Search Results

Search found 49 results on 2 pages for 'continuations'.

Page 2/2 | < Previous Page | 1 2 

  • Using the BAM Interceptor with Continuation

    - by Charles Young
    Originally posted on: http://geekswithblogs.net/cyoung/archive/2014/06/02/using-the-bam-interceptor-with-continuation.aspxI’ve recently been resurrecting some code written several years ago that makes extensive use of the BAM Interceptor provided as part of BizTalk Server’s BAM event observation library.  In doing this, I noticed an issue with continuations.  Essentially, whenever I tried to configure one or more continuations for an activity, the BAM Interceptor failed to complete the activity correctly.   Careful inspection of my code confirmed that I was initializing and invoking the BAM interceptor correctly, so I was mystified.  However, I eventually found the problem.  It is a logical error in the BAM Interceptor code itself. The BAM Interceptor provides a useful mechanism for implementing dynamic tracking.  It supports configurable ‘track points’.  These are grouped into named ‘locations’.  BAM uses the term ‘step’ as a synonym for ‘location’.   Each track point defines a BAM action such as starting an activity, extracting a data item, enabling a continuation, etc.  Each step defines a collection of track points. Understanding Steps The BAM Interceptor provides an abstract model for handling configuration of steps.  It doesn’t, however, define any specific configuration mechanism (e.g., config files, SSO, etc.)  It is up to the developer to decide how to store, manage and retrieve configuration data.  At run time, this configuration is used to register track points which then drive the BAM Interceptor. The full semantics of a step are not immediately clear from Microsoft’s documentation.  They represent a point in a business activity where BAM tracking occurs.  They are named locations in the code.  What is less obvious is that they always represent either the full tracking work for a given activity or a discrete fragment of that work which commences with the start of a new activity or the continuation of an existing activity.  The BAM Interceptor enforces this by throwing an error if no ‘start new’ or ‘continue’ track point is registered for a named location. This constraint implies that each step must marked with an ‘end activity’ track point.  One of the peculiarities of BAM semantics is that when an activity is continued under a correlated ID, you must first mark the current activity as ‘ended’ in order to ensure the right housekeeping is done in the database.  If you re-start an ended activity under the same ID, you will leave the BAM import tables in an inconsistent state.  A step, therefore, always represents an entire unit of work for a given activity or continuation ID.  For activities with continuation, each unit of work is termed a ‘fragment’. Instance and Fragment State Internally, the BAM Interceptor maintains state data at two levels.  First, it represents the overall state of the activity using a ‘trace instance’ token.  This token contains the name and ID of the activity together with a couple of state flags.  The second level of state represents a ‘trace fragment’.   As we have seen, a fragment of an activity corresponds directly to the notion of a ‘step’.  It is the unit of work done at a named location, and it must be bounded by start and end, or continue and end, actions. When handling continuations, the BAM Interceptor differentiates between ‘root’ fragments and other fragments.  Very simply, a root fragment represents the start of an activity.  Other fragments represent continuations.  This is where the logic breaks down.  The BAM Interceptor loses state integrity for root fragments when continuations are defined. Initialization Microsoft’s BAM Interceptor code supports the initialization of BAM Interceptors from track point configuration data.  The process starts by populating an Activity Interceptor Configuration object with an array of track points.  These can belong to different steps (aka ‘locations’) and can be registered in any order.  Once it is populated with track points, the Activity Interceptor Configuration is used to initialise the BAM Interceptor.  The BAM Interceptor sets up a hash table of array lists.  Each step is represented by an array list, and each array list contains an ordered set of track points.  The BAM Interceptor represents track points as ‘executable’ components.  When the OnStep method of the BAM Interceptor is called for a given step, the corresponding list of track points is retrieved and each track point is executed in turn.  Each track point retrieves any required data using a call back mechanism and then serializes a BAM trace fragment object representing a specific action (e.g., start, update, enable continuation, stop, etc.).  The serialised trace fragment is then handed off to a BAM event stream (buffered or direct) which takes the appropriate action. The Root of the Problem The logic breaks down in the Activity Interceptor Configuration.  Each Activity Interceptor Configuration is initialised with an instance of a ‘trace instance’ token.  This provides the basic metadata for the activity as a whole.  It contains the activity name and ID together with state flags indicating if the activity ID is a root (i.e., not a continuation fragment) and if it is completed.  This single token is then shared by all trace actions for all steps registered with the Activity Interceptor Configuration. Each trace instance token is automatically initialised to represent a root fragment.  However, if you subsequently register a ‘continuation’ step with the Activity Interceptor Configuration, the ‘root’ flag is set to false at the point the ‘continue’ track point is registered for that step.   If you use a ‘reflector’ tool to inspect the code for the ActivityInterceptorConfiguration class, you can see the flag being set in one of the overloads of the RegisterContinue method.    This makes no sense.  The trace instance token is shared across all the track points registered with the Activity Interceptor Configuration.  The Activity Interceptor Configuration is designed to hold track points for multiple steps.  The ‘root’ flag is clearly meant to be initialised to ‘true’ for the preliminary root fragment and then subsequently set to false at the point that a continuation step is processed.  Instead, if the Activity Interceptor Configuration contains a continuation step, it is changed to ‘false’ before the root fragment is processed.  This is clearly an error in logic. The problem causes havoc when the BAM Interceptor is used with continuation.  Effectively the root step is no longer processed correctly, and the ultimate effect is that the continued activity never completes!   This has nothing to do with the root and the continuation being in the same process.  It is due to a fundamental mistake of setting the ‘root’ flag to false for a continuation before the root fragment is processed. The Workaround Fortunately, it is easy to work around the bug.  The trick is to ensure that you create a new Activity Interceptor Configuration object for each individual step.  This may mean filtering your configuration data to extract the track points for a single step or grouping the configured track points into individual steps and the creating a separate Activity Interceptor Configuration for each group.  In my case, the first approach was required.  Here is what the amended code looks like: // Because of a logic error in Microsoft's code, a separate ActivityInterceptorConfiguration must be used // for each location. The following code extracts only those track points for a given step name (location). var trackPointGroup = from ResolutionService.TrackPoint tp in bamActivity.TrackPoints                       where (string)tp.Location == bamStepName                       select tp; var bamActivityInterceptorConfig =     new Microsoft.BizTalk.Bam.EventObservation.ActivityInterceptorConfiguration(activityName); foreach (var trackPoint in trackPointGroup) {     switch (trackPoint.Type)     {         case TrackPointType.Start:             bamActivityInterceptorConfig.RegisterStartNew(trackPoint.Location, trackPoint.ExtractionInfo);             break; etc… I’m using LINQ to filter a list of track points for those entries that correspond to a given step and then registering only those track points on a new instance of the ActivityInterceptorConfiguration class.   As soon as I re-wrote the code to do this, activities with continuations started to complete correctly.

    Read the article

  • Why exactly is eval evil?

    - by Jay
    I know that Lisp and Scheme programmers usually say that eval should be avoided unless strictly necessary. I´ve seen the same recommendation for several programming languages, but I´ve not yet seen a list of clear arguments against the use of eval. Where can I find an account of the potential problems of using eval? For example, I know the problems of GOTO in procedural programming (makes programs unreadable and hard to maintain, makes security problems hard to find, etc), but I´ve never seen the arguments against eval. Interestingly, the same arguments against GOTO should be valid against continuations, but I see that Shemers, for example, won´t say that continuations are "evil" -- you should just be careful when using them. They´re much more likely to frown upon code using eval than upon code using continuations (as far as I can see -- I could be wrong).

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • What does Ruby have that Python doesn't, and vice versa?

    - by Lennart Regebro
    There is a lot of discussions of Python vs Ruby, and I all find them completely unhelpful, because they all turn around why feature X sucks in language Y, or that claim language Y doesn't have X, although in fact it does. I also know exactly why I prefer Python, but that's also subjective, and wouldn't help anybody choosing, as they might not have the same tastes in development as I do. It would therefore be interesting to list the differences, objectively. So no "Python's lambdas sucks". Instead explain what Ruby's lambdas can do that Python's can't. No subjectivity. Example code is good! Don't have several differences in one answer, please. And vote up the ones you know are correct, and down those you know are incorrect (or are subjective). Also, differences in syntax is not interesting. We know Python does with indentation what Ruby does with brackets and ends, and that @ is called self in Python. UPDATE: This is now a community wiki, so we can add the big differences here. Ruby has a class reference in the class body In Ruby you have a reference to the class (self) already in the class body. In Python you don't have a reference to the class until after the class construction is finished. An example: class Kaka puts self end self in this case is the class, and this code would print out "Kaka". There is no way to print out the class name or in other ways access the class from the class definition body in Python. All classes are mutable in Ruby This lets you develop extensions to core classes. Here's an example of a rails extension: class String def starts_with?(other) head = self[0, other.length] head == other end end Ruby has Perl-like scripting features Ruby has first class regexps, $-variables, the awk/perl line by line input loop and other features that make it more suited to writing small shell scripts that munge text files or act as glue code for other programs. Ruby has first class continuations Thanks to the callcc statement. In Python you can create continuations by various techniques, but there is no support built in to the language. Ruby has blocks With the "do" statement you can create a multi-line anonymous function in Ruby, which will be passed in as an argument into the method in front of do, and called from there. In Python you would instead do this either by passing a method or with generators. Ruby: amethod { |here| many=lines+of+code goes(here) } Python: def function(here): many=lines+of+code goes(here) amethod(function) Interestingly, the convenience statement in Ruby for calling a block is called "yield", which in Python will create a generator. Ruby: def themethod yield 5 end themethod do |foo| puts foo end Python: def themethod(): yield 5 for foo in themethod: print foo Although the principles are different, the result is strikingly similar. Python has built-in generators (which are used like Ruby blocks, as noted above) Python has support for generators in the language. In Ruby you could use the generator module that uses continuations to create a generator from a block. Or, you could just use a block/proc/lambda! Moreover, in Ruby 1.9 Fibers are, and can be used as, generators. docs.python.org has this generator example: def reverse(data): for index in range(len(data)-1, -1, -1): yield data[index] Contrast this with the above block examples. Python has flexible name space handling In Ruby, when you import a file with require, all the things defined in that file will end up in your global namespace. This causes namespace pollution. The solution to that is Rubys modules. But if you create a namespace with a module, then you have to use that namespace to access the contained classes. In Python, the file is a module, and you can import its contained names with from themodule import *, thereby polluting the namespace if you want. But you can also import just selected names with from themodule import aname, another or you can simply import themodule and then access the names with themodule.aname. If you want more levels in your namespace you can have packages, which are directories with modules and an __init__.py file. Python has docstrings Docstrings are strings that are attached to modules, functions and methods and can be introspected at runtime. This helps for creating such things as the help command and automatic documentation. def frobnicate(bar): """frobnicate takes a bar and frobnicates it >>> bar = Bar() >>> bar.is_frobnicated() False >>> frobnicate(bar) >>> bar.is_frobnicated() True """ Python has more libraries Python has a vast amount of available modules and bindings for libraries. Python has multiple inheritance Ruby does not ("on purpose" -- see Ruby's website, see here how it's done in Ruby). It does reuse the module concept as a sort of abstract classes. Python has list/dict comprehensions Python: res = [x*x for x in range(1, 10)] Ruby: res = (0..9).map { |x| x * x } Python: >>> (x*x for x in range(10)) <generator object <genexpr> at 0xb7c1ccd4> >>> list(_) [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] Ruby: p = proc { |x| x * x } (0..9).map(&p) Python: >>> {x:str(y*y) for x,y in {1:2, 3:4}.items()} {1: '4', 3: '16'} Ruby: >> Hash[{1=>2, 3=>4}.map{|x,y| [x,(y*y).to_s]}] => {1=>"4", 3=>"16"} Python has decorators Things similar to decorators can be created in Ruby, and it can also be argued that they aren't as necessary as in Python.

    Read the article

  • How the yin-yang puzzle works?

    - by Hrundik
    I'm trying to grasp the semantics of call/cc in Scheme, and the Wikipedia page on continuations shows the yin-yang puzzle as an example: (let* ((yin ((lambda (cc) (display #\@) cc) (call-with-current-continuation (lambda (c) c)))) (yang ((lambda (cc) (display #\*) cc) (call-with-current-continuation (lambda (c) c)))) ) (yin yang)) It should output @\*@\**@\**\*@\**\**@..., but I don't understand why; I'd expect it to output @\*@\**\**\**\**\*... Can somebody explain in detail why the yin-yang puzzle works the way it works?

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • How to Force an Exception from a Task to be Observed in a Continuation Task?

    - by Richard
    I have a task to perform an HttpWebRequest using Task<WebResponse>.Factory.FromAsync(req.BeginGetRespone, req.EndGetResponse) which can obviously fail with a WebException. To the caller I want to return a Task<HttpResult> where HttpResult is a helper type to encapsulate the response (or not). In this case a 4xx or 5xx response is not an exception. Therefore I've attached two continuations to the request task. One with TaskContinuationOptions OnlyOnRanToCompletion and the other with OnlyOnOnFaulted. And then wrapped the whole thing in a Task<HttpResult> to pick up the one result whichever continuation completes. Each of the three child tasks (request plus two continuations) is created with the AttachedToParent option. But when the caller waits on the returned outer task, an AggregateException is thrown is the request failed. I want to, in the on faulted continuation, observe the WebException so the client code can just look at the result. Adding a Wait in the on fault continuation throws, but a try-catch around this doesn't help. Nor does looking at the Exception property (as section "Observing Exceptions By Using the Task.Exception Property" hints here). I could install a UnobservedTaskException event handler to filter, but as the event offers no direct link to the faulted task this will likely interact outside this part of the application and is a case of a sledgehammer to crack a nut. Given an instance of a faulted Task<T> is there any means of flagging it as "fault handled"? Simplified code: public static Task<HttpResult> Start(Uri url) { var webReq = BuildHttpWebRequest(url); var result = new HttpResult(); var taskOuter = Task<HttpResult>.Factory.StartNew(() => { var tRequest = Task<WebResponse>.Factory.FromAsync( webReq.BeginGetResponse, webReq.EndGetResponse, null, TaskCreationOptions.AttachedToParent); var tError = tRequest.ContinueWith<HttpResult>( t => HandleWebRequestError(t, result), TaskContinuationOptions.AttachedToParent |TaskContinuationOptions.OnlyOnFaulted); var tSuccess = tRequest.ContinueWith<HttpResult>( t => HandleWebRequestSuccess(t, result), TaskContinuationOptions.AttachedToParent |TaskContinuationOptions.OnlyOnRanToCompletion); return result; }); return taskOuter; } with: private static HttpDownloaderResult HandleWebRequestError( Task<WebResponse> respTask, HttpResult result) { Debug.Assert(respTask.Status == TaskStatus.Faulted); Debug.Assert(respTask.Exception.InnerException is WebException); // Try and observe the fault: Doesn't help. try { respTask.Wait(); } catch (AggregateException e) { Log("HandleWebRequestError: waiting on antecedent task threw inner: " + e.InnerException.Message); } // ... populate result with details of the failure for the client ... return result; } (HandleWebRequestSuccess will eventually spin off further tasks to get the content of the response...) The client should be able to wait on the task and then look at its result, without it throwing due to a fault that is expected and already handled.

    Read the article

  • scheme vs common lisp: war stories

    - by SuperElectric
    There are no shortage of vague "Scheme vs Common Lisp" questions on StackOverflow, so I want to make this one more focused. The question is for people who have coded in both languages: While coding in Scheme, what specific elements of your Common Lisp coding experience did you miss most? Or, inversely, while coding in Common Lisp, what did you miss from coding in Scheme? I don't necessarily mean just language features. The following are all valid things to miss, as far as the question is concerned: Specific libraries. Specific features of development environments like SLIME, DrRacket, etc. Features of particular implementations, like Gambit's ability to write blocks of C code directly into your Scheme source. And of course, language features. Examples of the sort of answers I'm hoping for: "I was trying to implement X in Common Lisp, and if I had Scheme's first-class continuations, I totally would've just done Y, but instead I had to do Z, which was more of a pain." "Scripting the build process in Scheme project, got increasingly painful as my source tree grew and I linked in more and more C libraries. For my next project, I moved back to Common Lisp." "I have a large existing C++ codebase, and for me, being able to embed C++ calls directly in my Gambit Scheme code was totally worth any shortcomings that Scheme may have vs Common Lisp, even including lack of SWIG support." So, I'm hoping for war stories, rather than general sentiments like "Scheme is a simpler language" etc.

    Read the article

  • Scheme vs Common Lisp: war stories

    - by SuperElectric
    There are no shortage of vague "Scheme vs Common Lisp" questions on both StackOverflow and on this site, so I want to make this one more focused. The question is for people who have coded in both languages: While coding in Scheme, what specific elements of your Common Lisp coding experience did you miss most? Or, inversely, while coding in Common Lisp, what did you miss from coding in Scheme? I don't necessarily mean just language features. The following are all valid things to miss, as far as the question is concerned: Specific libraries. Specific features of development environments like SLIME, DrRacket, etc. Features of particular implementations, like Gambit's ability to write blocks of C code directly into your Scheme source. And of course, language features. Examples of the sort of answers I'm hoping for: "I was trying to implement X in Common Lisp, and if I had Scheme's first-class continuations, I totally would've just done Y, but instead I had to do Z, which was more of a pain." "Scripting the build process in my Scheme project got increasingly painful as my source tree grew and I linked in more and more C libraries. For my next project, I moved back to Common Lisp." "I have a large existing C++ codebase, and for me, being able to embed C++ calls directly in my Gambit Scheme code was totally worth any shortcomings that Scheme may have vs Common Lisp, even including lack of SWIG support." So, I'm hoping for war stories, rather than general sentiments like "Scheme is a simpler language" etc.

    Read the article

  • Is there a language more general than Lisp?

    - by Jon Purdy
    I've been programming for a long time, and writing in Lisp (well, mostly Scheme) for a little less. My experience in these languages (and other functional languages) has informed my ability to write clean code even with less powerful tools. Lisp-family languages have lovely facilities for implementing every abstraction in common use: S-expressions generalise structure. Macros generalise syntax. Continuations generalise flow control. But I'm dissatisfied. Somehow, I want more. Is there a language that's more general? More powerful? As great as Lisp is, I find it hard to believe no one has come up with anything (dare I say) better. I'm well aware that ordinarily a question like this ought to be closed for its argumentative nature. But there seems to be a broad consensus that Lisp represents the theoretical pinnacle of programming language design. I simply refuse to accept that without some kind of proof. Which I guess amounts to questioning whether the lambda calculus is in fact the ideal abstraction of computation.

    Read the article

  • Clojure for a lisp illiterate

    - by dbyrne
    I am a lifelong object-oriented programmer. My job is primarily java development, but I have experience in a number of languages. Ruby gave me my first real taste of functional programming. I loved the features Ruby borrowed from the functional paradigm such as closures and continuations. Eventually, I graduated to Scala. This has been a great way to gradually learn to approach non-trivial problems in a functional manner. Now I am interested in Clojure. I know all the sexy features that make it enticing (software transactional memory, macros, etc.), but I just can't get used to "thinking in lisp". I've seen Rich Hickey's screencasts aimed at java programmers, but they are geared towards explaining language features and not approaching real world problems. I am looking for any advice or resources which have made this transition easier for others.

    Read the article

  • How to define large list of strings in Visual Basic

    - by Jenny_Winters
    I'm writing a macro in Visual Basic for PowerPoint 2010. I'd like to initialize a really big list of strings like: big_ol_array = Array( _ "string1", _ "string2", _ "string3", _ "string4" , _ ..... "string9999" _ ) ...but I get the "Too many line continuations" error in the editor. When I try to just initialize the big array with no line breaks, the VB editor can't handle such a long line (1000+) characters. Does anyone know a good way to initialize a huge list of strings in VB? Thanks in advance!

    Read the article

  • Parallelism in .NET – Part 20, Using Task with Existing APIs

    - by Reed
    Although the Task class provides a huge amount of flexibility for handling asynchronous actions, the .NET Framework still contains a large number of APIs that are based on the previous asynchronous programming model.  While Task and Task<T> provide a much nicer syntax as well as extending the flexibility, allowing features such as continuations based on multiple tasks, the existing APIs don’t directly support this workflow. There is a method in the TaskFactory class which can be used to adapt the existing APIs to the new Task class: TaskFactory.FromAsync.  This method provides a way to convert from the BeginOperation/EndOperation method pair syntax common through .NET Framework directly to a Task<T> containing the results of the operation in the task’s Result parameter. While this method does exist, it unfortunately comes at a cost – the method overloads are far from simple to decipher, and the resulting code is not always as easily understood as newer code based directly on the Task class.  For example, a single call to handle WebRequest.BeginGetResponse/EndGetReponse, one of the easiest “pairs” of methods to use, looks like the following: var task = Task.Factory.FromAsync<WebResponse>( request.BeginGetResponse, request.EndGetResponse, null); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The compiler is unfortunately unable to infer the correct type, and, as a result, the WebReponse must be explicitly mentioned in the method call.  As a result, I typically recommend wrapping this into an extension method to ease use.  For example, I would place the above in an extension method like: public static class WebRequestExtensions { public static Task<WebResponse> GetReponseAsync(this WebRequest request) { return Task.Factory.FromAsync<WebResponse>( request.BeginGetResponse, request.EndGetResponse, null); } } This dramatically simplifies usage.  For example, if we wanted to asynchronously check to see if this blog supported XHTML 1.0, and report that in a text box to the user, we could do: var webRequest = WebRequest.Create("http://www.reedcopsey.com"); webRequest.GetReponseAsync().ContinueWith(t => { using (var sr = new StreamReader(t.Result.GetResponseStream())) { string str = sr.ReadLine();; this.textBox1.Text = string.Format("Page at {0} supports XHTML 1.0: {1}", t.Result.ResponseUri, str.Contains("XHTML 1.0")); } }, TaskScheduler.FromCurrentSynchronizationContext());   By using a continuation with a TaskScheduler based on the current synchronization context, we can keep this request asynchronous, check based on the first line of the response string, and report the results back on our UI directly.

    Read the article

  • C# 5 Async, Part 2: Asynchrony Today

    - by Reed
    The .NET Framework has always supported asynchronous operations.  However, different mechanisms for supporting exist throughout the framework.  While there are at least three separate asynchronous patterns used through the framework, only the latest is directly usable with the new Visual Studio Async CTP.  Before delving into details on the new features, I will talk about existing asynchronous code, and demonstrate how to adapt it for use with the new pattern. The first asynchronous pattern used in the .NET framework was the Asynchronous Programming Model (APM).  This pattern was based around callbacks.  A method is used to start the operation.  It typically is named as BeginSomeOperation.  This method is passed a callback defined as an AsyncCallback, and returns an object that implements IAsyncResult.  Later, the IAsyncResult is used in a call to a method named EndSomeOperation, which blocks until completion and returns the value normally directly returned from the synchronous version of the operation.  Often, the EndSomeOperation call would be called from the callback function passed, which allows you to write code that never blocks. While this pattern works perfectly to prevent blocking, it can make quite confusing code, and be difficult to implement.  For example, the sample code provided for FileStream’s BeginRead/EndRead methods is not simple to understand.  In addition, implementing your own asynchronous methods requires creating an entire class just to implement the IAsyncResult. Given the complexity of the APM, other options have been introduced in later versions of the framework.  The next major pattern introduced was the Event-based Asynchronous Pattern (EAP).  This provides a simpler pattern for asynchronous operations.  It works by providing a method typically named SomeOperationAsync, which signals its completion via an event typically named SomeOperationCompleted. The EAP provides a simpler model for asynchronous programming.  It is much easier to understand and use, and far simpler to implement.  Instead of requiring a custom class and callbacks, the standard event mechanism in C# is used directly.  For example, the WebClient class uses this extensively.  A method is used, such as DownloadDataAsync, and the results are returned via the DownloadDataCompleted event. While the EAP is far simpler to understand and use than the APM, it is still not ideal.  By separating your code into method calls and event handlers, the logic of your program gets more complex.  It also typically loses the ability to block until the result is received, which is often useful.  Blocking often requires writing the code to block by hand, which is error prone and adds complexity. As a result, .NET 4 introduced a third major pattern for asynchronous programming.  The Task<T> class introduced a new, simpler concept for asynchrony.  Task and Task<T> effectively represent an operation that will complete at some point in the future.  This is a perfect model for thinking about asynchronous code, and is the preferred model for all new code going forward.  Task and Task<T> provide all of the advantages of both the APM and the EAP models – you have the ability to block on results (via Task.Wait() or Task<T>.Result), and you can stay completely asynchronous via the use of Task Continuations.  In addition, the Task class provides a new model for task composition and error and cancelation handling.  This is a far superior option to the previous asynchronous patterns. The Visual Studio Async CTP extends the Task based asynchronous model, allowing it to be used in a much simpler manner.  However, it requires the use of Task and Task<T> for all operations.

    Read the article

  • Suggestions for doing async I/O with Task Parallel Library

    - by anelson
    I have some high performance file transfer code which I wrote in C# using the Async Programming Model (APM) idiom (eg, BeginRead/EndRead). This code reads a file from a local disk and writes it to a socket. For best performance on modern hardware, it's important to keep more than one outstanding I/O operation in flight whenever possible. Thus, I post several BeginRead operations on the file, then when one completes, I call a BeginSend on the socket, and when that completes I do another BeginRead on the file. The details are a bit more complicated than that but at the high level that's the idea. I've got the APM-based code working, but it's very hard to follow and probably has subtle concurrency bugs. I'd love to use TPL for this instead. I figured Task.Factory.FromAsync would just about do it, but there's a catch. All of the I/O samples I've seen (most particularly the StreamExtensions class in the Parallel Extensions Extras) assume one read followed by one write. This won't perform the way I need. I can't use something simple like Parallel.ForEach or the Extras extension Task.Factory.Iterate because the async I/O tasks don't spend much time on a worker thread, so Parallel just starts up another task, resulting in potentially dozens or hundreds of pending I/O operations; way too much! You can work around that by Waiting on your tasks, but that causes creation of an event handle (a kernel object), and a blocking wait on a task wait handle, which ties up a worker thread. My APM-based implementation avoids both of those things. I've been playing around with different ways to keep multiple read/write operations in flight, and I've managed to do so using continuations that call a method that creates another task, but it feels awkward, and definitely doesn't feel like idiomatic TPL. Has anyone else grappled with an issue like this with the TPL? Any suggestions?

    Read the article

  • Alternatives to Java for Android development?

    - by paul.meier
    Hey all, I've started developing Android apps a couple of months ago, and have a few under my belt. While I can tolerate Java enough to keep developing, I was wondering what success the community has had getting other languages to run. I've done some investigation as to how other JVM languages work, and it appears Dalvik messes them up pretty hard. Clojure seems unable to run, Scala seems to be one of the most successful. JRuby has also had some luck, but they caution against anything major. I've also checked out Scheme via Moby and Kawa, both of which seem to have some promise. What luck have any of you had? Languages I'm missing, misrepresenting? Any non-"Hello World" apps you've written in non-Java? Any snags in trying to get another language to run (e.g. "as long as you don't use continuations, you're fine in X Scheme"). Any particular snags in developing apps non-Java, once you get them to run? Thanks, hope you well ^_^

    Read the article

  • Comet Jetty/Tomcat, having some browser issues with Firefox and Chrome

    - by ages04
    I am exploring the use of Comet for a project I am working on. I tried creating a test application first using Tomcat6 and CometProcessor API and then with Jetty7 Continuations. The application is kind of working on both but I am having some issues with the actual display of messages. I used the technique of creating an XMLHttpRequest Connection and keeping it open all the time so the server can continuously push data to all the clients connected whenever it is available. My client side code is something similar to this: function fn(){ var xhr = new XMLHttpRequest(); xhr.onreadystatechange = function(){ if (xhr.readyState==3){ document.getElementById('dv').innerHTML =(xhr.responseText); } if (xhr.readyState==4){ alert ('done'); } } xhr.open("GET", "First", true); xhr.send(null); } I found this thing of using readyState 3 somewhere online. I am facing 2 problems currently: In Firefox this code works perfectly. But if I open a new tab or even a new browser window, it does not make a new connection to the server and nothing shows up on the new tab or window, only the first tab/window gets the display. I used wireshark to check this and its shows only 1 connection even after the 2nd tab is opened. I am unable to understand why this would happen. I have read about the 2 connection limit, but here there is only one connection. Secondly in Chrome, the above code does not work, and the callback is not invoked for readystate of 3, only when the connection is closed by the server i get the output. I would also like to ask which is the best way/framework for doing Comet with Java. I am currently using jQuery on the client side. Any suggestions would be greatly appreciated!! Thanks

    Read the article

  • Available Coroutine Libraries in Java

    - by JUST MY correct OPINION
    I would like to do some stuff in Java that would be clearer if written using concurrent routines, but for which full-on threads are serious overkill. The answer, of course, is the use of coroutines, but there doesn't appear to be any coroutine support in the standard Java libraries and a quick Google on it brings up tantalising hints here or there, but nothing substantial. Here's what I've found so far: JSIM has a coroutine class, but it looks pretty heavyweight and conflates, seemingly, with threads at points. The point of this is to reduce the complexity of full-on threading, not to add to it. Further I'm not sure that the class can be extracted from the library and used independently. Xalan has a coroutine set class that does coroutine-like stuff, but again it's dubious if this can be meaningfully extracted from the overall library. It also looks like it's implemented as a tightly-controlled form of thread pool, not as actual coroutines. There's a Google Code project which looks like what I'm after, but if anything it looks more heavyweight than using threads would be. I'm basically nervous of something that requires software to dynamically change the JVM bytecode at runtime to do its work. This looks like overkill and like something that will cause more problems than coroutines would solve. Further it looks like it doesn't implement the whole coroutine concept. By my glance-over it gives a yield feature that just returns to the invoker. Proper coroutines allow yields to transfer control to any known coroutine directly. Basically this library, heavyweight and scary as it is, only gives you support for iterators, not fully-general coroutines. The promisingly-named Coroutine for Java fails because it's a platform-specific (obviously using JNI) solution. And that's about all I've found. I know about the native JVM support for coroutines in the Da Vinci Machine and I also know about the JNI continuations trick for doing this. These are not really good solutions for me, however, as I would not necessarily have control over which VM or platform my code would run on. (Indeed any bytecode manipulation system would suffer similar problems -- it would be best were this pure Java if possible. Runtime bytecode manipulation would restrict me from using this on Android, for example.) So does anybody have any pointers? Is this even possible? If not, will it be possible in Java 7? Edited to add: Just to ensure that confusion is contained, this is a related question to my other one, but not the same. This one is looking for an existing implementation in a bid to avoid reinventing the wheel unnecessarily. The other one is a question relating to how one would go about implementing coroutines in Java should this question prove unanswerable. The intent is to keep different questions on different threads.

    Read the article

  • Coroutines in Java

    - by JUST MY correct OPINION
    I would like to do some stuff in Java that would be clearer if written using concurrent routines, but for which full-on threads are serious overkill. The answer, of course, is the use of coroutines, but there doesn't appear to be any coroutine support in the standard Java libraries and a quick Google on it brings up tantalising hints here or there, but nothing substantial. Here's what I've found so far: JSIM has a coroutine class, but it looks pretty heavyweight and conflates, seemingly, with threads at points. The point of this is to reduce the complexity of full-on threading, not to add to it. Further I'm not sure that the class can be extracted from the library and used independently. Xalan has a coroutine set class that does coroutine-like stuff, but again it's dubious if this can be meaningfully extracted from the overall library. It also looks like it's implemented as a tightly-controlled form of thread pool, not as actual coroutines. There's a Google Code project which looks like what I'm after, but if anything it looks more heavyweight than using threads would be. I'm basically nervous of something that requires software to dynamically change the JVM bytecode at runtime to do its work. This looks like overkill and like something that will cause more problems than coroutines would solve. Further it looks like it doesn't implement the whole coroutine concept. By my glance-over it gives a yield feature that just returns to the invoker. Proper coroutines allow yields to transfer control to any known coroutine directly. Basically this library, heavyweight and scary as it is, only gives you support for iterators, not fully-general coroutines. The promisingly-named Coroutine for Java fails because it's a platform-specific (obviously using JNI) solution. And that's about all I've found. I know about the native JVM support for coroutines in the Da Vinci Machine and I also know about the JNI continuations trick for doing this. These are not really good solutions for me, however, as I would not necessarily have control over which VM or platform my code would run on. (Indeed any bytecode manipulation system would suffer similar problems -- it would be best were this pure Java if possible. Runtime bytecode manipulation would restrict me from using this on Android, for example.) So does anybody have any pointers? Is this even possible? If not, will it be possible in Java 7?

    Read the article

  • Is this implementation truely tail-recursive?

    - by CFP
    Hello everyone! I've come up with the following code to compute in a tail-recursive way the result of an expression such as 3 4 * 1 + cos 8 * (aka 8*cos(1+(3*4))) The code is in OCaml. I'm using a list refto emulate a stack. type token = Num of float | Fun of (float->float) | Op of (float->float->float);; let pop l = let top = (List.hd !l) in l := List.tl (!l); top;; let push x l = l := (x::!l);; let empty l = (l = []);; let pile = ref [];; let eval data = let stack = ref data in let rec _eval cont = match (pop stack) with | Num(n) -> cont n; | Fun(f) -> _eval (fun x -> cont (f x)); | Op(op) -> _eval (fun x -> cont (op x (_eval (fun y->y)))); in _eval (fun x->x) ;; eval [Fun(fun x -> x**2.); Op(fun x y -> x+.y); Num(1.); Num(3.)];; I've used continuations to ensure tail-recursion, but since my stack implements some sort of a tree, and therefore provides quite a bad interface to what should be handled as a disjoint union type, the call to my function to evaluate the left branch with an identity continuation somehow irks a little. Yet it's working perfectly, but I have the feeling than in calling the _eval (fun y->y) bit, there must be something wrong happening, since it doesn't seem that this call can replace the previous one in the stack structure... Am I misunderstanding something here? I mean, I understand that with only the first call to _eval there wouldn't be any problem optimizing the calls, but here it seems to me that evaluation the _eval (fun y->y) will require to be stacked up, and therefore will fill the stack, possibly leading to an overflow... Thanks!

    Read the article

  • A Nondeterministic Engine written in VB.NET 2010

    - by neil chen
    When I'm reading SICP (Structure and Interpretation of Computer Programs) recently, I'm very interested in the concept of an "Nondeterministic Algorithm". According to wikipedia:  In computer science, a nondeterministic algorithm is an algorithm with one or more choice points where multiple different continuations are possible, without any specification of which one will be taken. For example, here is an puzzle came from the SICP: Baker, Cooper, Fletcher, Miller, and Smith live on different floors of an apartment housethat contains only five floors. Baker does not live on the top floor. Cooper does not live onthe bottom floor. Fletcher does not live on either the top or the bottom floor. Miller lives ona higher floor than does Cooper. Smith does not live on a floor adjacent to Fletcher's.Fletcher does not live on a floor adjacent to Cooper's. Where does everyone live? After reading this I decided to build a simple nondeterministic calculation engine with .NET. The rough idea is that we can use an iterator to track each set of possible values of the parameters, and then we implement some logic inside the engine to automate the statemachine, so that we can try one combination of the values, then test it, and then move to the next. We also used a backtracking algorithm to go back when we are running out of choices at some point. Following is the core code of the engine itself: Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--Public Class NonDeterministicEngine Private _paramDict As New List(Of Tuple(Of String, IEnumerator)) 'Private _predicateDict As New List(Of Tuple(Of Func(Of Object, Boolean), IEnumerable(Of String))) Private _predicateDict As New List(Of Tuple(Of Object, IList(Of String))) Public Sub AddParam(ByVal name As String, ByVal values As IEnumerable) _paramDict.Add(New Tuple(Of String, IEnumerator)(name, values.GetEnumerator())) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(1, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(2, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(3, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(4, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(5, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(6, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(7, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(8, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Sub CheckParamCount(ByVal count As Integer, ByVal paramNames As IList(Of String)) If paramNames.Count <> count Then Throw New Exception("Parameter count does not match.") End If End Sub Public Property IterationOver As Boolean Private _firstTime As Boolean = True Public ReadOnly Property Current As Dictionary(Of String, Object) Get If IterationOver Then Return Nothing Else Dim _nextResult = New Dictionary(Of String, Object) For Each item In _paramDict Dim iter = item.Item2 _nextResult.Add(item.Item1, iter.Current) Next Return _nextResult End If End Get End Property Function MoveNext() As Boolean If IterationOver Then Return False End If If _firstTime Then For Each item In _paramDict Dim iter = item.Item2 iter.MoveNext() Next _firstTime = False Return True Else Dim canMoveNext = False Dim iterIndex = _paramDict.Count - 1 canMoveNext = _paramDict(iterIndex).Item2.MoveNext If canMoveNext Then Return True End If Do While Not canMoveNext iterIndex = iterIndex - 1 If iterIndex = -1 Then Return False IterationOver = True End If canMoveNext = _paramDict(iterIndex).Item2.MoveNext If canMoveNext Then For i = iterIndex + 1 To _paramDict.Count - 1 Dim iter = _paramDict(i).Item2 iter.Reset() iter.MoveNext() Next Return True End If Loop End If End Function Function GetNextResult() As Dictionary(Of String, Object) While MoveNext() Dim result = Current If Satisfy(result) Then Return result End If End While Return Nothing End Function Function Satisfy(ByVal result As Dictionary(Of String, Object)) As Boolean For Each item In _predicateDict Dim pred = item.Item1 Select Case item.Item2.Count Case 1 Dim p1 = DirectCast(pred, Func(Of Object, Boolean)) Dim v1 = result(item.Item2(0)) If Not p1(v1) Then Return False End If Case 2 Dim p2 = DirectCast(pred, Func(Of Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) If Not p2(v1, v2) Then Return False End If Case 3 Dim p3 = DirectCast(pred, Func(Of Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) If Not p3(v1, v2, v3) Then Return False End If Case 4 Dim p4 = DirectCast(pred, Func(Of Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) If Not p4(v1, v2, v3, v4) Then Return False End If Case 5 Dim p5 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) If Not p5(v1, v2, v3, v4, v5) Then Return False End If Case 6 Dim p6 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) Dim v6 = result(item.Item2(5)) If Not p6(v1, v2, v3, v4, v5, v6) Then Return False End If Case 7 Dim p7 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) Dim v6 = result(item.Item2(5)) Dim v7 = result(item.Item2(6)) If Not p7(v1, v2, v3, v4, v5, v6, v7) Then Return False End If Case 8 Dim p8 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) Dim v6 = result(item.Item2(5)) Dim v7 = result(item.Item2(6)) Dim v8 = result(item.Item2(7)) If Not p8(v1, v2, v3, v4, v5, v6, v7, v8) Then Return False End If Case Else Throw New NotSupportedException End Select Next Return True End FunctionEnd Class    And now we can use the engine to solve the problem we mentioned above:   Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--Sub Test2() Dim engine = New NonDeterministicEngine() engine.AddParam("baker", {1, 2, 3, 4, 5}) engine.AddParam("cooper", {1, 2, 3, 4, 5}) engine.AddParam("fletcher", {1, 2, 3, 4, 5}) engine.AddParam("miller", {1, 2, 3, 4, 5}) engine.AddParam("smith", {1, 2, 3, 4, 5}) engine.AddRequire(Function(baker) As Boolean Return baker <> 5 End Function, {"baker"}) engine.AddRequire(Function(cooper) As Boolean Return cooper <> 1 End Function, {"cooper"}) engine.AddRequire(Function(fletcher) As Boolean Return fletcher <> 1 And fletcher <> 5 End Function, {"fletcher"}) engine.AddRequire(Function(miller, cooper) As Boolean 'Return miller = cooper + 1 Return miller > cooper End Function, {"miller", "cooper"}) engine.AddRequire(Function(smith, fletcher) As Boolean Return smith <> fletcher + 1 And smith <> fletcher - 1 End Function, {"smith", "fletcher"}) engine.AddRequire(Function(fletcher, cooper) As Boolean Return fletcher <> cooper + 1 And fletcher <> cooper - 1 End Function, {"fletcher", "cooper"}) engine.AddRequire(Function(a, b, c, d, e) As Boolean Return a <> b And a <> c And a <> d And a <> e And b <> c And b <> d And b <> e And c <> d And c <> e And d <> e End Function, {"baker", "cooper", "fletcher", "miller", "smith"}) Dim result = engine.GetNextResult() While Not result Is Nothing Console.WriteLine(String.Format("baker: {0}, cooper: {1}, fletcher: {2}, miller: {3}, smith: {4}", result("baker"), result("cooper"), result("fletcher"), result("miller"), result("smith"))) result = engine.GetNextResult() End While Console.WriteLine("Calculation ended.")End Sub   Also, this engine can solve the classic 8 queens puzzle and find out all 92 results for me.   Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--Sub Test3() ' The 8-Queens problem. Dim engine = New NonDeterministicEngine() ' Let's assume that a - h represents the queens in row 1 to 8, then we just need to find out the column number for each of them. engine.AddParam("a", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("b", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("c", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("d", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("e", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("f", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("g", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("h", {1, 2, 3, 4, 5, 6, 7, 8}) Dim NotInTheSameDiagonalLine = Function(cols As IList) As Boolean For i = 0 To cols.Count - 2 For j = i + 1 To cols.Count - 1 If j - i = Math.Abs(cols(j) - cols(i)) Then Return False End If Next Next Return True End Function engine.AddRequire(Function(a, b, c, d, e, f, g, h) As Boolean Return a <> b AndAlso a <> c AndAlso a <> d AndAlso a <> e AndAlso a <> f AndAlso a <> g AndAlso a <> h AndAlso b <> c AndAlso b <> d AndAlso b <> e AndAlso b <> f AndAlso b <> g AndAlso b <> h AndAlso c <> d AndAlso c <> e AndAlso c <> f AndAlso c <> g AndAlso c <> h AndAlso d <> e AndAlso d <> f AndAlso d <> g AndAlso d <> h AndAlso e <> f AndAlso e <> g AndAlso e <> h AndAlso f <> g AndAlso f <> h AndAlso g <> h AndAlso NotInTheSameDiagonalLine({a, b, c, d, e, f, g, h}) End Function, {"a", "b", "c", "d", "e", "f", "g", "h"}) Dim result = engine.GetNextResult() While Not result Is Nothing Console.WriteLine("(1,{0}), (2,{1}), (3,{2}), (4,{3}), (5,{4}), (6,{5}), (7,{6}), (8,{7})", result("a"), result("b"), result("c"), result("d"), result("e"), result("f"), result("g"), result("h")) result = engine.GetNextResult() End While Console.WriteLine("Calculation ended.")End Sub (Chinese version of the post: http://www.cnblogs.com/RChen/archive/2010/05/17/1737587.html) Cheers,  

    Read the article

  • CodePlex Daily Summary for Thursday, April 01, 2010

    CodePlex Daily Summary for Thursday, April 01, 2010New ProjectsASP.NET Bing Maps: Extensible and easy to use, this is ASP.NET Bing Maps Control. Drag & Drop and is ready to go. You can configure map mode, map style, add a PushPin...Bricks' Bane: Bricks' Bane is a brick breaker game developed using XNA and published on XBox Live Indy Games. Source code includes a C# library useful for game d...cURL for dotnet: Another dotnet binding for libcurl see http://curl.haxx.se for more info about cURL/libcurlCustom Functoid que acessa o banco de dados SQL: Functoid para Biztalk Server 2006 utilizando dados do SQL Server 2005FEI STU Pharmacy e-shop: Elektronicky obchod s liekmi Vytvorte jednoduchú klient-server aplikáciu, ktorá bude realizovať elektronický obchod s liekmi. Moduly: 1. e-shop f...Flavours of Wix: Investigating building DSL's to create installers based on WIXFulcrum: Fulcrum is a code generation framework built on top of the T4 technology in Visual Studio. GreviousAngel: New team projectHabanero Inferno: Habanero Inferno coming soon.Kawo Pounga !: A useless game !!!LetsXNA!!: This is a project created by members of Linked In group Lets XNA!! to build a XNA game and have fun in the process. The goal is to build a simple ...Linq To Naver , Custom Linq Provider for Naver searchengine OpenAPI: <project name>Linq to Naver </project name> <programming language>C#, CSharp</programming language>LocoSync: LocoSync is a file Syncronization/Backup/Archiver program, which is easily extendable. It is easy to add new syncronization methods using C# code.Natural Language Processing: Natural Language ProcessingNop Commerce Azure: Ce projet vous permet de mettre en place rapidement et simplement votre site d'e-commerce en ligne en bénéficiant de tous les avantages de la plate...Nwinsock: Nwinsock is a component for network , Object Transfer, Pocket Compression, Support TCP,UDP Protocol, Thread Base OnTime: OnTime is a simple program from that matching game back in the day just to bring light to programming techniques. It's developed in C#.?OpenGL ES 2.0 Compact Framework Wrapper: OpenGL ES 2.0 wrapper for .NET Compact Framework. Developed on HTC HD 2 device but should run on any Windows Mobile device that has the correct lib...ortaknokta: bu proje: birkaç kişinin bir araya gelip, istedikleri konularda tartışma yapmalarına olanak saglamak icin hazırlanmaya çalışıl maktadır. P-Data: P-Data es una herramienta que permite obtener información procedente de archivos de datos (Data Profiling) a través de consultas SQL, automatizando...PowerAuras: Addon for World of Warcraft - Displays effects on screen at different conditionsPowerShell ToodleDo Module: PowerShell Module for interacting with toodledo.com online To-Do list site. RSS Reader for Windows Phone 7: This RSS Reader application for windows 7Streamlet Containers: This is my implement of STL-style containers, including a dynamic array, a double-linked list and an r-b-tree. Just for practice. Please feel free...Troav: Social encyclopedia built using c# and the Orchard frameworkUmbraco App_Code/Usercontrol Editor: Package for Umbraco to add App_Code and usercontrol editing to the Developer section of the Umbraco administration system. Will support GeSHi editi...Vczh Reactive Programming Library: Reactive programming library provide a stream or state machine view to use .NET eventsWhoIs XML API: The project uses the public WhoIs XML API service (http://www.whoisxmlapi.com/) to obtain detailed details. The project is written in C# and serial...WPF FlowDocument Examples for VS2008 and VS2010: WPF Text Samples (especially FlowDocument) on the various possible effects: sub- and super-script, ruby (a.k.a. furigana), and various others...You are here (for Windows Mobile): This sample shows you how to play a *.wav file on your device with Compact Framework 2.0. There is better support for playing music on Compact F...New Releases( λunula ): Lunula 0.4.0: Changelog Implemented a virtual machine. Implemented a compiler for the virtual machine. Added first-class continuations (call/cc) Removed co...Alter gear SQL index Management: Setup 1.0.1: Changes Test connection - successful message Connection string timeout property added Setup Project added to project source code Possible issu...ASP.NET Bing Maps: ASP.NET Bing Maps 0.1b: Project Description Extensible and easy to use, this is ASP.NET Bing Maps Control. Drag & Drop and is ready to go. You can configure map mode, map ...ASP.NET MVC Validation Library: ASP.NET MVC Validation Library 1.3: Changes since 1.2: - Support remote validation - Support custom server-side validation - The design of validation attribute is improved Note: test...BigDays 2010: HelfenHelfen - v1: PLEASE NOTE: This project is published under the Microsoft Public License (Ms-PL). http://bigdays10.codeplex.com/license IT IS A DEMO SOLUTION FOR...Caps - Manage your collection!: Caps Console 0.1.4.0 Alpha: This is preview release (Alpha quality). This release contains only limited amount of fixes and new features from user point of view. Major focus f...CSharpQuery: Version 1.0: This version is stable. Please report any possible bugs. The next release will include a sample project and index management tools. Until then pl...Custom Functoid que acessa o banco de dados SQL: Custom Functoid SQL Server: Solução do Visual Studio com código fonte e script SQL do functoid em BiztalkDawf: Dual Audio Workflow: Beta 3: Suppose if two good audio events overlap in time with a videoevent of interest. (This can only happen if PluralEyes isn't used on everything). Befo...Dirac codec user interface: Dirac User Interface (checkin 37132): Same as 36795 version, but done with the last source code.DotNetNuke® Blog: 04.00.00 RC 3: PLEASE NOTE: You may upgrade an RC 2 install. But please do not upgrade previous version of the Beta releases - please start from RC 2 or 03.05.0...DotNetNuke® Skinning Extensions: SimpleTitle Skin Object: This is an example skin object that only renders the "page name" if used in a skin and the "module title" if used in a container. No extra spans, c...Fulcrum: Fulcrum v0.9: Initial release of FulcrumHelloTipi Photos Uploader: Version 2010.03.31: De toute petites corrections : - Correction du bouton envoyer - Impossible d'interagir avec l'application quand on uploadkdar: KDAR 0.0.18: KDAR - Kernel Debugger Anti Rootkit - dispacth table's signature bases updated ( many driver's) - scripts refactored - some bug fixedLegend: Legend Libraries: The latest release.Linq To Naver , Custom Linq Provider for Naver searchengine OpenAPI: Linq to Naver: Linq to NaverLive at Education Meta Web-Service: Live at Education Meta Web Service v. 1.0: We're happy to publish final version of Live at Education Meta Web Serivce (LAEMWS). In this release: Huge list of Windows Live ID enabled servic...Live@edu SSO WebPart for MOSS 2007: WebPart 2.0: This release is based on Live@edu Meta Web Service (laemws - http://laemws.codeplex.com). It is highly recomended to use laemws version of webpart,...LocoSync: LocoSync v0.1r2010.03.31 installer: This is the first public release. Unzip and run setup. Or if you have .net 3.5 runtime available download the exetutable and try...Natural Language Processing: test1: testNop Commerce Azure: Nop Commerce Azure: Nop Commerce Full Sources with additionnals Azure Projects.Nwinsock: NWinsock: Nwinsock version 1.0 is hereOpen NFe: DANFe v1.9.8: Correção CSTOpenGL ES 2.0 Compact Framework Wrapper: v0.1 Sources: First rough release. It has a working sample application which renders a triangle with rotation. Don't expect anything great. Just a very early ...patterns & practices - Windows Azure Guidance: Code Drop 3: Second iteration of a-Expense on Azure. This release builds on the previous one and mainly focuses on replacing SQL Azure by Table Storage. We hav...Posh4DNN: Posh4DNN Scripts 2.0: This release greatly increases the speed of installation and incorporates the use of IIS and SQL Server Snap-ins for managing those services. Inst...Process Enactment Tool Framework: PET 1.1: PET Core new intermediate model with arbitrary "clean" relations among objects and several updates of the object fields (see DependencyInterfacesA...Project Tru Tiên: Elements-test V1-fix (v1): Là Elements-test V1 đã được fix các vấn đề sau: - Fix lỗi hiển thị thú cưỡi Hổ Kỳ Lân - Fix hiển thị tab tiếng trung --> sang tiếng việt - Fix hiể...Sentinel - Log Viewer: Sentinel 0.8.1 (nLog support): Build of the 0.8.1 code (svn revision 36823) which included support for both nLog and log4net that has been in SVN for a while but didn't have a bi...sgMotion Animation Library: SgMotion v1.1 (For Sunburn 1.3.1): SgMotion v1.1 (For Sunburn 1.3.1) This release includes both a Windows & Xbox sample. The sample is set to default at Forward rendering, but can e...sTASKedit: sTASKedit 44538 (Developer Alpha): + nearly all fields are viewed in this release for task verification and identifying of unknownsTest Project (ignore): asdf asdf asdf asdf asdf asdf asdf sadf sdf asdf a: ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ...Test Project (ignore): cdscs: csdcacacTroav: Traov20100331 Source Pre-Alpah: This is some experiements with implementing custom modules with Microsoft's Orchard frame work. This is very preliminary, and subject to change.Weather Report WebControls: WebWeatherReport: 主要文件的源代码WhoIs XML API: Initial Release: Initial ReleaseYou are here (for Windows Mobile): CAB file and Source Code: You can find more Controls and samples for Windows Mobile developers at: http://www.beemobile4.netMost Popular ProjectshmrEngineRawrWBFS ManagerASP.NET Ajax LibraryMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)ASP.NETLiveUpload to FacebookMost Active ProjectsRawrGraffiti CMSBase Class LibrariesjQuery Library for SharePoint Web ServicesBlogEngine.NETMicrosoft Biology FoundationN2 CMSLINQ to TwitterManaged Extensibility FrameworkFarseer Physics Engine

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

< Previous Page | 1 2