Search Results

Search found 46143 results on 1846 pages for 'input method'.

Page 196/1846 | < Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >

  • Optional Parameters and Named Arguments in C# 4 (and a cool scenario w/ ASP.NET MVC 2)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the seventeenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post covers two new language feature being added to C# 4.0 – optional parameters and named arguments – as well as a cool way you can take advantage of optional parameters (both in VB and C#) with ASP.NET MVC 2. Optional Parameters in C# 4.0 C# 4.0 now supports using optional parameters with methods, constructors, and indexers (note: VB has supported optional parameters for awhile). Parameters are optional when a default value is specified as part of a declaration.  For example, the method below takes two parameters – a “category” string parameter, and a “pageIndex” integer parameter.  The “pageIndex” parameter has a default value of 0, and as such is an optional parameter: When calling the above method we can explicitly pass two parameters to it: Or we can omit passing the second optional parameter – in which case the default value of 0 will be passed:   Note that VS 2010’s Intellisense indicates when a parameter is optional, as well as what its default value is when statement completion is displayed: Named Arguments and Optional Parameters in C# 4.0 C# 4.0 also now supports the concept of “named arguments”.  This allows you to explicitly name an argument you are passing to a method – instead of just identifying it by argument position.  For example, I could write the code below to explicitly identify the second argument passed to the GetProductsByCategory method by name (making its usage a little more explicit): Named arguments come in very useful when a method supports multiple optional parameters, and you want to specify which arguments you are passing.  For example, below we have a method DoSomething that takes two optional parameters: We could use named arguments to call the above method in any of the below ways: Because both parameters are optional, in cases where only one (or zero) parameters is specified then the default value for any non-specified arguments is passed. ASP.NET MVC 2 and Optional Parameters One nice usage scenario where we can now take advantage of the optional parameter support of VB and C# is with ASP.NET MVC 2’s input binding support to Action methods on Controller classes. For example, consider a scenario where we want to map URLs like “Products/Browse/Beverages” or “Products/Browse/Deserts” to a controller action method.  We could do this by writing a URL routing rule that maps the URLs to a method like so: We could then optionally use a “page” querystring value to indicate whether or not the results displayed by the Browse method should be paged – and if so which page of the results should be displayed.  For example: /Products/Browse/Beverages?page=2. With ASP.NET MVC 1 you would typically handle this scenario by adding a “page” parameter to the action method and make it a nullable int (which means it will be null if the “page” querystring value is not present).  You could then write code like below to convert the nullable int to an int – and assign it a default value if it was not present in the querystring: With ASP.NET MVC 2 you can now take advantage of the optional parameter support in VB and C# to express this behavior more concisely and clearly.  Simply declare the action method parameter as an optional parameter with a default value: C# VB If the “page” value is present in the querystring (e.g. /Products/Browse/Beverages?page=22) then it will be passed to the action method as an integer.  If the “page” value is not in the querystring (e.g. /Products/Browse/Beverages) then the default value of 0 will be passed to the action method.  This makes the code a little more concise and readable. Summary There are a bunch of great new language features coming to both C# and VB with VS 2010.  The above two features (optional parameters and named parameters) are but two of them.  I’ll blog about more in the weeks and months ahead. If you are looking for a good book that summarizes all the language features in C# (including C# 4.0), as well provides a nice summary of the core .NET class libraries, you might also want to check out the newly released C# 4.0 in a Nutshell book from O’Reilly: It does a very nice job of packing a lot of content in an easy to search and find samples format. Hope this helps, Scott

    Read the article

  • Fed Authentication Methods in OIF / IdP

    - by Damien Carru
    This article is a continuation of my previous entry where I explained how OIF/IdP leverages OAM to authenticate users at runtime: OIF/IdP internally forwards the user to OAM and indicates which Authentication Scheme should be used to challenge the user if needed OAM determine if the user should be challenged (user already authenticated, session timed out or not, session authentication level equal or higher than the level of the authentication scheme specified by OIF/IdP…) After identifying the user, OAM internally forwards the user back to OIF/IdP OIF/IdP can resume its operation In this article, I will discuss how OIF/IdP can be configured to map Federation Authentication Methods to OAM Authentication Schemes: When processing an Authn Request, where the SP requests a specific Federation Authentication Method with which the user should be challenged When sending an Assertion, where OIF/IdP sets the Federation Authentication Method in the Assertion Enjoy the reading! Overview The various Federation protocols support mechanisms allowing the partners to exchange information on: How the user should be challenged, when the SP/RP makes a request How the user was challenged, when the IdP/OP issues an SSO response When a remote SP partner redirects the user to OIF/IdP for Federation SSO, the message might contain data requesting how the user should be challenged by the IdP: this is treated as the Requested Federation Authentication Method. OIF/IdP will need to map that Requested Federation Authentication Method to a local Authentication Scheme, and then invoke OAM for user authentication/challenge with the mapped Authentication Scheme. OAM would authenticate the user if necessary with the scheme specified by OIF/IdP. Similarly, when an IdP issues an SSO response, most of the time it will need to include an identifier representing how the user was challenged: this is treated as the Federation Authentication Method. When OIF/IdP issues an Assertion, it will evaluate the Authentication Scheme with which OAM identified the user: If the Authentication Scheme can be mapped to a Federation Authentication Method, then OIF/IdP will use the result of that mapping in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled If the Authentication Scheme cannot be mapped, then OIF/IdP will set the Federation Authentication Method as the Authentication Scheme name in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled Mappings In OIF/IdP, the mapping between Federation Authentication Methods and Authentication Schemes has the following rules: One Federation Authentication Method can be mapped to several Authentication Schemes In a Federation Authentication Method <-> Authentication Schemes mapping, a single Authentication Scheme is marked as the default scheme that will be used to authenticate a user, if the SP/RP partner requests the user to be authenticated via a specific Federation Authentication Method An Authentication Scheme can be mapped to a single Federation Authentication Method Let’s examine the following example and the various use cases, based on the SAML 2.0 protocol: Mappings defined as: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport mapped to LDAPScheme, marked as the default scheme used for authentication BasicScheme urn:oasis:names:tc:SAML:2.0:ac:classes:X509 mapped to X509Scheme, marked as the default scheme used for authentication Use cases: SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:X509 as the RequestedAuthnContext: OIF/IdP will authenticate the use with X509Scheme since it is the default scheme mapped for that method. SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the RequestedAuthnContext: OIF/IdP will authenticate the use with LDAPScheme since it is the default scheme mapped for that method, not the BasicScheme SP did not request any specific methods, and user was authenticated with BasisScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with LDAPScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with BasisSessionlessScheme: OIF/IdP will issue an Assertion with BasisSessionlessScheme as the FederationAuthenticationMethod, since that scheme could not be mapped to any Federation Authentication Method (in this case, the administrator would need to correct that and create a mapping) Configuration Mapping Federation Authentication Methods to OAM Authentication Schemes is protocol dependent, since the methods are defined in the various protocols (SAML 2.0, SAML 1.1, OpenID 2.0). As such, the WLST commands to set those mappings will involve: Either the SP Partner Profile and affect all Partners referencing that profile, which do not override the Federation Authentication Method to OAM Authentication Scheme mappings Or the SP Partner entry, which will only affect the SP Partner It is important to note that if an SP Partner is configured to define one or more Federation Authentication Method to OAM Authentication Scheme mappings, then all the mappings defined in the SP Partner Profile will be ignored. Authentication Schemes As discussed in the previous article, during Federation SSO, OIF/IdP will internally forward the user to OAM for authentication/verification and specify which Authentication Scheme to use. OAM will determine if a user needs to be challenged: If the user is not authenticated yet If the user is authenticated but the session timed out If the user is authenticated, but the authentication scheme level of the original authentication is lower than the level of the authentication scheme requested by OIF/IdP So even though an SP requests a specific Federation Authentication Method to be used to challenge the user, if that method is mapped to an Authentication Scheme and that at runtime OAM deems that the user does not need to be challenged with that scheme (because the user is already authenticated, session did not time out, and the session authn level is equal or higher than the one for the specified Authentication Scheme), the flow won’t result in a challenge operation. Protocols SAML 2.0 The SAML 2.0 specifications define the following Federation Authentication Methods for SAML 2.0 flows: urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard urn:oasis:names:tc:SAML:2.0:ac:classes:Password urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword urn:oasis:names:tc:SAML:2.0:ac:classes:X509 urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient urn:oasis:names:tc:SAML:2.0:ac:classes:PGP urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken Out of the box, OIF/IdP has the following mappings for the SAML 2.0 protocol: Only urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml20-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 2.0 An example of an AuthnRequest message sent by an SP to an IdP with the SP requesting a specific Federation Authentication Method to be used to challenge the user would be: <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" Destination="https://idp.com/oamfed/idp/samlv20" ID="id-8bWn-A9o4aoMl3Nhx1DuPOOjawc-" IssueInstant="2014-03-21T20:51:11Z" Version="2.0">  <saml:Issuer ...>https://acme.com/sp</saml:Issuer>  <samlp:NameIDPolicy AllowCreate="false" Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>  <samlp:RequestedAuthnContext Comparison="minimum">    <saml:AuthnContextClassRef xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">      urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport </saml:AuthnContextClassRef>  </samlp:RequestedAuthnContext></samlp:AuthnRequest> An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                    urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> An administrator would be able to specify a mapping between a SAML 2.0 Federation Authentication Method and one or more OAM Authentication Schemes SAML 1.1 The SAML 1.1 specifications define the following Federation Authentication Methods for SAML 1.1 flows: urn:oasis:names:tc:SAML:1.0:am:unspecified urn:oasis:names:tc:SAML:1.0:am:HardwareToken urn:oasis:names:tc:SAML:1.0:am:password urn:oasis:names:tc:SAML:1.0:am:X509-PKI urn:ietf:rfc:2246 urn:oasis:names:tc:SAML:1.0:am:PGP urn:oasis:names:tc:SAML:1.0:am:SPKI urn:ietf:rfc:3075 urn:oasis:names:tc:SAML:1.0:am:XKMS urn:ietf:rfc:1510 urn:ietf:rfc:2945 Out of the box, OIF/IdP has the following mappings for the SAML 1.1 protocol: Only urn:oasis:names:tc:SAML:1.0:am:password is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml11-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 1.1 An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameID ...>[email protected]</saml:NameID>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Note: SAML 1.1 does not define an AuthnRequest message. An administrator would be able to specify a mapping between a SAML 1.1 Federation Authentication Method and one or more OAM Authentication Schemes OpenID 2.0 The OpenID 2.0 PAPE specifications define the following Federation Authentication Methods for OpenID 2.0 flows: http://schemas.openid.net/pape/policies/2007/06/phishing-resistant http://schemas.openid.net/pape/policies/2007/06/multi-factor http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical Out of the box, OIF/IdP does not define any mappings for the OpenID 2.0 Federation Authentication Methods. For OpenID 2.0, the configuration will involve mapping a list of OpenID 2.0 policies to a list of Authentication Schemes. An example of an OpenID 2.0 Request message sent by an SP/RP to an IdP/OP would be: https://idp.com/openid?openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=checkid_setup&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.realm=https%3A%2F%2Facme.com%2Fopenid&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_request&openid.ax.type.attr0=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.if_available=attr0&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.max_auth_age=0 An example of an Open ID 2.0 SSO Response issued by an IdP/OP would be: https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=http%3A%2F%2Fschemas.openid.net%2Fpape%2Fpolicies%2F2007%2F06%2Fphishing-resistant&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D In the next article, I will provide examples on how to configure OIF/IdP for the various protocols, to map OAM Authentication Schemes to Federation Authentication Methods.Cheers,Damien Carru

    Read the article

  • An abundance of LINQ queries and expressions using both the query and method syntax.

    - by nikolaosk
    In this post I will be writing LINQ queries against an array of strings, an array of integers.Moreover I will be using LINQ to query an SQL Server database. I can use LINQ against arrays since the array of strings/integers implement the IENumerable interface. I thought it would be a good idea to use both the method syntax and the query syntax. There are other places on the net where you can find examples of LINQ queries but I decided to create a big post using as many LINQ examples as possible. We...(read more)

    Read the article

  • iptables syn flood countermeasure

    - by Penegal
    I'm trying to adjust my iptables firewall to increase the security of my server, and I found something a bit problematic here : I have to set INPUT policy to ACCEPT and, in addition, to have a rule saying iptables -I INPUT -i eth0 -j ACCEPT. Here comes my script (launched manually for tests) : #!/bin/sh IPT=/sbin/iptables echo "Clearing firewall rules" $IPT -F $IPT -Z $IPT -t nat -F $IPT -t nat -Z $IPT -t mangle -F $IPT -t mangle -Z $IPT -X echo "Defining logging policy for dropped packets" $IPT -N LOGDROP $IPT -A LOGDROP -j LOG -m limit --limit 5/min --log-level debug --log-prefix "iptables rejected: " $IPT -A LOGDROP -j DROP echo "Setting firewall policy" $IPT -P INPUT DROP # Deny all incoming connections $IPT -P OUTPUT ACCEPT # Allow all outgoing connections $IPT -P FORWARD DROP # Deny all forwaring echo "Allowing connections from/to lo and incoming connections from eth0" $IPT -I INPUT -i lo -j ACCEPT $IPT -I OUTPUT -o lo -j ACCEPT #$IPT -I INPUT -i eth0 -j ACCEPT echo "Setting SYN flood countermeasures" $IPT -A INPUT -p tcp -i eth0 --syn -m limit --limit 100/second --limit-burst 200 -j LOGDROP echo "Allowing outgoing traffic corresponding to already initiated connections" $IPT -A OUTPUT -p ALL -m state --state ESTABLISHED,RELATED -j ACCEPT echo "Allowing incoming SSH" $IPT -A INPUT -p tcp --dport 22 -m state --state NEW -m recent --set --name SSH -j ACCEPT echo "Setting SSH bruteforce attacks countermeasures (deny more than 10 connections every 10 minutes)" $IPT -A INPUT -p tcp --dport 22 -m recent --update --seconds 600 --hitcount 10 --rttl --name SSH -j LOGDROP echo "Allowing incoming traffic for HTTP, SMTP, NTP, PgSQL and SolR" $IPT -A INPUT -p tcp --dport 25 -i eth0 -j ACCEPT $IPT -A INPUT -p tcp --dport 80 -i eth0 -j ACCEPT $IPT -A INPUT -p udp --dport 123 -i eth0 -j ACCEPT $IPT -A INPUT -p tcp --dport 5433 -i eth0.2654 -s 172.16.0.2 -j ACCEPT $IPT -A INPUT -p udp --dport 5433 -i eth0.2654 -s 172.16.0.2 -j ACCEPT $IPT -A INPUT -p tcp --dport 8983 -i eth0.2654 -s 172.16.0.2 -j ACCEPT $IPT -A INPUT -p udp --dport 8983 -i eth0.2654 -s 172.16.0.2 -j ACCEPT echo "Allowing outgoing traffic for ICMP, SSH, whois, SMTP, DNS, HTTP, PgSQL and SolR" $IPT -A OUTPUT -p tcp --dport 22 -j ACCEPT $IPT -A OUTPUT -p tcp --dport 25 -o eth0 -j ACCEPT $IPT -A OUTPUT -p tcp --dport 43 -o eth0 -j ACCEPT $IPT -A OUTPUT -p tcp --dport 53 -o eth0 -j ACCEPT $IPT -A OUTPUT -p udp --dport 53 -o eth0 -j ACCEPT $IPT -A OUTPUT -p tcp --dport 80 -o eth0 -j ACCEPT $IPT -A OUTPUT -p udp --dport 80 -o eth0 -j ACCEPT #$IPT -A OUTPUT -p tcp --dport 5433 -o eth0 -d 176.31.236.101 -j ACCEPT #$IPT -A OUTPUT -p udp --dport 5433 -o eth0 -d 176.31.236.101 -j ACCEPT #$IPT -A OUTPUT -p tcp --dport 8983 -o eth0 -d 176.31.236.101 -j ACCEPT #$IPT -A OUTPUT -p udp --dport 8983 -o eth0 -d 176.31.236.101 -j ACCEPT $IPT -A OUTPUT -p tcp --sport 5433 -o eth0.2654 -j ACCEPT $IPT -A OUTPUT -p udp --sport 5433 -o eth0.2654 -j ACCEPT $IPT -A OUTPUT -p tcp --sport 8983 -o eth0.2654 -j ACCEPT $IPT -A OUTPUT -p udp --sport 8983 -o eth0.2654 -j ACCEPT $IPT -A OUTPUT -p icmp -j ACCEPT echo "Allowing outgoing FTP backup" $IPT -A OUTPUT -p tcp --dport 20:21 -o eth0 -d 91.121.190.78 -j ACCEPT echo "Dropping and logging everything else" $IPT -A INPUT -s 0/0 -j LOGDROP $IPT -A OUTPUT -j LOGDROP $IPT -A FORWARD -j LOGDROP echo "Firewall loaded." echo "Maintaining new rules for 3 minutes for tests" sleep 180 $IPT -nvL echo "Clearing firewall rules" $IPT -F $IPT -Z $IPT -t nat -F $IPT -t nat -Z $IPT -t mangle -F $IPT -t mangle -Z $IPT -X $IPT -P INPUT ACCEPT $IPT -P OUTPUT ACCEPT $IPT -P FORWARD ACCEPT When I launch this script (I only have a SSH access), the shell displays every message up to Maintaining new rules for 3 minutes for tests, the server is unresponsive during the 3 minutes delay and then resume normal operations. The only solution I found until now was to set $IPT -P INPUT ACCEPT and $IPT -I INPUT -i eth0 -j ACCEPT, but this configuration does not protect me of any attack, which is a great shame for a firewall. I suspect that the error comes from my script and not from iptables, but I don't understand what's wrong with my script. Could some do-gooder explain me my error, please? EDIT: here comes the result of iptables -nvL with the "accept all input" ($IPT -P INPUT ACCEPT and $IPT -I INPUT -i eth0 -j ACCEPT) solution : Chain INPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 1 52 ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 0 0 LOGDROP tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp flags:0x17/0x02 limit: avg 100/sec burst 200 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22 state NEW recent: SET name: SSH side: source 0 0 LOGDROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22 recent: UPDATE seconds: 600 hit_count: 10 TTL-Match name: SSH side: source 0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:25 0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 0 0 ACCEPT udp -- eth0 * 0.0.0.0/0 0.0.0.0/0 udp dpt:123 0 0 ACCEPT tcp -- eth0.2654 * 172.16.0.2 0.0.0.0/0 tcp dpt:5433 0 0 ACCEPT udp -- eth0.2654 * 172.16.0.2 0.0.0.0/0 udp dpt:5433 0 0 ACCEPT tcp -- eth0.2654 * 172.16.0.2 0.0.0.0/0 tcp dpt:8983 0 0 ACCEPT udp -- eth0.2654 * 172.16.0.2 0.0.0.0/0 udp dpt:8983 0 0 LOGDROP all -- * * 0.0.0.0/0 0.0.0.0/0 Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 LOGDROP all -- * * 0.0.0.0/0 0.0.0.0/0 Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 ACCEPT all -- * lo 0.0.0.0/0 0.0.0.0/0 2 728 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:25 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:43 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:53 0 0 ACCEPT udp -- * eth0 0.0.0.0/0 0.0.0.0/0 udp dpt:53 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 0 0 ACCEPT udp -- * eth0 0.0.0.0/0 0.0.0.0/0 udp dpt:80 0 0 ACCEPT tcp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 tcp spt:5433 0 0 ACCEPT udp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 udp spt:5433 0 0 ACCEPT tcp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 tcp spt:8983 0 0 ACCEPT udp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 udp spt:8983 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 91.121.190.78 tcp dpts:20:21 0 0 LOGDROP all -- * * 0.0.0.0/0 0.0.0.0/0 Chain LOGDROP (5 references) pkts bytes target prot opt in out source destination 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 limit: avg 5/min burst 5 LOG flags 0 level 7 prefix `iptables rejected: ' 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0 EDIT #2 : I modified my script (policy ACCEPT, defining authorized incoming packets then logging and dropping everything else) to write iptables -nvL results to a file and to allow only 10 ICMP requests per second, logging and dropping everything else. The result proved unexpected : while the server was unavailable to SSH connections, even already established, I ping-flooded it from another server, and the ping rate was restricted to 10 requests per second. During this test, I also tried to open new SSH connections, which remained unanswered until the script flushed rules. Here comes the iptables stats written after these tests : Chain INPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 600 35520 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 6 360 LOGDROP tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp flags:0x17/0x02 limit: avg 100/sec burst 200 0 0 LOGDROP tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 STRING match "w00tw00t.at.ISC.SANS." ALGO name bm TO 65535 0 0 LOGDROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 STRING match "Host: anoticiapb.com.br" ALGO name bm TO 65535 0 0 LOGDROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 STRING match "Host: www.anoticiapb.com.br" ALGO name bm TO 65535 105 8820 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 limit: avg 10/sec burst 5 830 69720 LOGDROP icmp -- * * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22 state NEW recent: SET name: SSH side: source 0 0 LOGDROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22 recent: UPDATE seconds: 600 hit_count: 10 TTL-Match name: SSH side: source 0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:25 0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 0 0 ACCEPT udp -- eth0 * 0.0.0.0/0 0.0.0.0/0 udp dpt:80 0 0 ACCEPT udp -- eth0 * 0.0.0.0/0 0.0.0.0/0 udp dpt:123 0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443 0 0 ACCEPT tcp -- eth0.2654 * 172.16.0.1 0.0.0.0/0 tcp spt:5433 0 0 ACCEPT udp -- eth0.2654 * 172.16.0.1 0.0.0.0/0 udp spt:5433 0 0 ACCEPT tcp -- eth0.2654 * 172.16.0.1 0.0.0.0/0 tcp spt:8983 0 0 ACCEPT udp -- eth0.2654 * 172.16.0.1 0.0.0.0/0 udp spt:8983 16 1684 LOGDROP all -- * * 0.0.0.0/0 0.0.0.0/0 Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 LOGDROP all -- * * 0.0.0.0/0 0.0.0.0/0 Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 600 35520 ACCEPT all -- * lo 0.0.0.0/0 0.0.0.0/0 0 0 LOGDROP tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 owner UID match 33 0 0 LOGDROP udp -- * eth0 0.0.0.0/0 0.0.0.0/0 udp dpt:80 owner UID match 33 116 11136 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:25 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:53 0 0 ACCEPT udp -- * eth0 0.0.0.0/0 0.0.0.0/0 udp dpt:53 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 0 0 ACCEPT udp -- * eth0 0.0.0.0/0 0.0.0.0/0 udp dpt:80 0 0 ACCEPT tcp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 tcp dpt:5433 0 0 ACCEPT udp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 udp dpt:5433 0 0 ACCEPT tcp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 tcp dpt:8983 0 0 ACCEPT udp -- * eth0.2654 0.0.0.0/0 0.0.0.0/0 udp dpt:8983 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp dpt:43 0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 91.121.190.18 tcp dpts:20:21 7 1249 LOGDROP all -- * * 0.0.0.0/0 0.0.0.0/0 Chain LOGDROP (11 references) pkts bytes target prot opt in out source destination 35 3156 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 limit: avg 1/sec burst 5 LOG flags 0 level 7 prefix `iptables rejected: ' 859 73013 DROP all -- * * 0.0.0.0/0 0.0.0.0/0 Here comes the log content added during this test : Mar 28 09:52:51 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=52 TOS=0x00 PREC=0x00 TTL=51 ID=55666 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:52:51 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=52 TOS=0x00 PREC=0x00 TTL=51 ID=55667 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:52:51 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=64 TOS=0x00 PREC=0x00 TTL=51 ID=55668 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:52:51 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=64 TOS=0x00 PREC=0x00 TTL=51 ID=55669 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:52:52 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=64 TOS=0x00 PREC=0x00 TTL=51 ID=55670 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:52:54 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=64 TOS=0x00 PREC=0x00 TTL=51 ID=55671 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:52:58 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=64 TOS=0x00 PREC=0x00 TTL=51 ID=55672 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:52:59 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=6 Mar 28 09:52:59 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=7 Mar 28 09:52:59 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=8 Mar 28 09:52:59 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=9 Mar 28 09:52:59 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=59 Mar 28 09:53:00 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=152 Mar 28 09:53:01 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=246 Mar 28 09:53:02 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=339 Mar 28 09:53:03 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=432 Mar 28 09:53:04 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=524 Mar 28 09:53:05 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=617 Mar 28 09:53:06 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=711 Mar 28 09:53:07 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=804 Mar 28 09:53:08 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=176.31.236.101 DST=176.31.238.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=7430 SEQ=897 Mar 28 09:53:16 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:c0:62:6b:e3:5c:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=60 TOS=0x00 PREC=0x00 TTL=51 ID=61402 DF PROTO=TCP SPT=57637 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0 Mar 28 09:53:19 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:c0:62:6b:e3:5c:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=60 TOS=0x00 PREC=0x00 TTL=51 ID=61403 DF PROTO=TCP SPT=57637 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0 Mar 28 09:53:21 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=64 TOS=0x00 PREC=0x00 TTL=51 ID=55674 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK URGP=0 Mar 28 09:53:25 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:c0:62:6b:e3:5c:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=60 TOS=0x00 PREC=0x00 TTL=51 ID=61404 DF PROTO=TCP SPT=57637 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0 Mar 28 09:53:37 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=116 TOS=0x00 PREC=0x00 TTL=51 ID=55675 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK PSH URGP=0 Mar 28 09:53:37 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=116 TOS=0x00 PREC=0x00 TTL=51 ID=55676 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK PSH URGP=0 Mar 28 09:53:37 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=180 TOS=0x00 PREC=0x00 TTL=51 ID=55677 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK PSH URGP=0 Mar 28 09:53:38 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=180 TOS=0x00 PREC=0x00 TTL=51 ID=55678 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK PSH URGP=0 Mar 28 09:53:39 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=180 TOS=0x00 PREC=0x00 TTL=51 ID=55679 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK PSH URGP=0 Mar 28 09:53:39 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:c0:62:6b:e3:5c:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=60 TOS=0x00 PREC=0x00 TTL=51 ID=5055 DF PROTO=TCP SPT=57638 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0 Mar 28 09:53:41 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=180 TOS=0x00 PREC=0x00 TTL=51 ID=55680 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK PSH URGP=0 Mar 28 09:53:42 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:c0:62:6b:e3:5c:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=60 TOS=0x00 PREC=0x00 TTL=51 ID=5056 DF PROTO=TCP SPT=57638 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0 Mar 28 09:53:45 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:10:8c:cf:28:39:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=180 TOS=0x00 PREC=0x00 TTL=51 ID=55681 DF PROTO=TCP SPT=57504 DPT=22 WINDOW=501 RES=0x00 ACK PSH URGP=0 Mar 28 09:53:48 localhost kernel: iptables rejected: IN=eth0 OUT= MAC=00:25:90:54:d7:88:c0:62:6b:e3:5c:80:08:00 SRC=194.51.74.245 DST=176.31.238.3 LEN=60 TOS=0x00 PREC=0x00 TTL=51 ID=5057 DF PROTO=TCP SPT=57638 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0 If I correctly interpreted these results, they say that ICMP rules were correctly interpreted by iptables, but SSH rules were not. This does not make any sense... Does somebody understand where my error comes from? EDIT #3 : After some more tests, I found out that commenting the SYN flood countermeasure removes the problem. I continue researches in this way but, meanwhile, if somebody sees my anti SYN flood rule error...

    Read the article

  • Fortinet: Is there any equivalent of the ASA's packet-tracer command?

    - by Kedare
    I would like to know if there is not Fortigates an equivalent of the packet-tracer command that we can find on the ASA. Here is an example of execution for those who don't know it: NAT and pass : lev5505# packet-tracer input inside tcp 192.168.3.20 9876 8.8.8.8 80 Phase: 1 Type: ACCESS-LIST Subtype: Result: ALLOW Config: Implicit Rule Additional Information: MAC Access list Phase: 2 Type: ROUTE-LOOKUP Subtype: input Result: ALLOW Config: Additional Information: in 0.0.0.0 0.0.0.0 outside Phase: 3 Type: ACCESS-LIST Subtype: log Result: ALLOW Config: access-group inside-in in interface inside access-list inside-in extended permit tcp any any eq www access-list inside-in remark Allows DNS Additional Information: Phase: 4 Type: IP-OPTIONS Subtype: Result: ALLOW Config: Additional Information: Phase: 5 Type: VPN Subtype: ipsec-tunnel-flow Result: ALLOW Config: Additional Information: Phase: 6 Type: NAT Subtype: Result: ALLOW Config: object network inside-network nat (inside,outside) dynamic interface Additional Information: Dynamic translate 192.168.3.20/9876 to 81.56.15.183/9876 Phase: 7 Type: IP-OPTIONS Subtype: Result: ALLOW Config: Additional Information: Phase: 8 Type: FLOW-CREATION Subtype: Result: ALLOW Config: Additional Information: New flow created with id 94755, packet dispatched to next module Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: allow Blocked by ACL: lev5505# packet-tracer input inside tcp 192.168.3.20 9876 8.8.8.8 81 Phase: 1 Type: ROUTE-LOOKUP Subtype: input Result: ALLOW Config: Additional Information: in 0.0.0.0 0.0.0.0 outside Phase: 2 Type: ACCESS-LIST Subtype: Result: DROP Config: Implicit Rule Additional Information: Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: drop Drop-reason: (acl-drop) Flow is denied by configured rule Is there any equivalent on the Fortigates ?

    Read the article

  • Z600 Workstation ACPI Fan Noise

    - by dpb
    Hi -- I have an HP z600 workstation that has the FAN running full when idle. In fact, after the boot, the fan never slows down or varies. I looked in dmesg, and noticed this: [ 1.516778] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.516781] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.516786] ACPI: Marking method _OSC as Serialized because of AE_ALREADY_EXISTS error [ 1.519868] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.519872] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624638] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624642] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624726] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624729] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624802] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624805] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624895] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624898] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624977] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624981] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.625070] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.625074] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.625153] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.625157] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS Anyone know what could be done to fix this?

    Read the article

  • How do you make a randomly generated url address after form input?

    - by pmal10
    this is my first time ever posting on a Stackexchange website so I don't know much but my friend, a guy named Ethan know. But, to get on topic, I have a problem or question. Is there a way to get a URL from what you posted? I don't want to use the GET function on the post, because what I want to make is something like this: http://testwebsiteblahblahblah.com/forminput?formID=817 Is there a way to do it with JavaScript, HTML (CSS), ASP, or PHP ?

    Read the article

  • Understanding C# async / await (2) Awaitable / Awaiter Pattern

    - by Dixin
    What is awaitable Part 1 shows that any Task is awaitable. Actually there are other awaitable types. Here is an example: Task<int> task = new Task<int>(() => 0); int result = await task.ConfigureAwait(false); // Returns a ConfiguredTaskAwaitable<TResult>. The returned ConfiguredTaskAwaitable<TResult> struct is awaitable. And it is not Task at all: public struct ConfiguredTaskAwaitable<TResult> { private readonly ConfiguredTaskAwaiter m_configuredTaskAwaiter; internal ConfiguredTaskAwaitable(Task<TResult> task, bool continueOnCapturedContext) { this.m_configuredTaskAwaiter = new ConfiguredTaskAwaiter(task, continueOnCapturedContext); } public ConfiguredTaskAwaiter GetAwaiter() { return this.m_configuredTaskAwaiter; } } It has one GetAwaiter() method. Actually in part 1 we have seen that Task has GetAwaiter() method too: public class Task { public TaskAwaiter GetAwaiter() { return new TaskAwaiter(this); } } public class Task<TResult> : Task { public new TaskAwaiter<TResult> GetAwaiter() { return new TaskAwaiter<TResult>(this); } } Task.Yield() is a another example: await Task.Yield(); // Returns a YieldAwaitable. The returned YieldAwaitable is not Task either: public struct YieldAwaitable { public YieldAwaiter GetAwaiter() { return default(YieldAwaiter); } } Again, it just has one GetAwaiter() method. In this article, we will look at what is awaitable. The awaitable / awaiter pattern By observing different awaitable / awaiter types, we can tell that an object is awaitable if It has a GetAwaiter() method (instance method or extension method); Its GetAwaiter() method returns an awaiter. An object is an awaiter if: It implements INotifyCompletion or ICriticalNotifyCompletion interface; It has an IsCompleted, which has a getter and returns a Boolean; it has a GetResult() method, which returns void, or a result. This awaitable / awaiter pattern is very similar to the iteratable / iterator pattern. Here is the interface definitions of iteratable / iterator: public interface IEnumerable { IEnumerator GetEnumerator(); } public interface IEnumerator { object Current { get; } bool MoveNext(); void Reset(); } public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IDisposable, IEnumerator { T Current { get; } } In case you are not familiar with the out keyword, please find out the explanation in Understanding C# Covariance And Contravariance (2) Interfaces. The “missing” IAwaitable / IAwaiter interfaces Similar to IEnumerable and IEnumerator interfaces, awaitable / awaiter can be visualized by IAwaitable / IAwaiter interfaces too. This is the non-generic version: public interface IAwaitable { IAwaiter GetAwaiter(); } public interface IAwaiter : INotifyCompletion // or ICriticalNotifyCompletion { // INotifyCompletion has one method: void OnCompleted(Action continuation); // ICriticalNotifyCompletion implements INotifyCompletion, // also has this method: void UnsafeOnCompleted(Action continuation); bool IsCompleted { get; } void GetResult(); } Please notice GetResult() returns void here. Task.GetAwaiter() / TaskAwaiter.GetResult() is of such case. And this is the generic version: public interface IAwaitable<out TResult> { IAwaiter<TResult> GetAwaiter(); } public interface IAwaiter<out TResult> : INotifyCompletion // or ICriticalNotifyCompletion { bool IsCompleted { get; } TResult GetResult(); } Here the only difference is, GetResult() return a result. Task<TResult>.GetAwaiter() / TaskAwaiter<TResult>.GetResult() is of this case. Please notice .NET does not define these IAwaitable / IAwaiter interfaces at all. As an UI designer, I guess the reason is, IAwaitable interface will constraint GetAwaiter() to be instance method. Actually C# supports both GetAwaiter() instance method and GetAwaiter() extension method. Here I use these interfaces only for better visualizing what is awaitable / awaiter. Now, if looking at above ConfiguredTaskAwaitable / ConfiguredTaskAwaiter, YieldAwaitable / YieldAwaiter, Task / TaskAwaiter pairs again, they all “implicitly” implement these “missing” IAwaitable / IAwaiter interfaces. In the next part, we will see how to implement awaitable / awaiter. Await any function / action In C# await cannot be used with lambda. This code: int result = await (() => 0); will cause a compiler error: Cannot await 'lambda expression' This is easy to understand because this lambda expression (() => 0) may be a function or a expression tree. Obviously we mean function here, and we can tell compiler in this way: int result = await new Func<int>(() => 0); It causes an different error: Cannot await 'System.Func<int>' OK, now the compiler is complaining the type instead of syntax. With the understanding of the awaitable / awaiter pattern, Func<TResult> type can be easily made into awaitable. GetAwaiter() instance method, using IAwaitable / IAwaiter interfaces First, similar to above ConfiguredTaskAwaitable<TResult>, a FuncAwaitable<TResult> can be implemented to wrap Func<TResult>: internal struct FuncAwaitable<TResult> : IAwaitable<TResult> { private readonly Func<TResult> function; public FuncAwaitable(Func<TResult> function) { this.function = function; } public IAwaiter<TResult> GetAwaiter() { return new FuncAwaiter<TResult>(this.function); } } FuncAwaitable<TResult> wrapper is used to implement IAwaitable<TResult>, so it has one instance method, GetAwaiter(), which returns a IAwaiter<TResult>, which wraps that Func<TResult> too. FuncAwaiter<TResult> is used to implement IAwaiter<TResult>: public struct FuncAwaiter<TResult> : IAwaiter<TResult> { private readonly Task<TResult> task; public FuncAwaiter(Func<TResult> function) { this.task = new Task<TResult>(function); this.task.Start(); } bool IAwaiter<TResult>.IsCompleted { get { return this.task.IsCompleted; } } TResult IAwaiter<TResult>.GetResult() { return this.task.Result; } void INotifyCompletion.OnCompleted(Action continuation) { new Task(continuation).Start(); } } Now a function can be awaited in this way: int result = await new FuncAwaitable<int>(() => 0); GetAwaiter() extension method As IAwaitable shows, all that an awaitable needs is just a GetAwaiter() method. In above code, FuncAwaitable<TResult> is created as a wrapper of Func<TResult> and implements IAwaitable<TResult>, so that there is a  GetAwaiter() instance method. If a GetAwaiter() extension method  can be defined for Func<TResult>, then FuncAwaitable<TResult> is no longer needed: public static class FuncExtensions { public static IAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { return new FuncAwaiter<TResult>(function); } } So a Func<TResult> function can be directly awaited: int result = await new Func<int>(() => 0); Using the existing awaitable / awaiter - Task / TaskAwaiter Remember the most frequently used awaitable / awaiter - Task / TaskAwaiter. With Task / TaskAwaiter, FuncAwaitable / FuncAwaiter are no longer needed: public static class FuncExtensions { public static TaskAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { Task<TResult> task = new Task<TResult>(function); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter<TResult>. } } Similarly, with this extension method: public static class ActionExtensions { public static TaskAwaiter GetAwaiter(this Action action) { Task task = new Task(action); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter. } } an action can be awaited as well: await new Action(() => { }); Now any function / action can be awaited: await new Action(() => HelperMethods.IO()); // or: await new Action(HelperMethods.IO); If function / action has parameter(s), closure can be used: int arg0 = 0; int arg1 = 1; int result = await new Action(() => HelperMethods.IO(arg0, arg1)); Using Task.Run() The above code is used to demonstrate how awaitable / awaiter can be implemented. Because it is a common scenario to await a function / action, so .NET provides a built-in API: Task.Run(): public class Task2 { public static Task Run(Action action) { // The implementation is similar to: Task task = new Task(action); task.Start(); return task; } public static Task<TResult> Run<TResult>(Func<TResult> function) { // The implementation is similar to: Task<TResult> task = new Task<TResult>(function); task.Start(); return task; } } In reality, this is how we await a function: int result = await Task.Run(() => HelperMethods.IO(arg0, arg1)); and await a action: await Task.Run(() => HelperMethods.IO());

    Read the article

  • Libgdx detect when player is outside of screen

    - by Rockyy
    Im trying to learn libGDX (coming from XNA/MonoDevelop), and I'm making a super simple test game to get to know it better. I was wondering how to detect if the player sprite is outside of the screen and make it so it is impossible to go outside of the screen edges. In XNA you could do something like this: // Prevent player from moving off the left edge of the screen if (player.Position.X < 0) player.Position = new Vector2(0, player.Position.Y); How is this achieved in libgdx? I think it's the Stage that handles the 2D viewport in libgdx? This is my code so far: private Texture texture; private SpriteBatch batch; private Sprite sprite; @Override public void create () { float w = Gdx.graphics.getWidth(); float h = Gdx.graphics.getHeight(); batch = new SpriteBatch(); texture = new Texture(Gdx.files.internal("player.png")); sprite = new Sprite(texture); sprite.setPosition(w/2 -sprite.getWidth()/2, h/2 - sprite.getHeight()/2); } @Override public void render () { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); if(Gdx.input.isKeyPressed(Input.Keys.LEFT)){ if(Gdx.input.isKeyPressed(Input.Keys.CONTROL_LEFT)) sprite.translateX(-1f); else sprite.translateX(-10.0f); } if(Gdx.input.isKeyPressed(Input.Keys.RIGHT)){ if(Gdx.input.isKeyPressed(Input.Keys.CONTROL_LEFT)) sprite.translateX(1f); else sprite.translateX(10f); } batch.begin(); sprite.draw(batch); batch.end(); }

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Computing pixel's screen position in a vertex shader: right or wrong?

    - by cubrman
    I am building a deferred rendering engine and I have a question. The article I took the sample code from suggested computing screen position of the pixel as follows: VertexShaderFunction() { ... output.Position = mul(worldViewProj, input.Position); output.ScreenPosition = output.Position; } PixelShaderFunction() { input.ScreenPosition.xy /= input.ScreenPosition.w; float2 TexCoord = 0.5f * (float2(input.ScreenPosition.x,-input.ScreenPosition.y) + 1); ... } The question is what if I compute the position in the vertex shader (which should optimize the performance as VSF is launched significantly less number of times than PSF) would I get the per-vertex lighting insted. Here is how I want to do this: VertexShaderFunction() { ... output.Position = mul(worldViewProj, input.Position); output.ScreenPosition.xy = output.Position / output.Position.w; } PixelShaderFunction() { float2 TexCoord = 0.5f * (float2(input.ScreenPosition.x,-input.ScreenPosition.y) + 1); ... } What exactly happens with the data I pass from VS to PS? How exactly is it interpolated? Will it give me the right per-pixel result in this case? I tried launching the game both ways and saw no visual difference. Is my assumption right? Thanks. P.S. I am optimizing the point light shader, so I actually pass a sphere geometry into the VS.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Is a cluster the most cost effective redundancy method for windows server 2003?

    - by Ryan
    We had a server with bad ram which caused a long outage while they figured it out and our client facing apps had to go down for a while. We are coming up with a solution for instant fail-over but are not sure what the most cost effective method would be. Is a windows server cluster the best method for this? Also note we are using Parallels Virtuozzo if that makes any difference here. We found Parallels has a documented method for setting this up but it said it required a Domain Controller as well as a Fiber connection to shared storage, is all that really needed? Thanks.

    Read the article

  • Is having a class have a handleAction(type) method bad practice?

    - by zhenka
    My web application became a little too complicated to do everything in a controller so I had to build large wrapper classes for ORM models. The possible actions a user can trigger are all similar and after a certain point I realized that the best way to go would be to just have constructor method receive action type as a parameter to take care of the small differences internally, as opposed to either passing many arguments or doing a lot of things in the controller. Is this a good practice? I can't really give details for privacy issues.

    Read the article

  • Using PreApplicationStartMethod for ASP.NET 4.0 Application to Initialize assemblies

    - by ChrisD
    Sometimes your ASP.NET application needs to hook up some code before even the Application is started. Assemblies supports a custom attribute called PreApplicationStartMethod which can be applied to any assembly that should be loaded to your ASP.NET application, and the ASP.NET engine will call the method you specify within it before actually running any of code defined in the application. Lets discuss how to use it using Steps : 1. Add an assembly to an application and add this custom attribute to the AssemblyInfo.cs. Remember, the method you speicify for initialize should be public static void method without any argument. Lets define a method Initialize. You need to write : [assembly:PreApplicationStartMethod(typeof(MyInitializer.InitializeType), "InitializeApp")] 2. After you define this to an assembly you need to add some code inside InitializeType.InitializeApp method within the assembly. public static class InitializeType {     public static void InitializeApp()     {           // Initialize application     } } 3. You must reference this class library so that when the application starts and ASP.NET starts loading the dependent assemblies, it will call the method InitializeApp automatically. Warning Even though you can use this attribute easily, you should be aware that you can define these kind of method in all of your assemblies that you reference, but there is no guarantee in what order each of the method to be called. Hence it is recommended to define this method to be isolated and without side effect of other dependent assemblies. The method InitializeApp will be called way before the Application_start event or even before the App_code is compiled. This attribute is mainly used to write code for registering assemblies or build providers. Read Documentation I hope this post would come helpful.

    Read the article

  • Removing vg and lv after physical drive has been removed

    - by Rene
    We had a disk fail and replace but forgot to vgreduce first. The drive was on it's own VG and with two empty LV's and these are now causing LVM to complain every time any command is run, i.e. # lvscan /dev/vg04/swap: read failed after 0 of 4096 at 4294901760: Input/output error /dev/vg04/swap: read failed after 0 of 4096 at 4294959104: Input/output error /dev/vg04/swap: read failed after 0 of 4096 at 0: Input/output error /dev/vg04/swap: read failed after 0 of 4096 at 4096: Input/output error /dev/vg04/vz: read failed after 0 of 4096 at 995903864832: Input/output error /dev/vg04/vz: read failed after 0 of 4096 at 995903922176: Input/output error /dev/vg04/vz: read failed after 0 of 4096 at 0: Input/output error /dev/vg04/vz: read failed after 0 of 4096 at 4096: Input/output error The two LV's are not important, I just want to stop this error from displaying.

    Read the article

  • Can I connect a Playstation 3's HDMI output to my monitor's DVI-D input? [migrated]

    - by HankJDoomstorm
    I'm attempting to connect my Playstation 3 to my computer monitor. The monitor has a DVI-D (dual link) input, so before distinguishing between the different DVI varieties, I bought a DVI-I (dual link) to HDMI converter that won't fit into the port on the monitor (not only that, there isn't enough physical space in the back of the monitor to fit that much stuff before it hits the bottom of it). So I grabbed a DVI-D (single link) cable and got a female-to-female DVI-I coupler, and plugged the DVI-D cable into the monitor and the whole mess of converters. The end result was HDMI to DVI-D single link, but my monitor isn't receiving a signal on its digital channel. (For clarity's sake: DVI-D DL input on Monitor, DVI-D SL cable, DVI-I DL female-to-female coupler, DVI-I DL to HDMI converter, HDMI output on PS3) I don't know much about this stuff (obviously), but my educated guess is that the bandwidth of the PS3 is too high for the DVI-D Single Link cable, so nothing's getting through. Will replacing the single link cable with dual link resolve this? If not, is it possible at all? Oh, I should mention I'm aware I won't get audio through the monitor. I have an RCA to 3.5mm converter for that.

    Read the article

  • Is there an antipattern to describe this method of coding?

    - by P.Brian.Mackey
    I have a codebase where the programmer tended to wrap things up in areas that don't make sense. For example, given an Error log we have you can log via ErrorLog.Log(ex, "friendly message"); He added various other means to accomplish the exact same task. E.G. SomeClass.Log(ex, "friendly message"); Which simply turns around and calls the first method. This adds levels of complexity with no added benefit. Is there an anti-pattern to describe this?

    Read the article

  • iptables -- OK, **now** am I doing it right?

    - by Agvorth
    This is a follow up to a previous question where I asked whether my iptables config is correct. CentOS 5.3 system. Intended result: block everything except ping, ssh, Apache, and SSL. Based on xenoterracide's advice and the other responses to the question (thanks guys), I created this script: # Establish a clean slate iptables -P INPUT ACCEPT iptables -P FORWARD ACCEPT iptables -P OUTPUT ACCEPT iptables -F # Flush all rules iptables -X # Delete all chains # Disable routing. Drop packets if they reach the end of the chain. iptables -P FORWARD DROP # Drop all packets with a bad state iptables -A INPUT -m state --state INVALID -j DROP # Accept any packets that have something to do with ones we've sent on outbound iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT # Accept any packets coming or going on localhost (this can be very important) iptables -A INPUT -i lo -j ACCEPT # Accept ICMP iptables -A INPUT -p icmp -j ACCEPT # Allow ssh iptables -A INPUT -p tcp --dport 22 -j ACCEPT # Allow httpd iptables -A INPUT -p tcp --dport 80 -j ACCEPT # Allow SSL iptables -A INPUT -p tcp --dport 443 -j ACCEPT # Block all other traffic iptables -A INPUT -j DROP Now when I list the rules I get... # iptables -L -v Chain INPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 DROP all -- any any anywhere anywhere state INVALID 9 612 ACCEPT all -- any any anywhere anywhere state RELATED,ESTABLISHED 0 0 ACCEPT all -- lo any anywhere anywhere 0 0 ACCEPT icmp -- any any anywhere anywhere 0 0 ACCEPT tcp -- any any anywhere anywhere tcp dpt:ssh 0 0 ACCEPT tcp -- any any anywhere anywhere tcp dpt:http 0 0 ACCEPT tcp -- any any anywhere anywhere tcp dpt:https 0 0 DROP all -- any any anywhere anywhere Chain FORWARD (policy DROP 0 packets, 0 bytes) pkts bytes target prot opt in out source destination Chain OUTPUT (policy ACCEPT 5 packets, 644 bytes) pkts bytes target prot opt in out source destination I ran it and I can still log in, so that's good. Anyone notice anything major out of wack?

    Read the article

  • JBox2D applyLinearImpulse doesn't work

    - by Romeo
    So i have this line of code: if(input.isKeyDown(Input.KEY_W)&&canJump()) { body.applyLinearImpulse(new Vec2(0, 30), cam.screenToWorld(body.getPosition())); System.out.println("I can jump!"); } My problem is that the console display I can jump! but the body doesn't do that. Can you explain to me if i do something wrong? Some more code. This function creates my 'hero' the one supposed to jump. private Body setDynamic(float width, float height, float x, float y) { PolygonShape shape = new PolygonShape(); shape.setAsBox(width/2, height/2); BodyDef bd = new BodyDef(); bd.allowSleep = true; bd.position = new Vec2(cam.screenToWorld(new Vec2(x + width / 2, y + height / 2))); bd.type = BodyType.DYNAMIC; bd.userData = new BodyInfo(width, height); Body body = world.createBody(bd); body.createFixture(shape, 10); return body; } And this is the main update loop: if(input.isKeyDown(Input.KEY_A)) { body.setLinearVelocity(new Vec2(-10*delta, body.getLinearVelocity().y)); } else if (input.isKeyDown(Input.KEY_D)) { body.setLinearVelocity(new Vec2(10*delta, body.getLinearVelocity().y)); } else { body.setLinearVelocity(new Vec2(0, body.getLinearVelocity().y)); } if(input.isKeyDown(Input.KEY_W)&&canJump()) { body.applyLinearImpulse(new Vec2(0, 30), body.getPosition()); System.out.println("I can jump!"); } world.step(delta * 0.001f, 10, 5); }

    Read the article

  • Setting up vsftpd, hangs on list command

    - by Victor
    I installed vsftpd and configured it. When I try to connect to the ftp server using Transmit, it manages to connect but hangs on Listing "/" Then, I get a message stating: Could not retrieve file listing for “/”. Control connection timed out. Does it have anything to do with my iptables? My rules are as listed: *filter # Allows all loopback (lo0) traffic and drop all traffic to 127/8 that doesn't use lo0 -A INPUT -i lo -j ACCEPT -A INPUT ! -i lo -d 127.0.0.0/8 -j REJECT # Accepts all established inbound connections -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT # Allows all outbound traffic # You can modify this to only allow certain traffic -A OUTPUT -j ACCEPT # Allows HTTP and HTTPS connections from anywhere (the normal ports for websites) -A INPUT -p tcp -m tcp --dport 80 -j ACCEPT -A INPUT -p tcp -m tcp --dport 443 -j ACCEPT -A INPUT -p tcp -m tcp --dport 21 -j ACCEPT # Allows SSH connections # # THE -dport NUMBER IS THE SAME ONE YOU SET UP IN THE SSHD_CONFIG FILE # -A INPUT -p tcp -m state --state NEW --dport 30000 -j ACCEPT # Allow ping -A INPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT # log iptables denied calls -A INPUT -m limit --limit 5/min -j LOG --log-prefix "iptables denied: " --log-level 7 # Reject all other inbound - default deny unless explicitly allowed policy -A INPUT -j REJECT -A FORWARD -j REJECT COMMIT

    Read the article

  • protected abstract override Foo(); &ndash; er... what?

    - by Muljadi Budiman
    A couple of weeks back, a co-worker was pondering a situation he was facing.  He was looking at the following class hierarchy: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { } class FirstConcrete : SecondaryBase { } class SecondConcrete : SecondaryBase { } Basically, the first 2 classes are abstract classes, but the OriginalBase class has Test implemented as a virtual method.  What he needed was to force concrete class implementations to provide a proper body for the Test method, but he can’t do mark the method as abstract since it is already implemented in the OriginalBase class. One way to solve this is to hide the original implementation and then force further derived classes to properly implemented another method that will replace it.  The code will look like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected sealed override void Test() { Test2(); } protected abstract void Test2(); } class FirstConcrete : SecondaryBase { // Have to override Test2 here } class SecondConcrete : SecondaryBase { // Have to override Test2 here } With the above code, SecondaryBase class will seal the Test method so it can no longer be overridden.  Then it also made an abstract method Test2 available, which will force the concrete classes to override and provide the proper implementation.  Calling Test will properly call the proper Test2 implementation in each respective concrete classes. I was wondering if there’s a way to tell the compiler to treat the Test method in SecondaryBase as abstract, and apparently you can, by combining the abstract and override keywords.  The code looks like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected abstract override void Test(); } class FirstConcrete : SecondaryBase { // Have to override Test here } class SecondConcrete : SecondaryBase { // Have to override Test here } The method signature makes it look a bit funky, because most people will treat the override keyword to mean you then need to provide the implementation as well, but the effect is exactly as we desired.  The concepts are still valid: you’re overriding the Test method from its original implementation in the OriginalBase class, but you don’t want to implement it, rather you want to classes that derive from SecondaryBase to provide the proper implementation, so you also make it as an abstract method. I don’t think I’ve ever seen this before in the wild, so it was pretty neat to find that the compiler does support this case.

    Read the article

  • SSH Connection Refused - Debug using Recovery Console

    - by olrehm
    Hey everyone, I have found a ton of questions answered about debugging why one cannot connect via SSH, but they all seem to require that you can still access the system - or say that without that nothing can be done. In my case, I cannot access the system directly, but I do have access to the filesystem using a recovery console. So this is the situation: My provider made some kernel update today and in the process also rebooted my server. For some reason, I cannot connect via SSH anymore, but instead get a ssh: connect to host mydomain.de port 22: Connection refused I do not know whether sshd is just not running, or whether something (e.g. iptables) blocks my ssh connection attempts. I looked at the logfiles, none of the files in /var/log contain any mentioning on ssh, and /var/log/auth.log is empty. Before the kernel update, I could log in just fine and used certificates so that I would not need a password everytime I connect from my local machine. What I tried so far: I looked in /etc/rc*.d/ for a link to the /etc/init.d/ssh script and found none. So I am expecting that sshd is not started properly on boot. Since I cannot run any programs in my system, I cannot use update-rc to change this. I tried to make a link manually using ln -s /etc/init.d/ssh /etc/rc6.d/K09sshd and restarted the server - this did not fix the problem. I do not know wether it is at all possible to do it like this and whether it is correct to create it in rc6.d and whether the K09 is correct. I just copied that from apache. I also tried to change my /etc/iptables.rules file to allow everything: # Generated by iptables-save v1.4.0 on Thu Dec 10 18:05:32 2009 *mangle :PREROUTING ACCEPT [7468813:1758703692] :INPUT ACCEPT [7468810:1758703548] :FORWARD ACCEPT [3:144] :OUTPUT ACCEPT [7935930:3682829426] :POSTROUTING ACCEPT [7935933:3682829570] COMMIT # Completed on Thu Dec 10 18:05:32 2009 # Generated by iptables-save v1.4.0 on Thu Dec 10 18:05:32 2009 *filter :INPUT ACCEPT [7339662:1665166559] :FORWARD ACCEPT [3:144] :OUTPUT ACCEPT [7935930:3682829426] -A INPUT -i lo -j ACCEPT -A INPUT -p tcp -m tcp --dport 25 -j ACCEPT -A INPUT -p tcp -m tcp --dport 993 -j ACCEPT -A INPUT -p tcp -m tcp --dport 22 -j ACCEPT -A INPUT -p tcp -m tcp --dport 143 -j ACCEPT -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT -A INPUT -p tcp -m tcp --dport 80 -j ACCEPT -A INPUT -p tcp --dport 8080 -s localhost -j ACCEPT -A INPUT -m limit --limit 5/min -j LOG --log-prefix "iptables denied: " --log-level 7 -A INPUT -j ACCEPT -A FORWARD -j ACCEPT -A OUTPUT -j ACCEPT COMMIT # Completed on Thu Dec 10 18:05:32 2009 # Generated by iptables-save v1.4.0 on Thu Dec 10 18:05:32 2009 *nat :PREROUTING ACCEPT [101662:5379853] :POSTROUTING ACCEPT [393275:25394346] :OUTPUT ACCEPT [393273:25394250] COMMIT # Completed on Thu Dec 10 18:05:32 2009 I am not sure this is done correctly or has any effect at all. I also did not find any mentioning of iptables in any file in /var/log. So what else can I do? Thank you for your help.

    Read the article

  • How to export user input data from python to excel?

    - by mrn
    I am trying to develop a user form in python 2.7.3. Please note that I am a python beginner. I am trying to use xlwt to export data to excel. I want to write values of following variables i.e. a (value to write:'x1') & d (value to write: be user defined information in text box), to an excel sheet, a=StringVar() checkBox1=Checkbutton(root, text="text1", variable=a, onvalue="x1", offvalue="N/A") checkBox1.place(relx=0., rely=0., relwidth=0., relheight=0.) checkBox1.pack() d=StringVar() atextBox1=Entry(root, textvariable=d, font = '{MS Sans Serif} 10') atextBox1.pack() Need help badly. Thank you so much in advance

    Read the article

< Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >