Search Results

Search found 26908 results on 1077 pages for 'asynchronous wcf call'.

Page 196/1077 | < Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >

  • Why is this RMagick call generating a segmentation fault?

    - by Grant Heaslip
    I've been banging my head against the wall for the better part of an hour trying to figure out what's going wrong here, and I'm sure (or rather hoping) it's something fairly obvious that I'm overlooking. I'm using Ruby 1.9.1, Sinatra 1.0, and RMagick 2.13.1. ImageMagick and RMagick are correctly installed and functional—I've successfully manipulated and saved images from irb. The relevant part of the params array (formatting changes for the sake of readability): {"admin_user_new_image_file"=> { :filename=>"freddie-on-shetland-pony.png", :type=>"image/png", :name=>"admin_user_new_image_file", :tempfile=>#<File:/var/folders/a7/a7pO5jMcGLCww9XBGRvWfE+++TI/-Tmp-/RackMultipart20100514-20700-o2tkqu-0>, :head=>"Content-Disposition: form-data; name=\"admin_user_new_image_file\"; filename=\"freddie-on-shetland-pony.png\"\r\nContent-Type: image/png\r\n" } } The relevant code: post "/admin/user/:account_name/image/new/" do if params[:admin_user_new_image_file][:tempfile] thumbnail = Magick::Image.read("png:"+params[:admin_user_new_image_file][:tempfile].path).first end end The error (line 229 is the line starting with "thumbnail = ": config.ru:229: [BUG] Segmentation fault ruby 1.9.1p376 (2009-12-07 revision 26041) [i386-darwin10.3.0] -- control frame ---------- c:0042 p:---- s:0196 b:0196 l:000195 d:000195 CFUNC :read c:0041 p:0121 s:0192 b:0192 l:001ab8 d:000191 LAMBDA config.ru:229 c:0040 p:---- s:0189 b:0189 l:000188 d:000188 FINISH c:0039 p:---- s:0187 b:0187 l:000186 d:000186 CFUNC :call c:0038 p:0018 s:0184 b:0184 l:001d78 d:000183 BLOCK /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:865 c:0037 p:---- s:0182 b:0182 l:000181 d:000181 FINISH c:0036 p:---- s:0180 b:0180 l:000179 d:000179 CFUNC :instance_eval c:0035 p:0016 s:0177 b:0175 l:000174 d:000174 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:521 c:0034 p:0024 s:0171 b:0171 l:000148 d:000170 BLOCK /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:500 c:0033 p:---- s:0169 b:0169 l:000168 d:000168 FINISH c:0032 p:---- s:0167 b:0167 l:000166 d:000166 CFUNC :catch c:0031 p:0140 s:0163 b:0163 l:000148 d:000162 BLOCK /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:497 c:0030 p:---- s:0154 b:0154 l:000153 d:000153 FINISH c:0029 p:---- s:0152 b:0152 l:000151 d:000151 CFUNC :each c:0028 p:0073 s:0149 b:0149 l:000148 d:000148 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:476 c:0027 p:0076 s:0141 b:0141 l:000140 d:000140 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:601 c:0026 p:0009 s:0137 b:0137 l:000138 d:000136 BLOCK /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:411 c:0025 p:---- s:0135 b:0135 l:000134 d:000134 FINISH c:0024 p:---- s:0133 b:0133 l:000132 d:000132 CFUNC :instance_eval c:0023 p:0012 s:0130 b:0130 l:000121 d:000129 BLOCK /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:566 c:0022 p:---- s:0128 b:0128 l:000127 d:000127 FINISH c:0021 p:---- s:0126 b:0126 l:000125 d:000125 CFUNC :catch c:0020 p:0013 s:0122 b:0122 l:000121 d:000121 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:566 c:0019 p:0098 s:0115 b:0115 l:000138 d:000138 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:411 c:0018 p:0019 s:0108 b:0108 l:000107 d:000107 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:399 c:0017 p:0014 s:0104 b:0104 l:000103 d:000103 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/showexceptions.rb:24 c:0016 p:0150 s:0098 b:0098 l:000097 d:000097 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/methodoverride.rb:24 c:0015 p:0031 s:0092 b:0092 l:000091 d:000091 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/commonlogger.rb:18 c:0014 p:0018 s:0084 b:0084 l:002080 d:000083 BLOCK /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:979 c:0013 p:0032 s:0082 b:0082 l:000081 d:000081 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:1005 c:0012 p:0011 s:0078 b:0078 l:002080 d:002080 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:979 c:0011 p:0100 s:0074 b:0074 l:000ff0 d:000ff0 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/lint.rb:47 c:0010 p:0022 s:0068 b:0068 l:000067 d:000067 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/lint.rb:35 c:0009 p:0014 s:0064 b:0064 l:000063 d:000063 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/showexceptions.rb:24 c:0008 p:0031 s:0058 b:0058 l:000057 d:000057 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/commonlogger.rb:18 c:0007 p:0014 s:0050 b:0050 l:000049 d:000049 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/content_length.rb:13 c:0006 p:0320 s:0042 b:0042 l:000041 d:000041 METHOD /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/handler/webrick.rb:48 c:0005 p:0256 s:0030 b:0030 l:000029 d:000029 METHOD /usr/local/lib/ruby/1.9.1/webrick/httpserver.rb:111 c:0004 p:0382 s:0020 b:0020 l:000019 d:000019 METHOD /usr/local/lib/ruby/1.9.1/webrick/httpserver.rb:70 c:0003 p:0123 s:0009 b:0009 l:000bc8 d:000008 BLOCK /usr/local/lib/ruby/1.9.1/webrick/server.rb:183 c:0002 p:---- s:0004 b:0004 l:000003 d:000003 FINISH c:0001 p:---- s:0002 b:0002 l:000001 d:000001 TOP --------------------------- -- Ruby level backtrace information----------------------------------------- config.ru:229:in `read' config.ru:229:in `block (2 levels) in <main>' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:865:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:865:in `block in route' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:521:in `instance_eval' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:521:in `route_eval' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:500:in `block (2 levels) in route!' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:497:in `catch' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:497:in `block in route!' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:476:in `each' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:476:in `route!' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:601:in `dispatch!' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:411:in `block in call!' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:566:in `instance_eval' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:566:in `block in invoke' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:566:in `catch' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:566:in `invoke' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:411:in `call!' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:399:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/showexceptions.rb:24:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/methodoverride.rb:24:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/commonlogger.rb:18:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:979:in `block in call' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:1005:in `synchronize' /usr/local/lib/ruby/gems/1.9.1/gems/sinatra-1.0/lib/sinatra/base.rb:979:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/lint.rb:47:in `_call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/lint.rb:35:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/showexceptions.rb:24:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/commonlogger.rb:18:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/content_length.rb:13:in `call' /usr/local/lib/ruby/gems/1.9.1/gems/rack-1.1.0/lib/rack/handler/webrick.rb:48:in `service' /usr/local/lib/ruby/1.9.1/webrick/httpserver.rb:111:in `service' /usr/local/lib/ruby/1.9.1/webrick/httpserver.rb:70:in `run' /usr/local/lib/ruby/1.9.1/webrick/server.rb:183:in `block in start_thread' -- C level backtrace information ------------------------------------------- 0x10010cd8d 0 libruby.dylib 0x000000010010cd8d rb_vm_bugreport + 77 0x10002b184 1 libruby.dylib 0x000000010002b184 report_bug + 260 0x10002b318 2 libruby.dylib 0x000000010002b318 rb_bug + 200 0x1000b7124 3 libruby.dylib 0x00000001000b7124 sigsegv + 132 0x7fff8301c80a 4 libSystem.B.dylib 0x00007fff8301c80a _sigtramp + 26 0x1032313ac 5 libMagickCore.3.dylib 0x00000001032313ac Splay + 300 0x103119245 6 libMagickCore.3.dylib 0x0000000103119245 AcquirePixelCache + 325 0x1031cb317 7 libMagickCore.3.dylib 0x00000001031cb317 AcquireImage + 375 0x10333035b 8 libMagickCore.3.dylib 0x000000010333035b ReadPNGImage + 155 0x1031418fd 9 libMagickCore.3.dylib 0x00000001031418fd ReadImage + 2221 0x101f1b72b 10 RMagick2.bundle 0x0000000101f1b72b rd_image + 339 0x101f1b59b 11 RMagick2.bundle 0x0000000101f1b59b Image_read + 36 0x1000fd0e4 12 libruby.dylib 0x00000001000fd0e4 vm_call_cfunc + 340 0x1000fe9b0 13 libruby.dylib 0x00000001000fe9b0 vm_call_method + 896 0x1000ff8fc 14 libruby.dylib 0x00000001000ff8fc vm_exec_core + 3180 0x100104b93 15 libruby.dylib 0x0000000100104b93 vm_exec + 1203 0x100106643 16 libruby.dylib 0x0000000100106643 rb_vm_invoke_proc + 691 0x100106ccd 17 libruby.dylib 0x0000000100106ccd vm_call0 + 1085 0x1000317c6 18 libruby.dylib 0x00000001000317c6 rb_method_call + 406 0x1000fd0e4 19 libruby.dylib 0x00000001000fd0e4 vm_call_cfunc + 340 0x1000fe9b0 20 libruby.dylib 0x00000001000fe9b0 vm_call_method + 896 0x1000ff8fc 21 libruby.dylib 0x00000001000ff8fc vm_exec_core + 3180 0x100104b93 22 libruby.dylib 0x0000000100104b93 vm_exec + 1203 0x100105ce6 23 libruby.dylib 0x0000000100105ce6 yield_under + 710 0x100106188 24 libruby.dylib 0x0000000100106188 specific_eval + 72 0x1000fd0e4 25 libruby.dylib 0x00000001000fd0e4 vm_call_cfunc + 340 0x1000fe9b0 26 libruby.dylib 0x00000001000fe9b0 vm_call_method + 896 0x1000ff8fc 27 libruby.dylib 0x00000001000ff8fc vm_exec_core + 3180 0x100104b93 28 libruby.dylib 0x0000000100104b93 vm_exec + 1203 0x10010b6bf 29 libruby.dylib 0x000000010010b6bf rb_f_catch + 639 0x1000fd0e4 30 libruby.dylib 0x00000001000fd0e4 vm_call_cfunc + 340 0x1000fe9b0 31 libruby.dylib 0x00000001000fe9b0 vm_call_method + 896 0x1000ff8fc 32 libruby.dylib 0x00000001000ff8fc vm_exec_core + 3180 0x100104b93 33 libruby.dylib 0x0000000100104b93 vm_exec + 1203 0x10010aac9 34 libruby.dylib 0x000000010010aac9 rb_yield + 505 0x100007902 35 libruby.dylib 0x0000000100007902 rb_ary_each + 82 0x1000fd0e4 36 libruby.dylib 0x00000001000fd0e4 vm_call_cfunc + 340 0x1000fe9b0 37 libruby.dylib 0x00000001000fe9b0 vm_call_method + 896 0x1000ff8fc 38 libruby.dylib 0x00000001000ff8fc vm_exec_core + 3180 0x100104b93 39 libruby.dylib 0x0000000100104b93 vm_exec + 1203 0x100105ce6 40 libruby.dylib 0x0000000100105ce6 yield_under + 710 0x100106188 41 libruby.dylib 0x0000000100106188 specific_eval + 72 0x1000fd0e4 42 libruby.dylib 0x00000001000fd0e4 vm_call_cfunc + 340 0x1000fe9b0 43 libruby.dylib 0x00000001000fe9b0 vm_call_method + 896 0x1000ff8fc 44 libruby.dylib 0x00000001000ff8fc vm_exec_core + 3180 0x100104b93 45 libruby.dylib 0x0000000100104b93 vm_exec + 1203 0x10010b6bf 46 libruby.dylib 0x000000010010b6bf rb_f_catch + 639 0x1000fd0e4 47 libruby.dylib 0x00000001000fd0e4 vm_call_cfunc + 340 0x1000fe9b0 48 libruby.dylib 0x00000001000fe9b0 vm_call_method + 896 0x1000ff8fc 49 libruby.dylib 0x00000001000ff8fc vm_exec_core + 3180 0x100104b93 50 libruby.dylib 0x0000000100104b93 vm_exec + 1203 0x100106643 51 libruby.dylib 0x0000000100106643 rb_vm_invoke_proc + 691 0x100111803 52 libruby.dylib 0x0000000100111803 thread_start_func_2 + 835 0x100111921 53 libruby.dylib 0x0000000100111921 thread_start_func_1 + 17 0x7fff82ff58b6 54 libSystem.B.dylib 0x00007fff82ff58b6 _pthread_start + 331 0x7fff82ff5769 55 libSystem.B.dylib 0x00007fff82ff5769 thread_start + 13 [NOTE] You may encounter a bug of Ruby interpreter. Bug reports are welcome. For details: http://www.ruby-lang.org/bugreport.html Abort trap Anyone have any idea what's going on? Thanks!

    Read the article

  • Can you preload images in a dojo animation.

    - by asynchronous-challenged
    I have a dojo animation object of about 15 images. I'm also using dojo.fx.chain to link them all together. Right before I create all my dojo.fadeIn's and dojo.fadeOut's I added in some basic javascript to preload each image. My question is: Am I doing this the hard way or is there some function/attr I can set in the animation object to do this?

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Silverlight Cream for May 20, 2010 -- #866

    - by Dave Campbell
    In this Issue: Mike Snow, Victor Gaudioso, Ola Karlsson, Josh Twist(-2-), Yavor Georgiev, Jeff Wilcox, and Jesse Liberty. Shoutouts: Frank LaVigne has an interesting observation on his site: The Big Take-Away from MIX10 Rishi has updated all his work including a release of nRoute to the latest bits: nRoute Samples Revisited Looks like I posted one of Erik Mork's links two days in a row :) ... that's because I meant to post this one: Silverlight Week – How to Choose a Mobile Platform Just in case you missed it (and for me to find it easy), Scott Guthrie has an excellent post up on Silverlight 4 Tools for VS 2010 and WCF RIA Services Released From SilverlightCream.com: Silverlight Tip of the Day #23 – Working with Strokes and Shapes Mike Snow's Silverlight Tip of the Day number 23 is up and about Strokes and Shapes -- as in dotted and dashed lines. New Silverlight Video Tutorial: How to Fire a Visual State based upon the value of a Boolean Variable Victor Gaudioso's latest video tutorial is up and is on selecting and firing a video state based on a boolean... project included. Simultaneously calling multiple methods on a WCF service from silverlight Ola Karlsson details a problem he had where he was calling multiple WCF services to pull all his data and had problems... turns out it was a blocking call and he found the solution in the forums and details it all out for us... actually, a search at SilverlightCream.com would have found one of the better posts listed once you knew the problem :) Securing Your Silverlight Applications Josh Twist has an article in MSDN on Silverlight Security. He talks about Windows, forms, and .NET authorization then WCF, WCF Data, cross domain and XAP files. He also has some good external links. Template/View selection with MEF in Silverlight Josh Twist points out that this next article is just a simple demonstration, but he's discussing, and provides code for, a MEF-driven ViewModel navigation scheme with animation on the navigation. Workaround for accessing some ASMX services from Silverlight 4 Are you having problems hitting you asmx web service with Silverlight 4? Yeah... others are too! Yavor Georgiev at the Silverlight Web Services Team blog has a post up about it... why it's a sometimes problem and a workaround for it. Using Silverlight 4 features to create a Zune-like context menu Jeff Wilcox used Silverlight 4 and the Toolkit to create some samples of menus, then demonstrates a duplication of the Zune menu. You Already Are A Windows Phone 7 Programmer Jesse Liberty is demonstrating the fact that Silverlight developers are WP7 developers by creating a Silverlight and a WP7 app side by side using the same code... this is a closer look at the Silverlight TV presentation he did. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Subterranean IL: Fault exception handlers

    - by Simon Cooper
    Fault event handlers are one of the two handler types that aren't available in C#. It behaves exactly like a finally, except it is only run if control flow exits the block due to an exception being thrown. As an example, take the following method: .method public static void FaultExample(bool throwException) { .try { ldstr "Entering try block" call void [mscorlib]System.Console::WriteLine(string) ldarg.0 brfalse.s NormalReturn ThrowException: ldstr "Throwing exception" call void [mscorlib]System.Console::WriteLine(string) newobj void [mscorlib]System.Exception::.ctor() throw NormalReturn: ldstr "Leaving try block" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } fault { ldstr "Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } Return: ldstr "Returning from method" call void [mscorlib]System.Console::WriteLine(string) ret } If we pass true to this method the following gets printed: Entering try block Throwing exception Fault handler and the exception gets passed up the call stack. So, the exception gets thrown, the fault handler gets run, and the exception propagates up the stack afterwards in the normal way. If we pass false, we get the following: Entering try block Leaving try block Returning from method Because we are leaving the .try using a leave.s instruction, and not throwing an exception, the fault handler does not get called. Fault handlers and C# So why were these not included in C#? It seems a pretty simple feature; one extra keyword that compiles in exactly the same way, and with the same semantics, as a finally handler. If you think about it, the same behaviour can be replicated using a normal catch block: try { throw new Exception(); } catch { // fault code goes here throw; } The catch block only gets run if an exception is thrown, and the exception gets rethrown and propagates up the call stack afterwards; exactly like a fault block. The only complications that occur is when you want to add a fault handler to a try block with existing catch handlers. Then, you either have to wrap the try in another try: try { try { // ... } catch (DirectoryNotFoundException) { // ... // leave.s as normal... } catch (IOException) { // ... throw; } } catch { // fault logic throw; } or separate out the fault logic into another method and call that from the appropriate handlers: try { // ... } catch (DirectoryNotFoundException ) { // ... } catch (IOException ioe) { // ... HandleFaultLogic(); throw; } catch (Exception e) { HandleFaultLogic(); throw; } To be fair, the number of times that I would have found a fault handler useful is minimal. Still, it's quite annoying knowing such functionality exists, but you're not able to access it from C#. Fortunately, there are some easy workarounds one can use instead. Next time: filter handlers.

    Read the article

  • ubuntu 12.04 installation problem on windows 7 64bit

    - by zakariya
    06-26 20:57 ERROR TaskList: Extraction failed with code: 2 Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\win32\backend.py", line 450, in extract_diskimage Exception: Extraction failed with code: 2 06-26 20:57 DEBUG TaskList: # Cancelling tasklist 06-26 20:57 DEBUG TaskList: # Finished tasklist 06-26 20:57 ERROR root: Extraction failed with code: 2 Traceback (most recent call last): File "\lib\wubi\application.py", line 58, in run File "\lib\wubi\application.py", line 132, in select_task File "\lib\wubi\application.py", line 158, in run_installer File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\win32\backend.py", line 450, in extract_diskimage Exception: Extraction failed with code: 2

    Read the article

  • ????????: EXACHK - EXADATA?????? (Exachk???????)

    - by Steve He(???)
    ???????: ?? Exachk ????????;???? Exachk ?? Exadata ???????, ??? Oracle ???????????????????, ?????????, ????, ?? Exadata ???????? ??: 2013?1?17???????3:00 ??: https://oracleaw.webex.com/oracleaw/onstage/g.php?d=592264766&t=a ?????????,???????????: ?? ID: 71587530 UK standard International:+44 1452 562 665 South China Free call: 1080 044 111 82 North China Free call: 1080 074 413 29 Taiwan Free call: 0080 104 4259 Hong Kong Free Call: 8009 661 55

    Read the article

  • Doctrine Build-All Task fails in NetBeans - Class not found! Fatal Error: call to evictAll()

    - by Prasad
    When I build my model with the symfony doctrine:build --all --and-load command I have made no major changes to the model/schema, this is something new. I also tried sub-commands like build-model, build-tables, but they all hang.. I'm trying this in net beans. Any clue what this is? This command will remove all data in the following "dev" connection(s): - doctrine Are you sure you want to proceed? (y/N) y >> doctrine Dropping "doctrine" database >> doctrine Creating "dev" environment "doctrine" database >> doctrine generating model classes >> file+ C:\Documents and Settings\Gupte...\Temp/doctrine_schema_69845.yml >> tokens D:/projects/cim/lib/model/doctrine/base/BaseAffiliate.class.php >> tokens D:/projects/cim/lib/model/doctrine/base/BaseContact.class.php >> tokens D:/projects/cim/lib/model/doctr...e/BaseContactLocation.class.php >> tokens D:/projects/cim/lib/model/doctr...se/BaseGroupAffiliate.class.php >> tokens D:/projects/cim/lib/model/doctrine/base/BaseGrouping.class.php >> tokens D:/projects/cim/lib/model/doctrine/base/BaseLocation.class.php >> tokens D:/projects/cim/lib/model/doctr.../base/BasePhonenumber.class.php >> tokens D:/projects/cim/lib/model/doctrine/base/BaseTenant.class.php >> tokens D:/projects/cim/lib/model/doctr...base/BasesfGuardGroup.class.php >> tokens D:/projects/cim/lib/model/doctr...fGuardGroupPermission.class.php >> tokens D:/projects/cim/lib/model/doctr...BasesfGuardPermission.class.php >> tokens D:/projects/cim/lib/model/doctr...asesfGuardRememberKey.class.php >> tokens D:/projects/cim/lib/model/doctr.../base/BasesfGuardUser.class.php >> tokens D:/projects/cim/lib/model/doctr.../BasesfGuardUserGroup.class.php >> tokens D:/projects/cim/lib/model/doctr...sfGuardUserPermission.class.php >> autoload Resetting application autoloaders >> file- D:/projects/cim/cache/frontend/.../config/config_autoload.yml.php >> file- D:/projects/cim/cache/backend/dev/config/config_autoload.yml.php >> doctrine generating form classes [?php /** * Contact form base class. * * @method Contact getObject() Returns the current form's model object * * @package ##PROJECT_NAME## * @subpackage form * @author ##AUTHOR_NAME## * @version SVN: $Id: sfDoctrineFormGeneratedTemplate.php 24171 2009-11-19 16:37:50Z Kris.Wallsmith $ */ abstract class BaseContactForm extends BaseFormDoctrine { public function setup() { $this->setWidgets(array( 'id' Fatal error: Call to a member function evictAll() on a non-object in D:\projects\cim\lib\vendor\symfony\lib\plugins\sfDoctrinePlugin\lib\vendor\doctrine\Doctrine\Connection.php on line 1239 Call Stack: 0.9552 322760 1. {main}() D:\projects\cim\symfony:0 0.9594 587208 2. include('D:\projects\cim\lib\vendor\symfony\lib\command\cli.php') D:\projects\cim\symfony:14 11.9775 17118936 3. sfDatabaseManager->shutdown() D:\projects\cim\lib\vendor\symfony\lib\database\sfDatabaseManager.class.php:0 11.9775 17118936 4. sfDoctrineDatabase->shutdown() D:\projects\cim\lib\vendor\symfony\lib\database\sfDatabaseManager.class.php:134 11.9775 17118936 5. Doctrine_Manager->closeConnection() D:\projects\cim\lib\vendor\symfony\lib\plugins\sfDoctrinePlugin\lib\database\sfDoctrineDatabase.class.php:165 11.9775 17118936 6. Doctrine_Connection->close() D:\projects\cim\lib\vendor\symfony\lib\plugins\sfDoctrinePlugin\lib\vendor\doctrine\Doctrine\Manager.php:579 11.9776 17120160 7. Doctrine_Connection->clear() D:\projects\cim\lib\vendor\symfony\lib\plugins\sfDoctrinePlugin\lib\vendor\doctrine\Doctrine\Connection.php:1268 Couldn't find class Similar thing is mentioned here: http://osdir.com/ml/symfony-users/2010-01/msg00642.html

    Read the article

  • Call an member function implementing the {{#linkTo ...}} helper from javascript code

    - by gonvaled
    I am trying to replace this navigation menu: <nav> {{#linkTo "nodes" }}<i class="icon-fixed-width icon-cloud icon-2x"></i>&nbsp;&nbsp;{{t generic.nodes}} {{grayOut "(temporal)"}}{{/linkTo}} {{#linkTo "services" }}<i class="icon-fixed-width icon-phone icon-2x"></i>&nbsp;&nbsp;{{t generic.services}}{{/linkTo}} {{#linkTo "agents" }}<i class="icon-fixed-width icon-headphones icon-2x"></i>&nbsp;&nbsp;{{t generic.agents}}{{/linkTo}} {{#linkTo "extensions" }}<i class="icon-fixed-width icon-random icon-2x"></i>&nbsp;&nbsp;{{t generic.extensions}}{{/linkTo}} {{#linkTo "voiceMenus" }}<i class="icon-fixed-width icon-sitemap icon-2x"></i>&nbsp;&nbsp;{{t generic.voicemenus}}{{/linkTo}} {{#linkTo "queues" }}<i class="icon-fixed-width icon-tasks icon-2x"></i>&nbsp;&nbsp;{{t generic.queues}}{{/linkTo}} {{#linkTo "contacts" }}<i class="icon-fixed-width icon-user icon-2x"></i>&nbsp;&nbsp;{{t generic.contacts}}{{/linkTo}} {{#linkTo "accounts" }}<i class="icon-fixed-width icon-building icon-2x"></i>&nbsp;&nbsp;{{t generic.accounts}}{{/linkTo}} {{#linkTo "locators" }}<i class="icon-fixed-width icon-phone-sign icon-2x"></i>&nbsp;&nbsp;{{t generic.locators}}{{/linkTo}} {{#linkTo "phonelocations" }}<i class="icon-fixed-width icon-globe icon-2x"></i>&nbsp;&nbsp;{{t generic.phonelocations}}{{/linkTo}} {{#linkTo "billing" }}<i class="icon-fixed-width icon-euro icon-2x"></i>&nbsp;&nbsp;{{t generic.billing}}{{/linkTo}} {{#linkTo "profile" }}<i class="icon-fixed-width icon-cogs icon-2x"></i>&nbsp;&nbsp;{{t generic.profile}}{{/linkTo}} {{#linkTo "audio" }}<i class="icon-fixed-width icon-music icon-2x"></i>&nbsp;&nbsp;{{t generic.audio}}{{/linkTo}} {{#linkTo "editor" }}<i class="icon-fixed-width icon-puzzle-piece icon-2x"></i>&nbsp;&nbsp;{{t generic.node_editor}}{{/linkTo}} </nav> With a more dynamic version. What I am trying to do is to reproduce the html inside Ember.View.render, but I would like to reuse as much Ember functionality as possible. Specifically, I would like to reuse the {{#linkTo ...}} helper, with two goals: Reuse existing html rendering implemented in the {{#linkTo ...}} helper Get the same routing support that using the {{#linkTo ...}} in a template provides. How can I call this helper from within javascript code? This is my first (incomplete) attempt. The template: {{view SettingsApp.NavigationView}} And the view: var trans = Ember.I18n.t; var MAIN_MENU = [ { 'linkTo' : 'nodes', 'i-class' : 'icon-cloud', 'txt' : trans('generic.nodes') }, { 'linkTo' : 'services', 'i-class' : 'icon-phone', 'txt' : trans('generic.services') }, ]; function getNavIcon (data) { var linkTo = data.linkTo, i_class = data['i-class'], txt = data.txt; var html = '<i class="icon-fixed-width icon-2x ' + i_class + '"></i>&nbsp;&nbsp;' + txt; return html; } SettingsApp.NavigationView = Ember.View.extend({ menu : MAIN_MENU, render: function(buffer) { for (var i=0, l=this.menu.length; i<l; i++) { var data = this.menu[i]; // TODO: call the ember function implementing the {{#linkTo ...}} helper buffer.push(getNavIcon(data)); } return buffer; } });

    Read the article

  • How can I hit my database with an AJAX call using javascript?

    - by tmedge
    I am pretty new at this stuff, so bear with me. I am using ASP.NET MVC. I have created an overlay to cover the page when someone clicks a button corresponding to a certain database entry. Because of this, ALL of my code for this functionality is in a .js file contained within my project. What I need to do is pull the info corresponding to my entry from the database itself using an AJAX call, and place that into my textboxes. Then, after the end-user has made the desired changes, I need to update that entry's values to match the input. I've been surfing the web for a while, and have failed to find an example that fits my needs effectively. Here is my code in my javascript file thus far: function editOverlay(picId) { //pull up an overlay $('body').append('<div class="overlay" />'); var $overlayClass = $('.overlay'); $overlayClass.append('<div class="dataModal" />'); var $data = $('.dataModal'); overlaySetup($overlayClass, $data); //set up form $data.append('<h1>Edit Picture</h1><br /><br />'); $data.append('Picture name: &nbsp;'); $data.append('<input class="picName" /> <br /><br /><br />'); $data.append('Relative url: &nbsp;'); $data.append('<input class="picRelURL" /> <br /><br /><br />'); $data.append('Description: &nbsp;'); $data.append('<textarea class="picDescription" /> <br /><br /><br />'); var $nameBox = $('.picName'); var $urlBox = $('.picRelURL'); var $descBox = $('.picDescription'); var pic = null; //this is where I need to pull the actual object from the db //var imgList = for (var temp in imgList) { if (temp.Id == picId) { pic= temp; } } /* $nameBox.attr('value', pic.Name); $urlBox.attr('value', pic.RelativeURL); $descBox.attr('value', pic.Description); */ //close buttons $data.append('<input type="button" value="Save Changes" class="saveButton" />'); $data.append('<input type="button" value="Cancel" class="cancelButton" />'); $('.saveButton').click(function() { /* pic.Name = $nameBox.attr('value'); pic.RelativeURL = $urlBox.attr('value'); pic.Description = $descBox.attr('value'); */ //make a call to my Save() method in my repository CloseOverlay(); }); $('.cancelButton').click(function() { CloseOverlay(); }); } The stuff I have commented out is what I need to accomplish and/or is not available until prior issues are resolved. Any and all advice is appreciated! Remember, I am VERY new to this stuff (two weeks, to be exact) and will probably need highly explicit instructions. BTW: overlaySetup() and CloseOverlay() are functions I have living someplace else. Thanks!

    Read the article

  • Sending string to wcf service using jquery ajax. why can i only send strings of numbers?

    - by Robodude
    Hi Guys, For some reason, I'm only able to pass strings containing numbers to my web service when using jquery ajax. This hasn't been an issue so far because I was always just passing IDs to my wcf service. But I'm trying to do something more complex now but I can't figure it out. In my interface: [OperationContract] [WebInvoke(ResponseFormat = WebMessageFormat.Json)] DataTableOutput GetDataTableOutput(string json); My webservice: public DataTableOutput GetDataTableOutput(string json) { DataTableOutput x = new DataTableOutput(); x.iTotalDisplayRecords = 9; x.iTotalRecords = 50; x.sColumns = "1"; x.sEcho = "1"; x.aaData = null; return x; } Javascript/Jquery: var x = "1"; $.ajax({ type: "POST", async: false, url: "Services/Service1.svc/GetDataTableOutput", contentType: "application/json; charset=utf-8", data: x, dataType: "json", success: function (msg) { }, error: function (XMLHttpRequest, textStatus, errorThrown) { //alert(XMLHttpRequest.status); //alert(XMLHttpRequest.responseText); } }); The above code WORKS perfectly. But when I change x to "t" or even to "{'test':'test'}" I get a Error 400 Bad Request error in Firebug. Thanks, John EDIT: Making some progress! data: JSON.stringify("{'test':'test'}"), Sends the string to my function! EDIT2: var jsonAOData = JSON.stringify(aoData); $.ajax({ type: "POST", async: false, url: sSource, contentType: "application/json; charset=utf-8", data: "{'Input':" + jsonAOData + "}", dataType: "json", success: function (msg) { }, error: function (XMLHttpRequest, textStatus, errorThrown) { //alert(XMLHttpRequest.status); //alert(XMLHttpRequest.responseText); } }); EDIT3: I modified the code block I put in EDIT2 up above. Swapping the " and ' did the trick! $.ajax({ type: "POST", async: false, url: sSource, contentType: "application/json; charset=utf-8", data: '{"Input":' + jsonAOData + '}', dataType: "json", success: function (msg) { }, error: function (XMLHttpRequest, textStatus, errorThrown) { //alert(XMLHttpRequest.status); //alert(XMLHttpRequest.responseText); } }); However, I have a new problem: public DataTableOutput GetDataTableOutput(DataTableInputOverview Input) { The input here is completely null. The values I passed from jsonAOData didn't get assigned to the DataTableInputOverview Input variable. :(

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • How do i make a "system call to tar files(along with exclude tag)" to work in Perl

    - by superstar
    This is the system call, i am making right now in perl to tar the files system("${tarexe} -pcvf $tarname $includepath") which works fine. $tarexe -> location of my tar.exe file $tarname -> myMock.tar $includepath -> ./input/myMockPacketName ./input/myPacket/my2/*.wav ./input/myPacket/my3 ./input/myPacket/in.html Now i want to exclude some files using exclude tag, which doesnot exclude the files system("${tarexe} -pcvf $tarname $includepath --exclude $excludepath") $excludepath -> ./input/myMockPacketName/my3 The same stament ${tarexe} -pcvf $tarname $includepath --exclude $excludepath works fine when i run it in the command line.

    Read the article

  • How to Force a Method Call on a Property or Method of an Object in PHP?

    - by Noah Goodrich
    In my View (using Zend_View so the the view is an object), I make calls to object properties and methods to populate the template like so: <?= $this->user->name ?> // Outputs John Doe <br/> <?= $this->user->getCompany()->name ?> // Outputs Acme <br/> <?= $this->method() ?> // Outputs foobar If I make it so that all property requests (like for 'user') go through __get() is there any way that I can catch the subsequent calls so that I can force a method call on the final outputted value? For example so that I could do automatic escaping of output. As I see it right now, I either have to escape the input as it goes into the database or use compiled templates like Smarty does, or switch to assigning every variable to the View object so that it has direct control to force escaping before outputting the data.

    Read the article

  • Can you handle both json and html datatypes in the same ajax call?

    - by Prabhu
    Is there anyway I can handle both json and html return types when posting jquery ajax: For example, this ajax call expects html back $.ajax({ type: "POST", url: url data: data, dataType: "html", success: function (response) { var $html = "<li class='list-item'>" + response + "</li>"; $('#a').prepend($html); }, error: function (xhr, status, error) { alert(xhr.statusText); } }); but I wanted to modify it so that I can return a json object if there is a model error. so I can do something like this: success: function (response) { if (response.Error){ alert(response.Message); } else { var $html = "<li class='list-item'>" + response + "</li>"; $('#a').prepend($html); } Is this possible?

    Read the article

  • Why can't I call methods within a class that explicitly implements an interface?

    - by tyrone302
    Here's the story. I created and interface, IVehicle. I explicitly implemented the interface in my class, Vehicle.cs. Here is my interface: Interface IVehicle { int getWheel(); } here is my class: class Vehicle: IVehicle { public int IVehicle.getWheel() { return wheel; } public void printWheel() { Console.WriteLine(getWheel()); } } Notice that "getWheel()" is explicitly implemented. Now, when I try to call that method within my Vehicle class, I receive an error indicating that getWheel() does not exist in the current context. Can someone help me understand what I am doing wrong?

    Read the article

  • Paypal adaptive payment API call with C# .NET? Preferably with WebServices

    - by Phil
    Okay I might be entirely off track now but here goes: Our "webshop" offers two functions, buying a specific product and selling it back to us. Back-end handles if the user can sell or not. I've decided to use Paypal's adaptive payments for this one as it seems the way to go doing these kinds of transactions. I've never implemented any kind of shop so I'm totally green with this one. I only recently learned ASP.NET and have mainly developed games before moving to this kind of development. HTTP is still some level of magic to me hehe.. I might be confused but I think paypal offers a webservice with their adaptive payment API. My humble request: A nice soul who wants to share an example of implementing an adaptive payment API call with C# .NET. If they don't offer it as a webservice I'll probably find it as a custom .dll or something. Any tips and examples are highly appreciated! Thanks for reading

    Read the article

  • It is possible to call a servlet from a Java class?

    - by Renan Mozone
    I'm using IBM WebSphere as my servlet container. My application has several servlets and Java classes. My intent is to call one of those servlets directly from a Java class. Doing some research I figured out that is possible to use the RequestDispatcher interface to achieve this. But it is necessary to pass the objects ServletRequest and ServletResponse as arguments to the method forward(). There is some way to bypass this safely and "nicely"? By "nicely" I meant to say preserving good programming and design patterns.

    Read the article

  • How do I make a PHP call whenever a form element is clicked?

    - by thinkswan
    I have a jQuery colorbox opened over top of my webpage (with a <select> drop down list) and I'd like to make an AJAX call every time a new <option> is selected from the drop down. I have the following code, but it's not picking up the select event. $('#cboxLoadedContent select[name=parent]').live('select', function() { $.get("edit.php", { fn: 'getFormatLevel', parent: $('select[name=parent]').val() }, function(data) { alert("Data Loaded: " + data); }); }); Any ideas why this isn't even recognizing my selector?

    Read the article

  • What is this obscure error in Google Analytics tracking code on a _trackEvent() call?

    - by Laizer
    I am calling the Google Analytics _trackEvent() function on a web page, and get back an error from the obfuscated Google code. In Firebug, it comes back "q is undefined". In Safari developer console: "TypeError: Result of expression 'q' [undefined] is not an object." As a test, I have reduced the page to only this call, and still get the error back. Besides the necessary elements and the standard Google tracking code, my page is: <script> pageTracker._trackEvent('Survey', 'Checkout - Survey', 'Rating', 3); </script> Results is that error. What's going on here?

    Read the article

  • In Android: How to Call Function of Activity from a Service?

    - by nex
    Hi folks, I have an Activity (A) and a Service (S) which gets started by A like this: Intent i = new Intent(); i.putExtra("updateInterval", 10); i.setClassName("com.blah", "com.blah.S"); startService(i); A have a function like this one in A: public void someInfoArrived(Info i){...} Now I want to call A.someInfoArrived(i) from within S. Intent.putExtra has no version where I could pass an Object reference etc ... Please help! PS: The other way around (A polling S for new info) is NOT what I need. I found enough info about how to do that.

    Read the article

  • Reasons why one should not call the garbage collector directly.

    - by Shimrod
    Hi everyone, I'm currently writing a paper for my company, about how to avoid calling the garbage collector directly from the code (when playing with COM objects for instance). I know this is a bad practice, and should be only considered in very rare cases, but I can't seem to find a way to tell why it should be avoided. And I don't want to rely on the "The G.C. is smarter than you" principle (even if it is the truth :-) ) So can you tell me some clues about why you think one should avoid to call the garbage collector directly ? (performance impact?) Or maybe if you have links about this particular topic, they would be very helpful. Thanks in advance !

    Read the article

  • How to call method written in C# class library from Silver light application(xaml.cs file) ?

    - by Shyju
    Can a xaml.cs file call the method in a c# class library ? I am trying to add a Silver light control to my Existing ASP.NET project where i used to add reference to my BL Project and acces methods of BL from My UI pages of ASP.NET Web application.Now i have added one Silver light project to my solution.How can i use the already existing BL method which is in a C# class library ? When tried to add reference, it is saying that "You can only add project reference to other silver light projects in the solution". Should i give up ? Is there any way to get rid of this ?

    Read the article

  • Powershell 2.0 error handling - Command line call vs. ISE

    - by Gromix
    Hi, In the context of deployment scripts, I would like to capture any error than happens and stop immediately. I have notice some significant differences between the following calls: powershell.exe -File Script.ps1 powershell.exe -Command "& '.\Script.ps1'" powershell.exe .\Script.ps1 For example, the -File call will handle errors in the exact same way as the ISE. The other two seem to ignore the $ErrorActionPreference variable, and do not seem to catch Write-Error in try/catch blocks. Could someone help me understand the implications of each one, and why they are behaving differently? Thanks, Romain

    Read the article

  • Need some help deciphering a line of assembler code, from .NET JITted code

    - by Lasse V. Karlsen
    In a C# constructor, that ends up with a call to this(...), the actual call gets translated to this: 0000003d call dword ptr ds:[199B88E8h] What is the DS register contents here? I know it's the data-segment, but is this call through a VMT-table or similar? I doubt it though, since this(...) wouldn't be a call to a virtual method, just another constructor. I ask because the value at that location seems to be bad in some way, if I hit F11, trace into (Visual Studio 2008), on that call-instruction, the program crashes with an access violation. The code is deep inside a 3rd party control library, where, though I have the source code, I don't have the assemblies compiled with enough debug information that I can trace it through C# code, only through the disassembler, and then I have to match that back to the actual code. The C# code in question is this: public AxisRangeData(AxisRange range) : this(range, range.Axis) { } Reflector shows me this IL code: .maxstack 8 L_0000: ldarg.0 L_0001: ldarg.1 L_0002: ldarg.1 L_0003: callvirt instance class DevExpress.XtraCharts.AxisBase DevExpress.XtraCharts.AxisRange::get_Axis() L_0008: call instance void DevExpress.XtraCharts.Native.AxisRangeData::.ctor(class DevExpress.XtraCharts.ChartElement, class DevExpress.XtraCharts.AxisBase) L_000d: ret It's that last call there, to the other constructor of the same class, that fails. The debugger never surfaces inside the other method, it just crashes. The disassembly for the method after JITting is this: 00000000 push ebp 00000001 mov ebp,esp 00000003 sub esp,14h 00000006 mov dword ptr [ebp-4],ecx 00000009 mov dword ptr [ebp-8],edx 0000000c cmp dword ptr ds:[18890E24h],0 00000013 je 0000001A 00000015 call 61843511 0000001a mov eax,dword ptr [ebp-4] 0000001d mov dword ptr [ebp-0Ch],eax 00000020 mov eax,dword ptr [ebp-8] 00000023 mov dword ptr [ebp-10h],eax 00000026 mov ecx,dword ptr [ebp-8] 00000029 cmp dword ptr [ecx],ecx 0000002b call dword ptr ds:[1889D0DCh] // range.Axis 00000031 mov dword ptr [ebp-14h],eax 00000034 push dword ptr [ebp-14h] 00000037 mov edx,dword ptr [ebp-10h] 0000003a mov ecx,dword ptr [ebp-0Ch] 0000003d call dword ptr ds:[199B88E8h] // this(range, range.Axis)? 00000043 nop 00000044 mov esp,ebp 00000046 pop ebp 00000047 ret Basically what I'm asking is this: What the purpose of the ds:[ADDR] indirection here? VMT-table is only for virtual isn't it? and this is constructor Could the constructor have yet to be JITted, which could mean that the call would actually call through a JIT shim? I'm afraid I'm in deep water here, so anything might and could help. Edit: Well, the problem just got worse, or better, or whatever. We are developing the .NET feature in a C# project in a Visual Studio 2008 solution, and debugging and developing through Visual Studio. However, in the end, this code will be loaded into a .NET runtime hosted by a Win32 Delphi application. In order to facilitate easy experimentation of such features, we can also configure the Visual Studio project/solution/debugger to copy the produced dll's to the Delphi app's directory, and then execute the Delphi app, through the Visual Studio debugger. Turns out, the problem goes away if I run the program outside of the debugger, but during debugging, it crops up, every time. Not sure that helps, but since the code isn't slated for production release for another 6 months or so, then it takes some of the pressure off of it for the test release that we have soon. I'll dive into the memory parts later, but probably not until over the weekend, and post a followup.

    Read the article

< Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >