would be replaced by the message “Trace Log is disabled” as highlighted below. Section 5 of the report uses DBCC SHOWFILESTATS to get information. Here is the enhanced version of that section. This shows the physical layout of the file. In case you have In-Memory Objects in the database (from SQL Server 2014), then report would show information about those as well. Here is the screenshot taken for a different database, which has In-Memory table. I have highlighted new things which are only shown for in-memory database. The new sections which are highlighted above are using sys.dm_db_xtp_checkpoint_files, sys.database_files and sys.data_spaces. The new type for in-memory OLTP is ‘FX’ in sys.data_space. The next set of reports is targeted to get information about a table and its storage. These reports can answer questions like: Which is the biggest table in the database? How many rows we have in table? Is there any table which has a lot of reserved space but its unused? Which partition of the table is having more data? Disk Usage by Top Tables This report provides detailed data on the utilization of disk space by top 1000 tables within the Database. The report does not provide data for memory optimized tables. Disk Usage by Table This report is same as earlier report with few difference. First Report shows only 1000 rows First Report does order by values in DMV sys.dm_db_partition_stats whereas second one does it based on name of the table. Both of the reports have interactive sort facility. We can click on any column header and change the sorting order of data. Disk Usage by Partition This report shows the distribution of the data in table based on partition in the table. This is so similar to previous output with the partition details now. Here is the query taken from profiler. SELECT row_number() OVER (ORDER BY a1.used_page_count DESC, a1.index_id) AS row_number ,      (dense_rank() OVER (ORDER BY a5.name, a2.name))%2 AS l1 ,      a1.OBJECT_ID ,      a5.name AS [schema] ,       a2.name ,       a1.index_id ,       a3.name AS index_name ,       a3.type_desc ,       a1.partition_number ,       a1.used_page_count * 8 AS total_used_pages ,       a1.reserved_page_count * 8 AS total_reserved_pages ,       a1.row_count FROM sys.dm_db_partition_stats a1 INNER JOIN sys.all_objects a2  ON ( a1.OBJECT_ID = a2.OBJECT_ID) AND a1.OBJECT_ID NOT IN (SELECT OBJECT_ID FROM sys.tables WHERE is_memory_optimized = 1) INNER JOIN sys.schemas a5 ON (a5.schema_id = a2.schema_id) LEFT OUTER JOIN  sys.indexes a3  ON ( (a1.OBJECT_ID = a3.OBJECT_ID) AND (a1.index_id = a3.index_id) ) WHERE (SELECT MAX(DISTINCT partition_number) FROM sys.dm_db_partition_stats a4 WHERE (a4.OBJECT_ID = a1.OBJECT_ID)) >= 1 AND a2.TYPE <> N'S' AND  a2.TYPE <> N'IT' ORDER BY a5.name ASC, a2.name ASC, a1.index_id, a1.used_page_count DESC, a1.partition_number Using all of the above reports, you should be able to get the usage of database files and also space used by tables. I think this is too much disk information for a single blog and I hope you have used them in the past to get data. Do let me know if you found anything interesting using these reports in your environments. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Reports

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #034

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 UDF – User Defined Function to Strip HTML – Parse HTML – No Regular Expression The UDF used in the blog does fantastic task – it scans entire HTML text and removes all the HTML tags. It keeps only valid text data without HTML task. This is one of the quite commonly requested tasks many developers have to face everyday. De-fragmentation of Database at Operating System to Improve Performance Operating system skips MDF file while defragging the entire filesystem of the operating system. It is absolutely fine and there is no impact of the same on performance. Read the entire blog post for my conversation with our network engineers. Delay Function – WAITFOR clause – Delay Execution of Commands How do you delay execution of the commands in SQL Server – ofcourse by using WAITFOR keyword. In this blog post, I explain the same with the help of T-SQL script. Find Length of Text Field To measure the length of TEXT fields the function is DATALENGTH(textfield). Len will not work for text field. As of SQL Server 2005, developers should migrate all the text fields to VARCHAR(MAX) as that is the way forward. Retrieve Current Date Time in SQL Server CURRENT_TIMESTAMP, GETDATE(), {fn NOW()} There are three ways to retrieve the current datetime in SQL SERVER. CURRENT_TIMESTAMP, GETDATE(), {fn NOW()} Explanation and Comparison of NULLIF and ISNULL An interesting observation is NULLIF returns null if it comparison is successful, whereas ISNULL returns not null if its comparison is successful. In one way they are opposite to each other. Here is my question to you - How to create infinite loop using NULLIF and ISNULL? If this is even possible? 2008 Introduction to SERVERPROPERTY and example SERVERPROPERTY is a very interesting system function. It returns many of the system values. I use it very frequently to get different server values like Server Collation, Server Name etc. SQL Server Start Time We can use DMV to find out what is the start time of SQL Server in 2008 and later version. In this blog you can see how you can do the same. Find Current Identity of Table Many times we need to know what is the current identity of the column. I have found one of my developers using aggregated function MAX () to find the current identity. However, I prefer following DBCC command to figure out current identity. Create Check Constraint on Column Some time we just need to create a simple constraint over the table but I have noticed that developers do many different things to make table column follow rules than just creating constraint. I suggest constraint is a very useful concept and every SQL Developer should pay good attention to this subject. 2009 List Schema Name and Table Name for Database This is one of the blog post where I straight forward display script. One of the kind of blog posts, which I still love to read and write. Clustered Index on Separate Drive From Table Location A table devoid of primary key index is called heap, and here data is not arranged in a particular order, which gives rise to issues that adversely affect performance. Data must be stored in some kind of order. If we put clustered index on it then the order will be forced by that index and the data will be stored in that particular order. Understanding Table Hints with Examples Hints are options and strong suggestions specified for enforcement by the SQL Server query processor on DML statements. The hints override any execution plan the query optimizer might select for a query. 2010 Data Pages in Buffer Pool – Data Stored in Memory Cache One of my earlier year article, which I still read it many times and point developers to read it again. It is clear from the Resultset that when more than one index is used, datapages related to both or all of the indexes are stored in Memory Cache separately. TRANSACTION, DML and Schema Locks Can you create a situation where you can see Schema Lock? Well, this is a very simple question, however during the interview I notice over 50 candidates failed to come up with the scenario. In this blog post, I have demonstrated the situation where we can see the schema lock in database. 2011 Solution – Puzzle – Statistics are not updated but are Created Once In this example I have created following situation: Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated Auto Update Statistics and Auto Create Statistics for database is TRUE Now I have requested two things in the example 1) Why this is happening? 2) How to fix this issue? Selecting Domain from Email Address This is a straight to script blog post where I explain how to select only domain name from entire email address. Solution – Generating Zero Without using Any Numbers in T-SQL How to get zero digit without using any digit? This is indeed a very interesting question and the answer is even interesting. Try to come up with answer in next 10 minutes and if you can’t come up with the answer the blog post read this post for solution. 2012 Simple Explanation and Puzzle with SOUNDEX Function and DIFFERENCE Function In simple words - SOUNDEX converts an alphanumeric string to a four-character code to find similar-sounding words or names. DIFFERENCE function returns an integer value. The  integer returned is the number of characters in the SOUNDEX values that are the same. Read Only Files and SQL Server Management Studio (SSMS) I have come across a very interesting feature in SSMS related to “Read Only” files. I believe it is a little unknown feature as well so decided to write a blog about the same. Identifying Column Data Type of uniqueidentifier without Querying System Tables How do I know if any table has a uniqueidentifier column and what is its value without using any DMV or System Catalogues? Only information you know is the table name and you are allowed to return any kind of error if the table does not have uniqueidentifier column. Read the blog post to find the answer. Solution – User Not Able to See Any User Created Object in Tables – Security and Permissions Issue Interesting question – “When I try to connect to SQL Server, it lets me connect just fine as well let me open and explore the database. I noticed that I do not see any user created instances but when my colleague attempts to connect to the server, he is able to explore the database as well see all the user created tables and other objects. Can you help me fix it?” Importing CSV File Into Database – SQL in Sixty Seconds #018 – Video Here is interesting small 60 second video on how to import CSV file into Database. ColumnStore Index – Batch Mode vs Row Mode Here is the logic behind when Columnstore Index uses Batch Mode and when it uses Row Mode. A batch typically represents about 1000 rows of data. Batch mode processing also uses algorithms that are optimized for the multicore CPUs and increased memory throughput. Follow up – Usage of $rowguid and $IDENTITY This is an excellent follow up blog post of my earlier blog post where I explain where to use $rowguid and $identity.  If you do not know the difference between them, this is a blog with a script example. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Oracle Flashback Technologies - Overview

    - by Sridhar_R-Oracle
    Oracle Flashback Technologies - IntroductionIn his May 29th 2014 blog, my colleague Joe Meeks introduced Oracle Maximum Availability Architecture (MAA) and discussed both planned and unplanned outages. Let’s take a closer look at unplanned outages. These can be caused by physical failures (e.g., server, storage, network, file deletion, physical corruption, site failures) or by logical failures – cases where all components and files are physically available, but data is incorrect or corrupt. These logical failures are usually caused by human errors or application logic errors. This blog series focuses on these logical errors – what causes them and how to address and recover from them using Oracle Database Flashback. In this introductory blog post, I’ll provide an overview of the Oracle Database Flashback technologies and will discuss the features in detail in future blog posts. Let’s get started. We are all human beings (unless a machine is reading this), and making mistakes is a part of what we do…often what we do best!  We “fat finger”, we spill drinks on keyboards, unplug the wrong cables, etc.  In addition, many of us, in our lives as DBAs or developers, must have observed, caused, or corrected one or more of the following unpleasant events: Accidentally updated a table with wrong values !! Performed a batch update that went wrong - due to logical errors in the code !! Dropped a table !! How do DBAs typically recover from these types of errors? First, data needs to be restored and recovered to the point-in-time when the error occurred (incomplete or point-in-time recovery).  Moreover, depending on the type of fault, it’s possible that some services – or even the entire database – would have to be taken down during the recovery process.Apart from error conditions, there are other questions that need to be addressed as part of the investigation. For example, what did the data look like in the morning, prior to the error? What were the various changes to the row(s) between two timestamps? Who performed the transaction and how can it be reversed?  Oracle Database includes built-in Flashback technologies, with features that address these challenges and questions, and enable you to perform faster, easier, and convenient recovery from logical corruptions. HistoryFlashback Query, the first Flashback Technology, was introduced in Oracle 9i. It provides a simple, powerful and completely non-disruptive mechanism for data verification and recovery from logical errors, and enables users to view the state of data at a previous point in time.Flashback Technologies were further enhanced in Oracle 10g, to provide fast, easy recovery at the database, table, row, and even at a transaction level.Oracle Database 11g introduced an innovative method to manage and query long-term historical data with Flashback Data Archive. The 11g release also introduced Flashback Transaction, which provides an easy, one-step operation to back out a transaction. Oracle Database versions 11.2.0.2 and beyond further enhanced the performance of these features. Note that all the features listed here work without requiring any kind of restore operation.In addition, Flashback features are fully supported with the new multi-tenant capabilities introduced with Oracle Database 12c, Flashback Features Oracle Flashback Database enables point-in-time-recovery of the entire database without requiring a traditional restore and recovery operation. It rewinds the entire database to a specified point in time in the past by undoing all the changes that were made since that time.Oracle Flashback Table enables an entire table or a set of tables to be recovered to a point in time in the past.Oracle Flashback Drop enables accidentally dropped tables and all dependent objects to be restored.Oracle Flashback Query enables data to be viewed at a point-in-time in the past. This feature can be used to view and reconstruct data that was lost due to unintentional change(s) or deletion(s). This feature can also be used to build self-service error correction into applications, empowering end-users to undo and correct their errors.Oracle Flashback Version Query offers the ability to query the historical changes to data between two points in time or system change numbers (SCN) Oracle Flashback Transaction Query enables changes to be examined at the transaction level. This capability can be used to diagnose problems, perform analysis, audit transactions, and even revert the transaction by undoing SQLOracle Flashback Transaction is a procedure used to back-out a transaction and its dependent transactions.Flashback technologies eliminate the need for a traditional restore and recovery process to fix logical corruptions or make enquiries. Using these technologies, you can recover from the error in the same amount of time it took to generate the error. All the Flashback features can be accessed either via SQL command line (or) via Enterprise Manager.  Most of the Flashback technologies depend on the available UNDO to retrieve older data. The following table describes the various Flashback technologies: their purpose, dependencies and situations where each individual technology can be used.   Example Syntax Error investigation related:The purpose is to investigate what went wrong and what the values were at certain points in timeFlashback Queries  ( select .. as of SCN | Timestamp )   - Helps to see the value of a row/set of rows at a point in timeFlashback Version Queries  ( select .. versions between SCN | Timestamp and SCN | Timestamp)  - Helps determine how the value evolved between certain SCNs or between timestamps Flashback Transaction Queries (select .. XID=)   - Helps to understand how the transaction caused the changes.Error correction related:The purpose is to fix the error and correct the problems,Flashback Table  (flashback table .. to SCN | Timestamp)  - To rewind the table to a particular timestamp or SCN to reverse unwanted updates Flashback Drop (flashback table ..  to before drop )  - To undrop or undelete a table Flashback Database (flashback database to SCN  | Restore Point )  - This is the rewind button for Oracle databases. You can revert the entire database to a particular point in time. It is a fast way to perform a PITR (point-in-time recovery). Flashback Transaction (DBMS_FLASHBACK.TRANSACTION_BACKOUT(XID..))  - To reverse a transaction and its related transactions Advanced use cases Flashback technology is integrated into Oracle Recovery Manager (RMAN) and Oracle Data Guard. So, apart from the basic use cases mentioned above, the following use cases are addressed using Oracle Flashback. Block Media recovery by RMAN - to perform block level recovery Snapshot Standby - where the standby is temporarily converted to a read/write environment for testing, backup, or migration purposes Re-instate old primary in a Data Guard environment – this avoids the need to restore an old backup and perform a recovery to make it a new standby. Guaranteed Restore Points - to bring back the entire database to an older point-in-time in a guaranteed way. and so on..I hope this introductory overview helps you understand how Flashback features can be used to investigate and recover from logical errors.  As mentioned earlier, I will take a deeper-dive into to some of the critical Flashback features in my upcoming blogs and address common use cases.

    Read the article

  • How do I restrict concurrent statistics gathering to a small set of tables from a single schema?

    - by Maria Colgan
    I got an interesting question from one of my colleagues in the performance team last week about how to restrict a concurrent statistics gather to a small subset of tables from one schema, rather than the entire schema. I thought I would share the solution we came up with because it was rather elegant, and took advantage of concurrent statistics gathering, incremental statistics, and the not so well known “obj_filter_list” parameter in DBMS_STATS.GATHER_SCHEMA_STATS procedure. You should note that the solution outline below with “obj_filter_list” still applies, even when concurrent statistics gathering and/or incremental statistics gathering is disabled. The reason my colleague had asked the question in the first place was because he wanted to enable incremental statistics for 5 large partitioned tables in one schema. The first time you gather statistics after you enable incremental statistics on a table, you have to gather statistics for all of the existing partitions so that a synopsis may be created for them. If the partitioned table in question is large and contains a lot of partition, this could take a considerable amount of time. Since my colleague only had the Exadata environment at his disposal overnight, he wanted to re-gather statistics on 5 partition tables as quickly as possible to ensure that it all finished before morning. Prior to Oracle Database 11g Release 2, the only way to do this would have been to write a script with an individual DBMS_STATS.GATHER_TABLE_STATS command for each partition, in each of the 5 tables, as well as another one to gather global statistics on the table. Then, run each script in a separate session and manually manage how many of this session could run concurrently. Since each table has over one thousand partitions that would definitely be a daunting task and would most likely keep my colleague up all night! In Oracle Database 11g Release 2 we can take advantage of concurrent statistics gathering, which enables us to gather statistics on multiple tables in a schema (or database), and multiple (sub)partitions within a table concurrently. By using concurrent statistics gathering we no longer have to run individual statistics gathering commands for each partition. Oracle will automatically create a statistics gathering job for each partition, and one for the global statistics on each partitioned table. With the use of concurrent statistics, our script can now be simplified to just five DBMS_STATS.GATHER_TABLE_STATS commands, one for each table. This approach would work just fine but we really wanted to get this down to just one command. So how can we do that? You may be wondering why we didn’t just use the DBMS_STATS.GATHER_SCHEMA_STATS procedure with the OPTION parameter set to ‘GATHER STALE’. Unfortunately the statistics on the 5 partitioned tables were not stale and enabling incremental statistics does not mark the existing statistics stale. Plus how would we limit the schema statistics gather to just the 5 partitioned tables? So we went to ask one of the statistics developers if there was an alternative way. The developer told us the advantage of the “obj_filter_list” parameter in DBMS_STATS.GATHER_SCHEMA_STATS procedure. The “obj_filter_list” parameter allows you to specify a list of objects that you want to gather statistics on within a schema or database. The parameter takes a collection of type DBMS_STATS.OBJECTTAB. Each entry in the collection has 5 feilds; the schema name or the object owner, the object type (i.e., ‘TABLE’ or ‘INDEX’), object name, partition name, and subpartition name. You don't have to specify all five fields for each entry. Empty fields in an entry are treated as if it is a wildcard field (similar to ‘*’ character in LIKE predicates). Each entry corresponds to one set of filter conditions on the objects. If you have more than one entry, an object is qualified for statistics gathering as long as it satisfies the filter conditions in one entry. You first must create the collection of objects, and then gather statistics for the specified collection. It’s probably easier to explain this with an example. I’m using the SH sample schema but needed a couple of additional partitioned table tables to get recreate my colleagues scenario of 5 partitioned tables. So I created SALES2, SALES3, and COSTS2 as copies of the SALES and COSTS table respectively (setup.sql). I also deleted statistics on all of the tables in the SH schema beforehand to more easily demonstrate our approach. Step 0. Delete the statistics on the tables in the SH schema. Step 1. Enable concurrent statistics gathering. Remember, this has to be done at the global level. Step 2. Enable incremental statistics for the 5 partitioned tables. Step 3. Create the DBMS_STATS.OBJECTTAB and pass it to the DBMS_STATS.GATHER_SCHEMA_STATS command. Here, you will notice that we defined two variables of DBMS_STATS.OBJECTTAB type. The first, filter_lst, will be used to pass the list of tables we want to gather statistics on, and will be the value passed to the obj_filter_list parameter. The second, obj_lst, will be used to capture the list of tables that have had statistics gathered on them by this command, and will be the value passed to the objlist parameter. In Oracle Database 11g Release 2, you need to specify the objlist parameter in order to get the obj_filter_list parameter to work correctly due to bug 14539274. Will also needed to define the number of objects we would supply in the obj_filter_list. In our case we ere specifying 5 tables (filter_lst.extend(5)). Finally, we need to specify the owner name and object name for each of the objects in the list. Once the list definition is complete we can issue the DBMS_STATS.GATHER_SCHEMA_STATS command. Step 4. Confirm statistics were gathered on the 5 partitioned tables. Here are a couple of other things to keep in mind when specifying the entries for the  obj_filter_list parameter. If a field in the entry is empty, i.e., null, it means there is no condition on this field. In the above example , suppose you remove the statement Obj_filter_lst(1).ownname := ‘SH’; You will get the same result since when you have specified gather_schema_stats so there is no need to further specify ownname in the obj_filter_lst. All of the names in the entry are normalized, i.e., uppercased if they are not double quoted. So in the above example, it is OK to use Obj_filter_lst(1).objname := ‘sales’;. However if you have a table called ‘MyTab’ instead of ‘MYTAB’, then you need to specify Obj_filter_lst(1).objname := ‘”MyTab”’; As I said before, although we have illustrated the usage of the obj_filter_list parameter for partitioned tables, with concurrent and incremental statistics gathering turned on, the obj_filter_list parameter is generally applicable to any gather_database_stats, gather_dictionary_stats and gather_schema_stats command. You can get a copy of the script I used to generate this post here. +Maria Colgan

    Read the article

  • Restoring databases to a set drive and directory

    - by okeofs
     Restoring databases to a set drive and directory Introduction Often people say that necessity is the mother of invention. In this case I was faced with the dilemma of having to restore several databases, with multiple ‘ndf’ files, and having to restore them with different physical file names, drives and directories on servers other than the servers from which they originated. As most of us would do, I went to Google to see if I could find some code to achieve this task and found some interesting snippets on Pinal Dave’s website. Naturally, I had to take it further than the code snippet, HOWEVER it was a great place to start. Creating a temp table to hold database file details First off, I created a temp table which would hold the details of the individual data files within the database. Although there are a plethora of fields (within the temp table below), I utilize LogicalName only within this example. The temporary table structure may be seen below:   create table #tmp ( LogicalName nvarchar(128)  ,PhysicalName nvarchar(260)  ,Type char(1)  ,FileGroupName nvarchar(128)  ,Size numeric(20,0)  ,MaxSize numeric(20,0), Fileid tinyint, CreateLSN numeric(25,0), DropLSN numeric(25, 0), UniqueID uniqueidentifier, ReadOnlyLSN numeric(25,0), ReadWriteLSN numeric(25,0), BackupSizeInBytes bigint, SourceBlocSize int, FileGroupId int, LogGroupGUID uniqueidentifier, DifferentialBaseLSN numeric(25,0), DifferentialBaseGUID uniqueidentifier, IsReadOnly bit, IsPresent bit,  TDEThumbPrint varchar(50) )    We now declare and populate a variable(@path), setting the variable to the path to our SOURCE database backup. declare @path varchar(50) set @path = 'P:\DATA\MYDATABASE.bak'   From this point, we insert the file details of our database into the temp table. Note that we do so by utilizing a restore statement HOWEVER doing so in ‘filelistonly’ mode.   insert #tmp EXEC ('restore filelistonly from disk = ''' + @path + '''')   At this point, I depart from what I gleaned from Pinal Dave.   I now instantiate a few more local variables. The use of each variable will be evident within the cursor (which follows):   Declare @RestoreString as Varchar(max) Declare @NRestoreString as NVarchar(max) Declare @LogicalName  as varchar(75) Declare @counter as int Declare @rows as int set @counter = 1 select @rows = COUNT(*) from #tmp  -- Count the number of records in the temp                                    -- table   Declaring and populating the cursor At this point I do realize that many people are cringing about the use of a cursor. Being an Oracle professional as well, I have learnt that there is a time and place for cursors. I would remind the reader that the data that will be read into the cursor is from a local temp table and as such, any locking of the records (within the temp table) is not really an issue.   DECLARE MY_CURSOR Cursor  FOR  Select LogicalName  From #tmp   Parsing the logical names from within the cursor. A small caveat that works in our favour,  is that the first logical name (of our database) is the logical name of the primary data file (.mdf). Other files, except for the very last logical name, belong to secondary data files. The last logical name is that of our database log file.   I now open my cursor and populate the variable @RestoreString Open My_Cursor  set @RestoreString =  'RESTORE DATABASE [MYDATABASE] FROM DISK = N''P:\DATA\ MYDATABASE.bak''' + ' with  '   We now fetch the first record from the temp table.   Fetch NEXT FROM MY_Cursor INTO @LogicalName   While there are STILL records left within the cursor, we dynamically build our restore string. Note that we are using concatenation to create ‘one big restore executable string’.   Note also that the target physical file name is hardwired, as is the target directory.   While (@@FETCH_STATUS <> -1) BEGIN IF (@@FETCH_STATUS <> -2) -- As long as there are no rows missing select @RestoreString = case  when @counter = 1 then -- This is the mdf file    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.mdf' + '''' + ', '   -- OK, if it passes through here we are dealing with an .ndf file -- Note that Counter must be greater than 1 and less than the number of rows.   when @counter > 1 and @counter < @rows then -- These are the ndf file(s)    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ndf' + '''' + ', '   -- OK, if it passes through here we are dealing with the log file When @LogicalName like '%log%' then    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ldf' +'''' end --Increment the counter   set @counter = @counter + 1 FETCH NEXT FROM MY_CURSOR INTO @LogicalName END   At this point we have populated the varchar(max) variable @RestoreString with a concatenation of all the necessary file names. What we now need to do is to run the sp_executesql stored procedure, to effect the restore.   First, we must place our ‘concatenated string’ into an nvarchar based variable. Obviously this will only work as long as the length of @RestoreString is less than varchar(max) / 2.   set @NRestoreString = @RestoreString EXEC sp_executesql @NRestoreString   Upon completion of this step, the database should be restored to the server. I now close and deallocate the cursor, and to be clean, I would also drop my temp table.   CLOSE MY_CURSOR DEALLOCATE MY_CURSOR GO   Conclusion Restoration of databases on different servers with different physical names and on different drives are a fact of life. Through the use of a few variables and a simple cursor, we may achieve an efficient and effective way to achieve this task.

    Read the article

  • Is Export table contains all entries of Win32 Exe functions?

    - by Usman
    Hello, I need to know that all Win32 Exe functions or class's member functions contained inside Export table of that Win 32 exe(PE File)? If not then from how and where I would be able to get all these information? (I know PE file format and all sections of it and know what those sections contained but still help required how to proceeed?) Regards Muhammad Usman

    Read the article

  • SQL Server 2008 table variable error: Must declare the scalar variable "@RESULT".

    - by Trindaz
    I'm using table values for the first time as a parameter to a function in SQL Server 2008. The code below produces this error: Must declare the scalar variable "@RESULT". Why?! I'm declaring it on the first line of the function! ALTER FUNCTION f_Get_Total_Amount_Due( @CUSTOMER_LIST [tpCSFM_CUSTOMER_SET_FOR_MONEY] READONLY ) RETURNS [tpCSFM_CUSTOMER_SET_FOR_MONEY] AS BEGIN --Prepare the return value, start with initial customer list DECLARE @RESULT AS [tpCSFM_CUSTOMER_SET_FOR_MONEY] INSERT INTO @RESULT SELECT * FROM @CUSTOMER_LIST --Todo: populate with real values UPDATE @RESULT SET tpCSAM_MONEY_VALUE = 100 --return total amounts as currency RETURN @RESULT END

    Read the article

  • Generic function that accept a table and column name and returns all the primary key values that mat

    - by nashr rafeeg
    i have functions that look like this that is littered through out the code def get_M_status(S): M_id = merital.select(merital.c.marital_status_description == S).execute().fetchone() if M_id == None: print "Warning: No Marital id found for %s Merital status to Single" % S M_id = merital.select(merital.c.marital_status_description == "Single").execute().fetchone() return M_id[0] i was wondering if their is a way to write a generic function where i can pass the relevant values ie: table name primary key column filter column and filter value cheers

    Read the article

  • How can I fill SQL Server table from excel only using sql query?

    - by Phsika
    How can I do that with Microsoft.ACE.OLEDB.12.0? CREATE TABLE [dbo].[Addresses_Temp] ( [FirstName] VARCHAR(20), [LastName] VARCHAR(20), [Address] VARCHAR(50), [City] VARCHAR(30), [State] VARCHAR(2), [ZIP] VARCHAR(10) ) GO INSERT INTO [dbo].[Address_Temp] ( [FirstName], [LastName], [Address], [City], [State], [ZIP] ) SELECT [FirstName], [LastName], [Address], [City], [State], [ZIP] FROM OPENROWSET('Microsoft.ACE.OLEDB.12.0', 'Excel 12.0;Database=C:\Source\Addresses.xlsx;IMEX=1', 'SELECT * FROM [Sayfa1$]') How can I do that?

    Read the article

  • How to insert a DataTable with existing Key to a SQL Server Table.

    - by user296575
    I am working with VB.NET.. i have a DataTable called "QUESTION", containing 3 fields: QuestionNumber (unique integer key) QuestionText QuestionType In my SQL Server database I created a Table called "QUESTION" with the same fields. QuestionNumber is defined as integer unique key, auto increment Now, when i make a bulk copy to insert the DataTable into the SQL Server, the database overwrites my QuestionNumber from the DataTable and generates new ones (starting from 1 increment 1). How do i have to change my database setup, that the original QuestionNumbers are copied into the database?

    Read the article

< Previous Page | 189 190 191 192 193 194 195 196 197 198 199 200  | Next Page >