Search Results

Search found 898 results on 36 pages for 'charles young'.

Page 2/36 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • a young intellect asks: Python or Ruby for freelance?

    - by Sophia
    Hello, I'm Sophia. I have an interest in self-learning either Python, or Ruby. The primary reason for my interest is to make my life more stable by having freelance work = $. It seems that programming offers a way for me to escape my condition of poverty (I'm on the edge of homelessness right now) while at the same time making it possible for me to go to uni. I intend on being a math/philosophy major. I have messed with Python a little bit in the past, but it didn't click super well. The people who say I should choose Python say as much because it is considered a good first language/teaching language, and that it is general-purpose. The people who say I should choose Ruby point out that I'm a very right-brained thinker, and having multiple ways to do something will make it much easier for me to write good code. So, basically, I'm starting this thread as a dialog with people who know more than I do, as an attempt to make the decision. :-) I've thought about asking this in stackoverflow, but they're much more strict about closing threads than here, and I'm sort of worried my thread will be closed. :/ TL;DR Python or Ruby for freelance work opportunities ($) as a first language? Additional question (if anyone cares to answer): I have a personal feeling that if I devote myself to learning, I'd be worth hiring for a project in about 8 weeks of work. I base this on a conservative estimate of my intellectual capacities, as well as possessing motivation to improve my life. Is my estimate necessarily inaccurate? random tidbit: I'm in Portland, OR I'll answer questions that are asked of me, if I can help the accuracy and insight contained within the dialog.

    Read the article

  • As a young student aspiring to have a career as a programmer, how should I feel about open source software?

    - by Matt
    Every once in a while on some technology websites a headline like this will pop up: http://www.osor.eu/news/nl-moving-to-open-source-would-save-government-one-to-four-billion My initial thought about government and organizations moving to open source software is that tons of programmers would lose their jobs and the industry would shrink. At the same time the proliferation and use of open source software seems to be greatly encouraged in many programming communities. Is my thinking that the full embrace of open source software everywhere will hurt the software industry a misconception? If it is not, then why do so many programmers love open source software?

    Read the article

  • What impact would a young developer in a consultancy struggling on a project have?

    - by blade3
    I am a youngish developer (working for 3 yrs). I took a job 3 months ago as an IT consultant (for the first time, I'm a consultant). In my first project, all went will till the later stages where I ran into problems with Windows/WMI (lack of documentation etc). As important as it is to not leave surprises for the client, this did happen. I was supposed to go back to finish the project about a month and a half ago, after getting a date scheduled, but this did not happen either. The project (code) was slightly rushed too and went through QA (no idea what the results are). My probation review is in a few weeks time, and I was wondering, what sort of impact would this have? My manager hasn't mentioned this project to me and apart from this, everything's been ok and he has even said, at the beginning, if you are tight on time just ask for more, so he has been accomodating (At this time, I was doing well, the problems came later).

    Read the article

  • Compat Wireless Drivers Centrino N-2230

    - by user2699451
    So I am using linux and am having trouble installing the Compat Wireless drivers Hardware: Intel Centrino N-2230 OS: Linux Mint 64bit (kernel 13.08-generic) I followed this link http://www.mathyvanhoef.com/2012/09/compat-wireless-injection-patch-for.html Output: apt-get install linux-headers-$(uname -r) Reading package lists... Done Building dependency tree Reading state information... Done linux-headers-3.8.0-19-generic is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 19 not upgraded. charles-W55xEU compat-wireless-2010-10-16 # cd ~ charles-W55xEU ~ # dir adt-bundle-linux-x86_64-20130917.zip Desktop known_hosts_backup charles-W55xEU ~ # wget http://www.orbit-lab.org/kernel/compat-wireless-3-stable/v3.6/compat-wireless-3.6.2-1-snp.tar.bz2 --2013-10-29 10:28:23-- http://www.orbit-lab.org/kernel/compat-wireless-3-stable/v3.6/compat-wireless-3.6.2-1-snp.tar.bz2 Resolving www.orbit-lab.org (www.orbit-lab.org)... 128.6.192.131 Connecting to www.orbit-lab.org (www.orbit-lab.org)|128.6.192.131|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 4443700 (4,2M) [application/x-bzip2] Saving to: ‘compat-wireless-3.6.2-1-snp.tar.bz2’ 100%[======================================>] 4 443 700 13,5KB/s in 11m 3s 2013-10-29 10:39:27 (6,55 KB/s) - ‘compat-wireless-3.6.2-1-snp.tar.bz2’ saved [4443700/4443700] charles-W55xEU ~ # tar -xf compat-wireless-3.6.2-1-snp.tar.bz2 charles-W55xEU ~ # cd compat-wireless-3.6-rc6-1 bash: cd: compat-wireless-3.6-rc6-1: No such file or directory charles-W55xEU ~ # dir adt-bundle-linux-x86_64-20130917.zip Desktop compat-wireless-3.6.2-1-snp known_hosts_backup compat-wireless-3.6.2-1-snp.tar.bz2 charles-W55xEU ~ # cd compat-wireless-3.6.2-1-snp/ charles-W55xEU compat-wireless-3.6.2-1-snp # dir code-metrics.txt defconfigs linux-next-pending pending-stable compat drivers MAINTAINERS README config.mk enable-older-kernels Makefile scripts COPYRIGHT include net udev crap linux-next-cherry-picks patches charles-W55xEU compat-wireless-3.6.2-1-snp # wget http://patches.aircrack-ng.org/mac80211.compat08082009.wl_frag+ack_v1.patch --2013-10-29 10:40:52-- http://patches.aircrack-ng.org/mac80211.compat08082009.wl_frag+ack_v1.patch Resolving patches.aircrack-ng.org (patches.aircrack-ng.org)... 213.186.33.2, 2001:41d0:1:1b00:213:186:33:2 Connecting to patches.aircrack-ng.org (patches.aircrack-ng.org)|213.186.33.2|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 1049 (1,0K) [text/plain] Saving to: ‘mac80211.compat08082009.wl_frag+ack_v1.patch’ 100%[======================================>] 1 049 --.-K/s in 0s 2013-10-29 10:40:56 (180 MB/s) - ‘mac80211.compat08082009.wl_frag+ack_v1.patch’ saved [1049/1049] charles-W55xEU compat-wireless-3.6.2-1-snp # patch -p1 < mac80211.compat08082009.wl_frag+ack_v1.patch patching file net/mac80211/tx.c Hunk #1 succeeded at 792 (offset 115 lines). charles-W55xEU compat-wireless-3.6.2-1-snp # wget -Ocompatwireless_chan_qos_frag.patch http://pastie.textmate.org/pastes/4882675/download --2013-10-29 10:43:18-- http://pastie.textmate.org/pastes/4882675/download Resolving pastie.textmate.org (pastie.textmate.org)... 178.79.137.125 Connecting to pastie.textmate.org (pastie.textmate.org)|178.79.137.125|:80... connected. HTTP request sent, awaiting response... 301 Moved Permanently Location: http://pastie.org/pastes/4882675/download [following] --2013-10-29 10:43:20-- http://pastie.org/pastes/4882675/download Resolving pastie.org (pastie.org)... 96.126.119.119 Connecting to pastie.org (pastie.org)|96.126.119.119|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 2036 (2,0K) [application/octet-stream] Saving to: ‘compatwireless_chan_qos_frag.patch’ 100%[======================================>] 2 036 --.-K/s in 0,001s 2013-10-29 10:43:21 (3,35 MB/s) - ‘compatwireless_chan_qos_frag.patch’ saved [2036/2036] charles-W55xEU compat-wireless-3.6.2-1-snp # patch -p1 < compatwireless_chan_qos_frag.patch patching file drivers/net/wireless/rtl818x/rtl8187/dev.c patching file net/mac80211/tx.c Hunk #1 succeeded at 1495 (offset 8 lines). patching file net/wireless/chan.c charles-W55xEU compat-wireless-3.6.2-1-snp # make ./scripts/gen-compat-autoconf.sh /root/compat-wireless-3.6.2-1-snp/.config /root/compat-wireless-3.6.2-1-snp/config.mk > include/linux/compat_autoconf.h make -C /lib/modules/3.8.0-19-generic/build M=/root/compat-wireless-3.6.2-1-snp modules make[1]: Entering directory `/usr/src/linux-headers-3.8.0-19-generic' CC [M] /root/compat-wireless-3.6.2-1-snp/compat/main.o LD [M] /root/compat-wireless-3.6.2-1-snp/compat/compat.o CC [M] /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.o In file included from /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma.h:8:0, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/bcma_private.h:8, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:8: /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma_driver_pci.h:217:23: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_core_pci_init’ In file included from /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma.h:10:0, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/bcma_private.h:8, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:8: /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma_driver_gmac_cmn.h:95:23: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_core_gmac_cmn_init’ In file included from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:8:0: /root/compat-wireless-3.6.2-1-snp/drivers/bcma/bcma_private.h:25:15: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_bus_register’ /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:152:15: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_bus_register’ /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:17:21: warning: ‘bcma_bus_next_num’ defined but not used [-Wunused-variable] /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:93:12: warning: ‘bcma_register_cores’ defined but not used [-Wunused-function] make[3]: *** [/root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.o] Error 1 make[2]: *** [/root/compat-wireless-3.6.2-1-snp/drivers/bcma] Error 2 make[1]: *** [_module_/root/compat-wireless-3.6.2-1-snp] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.8.0-19-generic' make: *** [modules] Error 2 charles-W55xEU compat-wireless-3.6.2-1-snp # make install Warning: You may or may not need to update your initframfs, you should if any of the modules installed are part of your initramfs. To add support for your distribution to do this automatically send a patch against ./scripts/update-initramfs. If your distribution does not require this send a patch against the '/usr/bin/lsb_release -i -s': LinuxMint tag for your distribution to avoid this warning. make -C /lib/modules/3.8.0-19-generic/build M=/root/compat-wireless-3.6.2-1-snp modules make[1]: Entering directory `/usr/src/linux-headers-3.8.0-19-generic' CC [M] /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.o In file included from /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma.h:8:0, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/bcma_private.h:8, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:8: /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma_driver_pci.h:217:23: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_core_pci_init’ In file included from /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma.h:10:0, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/bcma_private.h:8, from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:8: /root/compat-wireless-3.6.2-1-snp/include/linux/bcma/bcma_driver_gmac_cmn.h:95:23: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_core_gmac_cmn_init’ In file included from /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:8:0: /root/compat-wireless-3.6.2-1-snp/drivers/bcma/bcma_private.h:25:15: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_bus_register’ /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:152:15: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘bcma_bus_register’ /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:17:21: warning: ‘bcma_bus_next_num’ defined but not used [-Wunused-variable] /root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.c:93:12: warning: ‘bcma_register_cores’ defined but not used [-Wunused-function] make[3]: *** [/root/compat-wireless-3.6.2-1-snp/drivers/bcma/main.o] Error 1 make[2]: *** [/root/compat-wireless-3.6.2-1-snp/drivers/bcma] Error 2 make[1]: *** [_module_/root/compat-wireless-3.6.2-1-snp] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.8.0-19-generic' make: *** [modules] Error 2 charles-W55xEU compat-wireless-3.6.2-1-snp # It keeps giving errors, same with other sites, I get the same errors??? I am lost, help needed

    Read the article

  • Is it still worth reading Programming Windows by Charles Petzold?

    - by Morke
    I've been wanting to delve a bit deeper in win32 programming, and I was wondering what the best book on this subject is. Most people seem to recommend Programming Windows by Charles Petzold, however, the latest version of this book is from 1998 and deals with windows 98. Is it still worth reading or should I try other books? If so, which ones?

    Read the article

  • How to measure sum of collected memory of Young Generation?

    - by Marcel
    Hi, I'd like to measure memory allocation data from my java application, i.e. the sum of the size of all objects that were allocated. Since object allocation is done in young generation this seems to be the right place. I know jconsole and I know the JMX beans but I just can't find the right variable... Right at the moment we are parsing the gc log output file but that's quite hard. Ideally we'd like to measure it via JMX... How can I get this value? Thanks, Marcel

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Formatting data from management database

    - by bVector
    I've got some data that goes like this: Config_Name Question Answer Cisco WAN Sensitivity: High Cisco WAN Authorized Users: Brent, Charles Cisco WAN Last Audited: n/a Cisco WAN Next Audit: 3/30/2012 Cisco WAN Audit Signature: Cisco WAN Username: MYCOMPANY Cisco WAN Password: Cisco WAN Encrypted-A ENCRYPTED DATA Cisco WAN Encrypted-B Cisco WAN Encrypted-C vCenter server Sensitivity: High vCenter server Authorized Users: Brent, Charles vCenter server Last Audited: vCenter server Next Audit: 3/30/2012 vCenter server Audit Signature: ENCRYPTED DATA vCenter server Username: administrator vCenter server Password: vCenter server Encrypted-A ENCRYPTED DATA vCenter server Encrypted-B vCenter server Encrypted-C AKSC-NE01 IPMI Sensitivity: High AKSC-NE01 IPMI Authorized Users: Brent, Charles AKSC-NE01 IPMI Last Audited: AKSC-NE01 IPMI Next Audit: 3/30/2012 AKSC-NE01 IPMI Audit Signature: ENCRYPTED DATA AKSC-NE01 IPMI Username: MYCOMPANY AKSC-NE01 IPMI Password: AKSC-NE01 IPMI Encrypted-A ENCRYPTED DATA AKSC-NE01 IPMI Encrypted-B AKSC-NE01 IPMI Encrypted-C and I need it to be in this format: Config_Name Sensitivity: Authorized Users: Last Audited: Next Audit: Audit Signature: Username: Password: Encrypted-A Encrypted-B Encrypted-C AKSC-NE01 IPMI High Brent, Charles 3/30/2012 ENCRYPTED DATA MYCOMPANY ENCRYPTED DATA Cisco ASA5505 WAN High Brent, Charles n/a 3/30/2012 ENCRYPTED DATA MYCOMPANY ENCRYPTED DATA vCenter server High Brent, Charles 3/30/2012 ENCRYPTED DATA administrator ENCRYPTED DATA the tabs get messed up on here but hopefully you get my drift. does anyone know an easy way to do this? I haven't found one with excel just yet.

    Read the article

  • linux mint VIA sound issue

    - by user2699451
    So I installed linux Mint 15 "Olivia" 64 bit on my Mecer W550EU laptop I have HD Audio with a VIA chipset charles-W55xEU charles # lsmod | grep snd snd_hda_codec_hdmi 36913 1 snd_hda_codec_via 51018 1 snd_hda_intel 39619 5 snd_hda_codec 136453 3 snd_hda_codec_hdmi,snd_hda_codec_via,snd_hda_intel snd_hwdep 13602 1 snd_hda_codec snd_pcm 97451 4 snd_hda_codec_hdmi,snd_hda_codec,snd_hda_intel snd_page_alloc 18710 2 snd_pcm,snd_hda_intel snd_seq_midi 13324 0 snd_seq_midi_event 14899 1 snd_seq_midi snd_rawmidi 30180 1 snd_seq_midi snd_seq 61554 2 snd_seq_midi_event,snd_seq_midi snd_seq_device 14497 3 snd_seq,snd_rawmidi,snd_seq_midi snd_timer 29425 2 snd_pcm,snd_seq snd 68876 19 snd_hwdep,snd_timer,snd_hda_codec_hdmi,snd_hda_codec_via,snd_pcm,snd_seq,snd_rawmidi,snd_hda_codec,snd_hda_intel,snd_seq_device soundcore 12680 1 snd And my sound card charles-W55xEU charles # aplay -l **** List of PLAYBACK Hardware Devices **** card 0: PCH [HDA Intel PCH], device 0: VT1802 Analog [VT1802 Analog] Subdevices: 1/1 Subdevice #0: subdevice #0 card 0: PCH [HDA Intel PCH], device 2: VT1802 HP [VT1802 HP] Subdevices: 1/1 Subdevice #0: subdevice #0 card 0: PCH [HDA Intel PCH], device 3: HDMI 0 [HDMI 0] Subdevices: 1/1 Subdevice #0: subdevice #0 and my audio device charles-W55xEU charles # lspci -v | grep -A7 -i "audio" 00:1b.0 Audio device: Intel Corporation 7 Series/C210 Series Chipset Family High `Definition Audio Controller (rev 04)` Subsystem: CLEVO/KAPOK Computer Device 0550 Flags: bus master, fast devsel, latency 0, IRQ 47 Memory at f7c10000 (64-bit, non-prefetchable) [size=16K] Capabilities: [50] Power Management version 2 Capabilities: [60] MSI: Enable+ Count=1/1 Maskable- 64bit+ Capabilities: [70] Express Root Complex Integrated Endpoint, MSI 00 Capabilities: [100] Virtual Channel Sometimes when I boot up, soundworks, other times it doenst, it is completely random, so far, no-one on xchat linux help or linux mint forums was able to help me, I have always had issues with sound on VIA chipsets I have: sudo apt-get upgrade && apt-get install mint-meta-cinnamon it seemed to help but after 2-3 reboots, the problem came back, btw, everytime I checked, pulse audio is selected to Duplex Audio Input & Output and alsa mixer is always unmuted!

    Read the article

  • What features are important in a programming language for young beginners?

    - by NoMoreZealots
    I was talking with some of the mentors in a local robotics competition for 7th and 8th level kids. The robot was using PBASIC and the parallax Basic Stamp. One of the major issues was this was short term project that required building the robot, teaching them to program in PBASIC and having them program the robot. All in only 2 hours or so a week over a couple months. PBASIC is kinda nice in that it has built in features to do everything, but information overload is possible to due this. My thought are simplicity is key. When you have kids struggling to grasp: if X>10 then <DOSOMETHING> There is not much point in throwing "proper" object oriented programming at them. What are the essentials needed to foster an interest in programming?

    Read the article

  • Are today's young programmers getting wrapped around the axle with patterns and practices?

    - by Robert Harvey
    Recently I have noticed a number of questions on SO that look something like this: I am writing a small program to keep a list of the songs that I keep on my ipod. I'm thinking about writing it as a 3-tier MVC Ruby on Rails web application with TDD, DDD and IOC, using a factory pattern to create the classes and a singleton to store my application settings. Do you think I'm taking the right approach? Do you think that we're handing novice programmers a very sharp knife and telling them, "Don't cut yourself with this"? NOTE: Despite the humorous tone, this is a serious (and programming-related) question.

    Read the article

  • Java GC: top object classes promoted (by size)?

    - by Java Geek
    Hello! Please let me know what is the best way to determine composition of young generation memory promoted to old generation, after each young GC event? Ideally I would like to know class names which are responsible say, for 80% of heap in each "young gen - old gen" promotion chunk; Example: I have 600M young gen, each tenure promotes 6M; I want to know which objects compose this 6M. Thank you.

    Read the article

  • Ada and 'The Book'

    - by Phil Factor
    The long friendship between Charles Babbage and Ada Lovelace created one of the most exciting and mysterious of collaborations ever to have resulted in a technological breakthrough. The fireworks that created by the collision of two prodigious mathematical and creative talents resulted in an invention, the Analytical Engine, which went on to change society fundamentally. However, beyond that, we just don't know what the bulk of their collaborative work was about:;  it was done in strictest secrecy. Even the known outcome of their friendship, the first programmable computer, was shrouded in mystery. At the time, nobody, except close friends and family, had any idea of Ada Byron's contribution to the invention of the ‘Engine’, and how to program it. Her great insight was published in August 1843, under the initials AAL, standing for Ada Augusta Lovelace, her title then being the Countess of Lovelace. It was contained in a lengthy ‘note’ to her translation of a publication that remains the best description of Babbage's amazing Analytical Engine. The secret identity of the person behind those enigmatic initials was finally revealed by Prince de Polignac who, seventy years later, wrote to Ada's daughter to seek confirmation that her mother had, indeed, been the author of the brilliant sentences that described so accurately how Babbage's mechanical computer could be programmed with punch-cards. L.F. Menabrea's paper on the Analytical Engine first appeared in the 'Bibliotheque Universelle de Geneve' in October 1842, and Ada translated it anonymously for Taylor's 'Scientific Memoirs'. Charles Babbage was surprised that she had not written an original paper as she already knew a surprising amount about the way the machine worked. He persuaded her to at least write some explanatory notes. These notes ended up extending to four times the length of the original article and represented the first published account of how a machine could be programmed to perform any calculation. Her example of programming the Bernoulli sequence would have worked on the Analytical engine had the device’s construction been completed, and gave Ada an unassailable claim to have invented the art of programming. What was the reason for Ada's secrecy? She was the only legitimate child of Lord Byron, who was probably the best known celebrity of the age, so she was already famous. She was a senior aristocrat, with titles, a fortune in money and vast estates in the Midlands. She had political influence, and was the cousin of Lord Melbourne, who was the Prime Minister at that time. She was friendly with the young Queen Victoria. Her mathematical activities were a pastime, and not one that would be considered by others to be in keeping with her roles and responsibilities. You wouldn't dare to dream up a fictional heroine like Ada. She was dazzlingly beautiful and talented. She could speak several languages fluently, and play some musical instruments with professional skill. Contemporary accounts refer to her being 'accomplished in science, art and literature'. On top of that, she was a brilliant mathematician, a talent inherited from her mother, Annabella Milbanke. In her mother's circle of literary and scientific friends was Charles Babbage, and Ada's friendship with him dates from her teenage zest for Mathematics. She was one of the first people he'd ever met who understood what he had attempted to achieve with the 'Difference Engine', and with whom he could converse as intellectual equals. He arranged for her to have an education from the most talented academics in the country. Ada melted the heart of the cantankerous genius to the point that he became a faithful and loyal father-figure to her. She was one of the very few who could grasp the principles of the later, and very different, ‘Analytical Engine’ which was designed from the start to tackle a variety of tasks. Sadly, Ada Byron's life ended less than a decade after completing the work that assured her long-term fame, in November 1852. She was dying of cancer, her gambling habits had caused her to run up huge debts, she'd had more than one affairs, and she was being blackmailed. Her brilliant but unempathic mother was nursing her in her final illness, destroying her personal letters and records, and repaying her debts. Her husband was distraught but helpless. Charles Babbage, however, maintained his steadfast paternalistic friendship to the end. She appointed her loyal friend to be her executor. For years, she and Babbage had been working together on a secret project, known only as 'The Book'. We have a clue to what it was in a letter written by her nine years earlier, on 11th August 1843. It was a joint project by herself and Lord Lovelace, her husband, and was intended to involve Babbage's 'undivided energies'. It involved 'consulting your Engine' (it required Babbage’s computer). The letter gives no hint about the project except for the high-minded nature of its purpose, and its highly mathematical nature.  From then on, the surviving correspondence between the two gives only veiled references to 'The Book'. There isn't much, since Babbage later destroyed any letters that could have damaged her reputation within the Establishment. 'I cannot spare the book today, which I am very sorry for. At the moment I want it for constant reference, but I think you can have it tomorrow' (Oct 1844)  And 'I will send you the book directly, and you can say, when you receive it, how long you will want to keep it'. (Nov 1844)  The two of them were obviously intent on the work: She writes, four years later, 'I have an engagement for Wednesday which will prevent me from attending to your wishes about the book' (Dec 1848). This was something that they both needed to work on, but could not do in parallel: 'I will send the book on Tuesday, and it can be left with you till Friday' (11 Feb 1849). After six years work, it had been so well-handled that it was beginning to fall apart: 'Don't forget the new cover you promised for the book. The poor book is very shabby and wants one' (20 Sept 1849). So what was going on? The word 'book' was not a code-word: it was a real book, probably a 'printer's blank', plain paper, but properly bound so printers and publishers could show off how the published work might look. The hints from the correspondence are of advanced mathematics. It is obvious that the book was travelling between them, back and forth, each one working on it for less than a week before passing it back. Ada and her husband were certainly involved in gambling large sums of money on the horses, and so most biographers have concluded that the three of them were trying to calculate the mathematical odds on the horses. This theory has three large problems. Firstly, Ada's original letter proposing the project refers to its high-minded nature. Babbage was temperamentally opposed to gambling and would scarcely have given so much time to the project, even though he was devoted to Ada. Secondly, Babbage would have very soon have realized the hopelessness of trying to beat the bookies. This sort of betting never attracts his type of intellectual background. The third problem is that any work on calculating the odds on horses would not need a well-thumbed book to pass back and forth between them; they would have not had to work in series. The original project was instigated by Ada, along with her husband, William King-Noel, 1st Earl of Lovelace. Charles Babbage was invited to join the project after the couple had come up with the idea. What could William have contributed? One might assume that William was a Bertie Wooster character, addicted only to the joys of the turf, but this was far from the truth. He was a scientist, a Cambridge graduate who was later elected to be a Fellow of the Royal Society. After Eton, he went to Trinity College, Cambridge. On graduation, he entered the diplomatic service and acted as secretary under Lord Nugent, who was Lord Commissioner of the Ionian Islands. William was very friendly with Babbage too, able to discuss scientific matters on equal terms. He was a capable engineer who invented a process for bending large timbers by the application of steam heat. He delivered a paper to the Institution of Civil Engineers in 1849, and received praise from the great engineer, Isambard Kingdom Brunel. As well as being Lord Lieutenant of the County of Surrey for most of Victoria's reign, he had time for a string of scientific and engineering achievements. Whatever the project was, it is unlikely that William was a junior partner. After Ada's death, the project disappeared. Then, two years later, Babbage, through one of his occasional outbursts of temper, demonstrated that he was able to decrypt one of the most powerful of secret codes, Vigenère's autokey cipher.  All contemporary diplomatic and military messages used a variant of this cipher. Babbage had made three important discoveries, namely, the mathematical law of this cipher, the principle of the key periodicity, and the technique of the symmetry of position. The technique is now known as the Kasiski examination, also called the Kasiski test, but Babbage got there first. At one time, he listed amongst his future projects, the writing of a book 'The Philosophy of Decyphering', but it never came to anything. This discovery was going to change the course of history, since it was used to decipher the Russians’ military dispatches in the Crimean war. Babbage himself played a role during the Crimean War as a cryptographical adviser to his friend, Rear-Admiral Sir Francis Beaufort of the Admiralty. This is as much as we can be certain about in trying to make sense of the bulk of the time that Charles Babbage and Ada Lovelace worked together. Nine years of intensive work, involving the 'Engine' and a great deal of mathematics and research seems to have been lost: or has it? I've argued in the past http://www.simple-talk.com/community/blogs/philfactor/archive/2008/06/13/59614.aspx that the cracking of the Vigenère autokey cipher, was a fundamental motive behind the British Government's support and funding of the 'Difference Engine'. The Duke of Wellington, whose understanding of the military significance of being able to read enemy dispatches, was the most steadfast advocate of the project. If the three friends were actually doing the work of cracking codes by mathematical techniques that used the techniques of key periodicity, and symmetry of position (the use of a book being passed quickly to and fro is very suggestive), intending to then use the 'Engine' to do the routine cracking of each dispatch, then this is a rather different story. The project was Ada and William's idea. (William had served in the diplomatic service and would be familiar with the use of codes). This makes Ada Lovelace the initiator of a project which, by giving both Britain, and probably the USA, a diplomatic and military advantage in the second part of the Nineteenth century, changed world history. Ada would never have wanted any credit for cracking the cipher, and developing the method that rendered all contemporary military and diplomatic ciphering techniques nugatory; quite the reverse. And it is clear from the gaps in the record of the letters between the collaborators that the evidence was destroyed, probably on her request by her irascible but intensely honorable executor, Charles Babbage. Charles Babbage toyed with the idea of going public, but the Crimean war put an end to that. The British Government had a valuable secret, and intended to keep it that way. Ada and Charles had quite often discussed possible moneymaking projects that would fund the development of the Analytic Engine, the first programmable computer, but their secret work was never in the running as a potential cash cow. I suspect that the British Government was, even then, working on the concealment of a discovery whose value to the nation depended on it remaining so. The success of code-breaking in the Crimean war, and the American Civil war, led to the British and Americans  subsequently giving much more weight and funding to the science of decryption. Paradoxically, this makes Ada's contribution even closer to the creation of Colossus, the first digital computer, at Bletchley Park, specifically to crack the Nazi’s secret codes.

    Read the article

  • Oracle Employees Support New World Record for IYF Children's Hour

    - by Maria Sandu
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 960 students ‘crouched’, ‘touched’ and ‘set’ under the watchful eye of International Rugby Referee Alain Roland, and supported by Oracle employees, to successfully set a new world record for the World’s Largest Scrum to raise funds and awareness for the Irish Youth Foundation. Last year Oracle Employees supported the Irish Youth Foundation by donating funds from their payroll through the Giving Tree Appeal. We were the largest corporate donor to the IYF by raising €3075. To acknowledge our generosity the IYF asked Oracle Leadership in Society team members to participate in their most recent campaign which was to break the Guinness Book of Records by forming the World’s Largest Rugby Scrum. This was a wonderful opportunity for Oracle’s Leadership in Society to promote the charity, support education and to make a mark in the Corporate Social Responsibility field. The students who formed the scrum also gave up their lunch money and raised a total of €3000. This year we hope Oracle Employees will once again support the IYF with the challenge to match that amount. On the 24th of October the sun shone down on the streaming lines of students entering the field. 480 students were decked out in bright red Oracle T-Shirts against the other 480 in blue and white jerseys - all ready to form a striking scrum. Ryan Tubridy the host of the event made the opening announcement and with the blow of a whistle the Scum began. 960 students locked tight together with the Leinster players also at each side. Leinster Manager Matt O’Connor was there along with presenters Ryan Tubridy and George Hook to assist with getting the boys in line and keeping the shape of the scrum. In accordance with Guinness Book of Records rules, the ball was fed into the scrum properly by Ireland and Leinster scrum-half, Eoin Reddan, and was then passed out the line to his Leinster team mates including Ian Madigan, Brendan Macken and Jordi Murphy, also proudly sporting the Oracle T-Shirt. The new World Record was made, everyone gave a big cheer and thankfully nobody got injured! Thank you to everyone in Oracle who donated last year through the Giving Tree Appeal. Your generosity has gone a long way to support local groups both. Last year’s donation was so substantial that the IYF were able to spread it across two youth groups: The first being Ballybough Youth Project in Dublin. The funding gave them the chance to give 24 young people from their project the chance to get away from the inner city and the problems and issues they face in their daily life by taking a trip to the Cavan Centre to spend a weekend away in a safe and comfortable environment; a very rare holiday in these young people’s lives. The Rahoon Family Centre. Used the money to help secure the long term sustainability of their project. They act as an educational/social/fun project that has been working with disadvantaged children for the past 16 years. Their aim is to change young people’s future with fun /social education and supporting them so they can maximize their creativity and potential. We hope you can help support this worthy cause again this year, so keep an eye out for the Children’s Hour and Giving Tree Appeal! About the Irish Youth Foundation The IYF provides opportunities for marginalised children and young people facing difficult and extreme conditions to experience success in their lives. It passionately believes that achievement starts with opportunity. The IYF’s strategy is based on providing safe places where children can go after school; to grow, to learn and to play; and providing opportunities for teenagers from under-served communities to succeed and excel in their lives. The IYF supports innovative grassroots projects operated by dedicated professionals who understand young people and care about them. This allows the IYF to focus on supporting young people at risk of dropping out of school and, in particular, on the critical transition from primary to secondary school; and empowering teenagers from disadvantaged neighborhoods to become engaged in their local communities. Find out more here www.iyf.ie

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Setting up a transparent SSL proxy

    - by badunk
    I've got a linux box set up with 2 network cards to inspect traffic going through port 80. One card is used to go out to the internet, the other one is hooked up to a networking switch. The point is to be able to inspect all HTTP and HTTPS traffic on devices hooked up to that switch for debugging purposes. I've written the following rules for iptables: nat -A PREROUTING -i eth1 -p tcp -m tcp --dport 80 -j DNAT --to-destination 192.168.2.1:1337 -A PREROUTING -i eth1 -p tcp -m tcp --dport 80 -j REDIRECT --to-ports 1337 -A POSTROUTING -s 192.168.2.0/24 -o eth0 -j MASQUERADE On 192.168.2.1:1337, I've got a transparent http proxy using Charles (http://www.charlesproxy.com/) for recording. Everything's fine for port 80, but when I add similar rules for port 443 (SSL) pointing to port 1337, I get an error about invalid message through Charles. I've used SSL proxying on the same computer before with Charles (http://www.charlesproxy.com/documentation/proxying/ssl-proxying/), but have been unsuccessful with doing it transparently for some reason. Some resources I've googled say its not possible - I'm willing to accept that as an answer if someone can explain why. As a note, I have full access to the described set up including all the clients hooked up to the subnet - so I can accept self-signed certs by Charles. The solution doesn't have to be Charles-specific since in theory, any transparent proxy will do. Thanks! Edit: After playing with it a little, I was able to get it working for a specific host. When I modify my iptables to the following (and open 1338 in charles for reverse proxy): nat -A PREROUTING -i eth1 -p tcp -m tcp --dport 80 -j DNAT --to-destination 192.168.2.1:1337 -A PREROUTING -i eth1 -p tcp -m tcp --dport 80 -j REDIRECT --to-ports 1337 -A PREROUTING -i eth1 -p tcp -m tcp --dport 443 -j DNAT --to-destination 192.168.2.1:1338 -A PREROUTING -i eth1 -p tcp -m tcp --dport 443 -j REDIRECT --to-ports 1338 -A POSTROUTING -s 192.168.2.0/24 -o eth0 -j MASQUERADE I am able to get a response, but with no destination host. In the reverse proxy, if I just specify that everything from 1338 goes to a specific host that I wanted to hit, it performs the hand shake properly and I can turn on SSL proxying to inspect the communication. The setup is less than ideal because I don't want to assume everything from 1338 goes to that host - any idea why the destination host is being stripped? Thanks again

    Read the article

  • Tuning garbage collections for low latency

    - by elec
    I'm looking for arguments as to how best to size the young generation (with respect to the old generation) in an environment where low latency is critical. My own testing tends to show that latency is lowest when the young generation is fairly large (eg. -XX:NewRatio <3), however I cannot reconcile this with the intuition that the larger the young generation the more time it should take to garbage collect. The application runs on linux, jdk 6 before update 14, i.e G1 not available.

    Read the article

  • Silverlight Cream for May 02, 2010 -- #854

    - by Dave Campbell
    In this Issue: Michael Washington, Jason Young(-2-, -3-), Phil Middlemiss, Jeremy Likness, Victor Gaudioso, Kunal Chowdhury, Antoni Dol, and Jacek Ciereszko(-2-). Shoutout: Victor Gaudioso has aggregated All of My Silverlight Video Tutorials in One Place (revised again 05.02.10) From SilverlightCream.com: Unit Testing A Silverlight 'Simplified MVVM' Modal Popup Michael Washington's latest 'Simplified MVVM' post is published at The Code Project and is on Unit Testing with MVVM. Input Localization in Silverlight without IValueConverter Jason Young sent me some links to posts I've not seen... this first one is on localization by using the Language property of the Root Visual. MVVM – The Model - Part 1 – INotifyPropertyChanged Jason Young's next archive post is the first of a series on MVVM and Silverlight 4 ... implementing a simple ViewModel base class. Silverlight, WCF, and ASP.Net Configuration Gotchas Jason Young worked at tracking down the answers to some forum questions and in the process has produced a post of 'gotchas' with using WCF in Silverlight. A Chrome and Glass Theme - Part 5 Phil Middlemiss has part 5 of his Chrome and Glass Theme tutorial up ... in this one, he's looking at the Progress Bar and Slider. Download the files and play along. Silverlight Out of Browser (OOB) Versions, Images, and Isolated Storage Jeremy Likness has a post up responding to his 3 major questions about OOB apps, and he has to code up for the sample too. New Silverlight Video Tutorial: How to Make a Slide In/Out Navigation Bar – All in Blend Victor Gaudioso's latest video tutorial is on building a Behavior for a Slide in/out Navigation bar... kinda like the menu sliders on my GlyphMap Utility... only easier! Command Binding in Silverlight 4 (Step-by-Step) Kunal Chowdhury has another post up at DotNetFunda, and this time he's talking about Command Binding in Silverlight 4 with an eye toward MVVM usage. The Silverlight PageCurl implementation Antoni Dol has a post up about doing a Page Curl effect in Silverlight. He has a manual up on the effect and full application code. How to center and scale Silverlight applications using ViewBox control Jacek Ciereszko has a couple posts up about centering and scaling your app with the ViewBox control. This first one is a code solution. Source is available, as is a Polish version. Silverlight Center And Scale Behavior Jacek Ciereszko's 2nd post, he provides a Behavior that handles the scaling and centering of the previous post. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Silverlight Cream for June 16, 2010 -- #884

    - by Dave Campbell
    In this Issue: Zoltan Arvai, Emiel Jongerius, Charles Petzold, Adam Kinney, Deepesh Mohnani, Timmy Kokke, and Damon Payne. Shoutouts: Andy Beaulieu reported his Coding4Fun: Shuffleboard Game for WP7 has been posted -- Big ol' Tutorial and 6 videos of WP7 goodness Karl Shifflett announced Three New WPF and Silverlight Designer Videos Posted Charles Petzold has a cool Flip-Number Clock in Silverlight posted... cool demo, and the source. From SilverlightCream.com: Data Driven Applications with MVVM Part II: Messaging, Unit Testing, and Live Data Sources Zoltan Arvai has part 2 of his Data-Driven Apps with MVVM up, and this one is also including Messaging, Unit Testing, and Live WCF Data... good tutorial and all the code. Silverlight DataContext Changed Event and Trigger Emiel Jongerius takes a hard swing at the lack of DataContextChanged... his solution involves two attached properties instead of one... check it out and see what you think! Orientation Strategies for Windows Phone 7 Charles Petzold is discussing WP7 Orientation... showing the problems you can get involved in, and how to work through them... and you might be surprised at how he does it :) ... pretty cool as usual, Charles! Debugging the TranslateZoomRotate WPF Behavior in Blend Adam Kinney talks through a bug reported about the WPF TranslateZoomRotate Behavior. Again, it's WPF, but it's in Blend, and ya never know when the solution might apply. I want my app to look like the Zune client Deepesh Mohnani demonstrates using the Cosmopolitan theme to get his app to have the same look as the Zune client. MVVM Project and Item Templates Timmy Kokke is continuing with his cool SilverAmp media player, using it to expand upon the new Blend and Silverlight 4 features. This episode touches very lightly on cranking up a new MVVM project in Blend. Great Features for MVVM Friendly Objects Part 0: Favor Composition Over Inheritance Damon Payne has the first part up of a series he's working on with 'MVVM Friendly' features... he's building out a lot of the infrastructure in this post for the ones that follow... all good stuff. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Un e-Book pour se familiariser avec Windows Phone 7 Series propose six chapitres en avant-première g

    Microsoft : un e-Book pour se familiariser avec Windows Phone 7 Series Six chapitres en avant-première gratuite font déjà beaucoup parler de lui Au cas où vous ne le connaîtriez pas, Charles Petzold est un MVP de Microsoft auteur d'une liste longue comme le bras de livres renommés sur les technologies de Redmond. [IMG]http://ftp-developpez.com/gordon-fowler/Tattoo.jpg[/IMG] Charles Petzold et son tatouage Windows Avec la sortie de la platef...

    Read the article

  • Trainee programs for foreigner in EU [closed]

    - by user63970
    Maybe this is the wrong site for asking that, but I didn't find better. I heard a lot about programs for young IT specialists in EU from other countries, my residence is Ukraine. We have several organizations that provide info about them, but you must pay quite a lot for them to only show you the list of vacancies. Maybe someone knows about companies in EU that are willing to take young programmers for trainee or junior vacancies from non-EU countries? I am interested in C++ development.

    Read the article

  • Backpacks and Booth Paint: TechEd 2012

    - by The Un-T Guy
    Arriving in the parking lot of the Orange County Convention Center, I immediately knew I was in the right place. As far as the eye could see, the acres of asphalt were awash in backpacks, quirky (to be kind) outfits, and bad haircuts. This was the place. This was Microsoft Mecca v2012 for geeks and nerds, the Central Florida event of the year, a gathering of high tech professionals whose skills I both greatly respect and, frankly, fear a little. I was wholly and completely out of element, a dork in a vast sea of geek jumbo. It like was wearing dockers and a golf shirt walking into a RenFaire, but one with really crappy costumes and no turkey legs...save those attached to some of the attendees. Of course the corporate whores...errrr, vendors were in place, ready to parlay the convention's fre-nerd-ic energy into millions of dollars by convincing the big-brained and under-sexed in the crowd (i.e., virtually all of them...present company excluded, of course) that their product or service was the only thing standing between them and professional success, industry fame, and clear skin. "With KramTech 2012," they seemed to scream, "you will be THE ROCK STAR of your company's IT department!" As car shows and tattoo parlors learned long ago, Tech companies seem to believe that the best way to attract the attention of this crowd is through the hint of the promise of sex. They recruit and deploy an army of "sales reps" whose primary qualifications appear to be long hair, short skirts, high heels, and a vagina. Unlike their distant cousins in the car and body art industries, however, this sub-species of booth paint (semi-gloss decoration that adds nothing to the substance of the product) seems torn between committing to being all-out sex objects and recognition that they are in the presence of intelligent, discerning people. People who are smart enough to know exactly what these vendors are doing. Also unlike their distant car show and tattoo shop cousins, these young women (what…are there no gay tech professionals who could use some eye candy?) seem to realize that while IT remains a male-dominated field, there are ever-increasing numbers of intelligent, capable, strong professional women – women who’ve battled to make it in this field through hard work and work performance rather than a hard body and performing after work. This is not to say that all of the young female sales reps are there only because of their physical attributes. Many are competent, intelligent, and driven -- not to mention attractive. They're working hard on the front lines of delivering the next generation of technology. The distinction is pretty clear, however, between these young professionals and the booth paint. The former enthusiastically deliver credible information about the products they’re hawking. The latter are positioned in the aisles, uncomfortably avoiding eye contact as they struggle to operate the badge readers. Surprisingly, not all of the women in attendance seemed to object to the objectification of their younger sisters. One IT professional woman who came of age in the industry (mostly in IT marketing) said, “I have no problem with it. I was a ‘booth babe’ for years and it doesn’t bother me at all.” Others, however, weren’t quite so gracious. One woman I spoke with, an IT manager from Cheyenne, Wyoming, said it was demeaning and frankly, as more and more women grow into IT management positions, not a great marketing idea. “Using these young women is, to me, no different than vendors giving out t-shirts to attract attention. It’s sad because it’s still hard for a woman to be respected in the IT field and this just perpetuates the outdated notion that IT is a male-dominated field.” She went on to say that decisions by vendors to employ these young women in this “inappropriate way” could impact her purchasing decisions. “I might be swayed toward a vendor who has women on staff who are intelligent and dynamic rather than the vendors who use the ‘decoration’ girls.” So in many ways, the IT industry is no different than most other industries as it struggles to maximize performance by finding and developing talent – all of the talent, not just the 50% with a penis. Women in IT, like their brethren, struggle to find their niche in the field, to grow professionally, and reach for the brass ring, struggling to overcome obstacles as they climb the mountain of professional success in a never-ending cycle of economic uncertainty. But as (generally) well-educated and highly-trained professionals, they are probably better positioned than those in many other industries. Beside, they’ve got one other advantage over their non-IT counterparts as they attempt their ascent to the summit: They’ve already got the backpacks.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >