Search Results

Search found 185 results on 8 pages for 'chess'.

Page 2/8 | < Previous Page | 1 2 3 4 5 6 7 8  | Next Page >

  • The Ultimate Claymation Chess Game [Video]

    - by Asian Angel
    Watch as these game pieces morph into creatures such as a Pegasi, Unicorn, Shark, Cobra, and more in their battle for final victory. Every game of chess should be this fun! scacchi clay stop motion – chess clay stop motion [via Geeks are Sexy] How to Enable Google Chrome’s Secret Gold IconHTG Explains: What’s the Difference Between the Windows 7 HomeGroups and XP-style Networking?Internet Explorer 9 Released: Here’s What You Need To Know

    Read the article

  • Ad-hoc taxonomy: owning the chess set doesn't mean you decide how the little horsey moves

    - by Roger Hart
    There was one of those little laugh-or-cry moments recently when I heard an anecdote about content strategy failings at a major online retailer. The story goes a bit like this: successful company in a highly commoditized marketplace succeeds on price and largely ignores its content team. Being relatively entrepreneurial, the founders are still knocking around, and occasionally like to "take an interest". One day, they decree that clothing sold on the site can no longer be described as "unisex", because this sounds old fashioned. Sad now. Let me just reiterate for the folks at the back: large retailer, commoditized market place, differentiating on price. That's inherently unstable. Sooner or later, they're going to need one or both of competitive differentiation and significant optimization. I can't speak for the latter, since I'm hypothesizing off a raft of rumour, but one of the simpler paths to the former is to become - or rather acknowledge that they are - a content business. Regardless, they need highly-searchable terminology. Even in the face of tooth and claw resistance to noticing the fundamental position content occupies in driving sales (and SEO) on the web, there's a clear information problem here. Dilettante taxonomy is a disaster. Ok, so this is a small example, but that kind of makes it a good one. Unisex probably is the best way of describing clothing designed to suit either men or women interchangeably. It certainly takes less time to type (and read). It's established terminology, and as a single word, it's significantly better for web readability than a phrasal workaround. Something like "fits men or women" is short, by could fall foul of clause-level discard in web scanning. It's not an adjective, so for intuitive reading it's never going to be near the start of a title or description. It would also clutter up search results, and impose cognitive load in list scanning. Sorry kids, it's just worse. Even if "unisex" were an archaism (which it isn't), the only thing that would weigh against its being more usable and concise terminology would be evidence that this archaism were hurting conversions. Good luck with that. We once - briefly - called one of our products a "Can of worms". It was a bundle in a bug-tracking suite, and we thought it sounded terribly cool. Guess how well that sold. We have information and content professionals for a reason: to make sure that whatever we put in front of users is optimised to meet user and business goals. If that thinking doesn't inform style guides, taxonomy, messaging, title structure, and so forth, you might as well be finger painting.

    Read the article

  • The best algorithm enhancing alpha-beta?

    - by Risa
    I'm studying AI. My teacher gave us source code of a chess-like game and asked us to enhance it. My exercise is to improve the alpha/beta algorithm implementing in that game. The programmer already uses transposition tables, MTD(f) with alpha/beta+memory (MTD(f) is the best algorithm I know by far). So is there any better algorithm to enhance alpha-beta search or a good way to implement MTD(f) in coding a game?

    Read the article

  • Can someone help me with this Java Chess game please?

    - by Chris Edwards
    Hey guys, Please can someone have a look at this code and let me know whether I am on the right track with the "check_somefigure_move"s and the "check_black/white_promotion"s please? And also any other help you can give would be greatly appreciated! Thanks! P.S. I know the code is not the best implementation, but its a template I have to follow :( Code: class Moves { private final Board B; private boolean regular; public Moves(final Board b) { B = b; regular = regular_position(); } public boolean get_regular_position() { return regular; } public void set_regular_position(final boolean new_reg) { regular = new_reg; } // checking whether B represents a "normal" position or not; // if not, then only simple checks regarding move-correctness should // be performed, only checking the direct characteristics of the figure // moved; // checks whether there is exactly one king of each colour, there are // no more figures than promotions allow, and there are no pawns on the // first or last rank; public boolean regular_position() { int[] counts = new int[256]; for (char file = 'a'; file <= 'h'; ++file) for (char rank = '1'; rank <= '8'; ++rank) ++counts[(int) B.get(file,rank)]; if (counts[Board.white_king] != 1 || counts[Board.black_king] != 1) return false; if (counts[Board.white_pawn] > 8 || counts[Board.black_pawn] > 8) return false; int count_w_promotions = 0; count_w_promotions += Math.max(counts[Board.white_queen]-1,0); count_w_promotions += Math.max(counts[Board.white_rook]-2,0); count_w_promotions += Math.max(counts[Board.white_bishop]-2,0); count_w_promotions += Math.max(counts[Board.white_knight]-2,0); if (count_w_promotions > 8 - counts[Board.white_pawn]) return false; int count_b_promotions = 0; count_b_promotions += Math.max(counts[Board.black_queen]-1,0); count_b_promotions += Math.max(counts[Board.black_rook]-2,0); count_b_promotions += Math.max(counts[Board.black_bishop]-2,0); count_b_promotions += Math.max(counts[Board.black_knight]-2,0); if (count_b_promotions > 8 - counts[Board.black_pawn]) return false; for (char file = 'a'; file <= 'h'; ++file) { final char fig1 = B.get(file,'1'); if (fig1 == Board.white_pawn || fig1 == Board.black_pawn) return false; final char fig8 = B.get(file,'8'); if (fig8 == Board.white_pawn || fig8 == Board.black_pawn) return false; } return true; } public boolean check_normal_white_move(final char file0, final char rank0, final char file1, final char rank1) { if (! Board.is_valid_white_figure(B.get(file0,rank0))) return false; if (! B.is_empty(file1,rank1) && ! Board.is_valid_black_figure(B.get(file1,rank1))) return false; if (B.get_active_colour() != 'w') return false; if (! check_move_simple(file0,rank0,file1,rank1)) return false; if (! regular) return true; final Board test_board = new Board(B); test_board.normal_white_move_0(file0,rank0,file1,rank1); final Moves test_move = new Moves(test_board); final char[] king_pos = test_move.white_king_position(); assert(king_pos.length == 2); return test_move.black_not_attacking(king_pos[0],king_pos[1]); } public boolean check_normal_black_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED THE CHECK NORMAL BLACK MOVE BASED ON THE CHECK NORMAL WHITE MOVE if (! Board.is_valid_black_figure(B.get(file0,rank0))) return false; if (! B.is_empty(file1,rank1) && ! Board.is_valid_white_figure(B.get(file1,rank1))) return false; if (B.get_active_colour() != 'b') return false; if (! check_move_simple(file0,rank0,file1,rank1)) return false; if (! regular) return true; final Board test_board = new Board(B); test_board.normal_black_move_0(file0,rank0,file1,rank1); final Moves test_move = new Moves(test_board); final char[] king_pos = test_move.black_king_position(); assert(king_pos.length == 2); return test_move.white_not_attacking(king_pos[0],king_pos[1]); } // for checking a normal move by just applying the move-rules private boolean check_move_simple(final char file0, final char rank0, final char file1, final char rank1) { final char fig = B.get(file0,rank0); if (fig == Board.white_king || fig == Board.black_king) return check_king_move(file0,rank0,file1,rank1); if (fig == Board.white_queen || fig == Board.black_queen) return check_queen_move(file0,rank0,file1,rank1); if (fig == Board.white_rook || fig == Board.black_rook) return check_rook_move(file0,rank0,file1,rank1); if (fig == Board.white_bishop || fig == Board.black_bishop) return check_bishop_move(file0,rank0,file1,rank1); if (fig == Board.white_knight || fig == Board.black_knight) return check_knight_move(file0,rank0,file1,rank1); if (fig == Board.white_pawn) return check_white_pawn_move(file0,rank0,file1,rank1); else return check_black_pawn_move(file0,rank0,file1,rank1); } private boolean check_king_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED KING MOVE int fileChange = file0 - file1; int rankChange = rank0 - rank1; return fileChange <= 1 && fileChange >= -1 && rankChange <= 1 && rankChange >= -1; } private boolean check_queen_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED QUEEN MOVE int fileChange = file0 - file1; int rankChange = rank0 - rank1; return fileChange <=8 && fileChange >= -8 && rankChange <= 8 && rankChange >= -8; } private boolean check_rook_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED ROOK MOVE int fileChange = file0 - file1; int rankChange = rank0 - rank1; return fileChange <=8 || fileChange >= -8 || rankChange <= 8 || rankChange >= -8; } private boolean check_bishop_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED BISHOP MOVE int fileChange = file0 - file1; int rankChange = rank0 - rank1; return fileChange <= 8 && rankChange <= 8 || fileChange <= 8 && rankChange >= -8 || fileChange >= -8 && rankChange >= -8 || fileChange >= -8 && rankChange <= 8; } private boolean check_knight_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED KNIGHT MOVE int fileChange = file0 - file1; int rankChange = rank0 - rank1; /* IS THIS THE CORRECT WAY? * return fileChange <= 1 && rankChange <= 2 || fileChange <= 1 && rankChange >= -2 || fileChange <= 2 && rankChange <= 1 || fileChange <= 2 && rankChange >= -1 || fileChange >= -1 && rankChange <= 2 || fileChange >= -1 && rankChange >= -2 || fileChange >= -2 && rankChange <= 1 || fileChange >= -2 && rankChange >= -1;*/ // OR IS THIS? return fileChange <= 1 || fileChange >= -1 || fileChange <= 2 || fileChange >= -2 && rankChange <= 1 || rankChange >= - 1 || rankChange <= 2 || rankChange >= -2; } private boolean check_white_pawn_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED PAWN MOVE int fileChange = file0 - file1; int rankChange = rank0 - rank1; return fileChange == 0 && rankChange <= 1; } private boolean check_black_pawn_move(final char file0, final char rank0, final char file1, final char rank1) { // ADDED PAWN MOVE int fileChange = file0 - file1; int rankChange = rank0 - rank1; return fileChange == 0 && rankChange >= -1; } public boolean check_white_kingside_castling() { // only demonstration code: final char c = B.get_white_castling(); if (c == '-' || c == 'q') return false; if (B.get_active_colour() == 'b') return false; if (B.get('e','1') != 'K') return false; if (! black_not_attacking('e','1')) return false; if (! free_white('f','1')) return false; // XXX return true; } public boolean check_white_queenside_castling() { // only demonstration code: final char c = B.get_white_castling(); if (c == '-' || c == 'k') return false; if (B.get_active_colour() == 'b') return false; // ADDED BASED ON KINGSIDE CASTLING if (B.get('e','1') != 'Q') return false; if (! black_not_attacking('e','1')) return false; if (! free_white('f','1')) return false; // XXX return true; } public boolean check_black_kingside_castling() { // only demonstration code: final char c = B.get_black_castling(); if (c == '-' || c == 'q') return false; if (B.get_active_colour() == 'w') return false; // ADDED BASED ON CHECK WHITE if (B.get('e','8') != 'K') return false; if (! black_not_attacking('e','8')) return false; if (! free_white('f','8')) return false; // XXX return true; } public boolean check_black_queenside_castling() { // only demonstration code: final char c = B.get_black_castling(); if (c == '-' || c == 'k') return false; if (B.get_active_colour() == 'w') return false; // ADDED BASED ON KINGSIDE CASTLING if (B.get('e','8') != 'Q') return false; if (! black_not_attacking('e','8')) return false; if (! free_white('f','8')) return false; // XXX return true; } public boolean check_white_promotion(final char pawn_file, final char figure) { // XXX // ADDED CHECKING FOR CORRECT FIGURE AND POSITION - ALTHOUGH IT SEEMS AS THOUGH // PAWN_FILE SHOULD BE PAWN_RANK, AS IT IS THE REACHING OF THE END RANK THAT // CAUSES PROMOTION OF A PAWN, NOT FILE if (figure == P && pawn_file == 8) { return true; } else return false; } public boolean check_black_promotion(final char pawn_file, final char figure) { // XXX // ADDED CHECKING FOR CORRECT FIGURE AND POSITION if (figure == p && pawn_file == 1) { return true; } else return false; } // checks whether black doesn't attack the field: public boolean black_not_attacking(final char file, final char rank) { // XXX return true; } public boolean free_white(final char file, final char rank) { // XXX return black_not_attacking(file,rank) && B.is_empty(file,rank); } // checks whether white doesn't attack the field: public boolean white_not_attacking(final char file, final char rank) { // XXX return true; } public boolean free_black(final char file, final char rank) { // XXX return white_not_attacking(file,rank) && B.is_empty(file,rank); } public char[] white_king_position() { for (char file = 'a'; file <= 'h'; ++file) for (char rank = '1'; rank <= '8'; ++rank) if (B.get(file,rank) == Board.white_king) { char[] result = new char[2]; result[0] = file; result[1] = rank; return result; } return new char[0]; } public char[] black_king_position() { for (char file = 'a'; file <= 'h'; ++file) for (char rank = '1'; rank <= '8'; ++rank) if (B.get(file,rank) == Board.black_king) { char[] result = new char[2]; result[0] = file; result[1] = rank; return result; } return new char[0]; } public static void main(final String[] args) { // checking regular_position { Moves m = new Moves(new Board()); assert(m.regular_position()); m = new Moves(new Board("8/8/8/8/8/8/8/8 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("KK6/8/8/8/8/8/8/8 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("kk6/8/8/8/8/8/8/8 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kk6/8/8/8/8/8/8/8 w - - 0 1")); assert(m.regular_position()); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/8 w - - 0 1")); assert(m.regular_position()); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/n7 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/N7 w - - 0 1")); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/b7 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/B7 w - - 0 1")); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/r7 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/R7 w - - 0 1")); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/q7 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kk6/qqqqqqqq/QQQQQQQQ/Q7/q7/rrbbnn2/RRBBNN2/Q7 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kkp5/8/8/8/8/8/8/8 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("KkP5/8/8/8/8/8/8/8 w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kk6/8/8/8/8/8/8/7p w - - 0 1")); assert(!m.regular_position()); m = new Moves(new Board("Kk6/8/8/8/8/8/8/7P w - - 0 1")); assert(!m.regular_position()); } // checking check_white/black_king/queenside_castling { Moves m = new Moves(new Board("4k2r/8/8/8/8/8/8/4K2R w Kk - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("4k2r/8/8/8/8/8/8/4K2R b Kk - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("4k2r/4pppp/8/8/8/8/4PPPP/4K2R w KQkq - 0 1")); assert(m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("4k2r/4pppp/8/8/8/8/4PPPP/4K2R b KQkq - 0 1")); assert(!m.check_white_kingside_castling()); assert(m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("r3k3/8/8/8/8/8/8/R3K3 w Qq - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("r3k3/8/8/8/8/8/8/R3K3 b Qq - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("r3k3/p7/8/8/8/8/8/R3K3 w Qq - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("r3k3/p7/8/8/8/8/8/R3K3 b Qq - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(m.check_black_queenside_castling()); m = new Moves(new Board("r3k3/p7/8/8/8/n7/8/R3K3 w Qq - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); m = new Moves(new Board("r3k3/p7/B7/8/8/8/8/R3K3 b Qq - 0 1")); assert(!m.check_white_kingside_castling()); assert(!m.check_black_kingside_castling()); assert(!m.check_white_queenside_castling()); assert(!m.check_black_queenside_castling()); // XXX } } }

    Read the article

  • Chess board position numbers in 6-rooted-binary tree?

    - by HH
    The maximum number of adjacent vertices is 6 that corresponds to the number of roots. By the term root, I mean the number of children for each node. If adjacent square is empty, fill it with Z-node. So every square will have 6 nodes. How can you formulate it with binary tree? Is the structure just 6-rooted-binary tree? What is the structure called if nodes change their positions? Suppose partially ordered list where its units store a large randomly expanding board. I want a self-adjusting data structure, where it is easy to calculate distances between nodes. What is its name?

    Read the article

  • Testing chess game

    - by mousey
    There is a software for chess game and we need to test the following method: boolean canMoveTo(int x, int y) x and y are the coordinates of the chess board and it returns true/false whether the piece can move to that position or not. We need to test this method for a pawn piece and you can set up the board any way you like prior to running a test case. Source code is not provided

    Read the article

  • Which algorithm used in Advance Wars type turn based games

    - by Jan de Lange
    Has anyone tried to develop, or know of an algorithm such as used in a typical turn based game like Advance Wars, where the number of objects and the number of moves per object may be too large to search through up to a reasonable depth like one would do in a game with a smaller search base like chess? There is some path-finding needed to to engage into combat, harvest, or move to an object, so that in the next move such actions are possible. With this you can build a search tree for each item, resulting in a large tree for all items. With a cost function one can determine the best moves. Then the board flips over to the player role (min/max) and the computer searches the best player move, and flips back etc. upto a number of cycles deep. Finally it has found the best move and now it's the players turn. But he may be asleep by now... So how is this done in practice? I have found several good sources on A*, DFS, BFS, evaluation / cost functions etc. But as of yet I do not see how I can put it all together.

    Read the article

  • Any faster method?

    - by rajeshverma423
    Manhattan distance is used to the center in chess code that uses an 0x88 board . 0x88 board is 128 square. public static final byte DISTANCE[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 5, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 5, 4, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 7, 6, 5, 4, 3, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 0, 0, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 7, 6, 5, 4, 3, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 7, 6, 5, 4, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 5, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; Is there any other faster method instead of 0x88 to find distance?

    Read the article

  • Games that are still winable against the computer?

    - by roygbiv
    There's a game on my laptop called 'Chess Titans' which I've been playing one game a day for almost 90 days. With the difficulty on the hardest setting I have not been able to win one game, however, I have come close. What's the fun in playing a chess game if the computer can search all moves and win? Has (or can) anyone beat a modern computer chess AI? What games can't a computer gain an advantage in? (i.e. They would be 'fun' to play.)

    Read the article

  • MATLAB: How do I get 3D coordiantes from a user-click?

    - by John
    I'm using Matlab to create a small chess game for one of my courses this semester. The thing I'm having trouble with is having the user be able to select one of the chess pieces. To simplify things, I'm making it so that the user selects a piece by clicking on the square that the chess piece resides on rather than clicking the piece itself (which I assume would be much more difficult). I know how to get the x and y coordinates of the view-port, but how do I transform these coordinates into 3-space coordinates? I know that there are multiple x,y,z coordinates associated with each view-port coordinate, but I'm only interested in the x,y,z coordinate where z = 0 (since the board itself is in the x,y plane that intersects the z axis where z = 0). Thanks!

    Read the article

  • MATLAB: How do I get 3D coordiantes from a user-click?

    - by Tim
    I'm using Matlab to create a small chess game for one of my courses this semester. The thing I'm having trouble with is having the user be able to select one of the chess pieces. To simplify things, I'm making it so that the user selects a piece by clicking on the square that the chess piece resides on rather than clicking the piece itself (which I assume would be much more difficult). I know how to get the x and y coordinates of the view-port, but how do I transform these coordinates into 3-space coordinates? I know that there are multiple x,y,z coordinates associated with each view-port coordinate, but I'm only interested in the x,y,z coordinate where z = 0 (since the board itself is in the x,y plane that intersects the z axis where z = 0). Thanks!

    Read the article

  • Project Chess : Skype aurait travaillé sur un programme secret pour faciliter l'espionnage de ses utilisateurs par la NSA et le FBI

    Project Chess : Skype aurait travaillé sur un programme secret pour faciliter l'espionnage de ses utilisateurs par la NSA et le FBILe Tsunami PRISM, un vaste projet de cybersurveillance des internautes par le gouvernement américain, a ouvert la voie aux révélations sur d'autres projets connexes.Le New York Times dévoile aujourd'hui que Skype aurait travaillé sur un projet secret pour permettre aux services de renseignement du gouvernement d'écouter les appels des utilisateurs.Le projet baptisé « Project Chess » (qui peut se traduire littéralement en "projet échec"), portait sur l'étude des techniques et questions juridi...

    Read the article

  • What RESTful API would you use for a turn-based game server?

    - by Ross
    How would you model a turn-based game server as a RESTful API? For example, a chess server, where you could play a game of chess against another client of the same API. You would need some way of requesting and negotiating a game with the other client, and some way of playing the individual moves of the game. Is this a good candidate for a REST (RESTful) API? Or should this be modelled a different way?

    Read the article

  • This Week in Geek History: Gmail Goes Public, Deep Blue Wins at Chess, and the Birth of Thomas Edison

    - by Jason Fitzpatrick
    Every week we bring you a snapshot of the week in Geek History. This week we’re taking a peek at the public release of Gmail, the first time a computer won against a chess champion, and the birth of prolific inventor Thomas Edison. Gmail Goes Public It’s hard to believe that Gmail has only been around for seven years and that for the first three years of its life it was invite only. In 2007 Gmail dropped the invite only requirement (although they would hold onto the “beta” tag for another two years) and opened its doors for anyone to grab a username @gmail. For what seemed like an entire epoch in internet history Gmail had the slickest web-based email around with constant innovations and features rolling out from Gmail Labs. Only in the last year or so have major overhauls at competitors like Hotmail and Yahoo! Mail brought other services up to speed. Can’t stand reading a Week in Geek History entry without a random fact? Here you go: gmail.com was originally owned by the Garfield franchise and ran a service that delivered Garfield comics to your email inbox. No, we’re not kidding. Deep Blue Proves Itself a Chess Master Deep Blue was a super computer constructed by IBM with the sole purpose of winning chess matches. In 2011 with the all seeing eye of Google and the amazing computational abilities of engines like Wolfram Alpha we simply take powerful computers immersed in our daily lives for granted. The 1996 match against reigning world chest champion Garry Kasparov where in Deep Blue held its own, but ultimately lost, in a  4-2 match shook a lot of people up. What did it mean if something that was considered such an elegant and quintessentially human endeavor such as chess was so easy for a machine? A series of upgrades helped Deep Blue outright win a match against Kasparov in 1997 (seen in the photo above). After the win Deep Blue was retired and disassembled. Parts of Deep Blue are housed in the National Museum of History and the Computer History Museum. Birth of Thomas Edison Thomas Alva Edison was one of the most prolific inventors in history and holds an astounding 1,093 US Patents. He is responsible for outright inventing or greatly refining major innovations in the history of world culture including the phonograph, the movie camera, the carbon microphone used in nearly every telephone well into the 1980s, batteries for electric cars (a notion we’d take over a century to take seriously), voting machines, and of course his enormous contribution to electric distribution systems. Despite the role of scientist and inventor being largely unglamorous, Thomas Edison and his tumultuous relationship with fellow inventor Nikola Tesla have been fodder for everything from books, to comics, to movies, and video games. Other Notable Moments from This Week in Geek History Although we only shine the spotlight on three interesting facts a week in our Geek History column, that doesn’t mean we don’t have space to highlight a few more in passing. This week in Geek History: 1971 – Apollo 14 returns to Earth after third Lunar mission. 1974 – Birth of Robot Chicken creator Seth Green. 1986 – Death of Dune creator Frank Herbert. Goodnight Dune. 1997 – Simpsons becomes longest running animated show on television. Have an interesting bit of geek trivia to share? Shoot us an email to [email protected] with “history” in the subject line and we’ll be sure to add it to our list of trivia. Latest Features How-To Geek ETC Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines RGB? CMYK? Alpha? What Are Image Channels and What Do They Mean? Clean Up Google Calendar’s Interface in Chrome and Iron The Rise and Fall of Kramerica? [Seinfeld Video] GNOME Shell 3 Live CDs for OpenSUSE and Fedora Available for Testing Picplz Offers Special FX, Sharing, and Backup of Your Smartphone Pics BUILD! An Epic LEGO Stop Motion Film [VIDEO] The Lingering Glow of Sunset over a Winter Landscape Wallpaper

    Read the article

  • Number of ways to place kings on chess board

    - by Rakesh
    You have an N x N chessboard and you wish to place N kings on it. Each row and column should contain exactly one king, and no two kings should attack each other (two kings attack each other if they are present in squares which share a corner). The kings in the first K rows of the board have already been placed. You are given the positions of these kings as an array pos[ ]. pos[i] is the column in which the king in the ith row has already been placed. All indices are 0-indexed. In how many ways can the remaining kings be placed? Input: The first line contains the number of test cases T. T test cases follow. Each test case contains N and K on the first line, followed by a line having K integers, denoting the array pos[ ] as described above. Output: Output the number of ways to place kings in the remaining rows satisfying the above conditions. Output all numbers modulo 1000000007. Constraints: 1 <= T <= 20 1 <= N <= 16 0 <= K <= N 0 <= pos_i < N The kings specified in the input will be in different columns and not attack each other. Sample Input: 5 4 1 2 3 0 5 2 1 3 4 4 1 3 0 2 6 1 2 Sample Output: 1 0 2 1 18 Explanation: For the first example, there is a king already placed at row 0 and column 2. The king in the second row must belong to column 0. The king in the third row must belong to column 3, and the last king must beong to column 1. Thus there is only 1 valid placement. For the second example, there is no valid placement. How should i approach this problem

    Read the article

  • C++, using one byte to store two variables

    - by 2di
    Hi All I am working on representation of the chess board, and I am planning to store it in 32 bytes array, where each byte will be used to store two pieces. (That way only 4 bits are needed per piece) Doing it in that way, results in a overhead for accessing particular index of the board. Do you think that, this code can be optimised or completely different method of accessing indexes can be used? c++ char getPosition(unsigned char* c, int index){ //moving pointer c+=(index>>1); //odd number if (index & 1){ //taking right part return *c & 0xF; }else { //taking left part return *c>>4; } } void setValue(unsigned char* board, char value, int index){ //moving pointer board+=(index>>1); //odd number if (index & 1){ //replace right part //save left value only 4 bits *board = (*board & 0xF0) + value; }else { //replacing left part *board = (*board & 0xF) + (value<<4); } } int main() { char* c = (char*)malloc(32); for (int i = 0; i < 64 ; i++){ setValue((unsigned char*)c, i % 8,i); } for (int i = 0; i < 64 ; i++){ cout<<(int)getPosition((unsigned char*)c, i)<<" "; if (((i+1) % 8 == 0) && (i > 0)){ cout<<endl; } } return 0; } I am equally interested in your opinions regarding chess representations, and optimisation of the method above, as a stand alone problem. Thanks a lot

    Read the article

  • Generate 10-digit number using a phone keypad

    - by srikfreak
    Given a phone keypad as shown below: 1 2 3 4 5 6 7 8 9 0 How many different 10-digit numbers can be formed starting from 1? The constraint is that the movement from 1 digit to the next is similar to the movement of the Knight in a chess game. For eg. if we are at 1 then the next digit can be either 6 or 8 if we are at 6 then the next digit can be 1, 7 or 0. Repetition of digits are allowed - 1616161616 is a valid number. Is there a polynomial time algorithm which solves this problem? The problem requires us to just give the count of 10-digit numbers and not necessarily list the numbers.

    Read the article

  • Is chess-like AI really inapplicable in turn-based strategy games?

    - by Joh
    Obviously, trying to apply the min-max algorithm on the complete tree of moves works only for small games (I apologize to all chess enthusiasts, by "small" I do not mean "simplistic"). For typical turn-based strategy games where the board is often wider than 100 tiles and all pieces in a side can move simultaneously, the min-max algorithm is inapplicable. I was wondering if a partial min-max algorithm which limits itself to N board configurations at each depth couldn't be good enough? Using a genetic algorithm, it might be possible to find a number of board configurations that are good wrt to the evaluation function. Hopefully, these configurations might also be good wrt to long-term goals. I would be surprised if this hasn't been thought of before and tried. Has it? How does it work?

    Read the article

  • Alpha Beta Search

    - by Becky
    I'm making a version of Martian Chess in java with AI and so far I THINK my move searching is semi-working, it seems to work alright for some depths but if I use a depth of 3 it returns a move for the opposite side...now the game is a bit weird because when a piece crosses half of the board, it becomes property of the other player so I think this is part of the problem. I'd be really greatful if someone could look over my code and point out any errors you think are there! (pls note that my evaluation function isn't nearly complete lol) MoveSearch.java public class MoveSearch { private Evaluation evaluate = new Evaluation(); private int blackPlayerScore, whitePlayerScore; public MoveContent bestMove; public MoveSearch(int blackScore, int whiteScore) { blackPlayerScore = blackScore; whitePlayerScore = whiteScore; } private Vector<Position> EvaluateMoves(Board board) { Vector<Position> positions = new Vector<Position>(); for (int i = 0; i < 32; i++) { Piece piece = null; if (!board.chessBoard[i].square.isEmpty()) { // store the piece piece = board.chessBoard[i].square.firstElement(); } // skip empty squares if (piece == null) { continue; } // skip the other players pieces if (piece.pieceColour != board.whosMove) { continue; } // generate valid moves for the piece PieceValidMoves validMoves = new PieceValidMoves(board.chessBoard, i, board.whosMove); validMoves.generateMoves(); // for each valid move for (int j = 0; j < piece.validMoves.size(); j++) { // store it as a position Position move = new Position(); move.startPosition = i; move.endPosition = piece.validMoves.elementAt(j); Piece pieceAttacked = null; if (!board.chessBoard[move.endPosition].square.isEmpty()) { // if the end position is not empty, store the attacked piece pieceAttacked = board.chessBoard[move.endPosition].square.firstElement(); } // if a piece is attacked if (pieceAttacked != null) { // append its value to the move score move.score += pieceAttacked.pieceValue; // if the moving pieces value is less than the value of the attacked piece if (piece.pieceValue < pieceAttacked.pieceValue) { // score extra points move.score += pieceAttacked.pieceValue - piece.pieceValue; } } // add the move to the set of positions positions.add(move); } } return positions; } // EvaluateMoves() private int SideToMoveScore(int score, PieceColour colour) { if (colour == PieceColour.Black){ return -score; } else { return score; } } public int AlphaBeta(Board board, int depth, int alpha, int beta) { //int best = -9999; // if the depth is 0, return the score of the current board if (depth <= 0) { board.printBoard(); System.out.println("Score: " + evaluate.EvaluateBoardScore(board)); System.out.println(""); int boardScore = evaluate.EvaluateBoardScore(board); return SideToMoveScore(boardScore, board.whosMove); } // fill the positions with valid moves Vector<Position> positions = EvaluateMoves(board); // if there are no available positions if (positions.size() == 0) { // and its blacks move if (board.whosMove == PieceColour.Black) { if (blackPlayerScore > whitePlayerScore) { // and they are winning, return a high number return 9999; } else if (whitePlayerScore == blackPlayerScore) { // if its a draw, lower number return 500; } else { // if they are losing, return a very low number return -9999; } } if (board.whosMove == PieceColour.White) { if (whitePlayerScore > blackPlayerScore) { return 9999; } else if (blackPlayerScore == whitePlayerScore) { return 500; } else { return -9999; } } } // for each position for (int i = 0; i < positions.size(); i++) { // store the position Position move = positions.elementAt(i); // temporarily copy the board Board temp = board.copyBoard(board); // make the move temp.makeMove(move.startPosition, move.endPosition); for (int x = 0; x < 32; x++) { if (!temp.chessBoard[x].square.isEmpty()) { PieceValidMoves validMoves = new PieceValidMoves(temp.chessBoard, x, temp.whosMove); validMoves.generateMoves(); } } // repeat the process recursively, decrementing the depth int val = -AlphaBeta(temp, depth - 1, -beta, -alpha); // if the value returned is better than the current best score, replace it if (val >= beta) { // beta cut-off return beta; } if (val > alpha) { alpha = val; bestMove = new MoveContent(alpha, move.startPosition, move.endPosition); } } // return the best score return alpha; } // AlphaBeta() } This is the makeMove method public void makeMove(int startPosition, int endPosition) { // quick reference to selected piece and attacked piece Piece selectedPiece = null; if (!(chessBoard[startPosition].square.isEmpty())) { selectedPiece = chessBoard[startPosition].square.firstElement(); } Piece attackedPiece = null; if (!(chessBoard[endPosition].square.isEmpty())) { attackedPiece = chessBoard[endPosition].square.firstElement(); } // if a piece is taken, amend score if (!(chessBoard[endPosition].square.isEmpty()) && attackedPiece != null) { if (attackedPiece.pieceColour == PieceColour.White) { blackScore = blackScore + attackedPiece.pieceValue; } if (attackedPiece.pieceColour == PieceColour.Black) { whiteScore = whiteScore + attackedPiece.pieceValue; } } // actually move the piece chessBoard[endPosition].square.removeAllElements(); chessBoard[endPosition].addPieceToSquare(selectedPiece); chessBoard[startPosition].square.removeAllElements(); // changing piece colour based on position if (endPosition > 15) { selectedPiece.pieceColour = PieceColour.White; } if (endPosition <= 15) { selectedPiece.pieceColour = PieceColour.Black; } //change to other player if (whosMove == PieceColour.Black) whosMove = PieceColour.White; else if (whosMove == PieceColour.White) whosMove = PieceColour.Black; } // makeMove()

    Read the article

  • What would be the fastest way of storing or calculating legal move sets for chess pieces?

    - by ioSamurai
    For example if a move is attempted I could just loop through a list of legal moves and compare the x,y but I have to write logic to calculate those at least every time the piece is moved. Or, I can store in an array [,] and then check if x and y are not 0 then it is a legal move and then I save the data like this [0][1][0][0] etc etc for each row where 1 is a legal move, but I still have to populate it. I wonder what the fastest way to store and read a legal move on a piece object for calculation. I could use matrix math as well I suppose but I don't know. Basically I want to persist the rules for a given piece so I can assign a piece object a little template of all it's possible moves considering it is starting from it's current location, which should be just one table of data. But is it faster to loop or write LINQ queries or store arrays and matrices? public class Move { public int x; public int y; } public class ChessPiece : Move { private List<Move> possibleMoves { get; set; } public bool LegalMove(int x, int y){ foreach(var p in possibleMoves) { if(p.x == x && p.y == y) { return true; } } } } Anyone know?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8  | Next Page >