Search Results

Search found 166 results on 7 pages for 'argumentnullexception'.

Page 2/7 | < Previous Page | 1 2 3 4 5 6 7  | Next Page >

  • vb.net documentation and exception question

    - by dcp
    Let's say I have this sub in vb.net: ''' <summary> ''' Validates that <paramref name="value"/> is not <c>null</c>. ''' </summary> ''' ''' <param name="value">The object to validate.</param> ''' ''' <param name="name">The variable name of the object.</param> ''' ''' <exception cref="ArgumentNullException">If <paramref name="value"/> is <c>null</c>.</exception> Sub ValidateNotNull(ByVal value As Object, ByVal name As String) If value Is Nothing Then Throw New ArgumentNullException(name, String.Format("{0} cannot be null.", name)) End If End Sub My question is, is it proper to call this ValidateNotNull (which is what I would call it in C#) or should I stick with VB terminology and call it ValidateNotNothing instead? Also, in my exception, is it proper to say "cannot be null", or would it be better to say "cannot be Nothing"? I sort of like the way I have it, but since this is VB, maybe I should use Nothing. But since the exception itself is called ArgumentNullException, it feels weird to make the message say "cannot be Nothing". Anyway, I guess it's pretty nitkpicky, just wondered what you folks thought.

    Read the article

  • String Length Evaluating Incorrectly

    - by Justin R.
    My coworker and I are debugging an issue in a WCF service he's working on where a string's length isn't being evaluated correctly. He is running this method to unit test a method in his WCF service: // Unit test method public void RemoveAppGroupTest() { string addGroup = "TestGroup"; string status = string.Empty; string message = string.Empty; appActiveDirectoryServicesClient.RemoveAppGroup("AOD", addGroup, ref status, ref message); } // Inside the WCF service [OperationBehavior(Impersonation = ImpersonationOption.Required)] public void RemoveAppGroup(string AppName, string GroupName, ref string Status, ref string Message) { string accessOnDemandDomain = "MyDomain"; RemoveAppGroupFromDomain(AppName, accessOnDemandDomain, GroupName, ref Status, ref Message); } public AppActiveDirectoryDomain(string AppName, string DomainName) { if (string.IsNullOrEmpty(AppName)) { throw new ArgumentNullException("AppName", "You must specify an application name"); } } We tried to step into the .NET source code to see what value string.IsNullOrEmpty was receiving, but the IDE printed this message when we attempted to evaluate the variable: 'Cannot obtain value of local or argument 'value' as it is not available at this instruction pointer, possibly because it has been optimized away.' (None of the projects involved have optimizations enabled). So, we decided to try explicitly setting the value of the variable inside the method itself, immediately before the length check -- but that didn't help. // Lets try this again. public AppActiveDirectoryDomain(string AppName, string DomainName) { // Explicitly set the value for testing purposes. AppName = "AOD"; if (AppName == null) { throw new ArgumentNullException("AppName", "You must specify an application name"); } if (AppName.Length == 0) { // This exception gets thrown, even though it obviously isn't a zero length string. throw new ArgumentNullException("AppName", "You must specify an application name"); } } We're really pulling our hair out on this one. Has anyone else experienced behavior like this? Any tips on debugging it?

    Read the article

  • Checking instance of non-class constrained type parameter for null in generic method

    - by casperOne
    I currently have a generic method where I want to do some validation on the parameters before working on them. Specifically, if the instance of the type parameter T is a reference type, I want to check to see if it's null and throw an ArgumentNullException if it's null. Something along the lines of: // This can be a method on a generic class, it does not matter. public void DoSomething<T>(T instance) { if (instance == null) throw new ArgumentNullException("instance"); Note, I do not wish to constrain my type parameter using the class constraint. I thought I could use Marc Gravell's answer on "How do I compare a generic type to its default value?", and use the EqualityComparer<T> class like so: static void DoSomething<T>(T instance) { if (EqualityComparer<T>.Default.Equals(instance, null)) throw new ArgumentNullException("instance"); But it gives a very ambiguous error on the call to Equals: Member 'object.Equals(object, object)' cannot be accessed with an instance reference; qualify it with a type name instead How can I check an instance of T against null when T is not constrained on being a value or reference type?

    Read the article

  • PowerShell Remoting w/ Exchange 2010

    - by pk.
    I'm having difficulty running Exchange 2010 cmdlets through remote PowerShell sessions. I start my local PowerShell session as Administrator and issue the following commands -- PS C:\Windows\system32> $mailcred = Get-Credential PS C:\Windows\system32> $mailSession = New-PSSession -ComputerName MAILSRV -Credential $mailcred PS C:\Windows\system32> Enter-PSSession $mailSession [MAILSRV]: PS C:\Users\jdoe\Documents> Add-PSSnapin Microsoft.Exchange.Management.PowerShell.E2010 [MAILSRV]: PS C:\Users\jdoe\Documents> hostname MAILSRV [MAILSRV]: PS C:\Users\jdoe\Documents> Get-ExchangeServer Value cannot be null. Parameter name: serverSettings + CategoryInfo : + FullyQualifiedErrorId : System.ArgumentNullException,Microsoft.Exchange.Management.SystemConfigurationTasks.GetExchangeServer [MAILSRV]: PS C:\Users\jdoe\Documents> get-mailbox Value cannot be null. Parameter name: serverSettings + CategoryInfo : + FullyQualifiedErrorId : System.ArgumentNullException,Microsoft.Exchange.Management.RecipientTasks.GetMailbox As you can see, none of the Exchange cmdlets are working. What could be the issue?

    Read the article

  • Stream.CopyTo() extension method

    - by DigiMortal
    In one of my applications I needed copy data from one stream to another. After playing with streams a little bit I wrote CopyTo() extension method to Stream class you can use to copy the contents of current stream to target stream. Here is my extension method. It is my working draft and it is possible that there must be some more checks before we can say this extension method is ready to be part of some API or class library. public static void CopyTo(this Stream fromStream, Stream toStream) {     if (fromStream == null)         throw new ArgumentNullException("fromStream");     if (toStream == null)         throw new ArgumentNullException("toStream");       var bytes = new byte[8092];     int dataRead;     while ((dataRead = fromStream.Read(bytes, 0, bytes.Length)) > 0)         toStream.Write(bytes, 0, dataRead); } And here is example how to use this extension method. using(var stream = response.GetResponseStream()) using(var ms = new MemoryStream()) {     stream.CopyTo(ms);       // Do something with copied data } I am using this code to copy data from HTTP response stream to memory stream because I have to use serializer that needs more than response stream is able to offer.

    Read the article

  • Should I suppress CA1062: Validate arguments of public methods?

    - by brickner
    I've recently upgraded my project to Visual Studio 2010 from Visual Studio 2008. In Visual Studio 2008, this Code Analysis rule doesn't exist. Now I'm not sure if I should use this rule or not. I'm building an open source library so it seems important to keep people safe from doing mistakes. However, if all I'm going to do is throw ArgumentNullException when the parameter is null, it seems like writing useless code since ArgumentNullException will be thrown even if I won't write that code. Should I remove that rule or fix the violations?

    Read the article

  • How can I extend DynamicQuery.cs to implement a .Single method?

    - by Yoenhofen
    I need to write some dynamic queries for a project I'm working on. I'm finding out that a significant amount of time is being spent by my program on the Count and First methods, so I started to change to .Single, only to find out that there is no such method. The code below was my first attempt at creating one (mostly copied from the Where method), but it's not working. Help? public static object Single(this IQueryable source, string predicate, params object[] values) { if (source == null) throw new ArgumentNullException("source"); if (predicate == null) throw new ArgumentNullException("predicate"); LambdaExpression lambda = DynamicExpression.ParseLambda(source.ElementType, typeof(bool), predicate, values); return source.Provider.CreateQuery( Expression.Call( typeof(Queryable), "Single", new Type[] { source.ElementType }, source.Expression, Expression.Quote(lambda))); }

    Read the article

  • Custom Model binder not firing

    - by mare
    This is my custom model binder. I have my breakpoint set at BindModel but does not get fired with this controller action: public ActionResult Create(TabGroup tabGroup) ... public class BaseContentObjectCommonPropertiesBinder : DefaultModelBinder { public new object BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) { if (controllerContext == null) { throw new ArgumentNullException("controllerContext"); } if (bindingContext == null) { throw new ArgumentNullException("bindingContext"); } BaseContentObject obj = (BaseContentObject)base.BindModel(controllerContext, bindingContext); obj.Modified = DateTime.Now; obj.Created = DateTime.Now; obj.ModifiedBy = obj.CreatedBy = controllerContext.HttpContext.User.Identity.Name; return obj; } My registration: // tried both of these two lines ModelBinders.Binders[typeof(TabGroup)] = new BaseContentObjectCommonPropertiesBinder(); ModelBinders.Binders.Add(typeof(TabGroup), new BaseContentObjectCommonPropertiesBinder());

    Read the article

  • Should I supress CA1062: Validate arguments of public methods?

    - by brickner
    I've recently upgraded my project to Visual Studio 2010 from Visual Studio 2008. In Visual Studio 2008, this Code Analysis rule doesn't exist. Now I'm not sure if I should use this rule or not. I'm building an open source library so it seems important to keep people safe from doing mistakes. However, if all I'm going to do is throw ArgumentNullException when the parameter is null, it seems like writing useless code since ArgumentNullException will be thrown even if I won't write that code. Should I remove that rule or fix the violations?

    Read the article

  • To call SelectMany dynamically in the way of System.Linq.Dynamic

    - by user341127
    In System.Linq.Dynamic, there are a few methods to form Select, Where and other Linq statements dynamically. But there is no for SelectMany. The method for Select is as the following: public static IQueryable Select(this IQueryable source, string selector, params object[] values) { if (source == null) throw new ArgumentNullException("source"); if (selector == null) throw new ArgumentNullException("selector"); LambdaExpression lambda = DynamicExpression.ParseLambda(source.ElementType, null, selector, values); IQueryable result = source.Provider.CreateQuery( Expression.Call( typeof(Queryable), "Select", new Type[] { source.ElementType, lambda.Body.Type }, source.Expression, Expression.Quote(lambda))); return result; } I tried to modify the above code, after hours working, I couldn't find a way out. Any suggestions are welcome. Ying

    Read the article

  • Implementing INotifyPropertyChanged with PostSharp 1.5

    - by no9
    Hello all. Im new to .NET and WPF so i hope i will ask the question correctly. I am using INotifyPropertyChanged implemented using PostSharp 1.5: [Serializable, DebuggerNonUserCode, AttributeUsage(AttributeTargets.Assembly | AttributeTargets.Class, AllowMultiple = false, Inherited = false), MulticastAttributeUsage(MulticastTargets.Class, AllowMultiple = false, Inheritance = MulticastInheritance.None, AllowExternalAssemblies = true)] public sealed class NotifyPropertyChangedAttribute : CompoundAspect { public int AspectPriority { get; set; } public override void ProvideAspects(object element, LaosReflectionAspectCollection collection) { Type targetType = (Type)element; collection.AddAspect(targetType, new PropertyChangedAspect { AspectPriority = AspectPriority }); foreach (var info in targetType.GetProperties(BindingFlags.Public | BindingFlags.Instance).Where(pi => pi.GetSetMethod() != null)) { collection.AddAspect(info.GetSetMethod(), new NotifyPropertyChangedAspect(info.Name) { AspectPriority = AspectPriority }); } } } [Serializable] internal sealed class PropertyChangedAspect : CompositionAspect { public override object CreateImplementationObject(InstanceBoundLaosEventArgs eventArgs) { return new PropertyChangedImpl(eventArgs.Instance); } public override Type GetPublicInterface(Type containerType) { return typeof(INotifyPropertyChanged); } public override CompositionAspectOptions GetOptions() { return CompositionAspectOptions.GenerateImplementationAccessor; } } [Serializable] internal sealed class NotifyPropertyChangedAspect : OnMethodBoundaryAspect { private readonly string _propertyName; public NotifyPropertyChangedAspect(string propertyName) { if (string.IsNullOrEmpty(propertyName)) throw new ArgumentNullException("propertyName"); _propertyName = propertyName; } public override void OnEntry(MethodExecutionEventArgs eventArgs) { var targetType = eventArgs.Instance.GetType(); var setSetMethod = targetType.GetProperty(_propertyName); if (setSetMethod == null) throw new AccessViolationException(); var oldValue = setSetMethod.GetValue(eventArgs.Instance, null); var newValue = eventArgs.GetReadOnlyArgumentArray()[0]; if (oldValue == newValue) eventArgs.FlowBehavior = FlowBehavior.Return; } public override void OnSuccess(MethodExecutionEventArgs eventArgs) { var instance = eventArgs.Instance as IComposed<INotifyPropertyChanged>; var imp = instance.GetImplementation(eventArgs.InstanceCredentials) as PropertyChangedImpl; imp.OnPropertyChanged(_propertyName); } } [Serializable] internal sealed class PropertyChangedImpl : INotifyPropertyChanged { private readonly object _instance; public PropertyChangedImpl(object instance) { if (instance == null) throw new ArgumentNullException("instance"); _instance = instance; } public event PropertyChangedEventHandler PropertyChanged; internal void OnPropertyChanged(string propertyName) { if (string.IsNullOrEmpty(propertyName)) throw new ArgumentNullException("propertyName"); var handler = PropertyChanged as PropertyChangedEventHandler; if (handler != null) handler(_instance, new PropertyChangedEventArgs(propertyName)); } } } Then i have a couple of classes (user and adress) that implement [NotifyPropertyChanged]. It works fine. But what i want would be that if the child object changes (in my example address) that the parent object gets notified (in my case user). Would it be possible to expand this code so it automaticly creates listeners on parent objects that listen for changes in its child objets?

    Read the article

  • Why no ArgumentEmptyException in .NET ?

    - by Andrei Rinea
    I am beginning to think I am doing something wrong. I mean they did place System.String.IsNullOrWhitespace finally but no ArgumentEmptyException class. public FilterItem(string name, IEnumerable<string> extensions) { if (string.IsNullOrWhiteSpace(name)) { throw new ArgumentNullException("name"); } if (extensions == null) { throw new ArgumentNullException("extensions"); } if (extensions.Count() == 0) { throw new ArgumentOutOfRangeException("extensions"); } this.Name = name; this.Extensions = extensions; } throwing an ArgumentOutOfRangeException feels unnatural. Also an instance of ArgumentException is too general in my opinion. It's easy to me to create a new exception class call it this way and have it over with. What bugs me is that it's not in the BCL/FCL and I am beginning to think there's a good reason not to have it. Should there be one?

    Read the article

  • CRUD operations; do you notify whether the insert,update etc. went well ?

    - by danielovich
    Hi guys. I have a simple question for you (i hope) :) I have pretty much always used void as a "return" type when doing CRUD operations on data. Eg. Consider this code: public void Insert(IAuctionItem item) { if (item == null) { AuctionLogger.LogException(new ArgumentNullException("item is null")); } _dataStore.DataContext.AuctionItems.InsertOnSubmit((AuctionItem)item); _dataStore.DataContext.SubmitChanges(); } and then considen this code: public bool Insert(IAuctionItem item) { if (item == null) { AuctionLogger.LogException(new ArgumentNullException("item is null")); } _dataStore.DataContext.AuctionItems.InsertOnSubmit((AuctionItem)item); _dataStore.DataContext.SubmitChanges(); return true; } It actually just comes down to whether you should notify that something was inserted (and went well) or not ?

    Read the article

  • Authenticating clients in the new WCF Http stack

    - by cibrax
    About this time last year, I wrote a couple of posts about how to use the “Interceptors” from the REST starker kit for implementing several authentication mechanisms like “SAML”, “Basic Authentication” or “OAuth” in the WCF Web programming model. The things have changed a lot since then, and Glenn finally put on our hands a new version of the Web programming model that deserves some attention and I believe will help us a lot to build more Http oriented services in the .NET stack. What you can get today from wcf.codeplex.com is a preview with some cool features like Http Processors (which I already discussed here), a new and improved version of the HttpClient library, Dependency injection and better TDD support among others. However, the framework still does not support an standard way of doing client authentication on the services (This is something planned for the upcoming releases I believe). For that reason, moving the existing authentication interceptors to this new programming model was one of the things I did in the last few days. In order to make authentication simple and easy to extend,  I first came up with a model based on what I called “Authentication Interceptors”. An authentication interceptor maps to an existing Http authentication mechanism and implements the following interface, public interface IAuthenticationInterceptor{ string Scheme { get; } bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal);} An authentication interceptors basically needs to returns the http authentication schema that implements in the property “Scheme”, and implements the authentication mechanism in the method “DoAuthentication”. As you can see, this last method “DoAuthentication” only relies on the HttpRequestMessage and HttpResponseMessage classes, making the testing of this interceptor very simple (There is no need to do some black magic with the WCF context or messages). After this, I implemented a couple of interceptors for supporting basic authentication and brokered authentication with SAML (using WIF) in my services. The following code illustrates how the basic authentication interceptors looks like. public class BasicAuthenticationInterceptor : IAuthenticationInterceptor{ Func<UsernameAndPassword, bool> userValidation; string realm;  public BasicAuthenticationInterceptor(Func<UsernameAndPassword, bool> userValidation, string realm) { if (userValidation == null) throw new ArgumentNullException("userValidation");  if (string.IsNullOrEmpty(realm)) throw new ArgumentNullException("realm");  this.userValidation = userValidation; this.realm = realm; }  public string Scheme { get { return "Basic"; } }  public bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal) { string[] credentials = ExtractCredentials(request); if (credentials.Length == 0 || !AuthenticateUser(credentials[0], credentials[1])) { response.StatusCode = HttpStatusCode.Unauthorized; response.Content = new StringContent("Access denied"); response.Headers.WwwAuthenticate.Add(new AuthenticationHeaderValue("Basic", "realm=" + this.realm));  principal = null;  return false; } else { principal = new GenericPrincipal(new GenericIdentity(credentials[0]), new string[] {});  return true; } }  private string[] ExtractCredentials(HttpRequestMessage request) { if (request.Headers.Authorization != null && request.Headers.Authorization.Scheme.StartsWith("Basic")) { string encodedUserPass = request.Headers.Authorization.Parameter.Trim();  Encoding encoding = Encoding.GetEncoding("iso-8859-1"); string userPass = encoding.GetString(Convert.FromBase64String(encodedUserPass)); int separator = userPass.IndexOf(':');  string[] credentials = new string[2]; credentials[0] = userPass.Substring(0, separator); credentials[1] = userPass.Substring(separator + 1);  return credentials; }  return new string[] { }; }  private bool AuthenticateUser(string username, string password) { var usernameAndPassword = new UsernameAndPassword { Username = username, Password = password };  if (this.userValidation(usernameAndPassword)) { return true; }  return false; }} This interceptor receives in the constructor a callback in the form of a Func delegate for authenticating the user and the “realm”, which is required as part of the implementation. The rest is a general implementation of the basic authentication mechanism using standard http request and response messages. I also implemented another interceptor for authenticating a SAML token with WIF. public class SamlAuthenticationInterceptor : IAuthenticationInterceptor{ SecurityTokenHandlerCollection handlers = null;  public SamlAuthenticationInterceptor(SecurityTokenHandlerCollection handlers) { if (handlers == null) throw new ArgumentNullException("handlers");  this.handlers = handlers; }  public string Scheme { get { return "saml"; } }  public bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal) { SecurityToken token = ExtractCredentials(request);  if (token != null) { ClaimsIdentityCollection claims = handlers.ValidateToken(token);  principal = new ClaimsPrincipal(claims);  return true; } else { response.StatusCode = HttpStatusCode.Unauthorized; response.Content = new StringContent("Access denied");  principal = null;  return false; } }  private SecurityToken ExtractCredentials(HttpRequestMessage request) { if (request.Headers.Authorization != null && request.Headers.Authorization.Scheme == "saml") { XmlTextReader xmlReader = new XmlTextReader(new StringReader(request.Headers.Authorization.Parameter));  var col = SecurityTokenHandlerCollection.CreateDefaultSecurityTokenHandlerCollection(); SecurityToken token = col.ReadToken(xmlReader);  return token; }  return null; }}This implementation receives a “SecurityTokenHandlerCollection” instance as part of the constructor. This class is part of WIF, and basically represents a collection of token managers to know how to handle specific xml authentication tokens (SAML is one of them). I also created a set of extension methods for injecting these interceptors as part of a service route when the service is initialized. var basicAuthentication = new BasicAuthenticationInterceptor((u) => true, "ContactManager");var samlAuthentication = new SamlAuthenticationInterceptor(serviceConfiguration.SecurityTokenHandlers); // use MEF for providing instancesvar catalog = new AssemblyCatalog(typeof(Global).Assembly);var container = new CompositionContainer(catalog);var configuration = new ContactManagerConfiguration(container); RouteTable.Routes.AddServiceRoute<ContactResource>("contact", configuration, basicAuthentication, samlAuthentication);RouteTable.Routes.AddServiceRoute<ContactsResource>("contacts", configuration, basicAuthentication, samlAuthentication); In the code above, I am injecting the basic authentication and saml authentication interceptors in the “contact” and “contacts” resource implementations that come as samples in the code preview. I will use another post to discuss more in detail how the brokered authentication with SAML model works with this new WCF Http bits. The code is available to download in this location.

    Read the article

  • Extension methods on a null object instance – something you did not know

    - by nmarun
    Extension methods gave developers with a lot of bandwidth to do interesting (read ‘cool’) things. But there are a couple of things that we need to be aware of while using these extension methods. I have a StringUtil class that defines two extension methods: 1: public static class StringUtils 2: { 3: public static string Left( this string arg, int leftCharCount) 4: { 5: if (arg == null ) 6: { 7: throw new ArgumentNullException( "arg" ); 8: } 9: return arg.Substring(0, leftCharCount); 10...(read more)

    Read the article

  • EWS connect to ExchangeServer authentication specifications

    - by dankyy1
    Hi all I'm connecting to ExchangeServer with username,password,doain properities(my code below) but what how to define server uses Kerberos,ntlm or basic authentication e.g? thnx xchangeServiceBinding binding = new ExchangeServiceBinding(); ServicePointManager.ServerCertificateValidationCallback = CertificateValidationCallBack; System.Net.WebProxy proxyObject = new System.Net.WebProxy(); proxyObject.Credentials = System.Net.CredentialCache.DefaultCredentials; if (string.IsNullOrEmpty(credentials.UserName) || string.IsNullOrEmpty(credentials.Password) || string.IsNullOrEmpty(credentials.Domain)) throw new ArgumentNullException("The Crediantial values could not be null or empty."); binding.Credentials = new NetworkCredential(credentials.UserName, credentials.Password, credentials.Domain); if (string.IsNullOrEmpty(serverURL)) throw new ArgumentNullException("The Exchange server Url could not be null or empty."); binding.Url = serverURL; binding.UseDefaultCredentials = true; binding.Proxy = proxyObject; //TO DO:take version over parameter..or configration!! binding.RequestServerVersionValue = new RequestServerVersion(); binding.RequestServerVersionValue.Version = (ExchangeVersionType)Enum.Parse(typeof(ExchangeVersionType), serverVersion);// ExchangeVersionType.Exchange2007_SP1;//.Exchange2010;

    Read the article

  • Extended Logging with Caller Info Attributes

    - by João Angelo
    .NET 4.5 caller info attributes may be one of those features that do not get much airtime, but nonetheless are a great addition to the framework. These attributes will allow you to programmatically access information about the caller of a given method, more specifically, the code file full path, the member name of the caller and the line number at which the method was called. They are implemented by taking advantage of C# 4.0 optional parameters and are a compile time feature so as an added bonus the returned member name is not affected by obfuscation. The main usage scenario will be for tracing and debugging routines as will see right now. In this sample code I’ll be using NLog, but the example is also applicable to other logging frameworks like log4net. First an helper class, without any dependencies and that can be used anywhere to obtain caller information: using System; using System.IO; using System.Runtime.CompilerServices; public sealed class CallerInfo { private CallerInfo(string filePath, string memberName, int lineNumber) { this.FilePath = filePath; this.MemberName = memberName; this.LineNumber = lineNumber; } public static CallerInfo Create( [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { return new CallerInfo(filePath, memberName, lineNumber); } public string FilePath { get; private set; } public string FileName { get { return this.fileName ?? (this.fileName = Path.GetFileName(this.FilePath)); } } public string MemberName { get; private set; } public int LineNumber { get; private set; } public override string ToString() { return string.Concat(this.FilePath, "|", this.MemberName, "|", this.LineNumber); } private string fileName; } Then an extension class specific for NLog Logger: using System; using System.Runtime.CompilerServices; using NLog; public static class LoggerExtensions { public static void TraceMemberEntry( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberEntry(logger, LogLevel.Trace, filePath, memberName, lineNumber); } public static void TraceMemberExit( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberExit(logger, LogLevel.Trace, filePath, memberName, lineNumber); } public static void DebugMemberEntry( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberEntry(logger, LogLevel.Debug, filePath, memberName, lineNumber); } public static void DebugMemberExit( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberExit(logger, LogLevel.Debug, filePath, memberName, lineNumber); } public static void LogMemberEntry( this Logger logger, LogLevel logLevel, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { const string MsgFormat = "Entering member {1} at line {2}"; InternalLog(logger, logLevel, MsgFormat, filePath, memberName, lineNumber); } public static void LogMemberExit( this Logger logger, LogLevel logLevel, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { const string MsgFormat = "Exiting member {1} at line {2}"; InternalLog(logger, logLevel, MsgFormat, filePath, memberName, lineNumber); } private static void InternalLog( Logger logger, LogLevel logLevel, string format, string filePath, string memberName, int lineNumber) { if (logger == null) throw new ArgumentNullException("logger"); if (logLevel == null) throw new ArgumentNullException("logLevel"); logger.Log(logLevel, format, filePath, memberName, lineNumber); } } Finally an usage example: using NLog; internal static class Program { private static readonly Logger Logger = LogManager.GetCurrentClassLogger(); private static void Main(string[] args) { Logger.TraceMemberEntry(); // Compile time feature // Next three lines output the same except for line number Logger.Trace(CallerInfo.Create().ToString()); Logger.Trace(() => CallerInfo.Create().ToString()); Logger.Trace(delegate() { return CallerInfo.Create().ToString(); }); Logger.TraceMemberExit(); } } NOTE: Code for helper class and Logger extension also available here.

    Read the article

  • Dont Throw Duplicate Exceptions

    In your code, youll sometimes have write code that validates input using a variety of checks.  Assuming you havent embraced AOP and done everything with attributes, its likely that your defensive coding is going to look something like this: public void Foo(SomeClass someArgument) { if(someArgument == null) { throw new InvalidArgumentException("someArgument"); } if(!someArgument.IsValid()) { throw new InvalidArgumentException("someArgument"); }   // Do Real Work } Do you see a problem here?  Heres the deal Exceptions should be meaningful.  They have value at a number of levels: In the code, throwing an exception lets the develop know that there is an unsupported condition here In calling code, different types of exceptions may be handled differently At runtime, logging of exceptions provides a valuable diagnostic tool Its this last reason I want to focus on.  If you find yourself literally throwing the exact exception in more than one location within a given method, stop.  The stack trace for such an exception is likely going to be identical regardless of which path of execution led to the exception being thrown.  When that happens, you or whomever is debugging the problem will have to guess which exception was thrown.  Guessing is a great way to introduce additional problems and/or greatly increase the amount of time require to properly diagnose and correct any bugs related to this behavior. Dont Guess Be Specific When throwing an exception from multiple code paths within the code, be specific.  Virtually ever exception allows a custom message use it and ensure each case is unique.  If the exception might be handled differently by the caller, than consider implementing a new custom exception type.  Also, dont automatically think that you can improve the code by collapsing the if-then logic into a single call with short-circuiting (e.g. if(x == null || !x.IsValid()) ) that will guarantee that you cant easily throw different information into the message as easily as constructing the exception separately in each case. The code above might be refactored like so:   public void Foo(SomeClass someArgument) { if(someArgument == null) { throw new ArgumentNullException("someArgument"); } if(!someArgument.IsValid()) { throw new InvalidArgumentException("someArgument"); }   // Do Real Work } In this case its taking advantage of the fact that there is already an ArgumentNullException in the framework, but if you didnt have an IsValid() method and were doing validation on your own, it might look like this: public void Foo(SomeClass someArgument) { if(someArgument.Quantity < 0) { throw new InvalidArgumentException("someArgument", "Quantity cannot be less than 0. Quantity: " + someArgument.Quantity); } if(someArgument.Quantity > 100) { throw new InvalidArgumentException("someArgument", "SomeArgument.Quantity cannot exceed 100. Quantity: " + someArgument.Quantity); }   // Do Real Work }   Note that in this last example, Im throwing the same exception type in each case, but with different Message values.  Im also making sure to include the value that resulted in the exception, as this can be extremely useful for debugging.  (How many times have you wished NullReferenceException would tell you the name of the variable it was trying to reference?) Dont add work to those who will follow after you to maintain your application (especially since its likely to be you).  Be specific with your exception messages follow DRY when throwing exceptions within a given method by throwing unique exceptions for each interesting case of invalid state. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • What should the name of this class be?

    - by Tim Murphy
    Naming classes is sometimes hard. What do you think name of the class should be? I originally created the class to use as a cache but can see its may have other uses. Example code to use the class. Dim cache = New NamePendingDictionary(Of String, Sample) Dim value = cache("a", Function() New Sample()) And here is the class that needs a name. ''' <summary> ''' Enhancement of <see cref="System.Collections.Generic.Dictionary"/>. See the Item property ''' for more details. ''' </summary> ''' <typeparam name="TKey">The type of the keys in the dictionary.</typeparam> ''' <typeparam name="TValue">The type of the values in the dictionary.</typeparam> Public Class NamePendingDictionary(Of TKey, TValue) Inherits Dictionary(Of TKey, TValue) Delegate Function DefaultValue() As TValue ''' <summary> ''' Gets or sets the value associated with the specified key. If the specified key does not exist ''' then <paramref name="createDefaultValue"/> is invoked and added to the dictionary. The created ''' value is then returned. ''' </summary> ''' <param name="key">The key of the value to get.</param> ''' <param name="createDefaultValue"> ''' The delegate to invoke if <paramref name="key"/> does not exist in the dictionary. ''' </param> ''' <exception cref="T:System.ArgumentNullException"><paramref name="key" /> is null.</exception> Default Public Overloads ReadOnly Property Item(ByVal key As TKey, ByVal createDefaultValue As DefaultValue) As TValue Get Dim value As TValue If createDefaultValue Is Nothing Then Throw New ArgumentNullException("createValue") End If If Not Me.TryGetValue(key, value) Then value = createDefaultValue.Invoke() Me.Add(key, value) End If Return value End Get End Property End Class

    Read the article

  • XML Decryption Bug (referencing issue)

    - by OrangePekoe
    Hi, Needing some explanation of what exactly the decryption is doing, in addition to some help on solving the problem. Currently, when a portion of XML is encrypted, and then decrypted, the DOM appears to work correctly. We can see the element is encrypted and then see it return back once it is decrypted. Our problem lies when a user tries to change data in that same element after decryption has occurred. When a user changes some settings, data in the XML should change. However, if the user attempts to change an XML element that has been decrypted the changes are not reflected in the DOM. We have a reference pointer to the XML element that is used to bind the element to an object. If you encrypt the node and then decrypt it, the reference pointer now points to a valid orphaned XML element that is no longer part of the DOM. After decryption, there will be 2 copies of the XML element. One in the DOM as expected (though will not reflect new changes), and one orphaned element in memory that is still referenced by our pointer. The orphaned element is valid (reflects new changes). We can see that this orphaned element is owned by the DOM, but when we try to return its parent, it returns null. The question is: Where did this orphaned xml element come from? And how can we get it to correctly append (replace old data) to the DOM? The code resembles: public static void Decrypt(XmlDocument Doc, SymmetricAlgorithm Alg) { if (Doc == null) throw new ArgumentNullException("Doc"); if (Alg == null) throw new ArgumentNullException("Alg"); XmlElement encryptedElement = Doc.GetElementsByTagName("EncryptedData")[0] as XmlElement; if (encryptedElement == null) { throw new XmlException("The EncryptedData element was not found."); } EncryptedData edElement = new EncryptedData(); edElement.LoadXml(encryptedElement); EncryptedXml exml = new EncryptedXml(); byte[] rgbOutput = exml.DecryptData(edElement, Alg); exml.ReplaceData(encryptedElement, rgbOutput); }

    Read the article

  • Loosely coupled .NET Cache Provider using Dependency Injection

    - by Rhames
    I have recently been reading the excellent book “Dependency Injection in .NET”, written by Mark Seemann. I do not generally buy software development related books, as I never seem to have the time to read them, but I have found the time to read Mark’s book, and it was time well spent I think. Reading the ideas around Dependency Injection made me realise that the Cache Provider code I wrote about earlier (see http://geekswithblogs.net/Rhames/archive/2011/01/10/using-the-asp.net-cache-to-cache-data-in-a-model.aspx) could be refactored to use Dependency Injection, which should produce cleaner code. The goals are to: Separate the cache provider implementation (using the ASP.NET data cache) from the consumers (loose coupling). This will also mean that the dependency on System.Web for the cache provider does not ripple down into the layers where it is being consumed (such as the domain layer). Provide a decorator pattern to allow a consumer of the cache provider to be implemented separately from the base consumer (i.e. if we have a base repository, we can decorate this with a caching version). Although I used the term repository, in reality the cache consumer could be just about anything. Use constructor injection to provide the Dependency Injection, with a suitable DI container (I use Castle Windsor). The sample code for this post is available on github, https://github.com/RobinHames/CacheProvider.git ICacheProvider In the sample code, the key interface is ICacheProvider, which is in the domain layer. 1: using System; 2: using System.Collections.Generic; 3:   4: namespace CacheDiSample.Domain 5: { 6: public interface ICacheProvider<T> 7: { 8: T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); 9: IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); 10: } 11: }   This interface contains two methods to retrieve data from the cache, either as a single instance or as an IEnumerable. the second paramerter is of type Func<T>. This is the method used to retrieve data if nothing is found in the cache. The ASP.NET implementation of the ICacheProvider interface needs to live in a project that has a reference to system.web, typically this will be the root UI project, or it could be a separate project. The key thing is that the domain or data access layers do not need system.web references adding to them. In my sample MVC application, the CacheProvider is implemented in the UI project, in a folder called “CacheProviders”: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Caching; 6: using CacheDiSample.Domain; 7:   8: namespace CacheDiSample.CacheProvider 9: { 10: public class CacheProvider<T> : ICacheProvider<T> 11: { 12: public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 13: { 14: return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry); 15: } 16:   17: public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 18: { 19: return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry); 20: } 21:   22: #region Helper Methods 23:   24: private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 25: { 26: U value; 27: if (!TryGetValue<U>(key, out value)) 28: { 29: value = retrieveData(); 30: if (!absoluteExpiry.HasValue) 31: absoluteExpiry = Cache.NoAbsoluteExpiration; 32:   33: if (!relativeExpiry.HasValue) 34: relativeExpiry = Cache.NoSlidingExpiration; 35:   36: HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value); 37: } 38: return value; 39: } 40:   41: private bool TryGetValue<U>(string key, out U value) 42: { 43: object cachedValue = HttpContext.Current.Cache.Get(key); 44: if (cachedValue == null) 45: { 46: value = default(U); 47: return false; 48: } 49: else 50: { 51: try 52: { 53: value = (U)cachedValue; 54: return true; 55: } 56: catch 57: { 58: value = default(U); 59: return false; 60: } 61: } 62: } 63:   64: #endregion 65:   66: } 67: }   The FetchAndCache helper method checks if the specified cache key exists, if it does not, the Func<U> retrieveData method is called, and the results are added to the cache. Using Castle Windsor to register the cache provider In the MVC UI project (my application root), Castle Windsor is used to register the CacheProvider implementation, using a Windsor Installer: 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain; 6: using CacheDiSample.CacheProvider; 7:   8: namespace CacheDiSample.WindsorInstallers 9: { 10: public class CacheInstaller : IWindsorInstaller 11: { 12: public void Install(IWindsorContainer container, IConfigurationStore store) 13: { 14: container.Register( 15: Component.For(typeof(ICacheProvider<>)) 16: .ImplementedBy(typeof(CacheProvider<>)) 17: .LifestyleTransient()); 18: } 19: } 20: }   Note that the cache provider is registered as a open generic type. Consuming a Repository I have an existing couple of repository interfaces defined in my domain layer: IRepository.cs 1: using System; 2: using System.Collections.Generic; 3:   4: using CacheDiSample.Domain.Model; 5:   6: namespace CacheDiSample.Domain.Repositories 7: { 8: public interface IRepository<T> 9: where T : EntityBase 10: { 11: T GetById(int id); 12: IList<T> GetAll(); 13: } 14: }   IBlogRepository.cs 1: using System; 2: using CacheDiSample.Domain.Model; 3:   4: namespace CacheDiSample.Domain.Repositories 5: { 6: public interface IBlogRepository : IRepository<Blog> 7: { 8: Blog GetByName(string name); 9: } 10: }   These two repositories are implemented in the DataAccess layer, using Entity Framework to retrieve data (this is not important though). One important point is that in the BaseRepository implementation of IRepository, the methods are virtual. This will allow the decorator to override them. The BlogRepository is registered in a RepositoriesInstaller, again in the MVC UI project. 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain.CacheDecorators; 6: using CacheDiSample.Domain.Repositories; 7: using CacheDiSample.DataAccess; 8:   9: namespace CacheDiSample.WindsorInstallers 10: { 11: public class RepositoriesInstaller : IWindsorInstaller 12: { 13: public void Install(IWindsorContainer container, IConfigurationStore store) 14: { 15: container.Register(Component.For<IBlogRepository>() 16: .ImplementedBy<BlogRepository>() 17: .LifestyleTransient() 18: .DependsOn(new 19: { 20: nameOrConnectionString = "BloggingContext" 21: })); 22: } 23: } 24: }   Now I can inject a dependency on the IBlogRepository into a consumer, such as a controller in my sample code: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6:   7: using CacheDiSample.Domain.Repositories; 8: using CacheDiSample.Domain.Model; 9:   10: namespace CacheDiSample.Controllers 11: { 12: public class HomeController : Controller 13: { 14: private readonly IBlogRepository blogRepository; 15:   16: public HomeController(IBlogRepository blogRepository) 17: { 18: if (blogRepository == null) 19: throw new ArgumentNullException("blogRepository"); 20:   21: this.blogRepository = blogRepository; 22: } 23:   24: public ActionResult Index() 25: { 26: ViewBag.Message = "Welcome to ASP.NET MVC!"; 27:   28: var blogs = blogRepository.GetAll(); 29:   30: return View(new Models.HomeModel { Blogs = blogs }); 31: } 32:   33: public ActionResult About() 34: { 35: return View(); 36: } 37: } 38: }   Consuming the Cache Provider via a Decorator I used a Decorator pattern to consume the cache provider, this means my repositories follow the open/closed principle, as they do not require any modifications to implement the caching. It also means that my controllers do not have any knowledge of the caching taking place, as the DI container will simply inject the decorator instead of the root implementation of the repository. The first step is to implement a BlogRepository decorator, with the caching logic in it. Note that this can reside in the domain layer, as it does not require any knowledge of the data access methods. BlogRepositoryWithCaching.cs 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5:   6: using CacheDiSample.Domain.Model; 7: using CacheDiSample.Domain; 8: using CacheDiSample.Domain.Repositories; 9:   10: namespace CacheDiSample.Domain.CacheDecorators 11: { 12: public class BlogRepositoryWithCaching : IBlogRepository 13: { 14: // The generic cache provider, injected by DI 15: private ICacheProvider<Blog> cacheProvider; 16: // The decorated blog repository, injected by DI 17: private IBlogRepository parentBlogRepository; 18:   19: public BlogRepositoryWithCaching(IBlogRepository parentBlogRepository, ICacheProvider<Blog> cacheProvider) 20: { 21: if (parentBlogRepository == null) 22: throw new ArgumentNullException("parentBlogRepository"); 23:   24: this.parentBlogRepository = parentBlogRepository; 25:   26: if (cacheProvider == null) 27: throw new ArgumentNullException("cacheProvider"); 28:   29: this.cacheProvider = cacheProvider; 30: } 31:   32: public Blog GetByName(string name) 33: { 34: string key = string.Format("CacheDiSample.DataAccess.GetByName.{0}", name); 35: // hard code 5 minute expiry! 36: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 37: return cacheProvider.Fetch(key, () => 38: { 39: return parentBlogRepository.GetByName(name); 40: }, 41: null, relativeCacheExpiry); 42: } 43:   44: public Blog GetById(int id) 45: { 46: string key = string.Format("CacheDiSample.DataAccess.GetById.{0}", id); 47:   48: // hard code 5 minute expiry! 49: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 50: return cacheProvider.Fetch(key, () => 51: { 52: return parentBlogRepository.GetById(id); 53: }, 54: null, relativeCacheExpiry); 55: } 56:   57: public IList<Blog> GetAll() 58: { 59: string key = string.Format("CacheDiSample.DataAccess.GetAll"); 60:   61: // hard code 5 minute expiry! 62: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 63: return cacheProvider.Fetch(key, () => 64: { 65: return parentBlogRepository.GetAll(); 66: }, 67: null, relativeCacheExpiry) 68: .ToList(); 69: } 70: } 71: }   The key things in this caching repository are: I inject into the repository the ICacheProvider<Blog> implementation, via the constructor. This will make the cache provider functionality available to the repository. I inject the parent IBlogRepository implementation (which has the actual data access code), via the constructor. This will allow the methods implemented in the parent to be called if nothing is found in the cache. I override each of the methods implemented in the repository, including those implemented in the generic BaseRepository. Each override of these methods follows the same pattern. It makes a call to the CacheProvider.Fetch method, and passes in the parentBlogRepository implementation of the method as the retrieval method, to be used if nothing is present in the cache. Configuring the Caching Repository in the DI Container The final piece of the jigsaw is to tell Castle Windsor to use the BlogRepositoryWithCaching implementation of IBlogRepository, but to inject the actual Data Access implementation into this decorator. This is easily achieved by modifying the RepositoriesInstaller to use Windsor’s implicit decorator wiring: 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain.CacheDecorators; 6: using CacheDiSample.Domain.Repositories; 7: using CacheDiSample.DataAccess; 8:   9: namespace CacheDiSample.WindsorInstallers 10: { 11: public class RepositoriesInstaller : IWindsorInstaller 12: { 13: public void Install(IWindsorContainer container, IConfigurationStore store) 14: { 15:   16: // Use Castle Windsor implicit wiring for the block repository decorator 17: // Register the outermost decorator first 18: container.Register(Component.For<IBlogRepository>() 19: .ImplementedBy<BlogRepositoryWithCaching>() 20: .LifestyleTransient()); 21: // Next register the IBlogRepository inmplementation to inject into the outer decorator 22: container.Register(Component.For<IBlogRepository>() 23: .ImplementedBy<BlogRepository>() 24: .LifestyleTransient() 25: .DependsOn(new 26: { 27: nameOrConnectionString = "BloggingContext" 28: })); 29: } 30: } 31: }   This is all that is needed. Now if the consumer of the repository makes a call to the repositories method, it will be routed via the caching mechanism. You can test this by stepping through the code, and seeing that the DataAccess.BlogRepository code is only called if there is no data in the cache, or this has expired. The next step is to add the SQL Cache Dependency support into this pattern, this will be a future post.

    Read the article

  • Visual Studio Macro – Identifier to String Literal

    - by João Angelo
    When implementing public methods with parameters it’s important to write boiler-plate code to do argument validation and throw exceptions when needed, ArgumentException and ArgumentNullException being the most recurrent. Another thing that is important is to correctly specify the parameter causing the exception through the proper exception constructor. In order to take advantage of IntelliSense completion in these scenarios I use a Visual Studio macro binded to a keyboard shortcut that converts the identifier at the cursor position to a string literal. And here’s the macro: Sub ConvertIdentifierToStringLiteral() Dim targetWord As String Dim document As EnvDTE.TextDocument document = CType(DTE.ActiveDocument.Object, EnvDTE.TextDocument) If document.Selection.Text.Length > 0 Then targetWord = document.Selection.Text document.Selection.ReplacePattern(targetWord, """" + targetWord + """") Else Dim cursorPoint As EnvDTE.TextPoint cursorPoint = document.Selection.ActivePoint() Dim editPointLeft As EnvDTE.EditPoint Dim editPointRight As EnvDTE.EditPoint editPointLeft = cursorPoint.CreateEditPoint() editPointLeft.WordLeft(1) editPointRight = editPointLeft.CreateEditPoint() editPointRight.WordRight(1) targetWord = editPointLeft.GetText(editPointRight) editPointLeft.ReplaceText(editPointRight, """" + targetWord + """", 0) End If End Sub

    Read the article

  • Broken RenderPartial After Upgrade To ASP.NET MVC2

    - by mxmissile
    I upgraded a MVC1 project to MVC2, now all my calls to RenderPartial are throwing System.ArgumentNullException: Value cannot be null. However this does works: <% Html.RenderPartial("~/Views/Shared/LogOnUserControl.ascx"); %> And this does not (works in MVC1): <% Html.RenderPartial("LogOnUserControl"); %> Did the behavior of RenderPartial change?

    Read the article

  • Throwing exception vs checking null, for a null argument

    - by dotnetdev
    What factors dictate throwing an exception if argument is null (eg if (a is null) throw new ArgumentNullException() ), as opposed to checking the argument if it is null beforehand. I don't see why the exception should be thrown rather than checking for null in the first place? What benefit is there in the throw exception approach? This is for C#/.NET Thanks

    Read the article

< Previous Page | 1 2 3 4 5 6 7  | Next Page >