Search Results

Search found 17526 results on 702 pages for 'dynamic methods'.

Page 195/702 | < Previous Page | 191 192 193 194 195 196 197 198 199 200 201 202  | Next Page >

  • My View on ASP.NET Web Forms versus MVC

    - by Ricardo Peres
    Introduction A lot has been said on Web Forms and MVC, but since I was recently asked about my opinion on the subject, here it is. First, I have to say that I really like both technologies and I don’t think any is going away – just remember SharePoint, which is built on top of Web Forms. I see them as complementary, targeting different needs and leveraging different skills. Let’s go through some of their differences. Rapid Application Development Rapid Application Development (RAD) is the development process by which you have an Integrated Development Environment (IDE), a visual design surface and a toolbox, and you drag components from the toolbox to the design surface and set their properties through a property inspector. It was introduced with some of the earliest Windows graphical IDEs such as Visual Basic and Delphi. With Web Forms you have RAD out of the box. Visual Studio offers a generally good (and extensible) designer for the layout of pages and web user controls. Designing a page may simply be about dragging controls from the toolbox, setting their properties and wiring up some events to event handlers, which are implemented in code behind .NET classes. Most people will be familiar with this kind of development and enjoy it. You can see what you are doing from the beginning. MVC also has designable pages – called views in MVC terminology – the problem is that they can be built using different technologies, some of which, at the moment (MVC 4) do not support RAD – Razor, for example. I believe it is just a matter of time for that to be implemented in Visual Studio, but it will mostly consist on HTML editing, and until that day comes, you have to live with source editing. Development Model Web Forms features the same development model that you are used to from Windows Forms and other similar technologies: events fired by controls and automatic persistence of their properties between postbacks. For that, it uses concepts such as view state, which some may love and others may hate, because it may be misused quite easily, but otherwise does its job well. Another fundamental concept is data binding, by which a collection of data can be fed to a control and have it render that data somehow – just thing of the GridView control. The focus is on the page, that’s where it all starts, and you can place everything in the same code behind class: data access, business logic, layout, etc. The controls take care of generating a great part of the HTML and JavaScript for you. With MVC there is no free lunch when it comes to data persistence between requests, you have to implement it yourself. As for event handling, that is at the core of MVC, in the form of controllers and action methods, you just don’t think of them as event handlers. In MVC you need to think more in HTTP terms, so action methods such as POST and GET are relevant to you, and may write actions to handle one or the other. Also of crucial importance is model binding: the way by which MVC converts your posted data into a .NET class. This is something that ASP.NET 4.5 Web Forms has introduced as well, but it is a cornerstone in MVC. MVC also has built-in validation of these .NET classes, which out of the box uses the Data Annotations API. You have full control of the generated HTML - except for that coming from the helper methods, usually small fragments - which requires a greater familiarity with the specifications. You normally rely much more on JavaScript APIs, they are even included in the Visual Studio template, that is because much less is done for you. Reuse It is difficult to accept a professional company/project that does not employ reuse. It can save a lot of time thus cutting costs significantly. Code reused in several projects matures as time goes by and helps developers learn from past experiences. ASP.NET Web Forms was built with reuse in mind, in the form of controls. Controls encapsulate functionality and are generally portable from project to project (with the notable exception of web user controls, those with an associated .ASCX markup file). ASP.NET has dozens of controls and it is very easy to develop new ones, so I believe this is a great advantage. A control can inject JavaScript code and external references as well as generate HTML an CSS. MVC on the other hand does not use controls – it is possible to use them, with some view engines like ASPX, but it is just not advisable because it breaks the flow – where do Init, Load, PreRender, etc, fit? The most similar to controls is extension methods, or helpers. They serve the same purpose – generating HTML, CSS or JavaScript – and can be reused between different projects. What differentiates them from controls is that there is no inheritance and no context – an extension method is just a static method which doesn’t know where it is being called. You also have partial views, which you can reuse in the same project, but there is no inheritance as well. This, in my view, is a weakness of MVC. Architecture Both technologies are highly extensible. I have writtenstarted writing a series of posts on ASP.NET Web Forms extensibility and will probably write another series on MVC extensibility as well. A number of scenarios are covered in any of these models, and some extensibility points apply to both, because, of course both stand upon ASP.NET. With Web Forms, if you’re like me, you start by defining you master pages, pages and controls, with some helper classes to glue everything. You may as well throw in some JavaScript, but probably you’re main work will be with plain old .NET code. The controls you define have the chance to inject JavaScript code and references, through either the ScriptManager or the page’s ClientScript object, as well as generating HTML and CSS code. The master page and page model with code behind classes offer a number of “hooks” by which you can change the normal way of things, for example, in a page you can access any control on the master page, add script or stylesheet references to its head and even change the page’s title. Also, with Web Forms, you typically have URLs in the form “/SomePath/SomePage.aspx?SomeParameter=SomeValue”, which isn’t really SEO friendly, no to mention the HTML that some controls produce, far from standards, optimization and best practices. In MVC, you also normally start by defining the master page (or layout) and views, which are the visible parts, and then define controllers on separate files. These controllers do not know anything about the views, except the names and types of the parameters that will be passed to and from them. The controller will be responsible for the data access and business logic, eventually relying on additional classes for this purpose. On a controller you only receive parameters and return a result, which may be a request for the rendering of a view, a redirection to another URL or a JSON object, to name just a few. The controller class does not know anything about the web, so you can effectively reuse it in a non-web project. This separation and the lack of programmatic access to the UI elements, makes it very difficult to implement, for example, something like SharePoint with MVC. OK, I know about Orchard, but it isn’t really a general purpose development framework, but instead, a CMS that happens to use MVC. Not having controls render HTML for you gives you in turn much more control over it – it is your responsibility to create it, which you can either consider a blessing or a curse, in the later case, you probably shouldn’t be using MVC at all. Also MVC URLs tend to be much more SEO-oriented, if you design your controllers and actions properly. Testing In a well defined architecture, you should separate business logic, data access logic and presentation logic, because these are all different things and it might even be the need to switch one implementation for another: for example, you might design a system which includes a data access layer, a business logic layer and two presentation layers, one on top of ASP.NET and the other with WPF; and the data access layer might be implemented first using NHibernate and later on switched for Entity Framework Code First. These changes are not that rare, so care should be taken in designing the system to make them possible. Web Forms are difficult to test, because it relies on event handlers which are only fired in web contexts, when a form is submitted or a page is requested. You can call them with reflection, but you have to set up a number of mocking objects first, HttpContext.Current first coming to my mind. MVC, on the other hand, makes testing controllers a breeze, so much that it even includes a template option for generating boilerplate unit test classes up from start. A well designed – from the unit test point of view - controller will receive everything it needs to work as parameters to its action methods, so you can pass whatever values you need very easily. That doesn’t mean, of course, that everything can be tested: views, for instance, are difficult to test without actually accessing the site, but MVC offers the possibility to compile views at build time, so that, at least, you know you don’t have syntax errors beforehand. Myths Some popular but unfounded myths around MVC include: You cannot use controls in MVC: not true, actually, you can, at least with the Web Forms (ASPX) view engine; the declaration and usage is exactly the same as with Web Forms; You cannot specify a base class for a view: with the ASPX view engine you can use the Inherits Page directive, with this and all the others you can use the pageBaseType and userControlBaseType attributes of the <page> element; MVC shields you from doing “bad things” on your views: well, you can place any code on a code block, at least with the ASPX view engine (you may be starting to see a pattern here), even data access code; The model is the entity model, tied to an O/RM: the model is actually any class that you use to pass values to a view, including (but generally not recommended) an entity model; Unit tests come with no cost: unit tests generally don’t cover the UI, although there are frameworks just for that (see WatiN, for example); also, for some tests, you will have to mock or replace either the HttpContext.Current property or the HttpContextBase class yourself; Everything is testable: views aren’t, without accessing the site; MVC relies on HTML5/some_cool_new_javascript_framework: there is no relation whatsoever, MVC renders whatever you want it to render and does not require any framework to be present. The thing is, the subsequent releases of MVC happened in a time when Microsoft has become much more involved in standards, so the files and technologies included in the Visual Studio templates reflect this, and it just happens to work well with jQuery, for example. Conclusion Well, this is how I see it. Some folks may think that I am being too rude on MVC, probably because I don’t like it, but that’s not true: like I said, I do like MVC and I am starting my new projects with it. I just don’t want to go along with that those that say that MVC is much superior to Web Forms, in fact, some things you can do much more easily with Web Forms than with MVC. I will be more than happy to hear what you think on this!

    Read the article

  • Liskov Substitution Principle and the Oft Forgot Third Wheel

    - by Stacy Vicknair
    Liskov Substitution Principle (LSP) is a principle of object oriented programming that many might be familiar with from the SOLID principles mnemonic from Uncle Bob Martin. The principle highlights the relationship between a type and its subtypes, and, according to Wikipedia, is defined by Barbara Liskov and Jeanette Wing as the following principle:   Let be a property provable about objects of type . Then should be provable for objects of type where is a subtype of .   Rectangles gonna rectangulate The iconic example of this principle is illustrated with the relationship between a rectangle and a square. Let’s say we have a class named Rectangle that had a property to set width and a property to set its height. 1: Public Class Rectangle 2: Overridable Property Width As Integer 3: Overridable Property Height As Integer 4: End Class   We all at some point here that inheritance mocks an “IS A” relationship, and by gosh we all know square IS A rectangle. So let’s make a square class that inherits from rectangle. However, squares do maintain the same length on every side, so let’s override and add that behavior. 1: Public Class Square 2: Inherits Rectangle 3:  4: Private _sideLength As Integer 5:  6: Public Overrides Property Width As Integer 7: Get 8: Return _sideLength 9: End Get 10: Set(value As Integer) 11: _sideLength = value 12: End Set 13: End Property 14:  15: Public Overrides Property Height As Integer 16: Get 17: Return _sideLength 18: End Get 19: Set(value As Integer) 20: _sideLength = value 21: End Set 22: End Property 23: End Class   Now, say we had the following test: 1: Public Sub SetHeight_DoesNotAffectWidth(rectangle As Rectangle) 2: 'arrange 3: Dim expectedWidth = 4 4: rectangle.Width = 4 5:  6: 'act 7: rectangle.Height = 7 8:  9: 'assert 10: Assert.AreEqual(expectedWidth, rectangle.Width) 11: End Sub   If we pass in a rectangle, this test passes just fine. What if we pass in a square?   This is where we see the violation of Liskov’s Principle! A square might "IS A” to a rectangle, but we have differing expectations on how a rectangle should function than how a square should! Great expectations Here’s where we pat ourselves on the back and take a victory lap around the office and tell everyone about how we understand LSP like a boss. And all is good… until we start trying to apply it to our work. If I can’t even change functionality on a simple setter without breaking the expectations on a parent class, what can I do with subtyping? Did Liskov just tell me to never touch subtyping again? The short answer: NO, SHE DIDN’T. When I first learned LSP, and from those I’ve talked with as well, I overlooked a very important but not appropriately stressed quality of the principle: our expectations. Our inclination is to want a logical catch-all, where we can easily apply this principle and wipe our hands, drop the mic and exit stage left. That’s not the case because in every different programming scenario, our expectations of the parent class or type will be different. We have to set reasonable expectations on the behaviors that we expect out of the parent, then make sure that those expectations are met by the child. Any expectations not explicitly expected of the parent aren’t expected of the child either, and don’t register as a violation of LSP that prevents implementation. You can see the flexibility mentioned in the Wikipedia article itself: A typical example that violates LSP is a Square class that derives from a Rectangle class, assuming getter and setter methods exist for both width and height. The Square class always assumes that the width is equal with the height. If a Square object is used in a context where a Rectangle is expected, unexpected behavior may occur because the dimensions of a Square cannot (or rather should not) be modified independently. This problem cannot be easily fixed: if we can modify the setter methods in the Square class so that they preserve the Square invariant (i.e., keep the dimensions equal), then these methods will weaken (violate) the postconditions for the Rectangle setters, which state that dimensions can be modified independently. Violations of LSP, like this one, may or may not be a problem in practice, depending on the postconditions or invariants that are actually expected by the code that uses classes violating LSP. Mutability is a key issue here. If Square and Rectangle had only getter methods (i.e., they were immutable objects), then no violation of LSP could occur. What this means is that the above situation with a rectangle and a square can be acceptable if we do not have the expectation for width to leave height unaffected, or vice-versa, in our application. Conclusion – the oft forgot third wheel Liskov Substitution Principle is meant to act as a guidance and warn us against unexpected behaviors. Objects can be stateful and as a result we can end up with unexpected situations if we don’t code carefully. Specifically when subclassing, make sure that the subclass meets the expectations held to its parent. Don’t let LSP think you cannot deviate from the behaviors of the parent, but understand that LSP is meant to highlight the importance of not only the parent and the child class, but also of the expectations WE set for the parent class and the necessity of meeting those expectations in order to help prevent sticky situations.   Code examples, in both VB and C# Technorati Tags: LSV,Liskov Substitution Principle,Uncle Bob,Robert Martin,Barbara Liskov,Liskov

    Read the article

  • Fluid VS Responsive Website Development Questions

    - by Aditya P
    As I understand these form the basis for targeting a wide array of devices based on the browser size, given it would be a time consuming to generate different layouts targeting different/specific devices and their resolutions. Questions: Firstly right to the jargon, is there any actual difference between the two or do they mean the same? Is it safe to classify the current development mainly a html5/css3 based one? What popular frameworks are available to easily implement this? What testing methods used in this regard? What are the most common compatibility issues in terms of different browser types? I understand there are methods like this http://css-tricks.com/resolution-specific-stylesheets/ which does this come under?. Are there any external browser detection methods besides the API calls specific to the browser that are employed in this regard? Points of interest [Prior Research before asking these questions] Why shouldn't "responsive" web design be a consideration? Responsive Web Design Tips, Best Practices and Dynamic Image Scaling Techniques A recent list of tutorials 30 Responsive Web Design and Development Tutorials by Eric Shafer on May 14, 2012 Update Ive been reading that the basic point of designing content for different layouts to facilitate a responsive web design is to present the most relevant information. now obviously between the smallest screen width and the highest we are missing out on design elements. I gather from here http://flashsolver.com/2012/03/24/5-top-commercial-responsive-web-designs/ The top of the line design layouts (widths) are desktop layout (980px) tablet layout (768px) smartphone layout – landscape (480px) smartphone layout – portrait (320px) Also we have a popular responsive website testing site http://resizemybrowser.com/ which lists different screen resolutions. I've also come across this while trying to find out the optimal highest layout size to account for http://stackoverflow.com/questions/10538599/default-web-page-width-1024px-or-980px which brings to light seemingly that 1366x768 is a popular web resolution. Is it safe to assume that just accounting for proper scaling from width 980px onwards to the maximum size would be sufficient to accommodate this? given we aren't presenting any new information for the new size. Does it make sense to have additional information ( which conflicts with purpose of responsive web design) to utilize the top size and beyond?

    Read the article

  • Don't Use Static? [closed]

    - by Joshiatto
    Possible Duplicate: Is static universally “evil” for unit testing and if so why does resharper recommend it? Heavy use of static methods in a Java EE web application? I submitted an application I wrote to some other architects for code review. One of them almost immediately wrote me back and said "Don't use "static". You can't write automated tests with static classes and methods. "Static" is to be avoided." I checked and fully 1/4 of my classes are marked "static". I use static when I am not going to create an instance of a class because the class is a single global class used throughout the code. He went on to mention something involving mocking, IOC/DI techniques that can't be used with static code. He says it is unfortunate when 3rd party libraries are static because of their un-testability. Is this other architect correct?

    Read the article

  • Are CK Metrics still considered useful? Is there an open source tool to help?

    - by DeveloperDon
    Chidamber & Kemerer proposed several metrics for object oriented code. Among them, depth of inheritance tree, weighted number of methods, number of member functions, number of children, and coupling between objects. Using a base of code, they tried to correlated these metrics to the defect density and maintenance effort using covariant analysis. Are these metrics actionable in projects? Perhaps they can guide refactoring. For example weighted number of methods might show which God classes needed to be broken into more cohesive classes that address a single concern. Is there approach superseded by a better method, and is there a tool that can identify problem code, particularly in moderately large project being handed off to a new developer or team?

    Read the article

  • [News] Fluent.NET 1.0 disponible

    Fluent.NET est un framework Open Source proposant une surcouche des API .NET sous la forme d'interfaces fluentes. Le proc?d? s'appuie sur les extensions de m?thodes et facilite la lecture de code : "English speakers read from left to right, not from the outside in. So why are we writing code that way? Fluent.NET aims to correct this problem by adding extension methods where helper methods are typically used.". Le principe tend ? se g?n?raliser ces derni?res ann?es, notamment dans les langages de requ?tes objets.

    Read the article

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • WSDL-world vs CLR-world – some differences

    - by nmarun
    A change in mindset is required when switching between a typical CLR application and a web service application. There are some things in a CLR environment that just don’t add-up in a WSDL arena (and vice-versa). I’m listing some of them here. When I say WSDL-world, I’m mostly talking with respect to a WCF Service and / or a Web Service. No (direct) Method Overloading: You definitely can have overloaded methods in a, say, Console application, but when it comes to a WCF / Web Services application, you need to adorn these overloaded methods with a special attribute so the service knows which specific method to invoke. When you’re working with WCF, use the Name property of the OperationContract attribute to provide unique names. 1: [OperationContract(Name = "AddInt")] 2: int Add(int arg1, int arg2); 3:  4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); By default, the proxy generates the code for this as: 1: [System.ServiceModel.OperationContractAttribute( 2: Action="http://tempuri.org/ILearnWcfService/AddInt", 3: ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute( 7: Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", 8: ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 9: double AddDouble(double arg1, double arg2); With Web Services though the story is slightly different. Even after setting the MessageName property of the WebMethod attribute, the proxy does not change the name of the method, but only the underlying soap message changes. 1: [WebMethod] 2: public string HelloGalaxy() 3: { 4: return "Hello Milky Way!"; 5: } 6:  7: [WebMethod(MessageName = "HelloAnyGalaxy")] 8: public string HelloGalaxy(string galaxyName) 9: { 10: return string.Format("Hello {0}!", galaxyName); 11: } The one thing you need to remember is to set the WebServiceBinding accordingly. 1: [WebServiceBinding(ConformsTo = WsiProfiles.None)] The proxy is: 1: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloGalaxy", 2: RequestNamespace="http://tempuri.org/", 3: ResponseNamespace="http://tempuri.org/", 4: Use=System.Web.Services.Description.SoapBindingUse.Literal, 5: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 6: public string HelloGalaxy() 7:  8: [System.Web.Services.WebMethodAttribute(MessageName="HelloGalaxy1")] 9: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloAnyGalaxy", 10: RequestElementName="HelloAnyGalaxy", 11: RequestNamespace="http://tempuri.org/", 12: ResponseElementName="HelloAnyGalaxyResponse", 13: ResponseNamespace="http://tempuri.org/", 14: Use=System.Web.Services.Description.SoapBindingUse.Literal, 15: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 16: [return: System.Xml.Serialization.XmlElementAttribute("HelloAnyGalaxyResult")] 17: public string HelloGalaxy(string galaxyName) 18:  You see the calling method name is the same in the proxy, however the soap message that gets generated is different. Using interchangeable data types: See details on this here. Type visibility: In a CLR-based application, if you mark a field as private, well we all know, it’s ‘private’. Coming to a WSDL side of things, in a Web Service, private fields and web methods will not get generated in the proxy. In WCF however, all your operation contracts will be public as they get implemented from an interface. Even in case your ServiceContract interface is declared internal/private, you will see it as a public interface in the proxy. This is because type visibility is a CLR concept and has no bearing on WCF. Also if a private field has the [DataMember] attribute in a data contract, it will get emitted in the proxy class as a public property for the very same reason. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: private int _x; 6:  7: [DataMember] 8: public int Id { get; set; } 9:  10: [DataMember] 11: public string FirstName { get; set; } 12:  13: [DataMember] 14: public string Header { get; set; } 15: } 16: } See the ‘_x’ field is a private member with the [DataMember] attribute, but the proxy class shows as below: 1: [System.Runtime.Serialization.DataMemberAttribute()] 2: public int _x { 3: get { 4: return this._xField; 5: } 6: set { 7: if ((this._xField.Equals(value) != true)) { 8: this._xField = value; 9: this.RaisePropertyChanged("_x"); 10: } 11: } 12: } Passing derived types to web methods / operation contracts: Once again, in a CLR application, I can have a derived class be passed as a parameter where a base class is expected. I have the following set up for my WCF service. 1: [DataContract] 2: public class Employee 3: { 4: [DataMember(Name = "Id")] 5: public int EmployeeId { get; set; } 6:  7: [DataMember(Name="FirstName")] 8: public string FName { get; set; } 9:  10: [DataMember] 11: public string Header { get; set; } 12: } 13:  14: [DataContract] 15: public class Manager : Employee 16: { 17: [DataMember] 18: private int _x; 19: } 20:  21: // service contract 22: [OperationContract] 23: Manager SaveManager(Employee employee); 24:  25: // in my calling code 26: Manager manager = new Manager {_x = 1, FirstName = "abc"}; 27: manager = LearnWcfServiceClient.SaveManager(manager); The above will throw an exception saying: In short, this is saying, that a Manager type was found where an Employee type was expected! Hierarchy flattening of interfaces in WCF: See details on this here. In CLR world, you’ll see the entire hierarchy as is. That’s another difference. Using ref parameters: * can use ref for parameters, but operation contract should not be one-way (gives an error when you do an update service reference)   => bad programming; create a return object that is composed of everything you need! This one kind of stumped me. Not sure why I tried this, but you can pass parameters prefixed with ref keyword* (* terms and conditions apply). The main issue is this, how would we know the changes that were made to a ‘ref’ input parameter are returned back from the service and updated to the local variable? Turns out both Web Services and WCF make this tracking happen by passing the input parameter in the response soap. This way when the deserializer does its magic, it maps all the elements of the response xml thereby updating our local variable. Here’s what I’m talking about. 1: [WebMethod(MessageName = "HelloAnyGalaxy")] 2: public string HelloGalaxy(ref string galaxyName) 3: { 4: string output = string.Format("Hello {0}", galaxyName); 5: if (galaxyName == "Andromeda") 6: { 7: galaxyName = string.Format("{0} (2.5 million light-years away)", galaxyName); 8: } 9: return output; 10: } This is how the request and response look like in soapUI. As I said above, the behavior is quite similar for WCF as well. But the catch comes when you have a one-way web methods / operation contracts. If you have an operation contract whose return type is void, is marked one-way and that has ref parameters then you’ll get an error message when you try to reference such a service. 1: [OperationContract(Name = "Sum", IsOneWay = true)] 2: void Sum(ref double arg1, ref double arg2); 3:  4: public void Sum(ref double arg1, ref double arg2) 5: { 6: arg1 += arg2; 7: } This is what I got when I did an update to my service reference: Makes sense, because a OneWay operation is… one-way – there’s no returning from this operation. You can also have a one-way web method: 1: [SoapDocumentMethod(OneWay = true)] 2: [WebMethod(MessageName = "HelloAnyGalaxy")] 3: public void HelloGalaxy(ref string galaxyName) This will throw an exception message similar to the one above when you try to update your web service reference. In the CLR space, there’s no such concept of a ‘one-way’ street! Yes, there’s void, but you very well can have ref parameters returned through such a method. Just a point here; although the ref/out concept sounds cool, it’s generally is a code-smell. The better approach is to always return an object that is composed of everything you need returned from a method. These are some of the differences that we need to bear when dealing with services that are different from our daily ‘CLR’ life.

    Read the article

  • Alternative printing method(s) for an unsupported printer

    - by B. Roland
    Hello! I have in my office, a Konica Minolta bizhub 211 multifunction printer, it works well with windows workstations... It has a lot of good features, like duplex... I haven't found any drivers for UNIX, so I'm looking for alternative methods, how can we make it useable in Ubuntu. I'm thinking on some windows based server, or what I know... I wrote here requesting for drivers: ubuntu.hu, linuxforums.org, forums.debian.net, ubuntuforums.org; and also to the manufacturer, but they said only, that "the first PostScript supported printer is only bizhub 223", so they don't care that thing. Please suggest working methods, Thanks, B. Roland

    Read the article

  • My integer overfloweth

    - by darcy
    While certain classes like java.lang.Integer and java.lang.Math have been in the platform since the beginning, that doesn't mean there aren't more enhancements to be made in such places! For example, earlier in JDK 8, library support was added for unsigned integer arithmetic. More recently, my colleague Roger Riggs pushed a changeset to support integer overflow, that is, to provide methods which throw an ArithmeticException on overflow instead of returning a wrapped result. Besides being helpful for various programming tasks in Java, methods like the those for integer overflow can be used to implement runtimes supporting other languages, as has been requested at a past JVM language summit. This year's language summit is coming up in July and I hope to get some additional suggestions there for helpful library additions as part of the general discussions of the JVM and Java libraries as a platform.

    Read the article

  • LexisNexis and Oracle Join Forces to Prevent Fraud and Identity Abuse

    - by Tanu Sood
    Author: Mark Karlstrand About the Writer:Mark Karlstrand is a Senior Product Manager at Oracle focused on innovative security for enterprise web and mobile applications. Over the last sixteen years Mark has served as director in a number of tech startups before joining Oracle in 2007. Working with a team of talented architects and engineers Mark developed Oracle Adaptive Access Manager, a best of breed access security solution.The world’s top enterprise software company and the world leader in data driven solutions have teamed up to provide a new integrated security solution to prevent fraud and misuse of identities. LexisNexis Risk Solutions, a Gold level member of Oracle PartnerNetwork (OPN), today announced it has achieved Oracle Validated Integration of its Instant Authenticate product with Oracle Identity Management.Oracle provides the most complete Identity and Access Management platform. The only identity management provider to offer advanced capabilities including device fingerprinting, location intelligence, real-time risk analysis, context-aware authentication and authorization makes the Oracle offering unique in the industry. LexisNexis Risk Solutions provides the industry leading Instant Authenticate dynamic knowledge based authentication (KBA) service which offers customers a secure and cost effective means to authenticate new user or prove authentication for password resets, lockouts and such scenarios. Oracle and LexisNexis now offer an integrated solution that combines the power of the most advanced identity management platform and superior data driven user authentication to stop identity fraud in its tracks and, in turn, offer significant operational cost savings. The solution offers the ability to challenge users with dynamic knowledge based authentication based on the risk of an access request or transaction thereby offering an additional level to other authentication methods such as static challenge questions or one-time password when needed. For example, with Oracle Identity Management self-service, the forgotten password reset workflow utilizes advanced capabilities including device fingerprinting, location intelligence, risk analysis and one-time password (OTP) via short message service (SMS) to secure this sensitive flow. Even when a user has lost or misplaced his/her mobile phone and, therefore, cannot receive the SMS, the new integrated solution eliminates the need to contact the help desk. The Oracle Identity Management platform dynamically switches to use the LexisNexis Instant Authenticate service for authentication if the user is not able to authenticate via OTP. The advanced Oracle and LexisNexis integrated solution, thus, both improves user experience and saves money by avoiding unnecessary help desk calls. Oracle Identity and Access Management secures applications, Juniper SSL VPN and other web resources with a thoroughly modern layered and context-aware platform. Users don't gain access just because they happen to have a valid username and password. An enterprise utilizing the Oracle solution has the ability to predicate access based on the specific context of the current situation. The device, location, temporal data, and any number of other attributes are evaluated in real-time to determine the specific risk at that moment. If the risk is elevated a user can be challenged for additional authentication, refused access or allowed access with limited privileges. The LexisNexis Instant Authenticate dynamic KBA service plugs into the Oracle platform to provide an additional layer of security by validating a user's identity in high risk access or transactions. The large and varied pool of data the LexisNexis solution utilizes to quiz a user makes this challenge mechanism even more robust. This strong combination of Oracle and LexisNexis user authentication capabilities greatly mitigates the risk of exposing sensitive applications and services on the Internet which helps an enterprise grow their business with confidence.Resources:Press release: LexisNexis® Achieves Oracle Validated Integration with Oracle Identity Management Oracle Access Management (HTML)Oracle Adaptive Access Manager (pdf)

    Read the article

  • First Person Shooter game agent development

    - by LangerHansIslands
    I would like to apply (program) the Artificial intelligence methods to create a intelligent game bots for a first person shooter game. Do you have any knowledge from where can I start to develop as a Linux user? Do you have a suggestion for an easy-to-start game for which I can develop bots easily, caring more about the result of my algorithms rather than spending a lot of time dealing with the game code? I've read some publications about the applied methods to Quake 3 (c) and Open Arena. But I couldn't find the source codes and manuals describing how to start coding( for compiling, developing ai and etc.). I appreciate your help.

    Read the article

  • Extreme Optimization – Numerical Algorithm Support

    - by JoshReuben
    Function Delegates Many calculations involve the repeated evaluation of one or more user-supplied functions eg Numerical integration. The EO MathLib provides delegate types for common function signatures and the FunctionFactory class can generate new delegates from existing ones. RealFunction delegate - takes one Double parameter – can encapsulate most of the static methods of the System.Math class, as well as the classes in the Extreme.Mathematics.SpecialFunctions namespace: var sin = new RealFunction(Math.Sin); var result = sin(1); BivariateRealFunction delegate - takes two Double parameters: var atan2 = new BivariateRealFunction (Math.Atan2); var result = atan2(1, 2); TrivariateRealFunction delegate – represents a function takes three Double arguments ParameterizedRealFunction delegate - represents a function taking one Integer and one Double argument that returns a real number. The Pow method implements such a function, but the arguments need order re-arrangement: static double Power(int exponent, double x) { return ElementaryFunctions.Pow(x, exponent); } ... var power = new ParameterizedRealFunction(Power); var result = power(6, 3.2); A ComplexFunction delegate - represents a function that takes an Extreme.Mathematics.DoubleComplex argument and also returns a complex number. MultivariateRealFunction delegate - represents a function that takes an Extreme.Mathematics.LinearAlgebra.Vector argument and returns a real number. MultivariateVectorFunction delegate - represents a function that takes a Vector argument and returns a Vector. FastMultivariateVectorFunction delegate - represents a function that takes an input Vector argument and an output Matrix argument – avoiding object construction  The FunctionFactory class RealFromBivariateRealFunction and RealFromParameterizedRealFunction helper methods - transform BivariateRealFunction or a ParameterizedRealFunction into a RealFunction delegate by fixing one of the arguments, and treating this as a new function of a single argument. var tenthPower = FunctionFactory.RealFromParameterizedRealFunction(power, 10); var result = tenthPower(x); Note: There is no direct way to do this programmatically in C# - in F# you have partial value functions where you supply a subset of the arguments (as a travelling closure) that the function expects. When you omit arguments, F# generates a new function that holds onto/remembers the arguments you passed in and "waits" for the other parameters to be supplied. let sumVals x y = x + y     let sumX = sumVals 10     // Note: no 2nd param supplied.     // sumX is a new function generated from partially applied sumVals.     // ie "sumX is a partial application of sumVals." let sum = sumX 20     // Invokes sumX, passing in expected int (parameter y from original)  val sumVals : int -> int -> int val sumX : (int -> int) val sum : int = 30 RealFunctionsToVectorFunction and RealFunctionsToFastVectorFunction helper methods - combines an array of delegates returning a real number or a vector into vector or matrix functions. The resulting vector function returns a vector whose components are the function values of the delegates in the array. var funcVector = FunctionFactory.RealFunctionsToVectorFunction(     new MultivariateRealFunction(myFunc1),     new MultivariateRealFunction(myFunc2));  The IterativeAlgorithm<T> abstract base class Iterative algorithms are common in numerical computing - a method is executed repeatedly until a certain condition is reached, approximating the result of a calculation with increasing accuracy until a certain threshold is reached. If the desired accuracy is achieved, the algorithm is said to converge. This base class is derived by many classes in the Extreme.Mathematics.EquationSolvers and Extreme.Mathematics.Optimization namespaces, as well as the ManagedIterativeAlgorithm class which contains a driver method that manages the iteration process.  The ConvergenceTest abstract base class This class is used to specify algorithm Termination , convergence and results - calculates an estimate for the error, and signals termination of the algorithm when the error is below a specified tolerance. Termination Criteria - specify the success condition as the difference between some quantity and its actual value is within a certain tolerance – 2 ways: absolute error - difference between the result and the actual value. relative error is the difference between the result and the actual value relative to the size of the result. Tolerance property - specify trade-off between accuracy and execution time. The lower the tolerance, the longer it will take for the algorithm to obtain a result within that tolerance. Most algorithms in the EO NumLib have a default value of MachineConstants.SqrtEpsilon - gives slightly less than 8 digits of accuracy. ConvergenceCriterion property - specify under what condition the algorithm is assumed to converge. Using the ConvergenceCriterion enum: WithinAbsoluteTolerance / WithinRelativeTolerance / WithinAnyTolerance / NumberOfIterations Active property - selectively ignore certain convergence tests Error property - returns the estimated error after a run MaxIterations / MaxEvaluations properties - Other Termination Criteria - If the algorithm cannot achieve the desired accuracy, the algorithm still has to end – according to an absolute boundary. Status property - indicates how the algorithm terminated - the AlgorithmStatus enum values:NoResult / Busy / Converged (ended normally - The desired accuracy has been achieved) / IterationLimitExceeded / EvaluationLimitExceeded / RoundOffError / BadFunction / Divergent / ConvergedToFalseSolution. After the iteration terminates, the Status should be inspected to verify that the algorithm terminated normally. Alternatively, you can set the ThrowExceptionOnFailure to true. Result property - returns the result of the algorithm. This property contains the best available estimate, even if the desired accuracy was not obtained. IterationsNeeded / EvaluationsNeeded properties - returns the number of iterations required to obtain the result, number of function evaluations.  Concrete Types of Convergence Test classes SimpleConvergenceTest class - test if a value is close to zero or very small compared to another value. VectorConvergenceTest class - test convergence of vectors. This class has two additional properties. The Norm property specifies which norm is to be used when calculating the size of the vector - the VectorConvergenceNorm enum values: EuclidianNorm / Maximum / SumOfAbsoluteValues. The ErrorMeasure property specifies how the error is to be measured – VectorConvergenceErrorMeasure enum values: Norm / Componentwise ConvergenceTestCollection class - represent a combination of tests. The Quantifier property is a ConvergenceTestQuantifier enum that specifies how the tests in the collection are to be combined: Any / All  The AlgorithmHelper Class inherits from IterativeAlgorithm<T> and exposes two methods for convergence testing. IsValueWithinTolerance<T> method - determines whether a value is close to another value to within an algorithm's requested tolerance. IsIntervalWithinTolerance<T> method - determines whether an interval is within an algorithm's requested tolerance.

    Read the article

  • Is it bad to have an "Obsessive Refactoring Disorder"?

    - by Rachel
    I was reading this question and realized that could almost be me. I am fairly OCD about refactoring someone else's code when I see that I can improve it. For example, if the code contains duplicate methods to do the same thing with nothing more than a single parameter changing, I feel I have to remove all the copy/paste methods and replace it with one generic one. Is this bad? Should I try and stop? I try not to refactor unless I can actually make improvements to the code performance or readability, or if the person who did the code isn't following our standard naming conventions (I hate expecting a variable to be local because of the naming standard, only to discover it is a global variable which has been incorrectly named)

    Read the article

  • What defines good developer culture? [closed]

    - by Sven
    We are a team of 6 people developing applications for mobile devices (Android & iOS). In our company, which consists of many teams responsible for "classic" software development, business intelligence, virtualization, hardware, etc., we are kind of a small startup because we were the first to use agile methods like Scrum and we are open to new technologies and methods. Also our team is pretty young with me being the oldest with 30 years. We would like to further raise productivity and motivation and thus are currently collecting points which make up a good developer/hacker culture and which may be improved in our team/company. This can be points that we can either improve ourselves or have to pass on to management. I would like to know what in your opinion defines good, modern developer culture? What does developer culture consists of? For example is it clearly defined career opportunities geeky office benefits like trips to extraordinary conferences like WWDC or Google I/O ...

    Read the article

  • How to do reflective collisions with particles hitting background tiles?

    - by Shawn LeBlanc
    In my 2d pixel old-school platformer, I'm looking for methods for bouncing particles off of background tiles. Particles aren't affected by gravity and collisions are "reflective". By that I mean a particle hitting the side of a square tile at 45 degrees should bounce off at 45 degrees as well. We can assume that tiles will always be perfectly square. No slopes or anything. What are efficient methods and algorithms to do this? I'd be implementing this on a Sega Genesis.

    Read the article

  • AABB > AABB collision response?

    - by Levi
    I'm really confused about how to fix this in 3d? I want it so that I can slide along cubes but without getting caught if there's 2 adjacent cubes. I've gotten it so that I can do x collision, with sliding, and y, and z, but I can't do them together, probably because I don't know how to resolve it correctly. e.g. [] [] []^ []O [] O is the player, ^ is the direction the player is moving, with the methods which I was trying I would get stuck between the cubes because the z axis was responding and kicking me out :/. I don't know how to resolve this in all 3 direction, like how would I go about telling which direction I have to resolve in. My previous methods involved me checking 4 points in a axis aligned square around the player, I was checking if these points where inside the cubes and if they where fixing my position, but I couldn't get it working correctly. Help is appreciated. edit: pretend all the blocks are touching.

    Read the article

  • How does TDD address interaction between objects?

    - by Gigi
    TDD proponents claim that it results in better design and decoupled objects. I can understand that writing tests first enforces the use of things like dependency injection, resulting in loosely coupled objects. However, TDD is based on unit tests - which test individual methods and not the integration between objects. And yet, TDD expects design to evolve from the tests themselves. So how can TDD possibly result in a better design at the integration (i.e. inter-object) level when the granularity it addresses is finer than that (individual methods)?

    Read the article

  • How do I overcome paralysis by analysis when coding?

    - by LuxuryMode
    When I start a new project, I often times immediately start thinking about the details of implementation. "Where am I gonna put the DataBaseHandler? How should I use it? Should classes that want to use it extend from some Abstract superclass..? Should I an interface? What level of abstraction am I going to use in my class that contains methods for sending requests and parsing data?" I end up stalling for a long time because I want to code for extensibility and reusability. But I feel it almost impossible to get past thinking about how to implement perfectly. And then, if I try to just say "screw it, just get it done!", I hit a brick wall pretty quickly because my code isn't organized, I mixed levels of abstractions, etc. What are some techniques/methods you have for launching into a new project while also setting up a logical/modular structure that will scale well?

    Read the article

  • Immutable Method in Java

    - by Chris Okyen
    In Java, there is the final keyword in lieu of the const keyword in C and C++. In the latter languages there are mutable and immutable methods such as stated in the answer by Johannes Schaub - litb to the question How many and which are the uses of “const” in C++? Use const to tell others methods won't change the logical state of this object. struct SmartPtr { int getCopies() const { return mCopiesMade; } }ptr1; ... int var = ptr.getCopies(); // returns mCopiesMade and is specified that to not modify objects state. How is this performed in Java?

    Read the article

  • Does anyone actually use the /// comment blocks?

    - by Rachel
    Someone once said we should prefix all our methods with the /// <summary> comment blocks (C#) and I am wondering if that is true or not. I started to use them and found they annoyed me quite a bit, so stopped using them except for libraries and static methods. They're bulky and I'm always forgetting to update them. Do you recommend using them? Why? EDIT: I normally use // comments all the time, it's just the /// <summary> blocks I was wondering about

    Read the article

  • Adding new events to be handled by script part without recompilation of c++ source code

    - by paul424
    As in title I want to write an Event system with handling methods written in external script language, that is Angelscript. The AS methods would have acess to game's world modifing API ( which has to be regsitered for Angelscript Machine as the game starts) . I have come to this problem : if we use the Angelsript for rapid prototyping of the game's world behavior , we would like to be able to define new Event Types, without recompiling the main binary. Is that ever possible , don't stick to Angelscript, I think about any possible scripting language. The main thought is this : If there's some really new Event possible to be constructed , we must monitor some information coming from the binary, for example some variable value changing and the Events are just triggered on some conditions on those changes , wer might be monitoring the Creatures HP, by having a function call on each change, there we could define new Events such as Creature hurt, creature killed, creature healed , creature killed and tormented to pieces ( like geting HP very much below 0 ) . Are there any other ideas of constructing new Events at the scripting side ?

    Read the article

  • WebCenter Customer Spotlight: Ancestry.com

    - by me
    Author: Peter Reiser - Social Business Evangelist, Oracle WebCenter  Solution SummaryAncestry.com Inc is the largest for-profit genealogy company in the world and it operates a network of genealogical and historical record websites focused on the U.S. and nine foreign countries, develops and markets genealogical software, and offers a wide array of genealogical related services. As of June 2012, the company provided access to more than 10 billion records, 38 million family trees, and 2 million paying subscribers. Their main business challenges were to improve time to market and agility to respond quickly to fast changing Internet waves while integrating with their existing content (4 PetaByte) and legacy systems. Ancestry.com implemented Oracle WebCenter Sites as their Web Experience Management System for their landing pages and marketing micro sites, added dynamic sections to their existing websites and integrated the existing content and legacy systems through web services. The Ancestry.com landing pages and marketing sites are now managed by the business team without any involvement of engineering resources. Managed content can quickly be added to existing pages without having to refactor the whole page and existing content (4 PetaBytes)  is now served trough Oracle WebCenter Sites without having to migrate from existing systems. Company OverviewAncestry.com Inc is a publicly traded Internet company (NASDAQ: ACOM) based in Provo, Utah, USA. The largest for-profit genealogy company in the world, it operates a network of genealogical and historical record websites focused on the U.S. and nine foreign countries, develops and markets genealogical software, and offers a wide array of genealogical related services. As of June 2012, the company provided access to more than 10 billion records, 38 million family trees, and 2 million paying subscribers. Business ChallengesAncestry main business challenge was to respond quickly to fast changing Internet waves.  Product marketing could not change Web site content without going through development. They needed dedicated developers just to support their marketing efforts. Technical Requirements Support current systems and environments - ASP.NET, MVC.NET, Java, JSP, PHP Scalable and manageable for a world wide network Marketing Requirements Easy to enter content – Without having a degree in HTML Scheduling of content – When is content visible to users Product Requirements Easy to manage content – See when content is out-of-date Rotation of content – Producing new content as old content expires Solution DeployedAncestry implemented  Oracle WebCenter Sites as their Web Experience Management System to manage their landing pages and marketing micro sites. This sites are fully managed by their business team without involvement of any engineering resources. The integration with their existing Web sites is done through Spot Management which allows the ability to add dynamic content to certain sections of a web page. The dynamic content is managed by  Oracle WebCenter Sites. The integration with the existing content (4 PetaBytes!) is done trough  a custom content provider interface which allows to mix existing content with content from  Oracle WebCenter Sites. Business ResultsAncestry.com has achieved following impressive business results: Landing pages and marketing sites are now managed by the business team without any involvement of engineering resources Managed content can quickly be added to existing pages without having to refactor the whole page Provide access to existing content (4 PetaBytes)  without having to migrate from existing systems Additional Information Ancestry Webcast Oracle WebCenter Sites

    Read the article

  • Overriding the Pager rendering in Orchard

    - by Bertrand Le Roy
    The Pager shape that is used in Orchard to render pagination is one of those shapes that are built in code rather than in a Razor template. This can make it a little more confusing to override, but nothing is impossible. If we look at the Pager method in CoreShapes, here is what we see: [Shape] public IHtmlString Pager(dynamic Shape, dynamic Display) { Shape.Metadata.Alternates.Clear(); Shape.Metadata.Type = "Pager_Links"; return Display(Shape); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The Shape attribute signals a shape method. All it does is remove all alternates that may exist and replace the type of the shape with “Pager_Links”. In turn, this shape method is rather large and complicated, but it renders as a set of smaller shapes: a List with a “pager” class, and under that Pager_First, Pager_Previous, Pager_Gap, for each page a Pager_Link or a Pager_Current, then Pager_Gap, Pager_Next and Pager_Last. Each of these shapes can be displayed or not depending on the properties of the pager. Each can also be overridden with a Razor template. This can be done by dropping a file into the Views folder of your theme. For example, if you want the current page to appear between square braces, you could drop this Pager-CurrentPage.cshtml into your views folder: <span>[@Model.Value]</span> This overrides the original shape method, which was this: [Shape] public IHtmlString Pager_CurrentPage(HtmlHelper Html, dynamic Display, object Value) { var tagBuilder = new TagBuilder("span"); tagBuilder.InnerHtml = Html.Encode(Value is string ? (string)Value : Display(Value)); return MvcHtmlString.Create(tagBuilder.ToString()); } And here is what it would look like: Now what if we want to completely hide the pager if there is only one page? Well, the easiest way to do that is to override the Pager shape by dropping the following into the Views folder of your theme: @{ if (Model.TotalItemCount > Model.PageSize) { Model.Metadata.Alternates.Clear(); Model.Metadata.Type = "Pager_Links"; @Display(Model) } } And that’s it. The code in this template just adds a check for the number of items to display (in a template, Model is the shape) and only displays the Pager_Links shape if it knows that there’s going to be more than one page.

    Read the article

< Previous Page | 191 192 193 194 195 196 197 198 199 200 201 202  | Next Page >