Search Results

Search found 28 results on 2 pages for 'bursting'.

Page 2/2 | < Previous Page | 1 2 

  • Neighbour table overflow on Linux hosts related to bridging and ipv6

    - by tim
    Note: I already have a workaround for this problem (as described below) so this is only a "want-to-know" question. I have a productive setup with around 50 hosts including blades running xen 4 and equallogics providing iscsi. All xen dom0s are almost plain Debian 5. The setup includes several bridges on every dom0 to support xen bridged networking. In total there are between 5 and 12 bridges on each dom0 servicing one vlan each. None of the hosts has routing enabled. At one point in time we moved one of the machines to a new hardware including a raid controller and so we installed an upstream 3.0.22/x86_64 kernel with xen patches. All other machines run debian xen-dom0-kernel. Since then we noticed on all hosts in the setup the following errors every ~2 minutes: [55888.881994] __ratelimit: 908 callbacks suppressed [55888.882221] Neighbour table overflow. [55888.882476] Neighbour table overflow. [55888.882732] Neighbour table overflow. [55888.883050] Neighbour table overflow. [55888.883307] Neighbour table overflow. [55888.883562] Neighbour table overflow. [55888.883859] Neighbour table overflow. [55888.884118] Neighbour table overflow. [55888.884373] Neighbour table overflow. [55888.884666] Neighbour table overflow. The arp table (arp -n) never showed more than around 20 entries on every machine. We tried the obvious tweaks and raised the /proc/sys/net/ipv4/neigh/default/gc_thresh* values. FInally to 16384 entries but no effect. Not even the interval of ~2 minutes changed which lead me to the conclusion that this is totally unrelated. tcpdump showed no uncommon ipv4 traffic on any interface. The only interesting finding from tcpdump were ipv6 packets bursting in like: 14:33:13.137668 IP6 fe80::216:3eff:fe1d:9d01 > ff02::1:ff1d:9d01: HBH ICMP6, multicast listener reportmax resp delay: 0 addr: ff02::1:ff1d:9d01, length 24 14:33:13.138061 IP6 fe80::216:3eff:fe1d:a8c1 > ff02::1:ff1d:a8c1: HBH ICMP6, multicast listener reportmax resp delay: 0 addr: ff02::1:ff1d:a8c1, length 24 14:33:13.138619 IP6 fe80::216:3eff:fe1d:bf81 > ff02::1:ff1d:bf81: HBH ICMP6, multicast listener reportmax resp delay: 0 addr: ff02::1:ff1d:bf81, length 24 14:33:13.138974 IP6 fe80::216:3eff:fe1d:eb41 > ff02::1:ff1d:eb41: HBH ICMP6, multicast listener reportmax resp delay: 0 addr: ff02::1:ff1d:eb41, length 24 which placed the idea in my mind that the problem maybe related to ipv6, since we have no ipv6 services in this setup. The only other hint was the coincidence of the host upgrade with the beginning of the problems. I powered down the host in question and the errors were gone. Then I subsequently took down the bridges on the host and when i took down (ifconfig down) one particularly bridge: br-vlan2159 Link encap:Ethernet HWaddr 00:26:b9:fb:16:2c inet6 addr: fe80::226:b9ff:fefb:162c/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:120 errors:0 dropped:0 overruns:0 frame:0 TX packets:9 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:5286 (5.1 KiB) TX bytes:726 (726.0 B) eth0.2159 Link encap:Ethernet HWaddr 00:26:b9:fb:16:2c inet6 addr: fe80::226:b9ff:fefb:162c/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1801 errors:0 dropped:0 overruns:0 frame:0 TX packets:20 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:126228 (123.2 KiB) TX bytes:1464 (1.4 KiB) bridge name bridge id STP enabled interfaces ... br-vlan2158 8000.0026b9fb162c no eth0.2158 br-vlan2159 8000.0026b9fb162c no eth0.2159 The errors went away again. As you can see the bridge holds no ipv4 address and it's only member is eth0.2159 so no traffic should cross it. Bridge and interface .2159 / .2157 / .2158 which are in all aspects identical apart from the vlan they are connected to had no effect when taken down. Now I disabled ipv6 on the entire host via sysctl net.ipv6.conf.all.disable_ipv6 and rebooted. After this even with bridge br-vlan2159 enabled no errors occur. Any ideas are welcome.

    Read the article

  • Windows Azure VMs - New "Stopped" VM Options Provide Cost-effective Flexibility for On-Demand Workloads

    - by KeithMayer
    Originally posted on: http://geekswithblogs.net/KeithMayer/archive/2013/06/22/windows-azure-vms---new-stopped-vm-options-provide-cost-effective.aspxDidn’t make it to TechEd this year? Don’t worry!  This month, we’ll be releasing a new article series that highlights the Best of TechEd announcements and technical information for IT Pros.  Today’s article focuses on a new, much-heralded enhancement to Windows Azure Infrastructure Services to make it more cost-effective for spinning VMs up and down on-demand on the Windows Azure cloud platform. NEW! VMs that are shutdown from the Windows Azure Management Portal will no longer continue to accumulate compute charges while stopped! Previous to this enhancement being available, the Azure platform maintained fabric resource reservations for VMs, even in a shutdown state, to ensure consistent resource availability when starting those VMs in the future.  And, this meant that VMs had to be exported and completely deprovisioned when not in use to avoid compute charges. In this article, I'll provide more details on the scenarios that this enhancement best fits, and I'll also review the new options and considerations that we now have for performing safe shutdowns of Windows Azure VMs. Which scenarios does the new enhancement best fit? Being able to easily shutdown VMs from the Windows Azure Management Portal without continued compute charges is a great enhancement for certain cloud use cases, such as: On-demand dev/test/lab environments - Freely start and stop lab VMs so that they are only accumulating compute charges when being actively used.  "Bursting" load-balanced web applications - Provision a number of load-balanced VMs, but keep the minimum number of VMs running to support "normal" loads. Easily start-up the remaining VMs only when needed to support peak loads. Disaster Recovery - Start-up "cold" VMs when needed to recover from disaster scenarios. BUT ... there is a consideration to keep in mind when using the Windows Azure Management Portal to shutdown VMs: although performing a VM shutdown via the Windows Azure Management Portal causes that VM to no longer accumulate compute charges, it also deallocates the VM from fabric resources to which it was previously assigned.  These fabric resources include compute resources such as virtual CPU cores and memory, as well as network resources, such as IP addresses.  This means that when the VM is later started after being shutdown from the portal, the VM could be assigned a different IP address or placed on a different compute node within the fabric. In some cases, you may want to shutdown VMs using the old approach, where fabric resource assignments are maintained while the VM is in a shutdown state.  Specifically, you may wish to do this when temporarily shutting down or restarting a "7x24" VM as part of a maintenance activity.  Good news - you can still revert back to the old VM shutdown behavior when necessary by using the alternate VM shutdown approaches listed below.  Let's walk through each approach for performing a VM Shutdown action on Windows Azure so that we can understand the benefits and considerations of each... How many ways can I shutdown a VM? In Windows Azure Infrastructure Services, there's three general ways that can be used to safely shutdown VMs: Shutdown VM via Windows Azure Management Portal Shutdown Guest Operating System inside the VM Stop VM via Windows PowerShell using Windows Azure PowerShell Module Although each of these options performs a safe shutdown of the guest operation system and the VM itself, each option handles the VM shutdown end state differently. Shutdown VM via Windows Azure Management Portal When clicking the Shutdown button at the bottom of the Virtual Machines page in the Windows Azure Management Portal, the VM is safely shutdown and "deallocated" from fabric resources.  Shutdown button on Virtual Machines page in Windows Azure Management Portal  When the shutdown process completes, the VM will be shown on the Virtual Machines page with a "Stopped ( Deallocated )" status as shown in the figure below. Virtual Machine in a "Stopped (Deallocated)" Status "Deallocated" means that the VM configuration is no longer being actively associated with fabric resources, such as virtual CPUs, memory and networks. In this state, the VM will not continue to allocate compute charges, but since fabric resources are deallocated, the VM could receive a different internal IP address ( called "Dynamic IPs" or "DIPs" in Windows Azure ) the next time it is started.  TIP: If you are leveraging this shutdown option and consistency of DIPs is important to applications running inside your VMs, you should consider using virtual networks with your VMs.  Virtual networks permit you to assign a specific IP Address Space for use with VMs that are assigned to that virtual network.  As long as you start VMs in the same order in which they were originally provisioned, each VM should be reassigned the same DIP that it was previously using. What about consistency of External IP Addresses? Great question! External IP addresses ( called "Virtual IPs" or "VIPs" in Windows Azure ) are associated with the cloud service in which one or more Windows Azure VMs are running.  As long as at least 1 VM inside a cloud service remains in a "Running" state, the VIP assigned to a cloud service will be preserved.  If all VMs inside a cloud service are in a "Stopped ( Deallocated )" status, then the cloud service may receive a different VIP when VMs are next restarted. TIP: If consistency of VIPs is important for the cloud services in which you are running VMs, consider keeping one VM inside each cloud service in the alternate VM shutdown state listed below to preserve the VIP associated with the cloud service. Shutdown Guest Operating System inside the VM When performing a Guest OS shutdown or restart ( ie., a shutdown or restart operation initiated from the Guest OS running inside the VM ), the VM configuration will not be deallocated from fabric resources. In the figure below, the VM has been shutdown from within the Guest OS and is shown with a "Stopped" VM status rather than the "Stopped ( Deallocated )" VM status that was shown in the previous figure. Note that it may require a few minutes for the Windows Azure Management Portal to reflect that the VM is in a "Stopped" state in this scenario, because we are performing an OS shutdown inside the VM rather than through an Azure management endpoint. Virtual Machine in a "Stopped" Status VMs shown in a "Stopped" status will continue to accumulate compute charges, because fabric resources are still being reserved for these VMs.  However, this also means that DIPs and VIPs are preserved for VMs in this state, so you don't have to worry about VMs and cloud services getting different IP addresses when they are started in the future. Stop VM via Windows PowerShell In the latest version of the Windows Azure PowerShell Module, a new -StayProvisioned parameter has been added to the Stop-AzureVM cmdlet. This new parameter provides the flexibility to choose the VM configuration end result when stopping VMs using PowerShell: When running the Stop-AzureVM cmdlet without the -StayProvisioned parameter specified, the VM will be safely stopped and deallocated; that is, the VM will be left in a "Stopped ( Deallocated )" status just like the end result when a VM Shutdown operation is performed via the Windows Azure Management Portal.  When running the Stop-AzureVM cmdlet with the -StayProvisioned parameter specified, the VM will be safely stopped but fabric resource reservations will be preserved; that is the VM will be left in a "Stopped" status just like the end result when performing a Guest OS shutdown operation. So, with PowerShell, you can choose how Windows Azure should handle VM configuration and fabric resource reservations when stopping VMs on a case-by-case basis. TIP: It's important to note that the -StayProvisioned parameter is only available in the latest version of the Windows Azure PowerShell Module.  So, if you've previously downloaded this module, be sure to download and install the latest version to get this new functionality. Want to Learn More about Windows Azure Infrastructure Services? To learn more about Windows Azure Infrastructure Services, be sure to check-out these additional FREE resources: Become our next "Early Expert"! Complete the Early Experts "Cloud Quest" and build a multi-VM lab network in the cloud for FREE!  Build some cool scenarios! Check out our list of over 20+ Step-by-Step Lab Guides based on key scenarios that IT Pros are implementing on Windows Azure Infrastructure Services TODAY!  Looking forward to seeing you in the Cloud! - Keith Build Your Lab! Download Windows Server 2012 Don’t Have a Lab? Build Your Lab in the Cloud with Windows Azure Virtual Machines Want to Get Certified? Join our Windows Server 2012 "Early Experts" Study Group

    Read the article

  • Coding With Windows Azure IaaS

    - by Hisham El-bereky
    This post will focus on some advanced programming topics concerned with IaaS (Infrastructure as a Service) which provided as windows azure virtual machine (with its related resources like virtual disk and virtual network), you know that windows azure started as PaaS cloud platform but regarding to some business cases which need to have full control over their virtual machine, so windows azure directed toward providing IaaS. Sometimes you will need to manage your cloud IaaS through code may be for these reasons: Working on hyper-cloud system by providing bursting connector to windows azure virtual machines Providing multi-tenant system which consume windows azure virtual machine Automated process on your on-premises or cloud service which need to utilize some virtual resources We are going to implement the following basic operation using C# code: List images Create virtual machine List virtual machines Restart virtual machine Delete virtual machine Before going to implement the above operations we need to prepare client side and windows azure subscription to communicate correctly by providing management certificate (x.509 v3 certificates) which permit client access to resources in your Windows Azure subscription, whilst requests made using the Windows Azure Service Management REST API require authentication against a certificate that you provide to Windows Azure More info about setting management certificate located here. And to install .cer on other client machine you will need the .pfx file, or if not exist by exporting .cer as .pfx Note: You will need to install .net 4.5 on your machine to try the code So let start This post built on the post sent by Michael Washam "Advanced Windows Azure IaaS – Demo Code", so I'm here to declare some points and to add new operation which is not exist in Michael's demo The basic C# class object used here as client to azure REST API for IaaS service is HttpClient (Provides a base class for sending HTTP requests and receiving HTTP responses from a resource identified by a URI) this object must be initialized with the required data like certificate, headers and content if required. Also I'd like to refer here that the code is based on using Asynchronous programming with calls to azure which enhance the performance and gives us the ability to work with complex calls which depends on more than one sub-call to achieve some operation The following code explain how to get certificate and initializing HttpClient object with required data like headers and content HttpClient GetHttpClient() { X509Store certificateStore = null; X509Certificate2 certificate = null; try { certificateStore = new X509Store(StoreName.My, StoreLocation.CurrentUser); certificateStore.Open(OpenFlags.ReadOnly); string thumbprint = ConfigurationManager.AppSettings["CertThumbprint"]; var certificates = certificateStore.Certificates.Find(X509FindType.FindByThumbprint, thumbprint, false); if (certificates.Count > 0) { certificate = certificates[0]; } } finally { if (certificateStore != null) certificateStore.Close(); }   WebRequestHandler handler = new WebRequestHandler(); if (certificate!= null) { handler.ClientCertificates.Add(certificate); HttpClient httpClient = new HttpClient(handler); //And to set required headers lik x-ms-version httpClient.DefaultRequestHeaders.Add("x-ms-version", "2012-03-01"); httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/xml")); return httpClient; } return null; }  Let us keep the object httpClient as reference object used to call windows azure REST API IaaS service. For each request operation we need to define: Request URI HTTP Method Headers Content body (1) List images The List OS Images operation retrieves a list of the OS images from the image repository Request URI https://management.core.windows.net/<subscription-id>/services/images] Replace <subscription-id> with your windows Id HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None.  C# Code List<String> imageList = new List<String>(); //replace _subscriptionid with your WA subscription String uri = String.Format("https://management.core.windows.net/{0}/services/images", _subscriptionid);  HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);  if (responseStream != null) {      XDocument xml = XDocument.Load(responseStream);      var images = xml.Root.Descendants(ns + "OSImage").Where(i => i.Element(ns + "OS").Value == "Windows");      foreach (var image in images)      {      string img = image.Element(ns + "Name").Value;      imageList.Add(img);      } } More information about the REST call (Request/Response) located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/jj157191.aspx (2) Create Virtual Machine Creating virtual machine required service and deployment to be created first, so creating VM should be done through three steps incase hosted service and deployment is not created yet Create hosted service, a container for service deployments in Windows Azure. A subscription may have zero or more hosted services Create deployment, a service that is running on Windows Azure. A deployment may be running in either the staging or production deployment environment. It may be managed either by referencing its deployment ID, or by referencing the deployment environment in which it's running. Create virtual machine, the previous two steps info required here in this step I suggest here to use the same name for service, deployment and service to make it easy to manage virtual machines Note: A name for the hosted service that is unique within Windows Azure. This name is the DNS prefix name and can be used to access the hosted service. For example: http://ServiceName.cloudapp.net// 2.1 Create service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/gg441304.aspx C# code The following method show how to create hosted service async public Task<String> NewAzureCloudService(String ServiceName, String Location, String AffinityGroup, String subscriptionid) { String requestID = String.Empty;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices", subscriptionid); HttpClient http = GetHttpClient();   System.Text.ASCIIEncoding ae = new System.Text.ASCIIEncoding(); byte[] svcNameBytes = ae.GetBytes(ServiceName);   String locationEl = String.Empty; String locationVal = String.Empty;   if (String.IsNullOrEmpty(Location) == false) { locationEl = "Location"; locationVal = Location; } else { locationEl = "AffinityGroup"; locationVal = AffinityGroup; }   XElement srcTree = new XElement("CreateHostedService", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("ServiceName", ServiceName), new XElement("Label", Convert.ToBase64String(svcNameBytes)), new XElement(locationEl, locationVal) ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } 2.2 Create Deployment Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deploymentslots/<deployment-slot-name> <deployment-slot-name> with staging or production, depending on where you wish to deploy your service package <service-name> provided as input from the previous step HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/ee460813.aspx C# code The following method show how to create hosted service deployment async public Task<String> NewAzureVMDeployment(String ServiceName, String VMName, String VNETName, XDocument VMXML, XDocument DNSXML) { String requestID = String.Empty;     String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments", _subscriptionid, ServiceName); HttpClient http = GetHttpClient(); XElement srcTree = new XElement("Deployment", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("Name", ServiceName), new XElement("DeploymentSlot", "Production"), new XElement("Label", ServiceName), new XElement("RoleList", null) );   if (String.IsNullOrEmpty(VNETName) == false) { srcTree.Add(new XElement("VirtualNetworkName", VNETName)); }   if(DNSXML != null) { srcTree.Add(new XElement("DNS", new XElement("DNSServers", DNSXML))); }   XDocument deploymentXML = new XDocument(srcTree); ApplyNamespace(srcTree, ns);   deploymentXML.Descendants(ns + "RoleList").FirstOrDefault().Add(VMXML.Root);     String fixedXML = deploymentXML.ToString().Replace(" xmlns=\"\"", ""); HttpContent content = new StringContent(fixedXML); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); }   return requestID; } 2.3 Create Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<cloudservice-name>/deployments/<deployment-name>/roles <cloudservice-name> and <deployment-name> are provided as input from the previous steps Http Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) located here http://msdn.microsoft.com/en-us/library/windowsazure/jj157186.aspx C# code async public Task<String> NewAzureVM(String ServiceName, String VMName, XDocument VMXML) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName);   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles", _subscriptionid, ServiceName, deployment);   HttpClient http = GetHttpClient(); HttpContent content = new StringContent(VMXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml"); HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } (3) List Virtual Machines To list virtual machine hosted on windows azure subscription we have to loop over all hosted services to get its hosted virtual machines To do that we need to execute the following operations: listing hosted services listing hosted service Virtual machine 3.1 Listing Hosted Services Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/ee460781.aspx C# Code async private Task<List<XDocument>> GetAzureServices(String subscriptionid) { String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices ", subscriptionid); List<XDocument> services = new List<XDocument>();   HttpClient http = GetHttpClient();   Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var svcs = xml.Root.Descendants(ns + "HostedService"); foreach (XElement r in svcs) { XDocument vm = new XDocument(r); services.Add(vm); } }   return services; }  3.2 Listing Hosted Service Virtual Machines Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name> HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157193.aspx C# Code async public Task<XDocument> GetAzureVM(String ServiceName, String VMName, String subscriptionid) { String deployment = await GetAzureDeploymentName(ServiceName); XDocument vmXML = new XDocument();   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles/{3}", subscriptionid, ServiceName, deployment, VMName);   HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri); if (responseStream != null) { vmXML = XDocument.Load(responseStream); }   return vmXML; }  So the final method which can be used to list all virtual machines is: async public Task<XDocument> GetAzureVMs() { List<XDocument> services = await GetAzureServices(); XDocument vms = new XDocument(); vms.Add(new XElement("VirtualMachines")); ApplyNamespace(vms.Root, ns); foreach (var svc in services) { string ServiceName = svc.Root.Element(ns + "ServiceName").Value;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deploymentslots/{2}", _subscriptionid, ServiceName, "Production");   try { HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var roles = xml.Root.Descendants(ns + "RoleInstance"); foreach (XElement r in roles) { XElement svcnameel = new XElement("ServiceName", ServiceName); ApplyNamespace(svcnameel, ns); r.Add(svcnameel); // not part of the roleinstance vms.Root.Add(r); } } } catch (HttpRequestException http) { // no vms with cloud service } } return vms; }  (4) Restart Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name>/Operations HTTP Method POST (HTTP 1.1) Headers x-ms-version: 2012-03-01 Content-Type: application/xml Body <RestartRoleOperation xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <OperationType>RestartRoleOperation</OperationType> </RestartRoleOperation>  More details about this http request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157197.aspx  C# Code async public Task<String> RebootVM(String ServiceName, String RoleName) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName); String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roleInstances/{3}/Operations", _subscriptionid, ServiceName, deployment, RoleName);   HttpClient http = GetHttpClient();   XElement srcTree = new XElement("RestartRoleOperation", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("OperationType", "RestartRoleOperation") ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; }  (5) Delete Virtual Machine You can delete your hosted virtual machine by deleting its deployment, but I prefer to delete its hosted service also, so you can easily manage your virtual machines from code 5.1 Delete Deployment Request URI https://management.core.windows.net/< subscription-id >/services/hostedservices/< service-name >/deployments/<Deployment-Name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteDeployment( string deploymentName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}", _subscriptionid, deploymentName, deploymentName); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  5.2 Delete Hosted Service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteService(string serviceName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}", _subscriptionid, serviceName); Log.Info("Windows Azure URI (http DELETE verb): " + uri, typeof(VMManager)); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  And the following is the method which can used to delete both of deployment and service async public Task<string> DeleteVM(string vmName) { string responseString = string.Empty;   // as a convention here in this post, a unified name used for service, deployment and VM instance to make it easy to manage VMs HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await DeleteDeployment(vmName);   if (responseMessage != null) {   string requestID = responseMessage.Headers.GetValues("x-ms-request-id").FirstOrDefault(); OperationResult result = await PollGetOperationStatus(requestID, 5, 120); if (result.Status == OperationStatus.Succeeded) { responseString = result.Message; HttpResponseMessage sResponseMessage = await DeleteService(vmName); if (sResponseMessage != null) { OperationResult sResult = await PollGetOperationStatus(requestID, 5, 120); responseString += sResult.Message; } } else { responseString = result.Message; } } return responseString; }  Note: This article is subject to be updated Hisham  References Advanced Windows Azure IaaS – Demo Code Windows Azure Service Management REST API Reference Introduction to the Azure Platform Representational state transfer Asynchronous Programming with Async and Await (C# and Visual Basic) HttpClient Class

    Read the article

< Previous Page | 1 2