Search Results

Search found 2405 results on 97 pages for 'alex kofman'.

Page 2/97 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Role based access control in Oracle VM using Enterprise Manager 12c

    - by Ronen Kofman
    Enterprise Managers let’s you control any element in the environment and define which users can do what on each element. We will show here an example on how to set up RBAC (Role Base Access Control) for Oracle VM using Enterprise Manager, this will be a very simplified explanation  to help you get going. For more comprehensive explanations please refer to the Enterprise Manager User Guide. OK, first some basic Enterprise Manager terminology: Target – any element in the environment is a target – server, pool, zone, VM etc. Administrators – these are the Enterprise Manager users who can login to the platform. Roles – roles are privilege profiles which could be applied to Administrators. The first step will be to discover the virtual environment and bring it in to Enterprise Manager, this process is simple and can be done in two ways: Work on your Oracle VM manager, set it up until you feel comfortable and then register it in Enterprise Manager Use Enterprise Manager and build it all from there. In both cases we will be able to see the same picture from Oracle VM and from Enterprise Manager, any change made in one will be reflected in the other. Oracle VM Manager: Enterprise Manager: Once you have your virtual environment set up in Enterprise Manager it is time to start associating VMs with users (or Administrators as they are called in Enterprise Manager). Enterprise Manager allows us to connect to multiple different identity services and import users from them but the simplest way to add Administrators is just go to setup->security->Administrators and create new Administrator. The creation wizard will walk you through several stages and allow you to assign role(s) to your newly created Administrator, using roles can really shorten the process if done multiple times. When you get to “Target Privileges” stage, scroll down to the bottom to the “Target Privileges” section. In this section you can add targets (virtual machine in our case) and define the type of privileges you would like to assign to the Administrator which you are creating. In this example I chose one of the VMs and granted full privileges to the newly created Administrator. Administrator creation wizard "Target Privileges": Now when you login as the newly created administrator, you will only see the VM that was assign to you and will be able to have full control over it. That’s it, simple and straight forward, Enterprise Manager offers many more things which I skipped here but the point is that if you need role based access control Enterprise Manager can give it to you in a very easy way. Oh and one more thing, virtualization management in Enterprise Manager has no license cost, sweet.

    Read the article

  • Running OpenStack Icehouse with ZFS Storage Appliance

    - by Ronen Kofman
    Couple of months ago Oracle announced the support for OpenStack Cinder plugin with ZFS Storage Appliance (aka ZFSSA).  With our recent release of the Icehouse tech preview I thought it is a good opportunity to demonstrate the ZFSSA plugin working with Icehouse. One thing that helps a lot to get started with ZFSSA is that it has a VirtualBox simulator. This simulator allows users to try out the appliance’s features before getting to a real box. Users can test the functionality and design an environment even before they have a real appliance which makes the deployment process much more efficient. With OpenStack this is especially nice because having a simulator on the other end allows us to test the complete set of the Cinder plugin and check the entire integration on a single server or even a laptop. Let’s see how this works Installing and Configuring the Simulator To get started we first need to download the simulator, the simulator is available here, unzip it and it is ready to be imported to VirtualBox. If you do not already have VirtualBox installed you can download it from here according to your platform of choice. To import the simulator go to VirtualBox console File -> Import Appliance , navigate to the location of the simulator and import the virtual machine. When opening the virtual machine you will need to make the following changes: - Network – by default the network is “Host Only” , the user needs to change that to “Bridged” so the VM can connect to the network and be accessible. - Memory (optional) – the VM comes with a default of 2560MB which may be fine but if you have more memory that could not hurt, in my case I decided to give it 8192 - vCPU (optional) – the default the VM comes with 1 vCPU, I decided to change it to two, you are welcome to do so too. And here is how the VM looks like: Start the VM, when the boot process completes we will need to change the root password and the simulator is running and ready to go. Now that the simulator is up and running we can access simulated appliance using the URL https://<IP or DNS name>:215/, the IP is showing on the virtual machine console. At this stage we will need to configure the appliance, in my case I did not change any of the default (in other words pressed ‘commit’ several times) and the simulated appliance was configured and ready to go. We will need to enable REST access otherwise Cinder will not be able to call the appliance we do that in Configuration->Services and at the end of the page there is ‘REST’ button, enable it. If you are a more advanced user you can set additional features in the appliance but for the purpose of this demo this is sufficient. One final step will be to create a pool, go to Configuration -> Storage and add a pool as shown below the pool is named “default”: The simulator is now running, configured and ready for action. Configuring Cinder Back to OpenStack, I have a multi node deployment which we created according to the “Getting Started with Oracle VM, Oracle Linux and OpenStack” guide using Icehouse tech preview release. Now we need to install and configure the ZFSSA Cinder plugin using the README file. In short the steps are as follows: 1. Copy the file from here to the control node and place them at: /usr/lib/python2.6/site-packages/cinder/volume/drivers/zfssa 2. Configure the plugin, editing /etc/cinder/cinder.conf # Driver to use for volume creation (string value) #volume_driver=cinder.volume.drivers.lvm.LVMISCSIDriver volume_driver=cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver zfssa_host = <HOST IP> zfssa_auth_user = root zfssa_auth_password = <ROOT PASSWORD> zfssa_pool = default zfssa_target_portal = <HOST IP>:3260 zfssa_project = test zfssa_initiator_group = default zfssa_target_interfaces = e1000g0 3. Restart the cinder-volume service: service openstack-cinder-volume restart 4. Look into the log file, this will tell us if everything works well so far. If you see any errors fix them before continuing. 5. Install iscsi-initiator-utils package, this is important since the plugin uses iscsi commands from this package: yum install -y iscsi-initiator-utils The installation and configuration are very simple, we do not need to have a “project” in the ZFSSA but we do need to define a pool. Creating and Using Volumes in OpenStack We are now ready to work, to get started lets create a volume in OpenStack and see it showing up on the simulator: #  cinder create 2 --display-name my-volume-1 +---------------------+--------------------------------------+ |       Property      |                Value                 | +---------------------+--------------------------------------+ |     attachments     |                  []                  | |  availability_zone  |                 nova                 | |       bootable      |                false                 | |      created_at     |      2014-08-12T04:24:37.806752      | | display_description |                 None                 | |     display_name    |             my-volume-1              | |      encrypted      |                False                 | |          id         | df67c447-9a36-4887-a8ff-74178d5d06ee | |       metadata      |                  {}                  | |         size        |                  2                   | |     snapshot_id     |                 None                 | |     source_volid    |                 None                 | |        status       |               creating               | |     volume_type     |                 None                 | +---------------------+--------------------------------------+ In the simulator: Extending the volume to 5G: # cinder extend df67c447-9a36-4887-a8ff-74178d5d06ee 5 In the simulator: Creating templates using Cinder Volumes By default OpenStack supports ephemeral storage where an image is copied into the run area during instance launch and deleted when the instance is terminated. With Cinder we can create persistent storage and launch instances from a Cinder volume. Booting from volume has several advantages, one of the main advantages of booting from volumes is speed. No matter how large the volume is the launch operation is immediate there is no copying of an image to a run areas, an operation which can take a long time when using ephemeral storage (depending on image size). In this deployment we have a Glance image of Oracle Linux 6.5, I would like to make it into a volume which I can boot from. When creating a volume from an image we actually “download” the image into the volume and making the volume bootable, this process can take some time depending on the image size, during the download we will see the following status: # cinder create --image-id 487a0731-599a-499e-b0e2-5d9b20201f0f --display-name ol65 2 # cinder list +--------------------------------------+-------------+--------------+------+-------------+ |                  ID                  |    Status   | Display Name | Size | Volume Type | … +--------------------------------------+-------------+--------------+------+------------- | df67c447-9a36-4887-a8ff-74178d5d06ee |  available  | my-volume-1  |  5   |     None    | … | f61702b6-4204-4f10-8bdf-7da792f15c28 | downloading |     ol65     |  2   |     None    | … +--------------------------------------+-------------+--------------+------+-------------+ After the download is complete we will see that the volume status changed to “available” and that the bootable state is “true”. We can use this new volume to boot an instance from or we can use it as a template. Cinder can create a volume from another volume and ZFSSA can replicate volumes instantly in the back end. The result is an efficient template model where users can spawn an instance from a “template” instantly even if the template is very large in size. Let’s try replicating the bootable volume with the Oracle Linux 6.5 on it creating additional 3 bootable volumes: # cinder create 2 --source-volid f61702b6-4204-4f10-8bdf-7da792f15c28 --display-name ol65-bootable-1 # cinder create 2 --source-volid f61702b6-4204-4f10-8bdf-7da792f15c28 --display-name ol65-bootable-2 # cinder create 2 --source-volid f61702b6-4204-4f10-8bdf-7da792f15c28 --display-name ol65-bootable-3 # cinder list +--------------------------------------+-----------+-----------------+------+-------------+----------+-------------+ |                  ID                  |   Status  |   Display Name  | Size | Volume Type | Bootable | Attached to | +--------------------------------------+-----------+-----------------+------+-------------+----------+-------------+ | 9bfe0deb-b9c7-4d97-8522-1354fc533c26 | available | ol65-bootable-2 |  2   |     None    |   true   |             | | a311a855-6fb8-472d-b091-4d9703ef6b9a | available | ol65-bootable-1 |  2   |     None    |   true   |             | | df67c447-9a36-4887-a8ff-74178d5d06ee | available |   my-volume-1   |  5   |     None    |  false   |             | | e7fbd2eb-e726-452b-9a88-b5eee0736175 | available | ol65-bootable-3 |  2   |     None    |   true   |             | | f61702b6-4204-4f10-8bdf-7da792f15c28 | available |       ol65      |  2   |     None    |   true   |             | +--------------------------------------+-----------+-----------------+------+-------------+----------+-------------+ Note that the creation of those 3 volume was almost immediate, no need to download or copy, ZFSSA takes care of the volume copy for us. Start 3 instances: # nova boot --boot-volume a311a855-6fb8-472d-b091-4d9703ef6b9a --flavor m1.tiny ol65-instance-1 --nic net-id=25b19746-3aea-4236-8193-4c6284e76eca # nova boot --boot-volume 9bfe0deb-b9c7-4d97-8522-1354fc533c26 --flavor m1.tiny ol65-instance-2 --nic net-id=25b19746-3aea-4236-8193-4c6284e76eca # nova boot --boot-volume e7fbd2eb-e726-452b-9a88-b5eee0736175 --flavor m1.tiny ol65-instance-3 --nic net-id=25b19746-3aea-4236-8193-4c6284e76eca Instantly replicating volumes is a very powerful feature, especially for large templates. The ZFSSA Cinder plugin allows us to take advantage of this feature of ZFSSA. By offloading some of the operations to the array OpenStack create a highly efficient environment where persistent volume can be instantly created from a template. That’s all for now, with this environment you can continue to test ZFSSA with OpenStack and when you are ready for the real appliance the operations will look the same. @RonenKofman

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • OpenStack: A starting point to learn more

    - by uwes
    Most of you have heard about OpenStack and the annouced integration into Oracle Solaris 11.2 and about OpenStack support for Oracle Linux and Oracle VM. These are two good reasons to start to learn more about OpenStack. Ronen Kofman starts a series of articles on his Blog (Ronen Kofman's Blog) to provide more knowledge regarding OpenStack. First article of the series is called: "Diving into OpenStack Network Architecure - Part 1". You are invited to follow Ronen through his articles where he shows how the different pieces come together and provides a bigger picture of the network architecture in OpenStack.

    Read the article

  • Silverlight Cream for December 28, 2010 -- #1017

    - by Dave Campbell
    In this Issue: Davide Zordan, Alex Golesh, Michael S. Scherotter, Andrej Tozon, Alex Knight, Jeff Blankenburg(-2-), Jeremy Likness, and Laurent Bugnion. Above the Fold: Silverlight: "My “What’s new in Silverlight 4 demo” app" Andrej Tozon WP7: "Taking a screenshot from within a Silverlight #WP7 application" Laurent Bugnion Expression Blend: "PathListBox: getting started" Alex Knight Shoutouts: If you haven't seen this SurfCube app demo on YouTube yet... check it out now: SurfCube V1.0 Windows Phone 7 Browser Want to get a free WP7 class from Shawn Wildermuth? Check this out: Webinar: Writing your first Windows Phone 7 Application Koen Zwikstra announed the next preview of his great tool: Silverlight Spy Preview 2 From SilverlightCream.com: Using the Multi-Touch Behavior in a Windows Phone 7 Multi-Page application Davide Zordan has a post up responding to questions he receives about multi-touch on WP7 in applications spanning more than one page. Silverlight for Windows Phone 7 Quick Tip: Fix missing icons while using DatePicker/TimePicker controls Alex Golesh discusses the use of the DatePicker control from the WP7 toolkit and found an unpleasant surprise associated with the Done/Cancel icons in the ApplicationBar, and has a solution for us. Updated SMF Thumbnail Scrubbing Sample Code Michael S. Scherotter has a post up about an update he's done to Silverlight 4 of code that allows thumbnail views of a video while 'scrubbing' ... don't know what that is? read the post :) My “What’s new in Silverlight 4 demo” app Andrej Tozon admits he's a little behind with this post, but as he points out, it might be a good time to review Silverlight 4 features, on the eve of 5. PathListBox: getting started One half the Knight team -- Alex Knight this time, has the first post of a series on the PathListBox up ... some real Expression Blend goodness. What I Learned in WP7 – Issue #9 Two more from Jeff Blankenburg today, in his number 9, he starts off demonstrating passing data between pages when navigating and fnishes up with some excellent info for submitting apps to the marketplace. What I Learned in WP7 – #Issue 10 Jeff Blankenburg's number 10 elaborates on the query string data he discussed in number 9. Using Sterling in Windows Phone 7 Applications Who better than the author?? Jeremy Likness has an end-to-end WP7/Sterling app up on his blog... begin with downloading Sterling, discuss what's needed to support Tombstoning, even custom serialization. Taking a screenshot from within a Silverlight #WP7 application Laurent Bugnion has a post up describing something people have been looking for: getting a screenshot of a WP7 application's page. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • ubuntu 11.10 foreman error

    - by user1060759
    Like this post I am also trying to complete this heroku tutorial I have installed and used everything (node.js, npm, express) successfully until I got to Foreman. I installed Foreman by first installing Ruby: alex@ubuntu:~$ sudo apt-get install ruby1.9.1 then installing Foreman. I am a newbie to Unix so I "sudo" perhaps unnecessarily here, but I got confirmation in the terminal that it had installed but also some errors: alex@ubuntu:~/NodeHelloWorld$ sudo gem install foreman Invalid gemspec in [/var/lib/gems/1.8/specifications/foreman-0.26.1.gemspec]: invalid date format in specification: "2011-11-10 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/term-ansicolor-1.0.7.gemspec]: invalid date format in specification: "2011-10-13 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/foreman-0.26.1.gemspec]: invalid date format in specification: "2011-11-10 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/term-ansicolor-1.0.7.gemspec]: invalid date format in specification: "2011-10-13 00:00:00.000000000Z" Successfully installed term-ansicolor-1.0.7 Successfully installed foreman-0.26.1 Then when I try to start foreman I get similar: alex@ubuntu:~/NodeHelloWorld$ foreman start Invalid gemspec in [/var/lib/gems/1.8/specifications/foreman-0.26.1.gemspec]: invalid date format in specification: "2011-11-10 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/term-ansicolor-1.0.7.gemspec]: invalid date format in specification: "2011-10-13 00:00:00.000000000Z" /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:926:in `report_activate_error': Could not find RubyGem foreman (>= 0) (Gem::LoadError) from /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:244:in `activate_dep' from /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:236:in `activate' from /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:1307:in `gem' from /usr/local/bin/foreman:18 Can anyone help me? I am a newbie to Unix after finally dumping windows as I found I could not get foreman-windows to work for me either I have found this post from someone with apparently the same issue. Does this mean my version of ruby could be wrong? I am running 1.9.1, though again new to ruby as well; alex@ubuntu:~/NodeHelloWorld$ ruby1.9.1 -v ruby 1.9.2p290 (2011-07-09 revision 32553) [i686-linux] Thanks

    Read the article

  • Is there an high quality natural text reader for the mac?

    - by Another Registered User
    I'm reading about 150 pages of text on screen, every day. I will have to read about 15.000 in the next upcoming months. No joke. Well, the problem is this: I suffer from a sort of attention deficit hyperactivity disorder which forces me to read every sentence up to 10 times until I really get it. Mac OS X Snow Leopard has a built-in text reader with the name "Alex". Although it is already pretty good quality, I know there are far better natural sounding voices out there. I have heard already voices that are absolutely amazing compared to Alex. They're so good, that you can't tell anymore the difference between a real person or a computer. Alex still has this "metal factor" in its voice, which makes my ears hurt after 8 hours of listening. The next problem with Alex is, that he never makes a break after a sentence. Also, it's not possible to think about a sentence and then continue reading. It's also not possible to have him repeat a sentence, without tedious text selection and shortcut usage. Actually, the best tool I can imagine would have the option to read a sentence and move on to the next one after pressing a special key, OR repeating the previously one after pressing a special key. That would help so much! And if that's even with one of those bell lab / AT&T / whatever super-natural voices, even better! But it would be already a great relief if there was just a better tool to control Alex. To let him make breaks after sentences or let him speak big chunks of text sentence-by-sentence with fine-grained control over repetition and moving on. Is there anything?

    Read the article

  • Postfix SMTP-relay server against Gmail on CentOS 6.4

    - by Alex
    I'm currently trying to setup an SMTP-relay server to Gmail with Postfix on a CentOS 6.4 machine, so I can send e-mails from my PHP scripts. I followed this tutorial but I get this error output when trying to do a sendmail alex[email protected] Output: tail -f /var/log/maillog Apr 16 01:25:54 ext-server-dev01 postfix/cleanup[3646]: 86C2D3C05B0: message-id=<[email protected]> Apr 16 01:25:54 ext-server-dev01 postfix/qmgr[3643]: 86C2D3C05B0: from=<[email protected]>, size=297, nrcpt=1 (queue active) Apr 16 01:25:56 ext-server-dev01 postfix/smtp[3648]: 86C2D3C05B0: to=<[email protected]>, relay=smtp.gmail.com[173.194.79.108]:587, delay=4.8, delays=3.1/0.04/1.5/0.23, dsn=5.5.1, status=bounced (host smtp.gmail.com[173.194.79.108] said: 530-5.5.1 Authentication Required. Learn more at 530 5.5.1 http://support.google.com/mail/bin/answer.py?answer=14257 qh4sm3305629pac.8 - gsmtp (in reply to MAIL FROM command)) Here is my main.cf configuration, I tried a number of different options but nothing seems to work: alias_database = hash:/etc/aliases alias_maps = hash:/etc/aliases command_directory = /usr/sbin config_directory = /etc/postfix daemon_directory = /usr/libexec/postfix data_directory = /var/lib/postfix debug_peer_level = 2 html_directory = no inet_interfaces = localhost inet_protocols = ipv4 mail_owner = postfix mailq_path = /usr/bin/mailq.postfix manpage_directory = /usr/share/man mydestination = $myhostname, localhost.$mydomain, localhost myhostname = host.local.domain myorigin = $myhostname newaliases_path = /usr/bin/newaliases.postfix queue_directory = /var/spool/postfix readme_directory = /usr/share/doc/postfix-2.6.6/README_FILES relayhost = [smtp.gmail.com]:587 sample_directory = /usr/share/doc/postfix-2.6.6/samples sendmail_path = /usr/sbin/sendmail.postfix setgid_group = postdrop smtp_sasl_auth_enable = yes smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd smtp_sasl_security_options = noanonymous smtp_sasl_tls_security_options = noanonymous smtp_sasl_type = cyrus smtp_tls_CAfile = /etc/ssl/certs/ca-bundle.crt smtp_use_tls = yes smtpd_sasl_path = smtpd unknown_local_recipient_reject_code = 550 In the /etc/postfix/sasl_passwd files (sasl_passwd & sasl_passwd.db) I got the following (removed the real password, and replaced it with "password"): [smtp.google.com]:587 [email protected]:password To create the sasl_passwd.db file, I did that by running this command: postmap hash:/etc/postfix/sasl_passwd Do anybody got an idea why I can't seem to send an e-mail from the server? Kind Regards Alex

    Read the article

  • Oracle Application Express (APEX) - Slides & Webcast replay

    - by Alex Blyth
    G'day everyone Thanks to those who attended yesterdays webcast on Oracle Application Express (APEX). A big thanks to Andrew Clarke for presenting on of Oracle's best kept secrets. You can download the slides here and the replay here.4. Oracle Application Express (APEX)View more presentations from Oracle Australia. Next time, Yasin Mohammed will talk to us about all things "Flashback". Details about this session will be posted in the next day or so. Regards Alex

    Read the article

  • Installing Sphinx on Ubuntu - install location

    - by Alex
    I have to install Sphinx on my Ubuntu 11.10 for it to work on a ruby app. I managed to install it through synaptics, however when I run my sphinx (rake ts:rebuild) I get an error message saying: Sphinx cannot be found on your system. You may need to configure the following settings in your config/sphinx.yml file: * bin_path * searchd_binary_name * indexer_binary_name I guess I just need to edit the sphinx.yml file with the right info but hey, i can't seem to find out where sphinx is. Any help? Thx Alex

    Read the article

  • No Android SDK, neither Java found

    - by Alex
    I have Java installed correctly, I did it by the manual http://www.wikihow.com/Install-Oracle-Java-on-Ubuntu-Linux I also installed Android SDK. However when I try to create a new Project IntelliJ Idea 12 and specify Project SDk choosing New - /home/alex/android-sdk-linux , it says me No Java SDK of appropriate version found. In addition to the Android SDK, you need to define a JSDK 1.5, 1.6 or 1.7 What did I miss?

    Read the article

  • Please help clean this loop

    - by Alex Angelini
    I do not code much in Javascript, but I have the following snippet which IMHO looks horrendous and I have to do this nested iteration quite often in my code. Does anyone have a prettier/easier to read solution? function addBrowse(data) { var list = $('<ul></ul>') for(i = 0; i < data.list.length; i++) { var file = list.append('<li class="toLeft">' + data.list[i].name + '</li>') for(j = 0; j < data.list[i].children.length; j++) { var db = file.append('<li>' + data.list[i].children[j].name + '</li>') for(k = 0; k < data.list[i].children[j].children.length; k++) db.append('<li class="toRight">' + data.list[i].children[j].children[k].name + '</li>') } } $('#browse').append(list).show()} Here is a sample data element {"file":"","db":"","tbl":"","page":"browse","list":[ { "name":"/home/alex/GoSource/test1.txt", "children":[ { "name":"go", "children":[ { "name":"validation1", "children":[ ] } ] } ] }, { "name":"/home/alex/GoSource/test2.txt", "children":[ { "name":"go", "children":[ { "name":"validation2", "children":[ ] } ] } ] }, { "name":"/home/alex/GoSource/test3.txt", "children":[ { "name":"go", "children":[ { "name":"validation3", "children":[ ] } ] } ] }]} Thanks a lot

    Read the article

  • How to configure emacs by using this file?

    - by Andy Leman
    From http://public.halogen-dg.com/browser/alex-emacs-settings/.emacs?rev=1346 I got: (setq load-path (cons "/home/alex/.emacs.d/" load-path)) (setq load-path (cons "/home/alex/.emacs.d/configs/" load-path)) (defconst emacs-config-dir "~/.emacs.d/configs/" "") (defun load-cfg-files (filelist) (dolist (file filelist) (load (expand-file-name (concat emacs-config-dir file))) (message "Loaded config file:%s" file) )) (load-cfg-files '("cfg_initsplit" "cfg_variables_and_faces" "cfg_keybindings" "cfg_site_gentoo" "cfg_conf-mode" "cfg_mail-mode" "cfg_region_hooks" "cfg_apache-mode" "cfg_crontab-mode" "cfg_gnuserv" "cfg_subversion" "cfg_css-mode" "cfg_php-mode" "cfg_tramp" "cfg_killbuffer" "cfg_color-theme" "cfg_uniquify" "cfg_tabbar" "cfg_python" "cfg_ack" "cfg_scpaste" "cfg_ido-mode" "cfg_javascript" "cfg_ange_ftp" "cfg_font-lock" "cfg_default_face" "cfg_ecb" "cfg_browser" "cfg_orgmode" ; "cfg_gnus" ; "cfg_cyrillic" )) ; enable disabled advanced features (put 'downcase-region 'disabled nil) (put 'scroll-left 'disabled nil) (put 'upcase-region 'disabled nil) ; narrow cursor ;(setq-default cursor-type 'hbar) (cua-mode) ; highlight current line (global-hl-line-mode 1) ; AV: non-aggressive scrolling (setq scroll-conservatively 100) (setq scroll-preserve-screen-position 't) (setq scroll-margin 0) (custom-set-variables ;; custom-set-variables was added by Custom. ;; If you edit it by hand, you could mess it up, so be careful. ;; Your init file should contain only one such instance. ;; If there is more than one, they won't work right. '(ange-ftp-passive-host-alist (quote (("redbus2.chalkface.com" . "on") ("zope.halogen-dg.com" . "on") ("85.119.217.50" . "on")))) '(blink-cursor-mode nil) '(browse-url-browser-function (quote browse-url-firefox)) '(browse-url-new-window-flag t) '(buffers-menu-max-size 30) '(buffers-menu-show-directories t) '(buffers-menu-show-status nil) '(case-fold-search t) '(column-number-mode t) '(cua-enable-cua-keys nil) '(user-mail-address "[email protected]") '(cua-mode t nil (cua-base)) '(current-language-environment "UTF-8") '(file-name-shadow-mode t) '(fill-column 79) '(grep-command "grep --color=never -nHr -e * | grep -v .svn --color=never") '(grep-use-null-device nil) '(inhibit-startup-screen t) '(initial-frame-alist (quote ((width . 80) (height . 40)))) '(initsplit-customizations-alist (quote (("tabbar" "configs/cfg_tabbar.el" t) ("ecb" "configs/cfg_ecb.el" t) ("ange\\-ftp" "configs/cfg_ange_ftp.el" t) ("planner" "configs/cfg_planner.el" t) ("dired" "configs/cfg_dired.el" t) ("font\\-lock" "configs/cfg_font-lock.el" t) ("speedbar" "configs/cfg_ecb.el" t) ("muse" "configs/cfg_muse.el" t) ("tramp" "configs/cfg_tramp.el" t) ("uniquify" "configs/cfg_uniquify.el" t) ("default" "configs/cfg_font-lock.el" t) ("ido" "configs/cfg_ido-mode.el" t) ("org" "configs/cfg_orgmode.el" t) ("gnus" "configs/cfg_gnus.el" t) ("nnmail" "configs/cfg_gnus.el" t)))) '(ispell-program-name "aspell") '(jabber-account-list (quote (("[email protected]")))) '(jabber-nickname "AVK") '(jabber-password nil) '(jabber-server "halogen-dg.com") '(jabber-username "alex") '(remember-data-file "~/Plans/remember.org") '(safe-local-variable-values (quote ((dtml-top-element . "body")))) '(save-place t nil (saveplace)) '(scroll-bar-mode (quote right)) '(semantic-idle-scheduler-idle-time 432000) '(show-paren-mode t) '(svn-status-hide-unmodified t) '(tool-bar-mode nil nil (tool-bar)) '(transient-mark-mode t) '(truncate-lines f) '(woman-use-own-frame nil)) ; ?? ????? ??????? y ??? n? (fset 'yes-or-no-p 'y-or-n-p) (custom-set-faces ;; custom-set-faces was added by Custom. ;; If you edit it by hand, you could mess it up, so be careful. ;; Your init file should contain only one such instance. ;; If there is more than one, they won't work right. '(compilation-error ((t (:foreground "tomato" :weight bold)))) '(cursor ((t (:background "red1")))) '(custom-variable-tag ((((class color) (background dark)) (:inherit variable-pitch :foreground "DarkOrange" :weight bold)))) '(hl-line ((t (:background "grey24")))) '(isearch ((t (:background "orange" :foreground "black")))) '(message-cited-text ((((class color) (background dark)) (:foreground "SandyBrown")))) '(message-header-name ((((class color) (background dark)) (:foreground "DarkGrey")))) '(message-header-other ((((class color) (background dark)) (:foreground "LightPink2")))) '(message-header-subject ((((class color) (background dark)) (:foreground "yellow2")))) '(message-separator ((((class color) (background dark)) (:foreground "thistle")))) '(region ((t (:background "brown")))) '(tooltip ((((class color)) (:inherit variable-pitch :background "IndianRed1" :foreground "black"))))) The above is a python emacs configure file. Where should I put it to use it? And, are there any other changes I need to make?

    Read the article

  • Linux Debian Security Breach - what now? [closed]

    - by user897075
    Possible Duplicate: My server's been hacked EMERGENCY I installed Debian (Squeeze) a while back in my home network to host some personal sites (thank god). During the installation it prompted me to enter a user other than root - so in a rush I used my name as user and pass (alex/alex for what its worth). I know it's horrible practice but during the setup of this server I'm always logged in as root to perform configurations, etc. Few days or a week passes and I forget to change the password. Then I finally get my web site finished and I open the port forwarding on my router and DynDNS to point to my server in my home. I've done this many times in the past never had issues but I use a cryptic root password and I guess disabled regular accounts. Today I reformat my Windows 7 and after spending all day tweaking and updating SP1 I look for cloning apps and find clonezilla and see it supports SSH cloning, so I go through the process only to discover I need a user, so I log into my web-server and see I have the user 'alex' already in and realize I don't know the password. So I change the password to something cryptic and visit the directory 'home' only to realize their are contents such as passfile, bengos, etc. My heart sinks, I've been hacked!!! Sure as hell there are all sort of scripts and password files. I run a 'last' command and it seems they last logged in april 3rd. Question: What can I do to see if they did anything destructive? Should I reformat and reinstall? How restrictive is Debian/Squeeze in terms of user permissions out of the box - all my personal website stuff was created using 'root' so changing files does not seem to have occured. How did they determine there was a user 'alex' on the machine? Can you query any machine and figure this out? What the users are? Looks like they tried to run a IP scan...other nodes on the network are running Windows 7. One of which seems a little wonky as of late - is it possible they buggered up that system? What corrective action can I take to avoid this from happening again? And figure out what might have changed or been hacked? I'm hoping debian out of box is fairly secure and at best he managed to read some of my source code. :p Regards, Alex

    Read the article

  • Good practices - database programming, unit testing

    - by Piotr Rodak
    Jason Brimhal wrote today on his blog that new book, Defensive Database Programming , written by Alex Kuznetsov ( blog ) is coming to bookstores. Alex writes about various techniques that make your code safer to run. SQL injection is not the only one vulnerability the code may be exposed to. Some other include inconsistent search patterns, unsupported character sets, locale settings, issues that may occur during high concurrency conditions, logic that breaks when certain conditions are not met. The...(read more)

    Read the article

  • Modifying Contiguous Time Periods in a History Table

    Alex Kuznetsov is credited with a clever technique for creating a history table for SQL that is designed to store contiguous time periods and check that these time periods really are contiguous, using nothing but constraints. This is now increasingly useful with the DATE data type in SQL Server. The modification of data in this type of table isn't always entirely intuitive so Alex is on hand to give a brief explanation of how to do it.

    Read the article

  • Oracle for PCI-DSS Security Webcast

    - by Alex Blyth
    Thanks to everyone who attended the Oracle for PCI-DSS security webcast today. It was good to see how the products we talked about last week can be used to address the PCI standard requirements. A big thanks to Chris Pickett for presenting a great session and running us through a very cool demo showing how the data is protected through out its life. The replay of the session can be downloaded here. Slides and be down loaded here. Oracle for PCI-DSS Security Compliance View more presentationsfrom Oracle Australia. Next week we resume our regular schedule with Andrew Clarke taking us through Oracle Application Express (APEX) - one of the best kept secrets in the Oracle Database. Enroll for this session here (and now :) ) Till next week Cheers Alex

    Read the article

  • Slides from Upgrade webcast

    - by Alex Blyth
    Thanks everyone for attending the webcast on "Upgrading to Oracle 11g". I hope there were some useful tips for everyone. My apologies for the issue with the audio streaming - Ill re-record the session later this week and hopefully have it available soon there after. As I mentioned, the next session - on Oracle VM and Oracle Enterprise Linux is on April 28 2010.Please click here to enroll. As for the slides... here they are: You can download the slides here. Upgrade to Oracle 11g View more presentations from Oracle Australia. Thanks again Cheers Alex

    Read the article

  • Greetings!!!!

    - by [email protected]
    Greetings everyone!If you're reading this, hopefully it's because you have been following our series of webcasts on Oracle 11gR2 that we've been hosting on Wordpress. If you found us some other way, well that's even better - the more the merrier as they say.In either case, welcome to our new blog!!! Over the next few days, Ill move the old posts from wordpress to here its all in the one location.Right! Who are we? The authors of this blog are the ANZ Inside Consulting Team.Currently, this is made of of:Tom JurcicYasin MohammedAndrew ClarkeRene Poels and me - Alex BlythBasically, our role in Oracle is to help users of our technologies get the most of their existing investments as well as what's new, old, blue, what have you...Ideally, this is all going to be technical in nature and not of a marketing nature (we'll leave the marketing up to others).For now, there's obviously not much here. But that won't last too long. In the mean time, those who are interested can find replays and slides of our previous webcasts on the "Oracle 11g Webcasts" page.Till next timeAlex

    Read the article

  • Oracle VM Slides and Replay

    - by Alex Blyth
    Thanks everyone for attending the webcast on "Oracle VM and Virtualisation" last week. I know I got some useful info out of the session and on behalf of all those who attended I'll say Thank You to Dean Samuels for spending some time talking to us.Slides are available here Oracle VM - 28/04/2010 View more presentations from Oracle Australia. You can download the replay here. Next week's session is on Oracle Database Security and will cover briefly all the big guns like Transparent Data Encryption, Database Vault, Audit Vault, Flashback Data Archive as well as touching on some of the features that are so often skipped over. You can enroll for this session here. Thanks again Cheers Alex

    Read the article

  • Oracle Security Webcast Slides and Replay now available

    - by Alex Blyth
    Hi EveryoneThanks for attending the "Oracle Database Security" last week. Slides are available here Oracle Database Security OverviewView more presentations from Oracle Australia. You can download the replay here. Next week's session is on Oracle Application Express. APEX is one of the best kept secrets in the Oracle database and can be used to make very simple apps such as phone directories all the way to complex knowledge base style apps that are driven heavily by data. You can enroll for this session here. Thanks again Cheers Alex

    Read the article

  • Using PHP Redirect Script together with Custom Fields (WordPress)? [on hold]

    - by Alex Scherer
    I am currently trying to make yoast's link cloaking script ( Yoast.com script manual // Github Script files ) work together with the Wordpress plugin Advanced Custom Fields. The script fetches 2 values (redirect id, redirect url) via GET and then redirects to this particular URL which is defined in a .txt file called redirects.txt I would like to change the script, so that I can define both the id and redirection URL via custom fields on each post in my WP dashboard.. I would be really happy if someone could help me to code something that does the same as the script above but without using a redirects.txt file to save the values but furthermore gets those values from custom fields. Best regards ! Alex

    Read the article

  • What to do with random pages after a 301 redirect?

    - by Alex
    Hello, I did a standard 301 redirect for a domain, but the original domain has about 300 pages that have some strength. It doesn't make sense to make them all point back to the new home page because the individual pages are about some topics. Also, there aren't the same pages in the new domain, so where should the original random pages redirect to? I would like to have them rank for the same topics they used to, but without having the original domain giving them strength, they will just stop ranking and die off. What should I do? Thanks, Alex

    Read the article

  • Pokemon Yellow wrap transitions

    - by Alex Koukoulas
    So I've been trying to make a pretty accurate clone of the good old Pokemon Yellow for quite some time now and one puzzling but nonetheless subtle mechanic has puzzled me. As you can see in the uploaded image there is a certain colour manipulation done in two stages after entering a wrap to another game location (such as stairs or entering a building). One easy (and sloppy) way of achieving this and the one I have been using so far is to make three copies of each image rendered on the screen all of them with their colours adjusted accordingly to match each stage of the transition. Of course after a while this becomes tremendously time consuming. So my question is does anyone know any better way of achieving this colour manipulation effect using java? Thanks in advance, Alex

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >