Search Results

Search found 47 results on 2 pages for 'deque'.

Page 2/2 | < Previous Page | 1 2 

  • Catching a nested-in-template exception [C++]

    - by Karol
    Hello, I have a problem with writing a catch clause for an exception that is a class nested in a template. To be more specific, I have a following definition of the template and exception: /** Generic stack implementation. Accepts std::list, std::deque and std::vector as inner container. */ template < typename T, template < typename Element, typename = std::allocator<Element> > class Container = std::deque > class stack { public: class StackEmptyException { }; ... /** Returns value from the top of the stack. Throws StackEmptyException when the stack is empty. */ T top() const; ... } I have a following template method that I want exception to catch: template <typename Stack> void testTopThrowsStackEmptyExceptionOnEmptyStack() { Stack stack; std::cout << "Testing top throws StackEmptyException on empty stack..."; try { stack.top(); } catch (Stack::StackEmptyException) { // as expected. } std::cout << "success." << std::endl; } When I compile it (-Wall, -pedantic) I get the following error: In function ‘void testTopThrowsStackEmptyExceptionOnEmptyStack()’: error: expected type-specifier error: expected unqualified-id before ‘)’ token === Build finished: 2 errors, 0 warnings === Thanks in advance for any help! What is interesting, if the stack implementation was not a template, then the compiler would accept the code as it is.

    Read the article

  • Is it possible to implement events in C++?

    - by acidzombie24
    I wanted to implement a C# event in C++ just to see if i could do it. I got stuck, i know the bottom is wrong but what i realize my biggest problem is... How do i overload the () operator to be whatever is in T in this case int func(float)? I cant? can i? Can i implement a good alternative? #include <deque> using namespace std; typedef int(*MyFunc)(float); template<class T> class MyEvent { deque<T> ls; public: MyEvent& operator +=(T t) { ls.push_back(t); return *this; } }; static int test(float f){return (int)f; } int main(){ MyEvent<MyFunc> e; e += test; }

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Java equivalent of C++ std::map?

    - by Rudiger
    I'm looking for a Java class with the characteristics of C++ std::map's usual implementation (as I understand it, a self-balancing binary search tree): O(log n) performance for insertion/removal/search Each element is composed of a unique key and a mapped value Keys follow a strict weak ordering I'm looking for implementations with open source or design documents; I'll probably end up rolling my own support for primitive keys/values. This question's style is similar to: Java equivalent of std::deque, whose answer was "ArrayDeque from Primitive Collections for Java".

    Read the article

  • CodePlex Daily Summary for Wednesday, November 07, 2012

    CodePlex Daily Summary for Wednesday, November 07, 2012Popular ReleasesMetodología General Ajustada - MGA: 03.04.03: Cambios Parmenio: Ajustes al formato F02 de programación para que la sincronización de las grillas no afecte el guardado de los datos. Cambios John: Integración de código con cambios enviados por Parmenio. Generación de instaladores. Soporte técnico por correo electrónico, telefónico y en sitio.nAPI for Windows Phone: Naver Open API Library Assemblies and Source Codes: nAPI (Naver Open API Library) for Windows Family Tested on - Windows 8 (Windows Store App) - Windows Phone 7 - Windows Phone 8 (Emulator)X-tee.NET: Xtee.NET 1.0: Generaator ja teegidFiskalizacija za developere: FiskalizacijaDev 1.2: Verzija 1.2. je, prije svega, odgovor na novu verziju Tehnicke specifikacije (v1.1.) koja je objavljena prije nekoliko dana. Pored novosti vezanih uz (sitne) izmjene u spomenutoj novoj verziji Tehnicke dokumentacije, projekt smo prošili sa nekim dodatnim feature-ima od kojih je vecina proizašla iz vaših prijedloga - hvala :) Novosti u v1.2. su: - Neusuglašenost zahtjeva (http://fiskalizacija.codeplex.com/workitem/645) - Sample projekt - iznosi se množe sa 100 (http://fiskalizacija.codeplex.c...PowerComboBox: PowerComboBox VB v1.0: Visual Basic source code class file.Edi: Themable Edi: Completed ExpressionDark theme Improved Error Handling and Reporting feature Refactored all views to be look-less controlsMFCMAPI: October 2012 Release: Build: 15.0.0.1036 Full release notes at SGriffin's blog. If you just want to run the MFCMAPI or MrMAPI, get the executables. If you want to debug them, get the symbol files and the source. The 64 bit builds will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit builds, regardless of the operating system. Facebook BadgeJayData - The cross-platform HTML5 data-management library for JavaScript: JayData 1.2.3: JayData is a unified data access library for JavaScript to CRUD + Query data from different sources like OData, MongoDB, WebSQL, SqLite, HTML5 localStorage, Facebook or YQL. The library can be integrated with Knockout.js or Sencha Touch 2 and can be used on Node.js as well. See it in action in this 6 minutes video Sencha Touch 2 example app using JayData: Netflix browser. What's new in JayData 1.2.3 For detailed release notes check the release notes. TypeScript supportWrite your code in a ...SSIS Expression Editor & Tester: Expression Editor and Tester v1.0.8.0: Getting Started Download and extract the files, no install required. The ExpressionEditor.zip download contains a folder for each SQL Server version. ExpressionEditor2005 ExpressionEditor2008 ExpressionEditor2012 Changes Fixed issues 32868 and 33291 raised by BIDS Helper users. No functional changes from previous release. Versions There are three versions included, all built from the same code with the same functionality, but each targeting a different release of SQL Server. The downlo...MCEBuddy 2.x: MCEBuddy 2.3.7: Changelog for 2.3.7 (32bit and 64bit) 1. Improved performance of MP4 Fast and M4V Fast Profiles (no deinterlacing, removed --decomb) 2. Improved priority handling 3. Added support for Pausing and Resume conversions 4. Added support for fallback to source directory if network destination directory is unavailable 5. MCEBuddy now installs ShowAnalyzer during installation 6. Added support for long description atom in iTunesFoxyXLS: FoxyXLS Releases: Source code and samplesDyanamic Reports (RDLC) - SharePoint 2010 Visual WebPart: Initial Release: This is a Initial Release.HTML Renderer: HTML Renderer 1.0.0.0 (3): Major performance improvement (http://theartofdev.wordpress.com/2012/10/25/how-i-optimized-html-renderer-and-fell-in-love-with-vs-profiler/) Minor fixes raised in issue tracker and discussions.ProDinner - ASP.NET MVC Sample (EF4.4, N-Tier, jQuery): 8: update to ASP.net MVC Awesome 3.0 udpate to EntityFramework 4.4 update to MVC 4 added dinners grid on homepageASP.net MVC Awesome - jQuery Ajax Helpers: 3.0: added Grid helper added XML Documentation added textbox helper added Client Side API for AjaxList removed .SearchButton from AjaxList AjaxForm and Confirm helpers have been merged into the Form helper optimized html output for AjaxDropdown, AjaxList, Autocomplete works on MVC 3 and 4BlogEngine.NET: BlogEngine.NET 2.7: Cheap ASP.NET Hosting - $4.95/Month - Click Here!! Click Here for More Info Cheap ASP.NET Hosting - $4.95/Month - Click Here! If you want to set up and start using BlogEngine.NET right away, you should download the Web project. If you want to extend or modify BlogEngine.NET, you should download the source code. If you are upgrading from a previous version of BlogEngine.NET, please take a look at the Upgrading to BlogEngine.NET 2.7 instructions. If you looking for Web Application Project, ...Launchbar: Launchbar 4.2.2.0: This release is the first step in cleaning up the code and using all the latest features of .NET 4.5 Changes 4.2.2 (2012-11-02) Improved handling of left clicks 4.1.0 (2012-10-17) Removed tray icon Assembly renamed and signed with strong name Note When you upgrade, Launchbar will start with the default settings. You can import your previous settings by following these steps: Run Launchbar and just save the settings without configuring anything Shutdown Launchbar Go to the folder %LOCA...Mouse Jiggler: MouseJiggle-1.3: This adds the much-requested minimize-to-tray feature to Mouse Jiggler.Umbraco CMS: Umbraco 4.10.0 Release Candidate: This is a Release Candidate, which means that if we do not find any major issues in the next week, we will release this version as the final release of 4.10.0 on November 9th, 2012. The documentation for the MVC bits still lives in the Github version of the docs for now and will be updated on our.umbraco.org with the final release of 4.10.0. Browse the documentation here: https://github.com/umbraco/Umbraco4Docs/tree/4.8.0/Documentation/Reference/Mvc If you want to do only MVC then make sur...Skype Auto Recorder: SkypeAutoRecorder 1.3.4: New icon and images. Reworked settings window. Implemented high-quality sound encoding. Implemented a possibility to produce stereo records. Added buttons with system-wide hot keys for manual starting and canceling of recording. Added buttons for opening folder with records. Added Help button. Fixed an issue when recording is continuing after call end. Fixed an issue when recording doesn't start. Fixed several bugs and improved stability. Major refactoring and optimization...New Projects"On the Fly Zip and Attach" Windows Live Writer Plugin: This is a windows live writer zipping plug-in that allows you to select files/folders and zip them on the fly that will appear as attachment inserts, while you are writing blogs. Find details @ my Blogs Site: [url: Blogs: http://www.geekscafe.net|http://www.geekscafe.net].NET Micro Framework Tools: Collection of tools usefull for creating Netduino and .NET Micro Framework applications.Aktina: Aktina is a game engine written in DirectX 11.AppHub: AppHub??????AppStore???,???????,?????????,?????????,????????????,??,???????,???????????、??、??、??????????????,???????。 ??????????,????。Calcula Calles: Calcula CallesCRM 2011 ASP.NET Membership Provider: The CRM 2011 ASP.NET Membership provider Contains a Membership and Role provider, which can be used in ASP.NET Applications and/or ASP.NET based CMS systems.CSharp Executor: Dynamically execute C# script files in the same way that you might use VB scripts.Deque (by Stephen Cleary): A simple double-ended queue (deque) in C#. Unit tested.DirST: Allows one to replicate a DIRectory STructure without copying files. Written in C#.DNNTaskManager69: Testing DNN Module DevelopmentEchelon OS: an Sister Project to Aza DOS and this one is meant to be as minimilistic as it can with a filesystem and text editorGeek Reader: Lector de noticias para windows 8. Se trata de un template que permite rápidamente construir una aplicación windows 8 store GIII_P2: projekt 2katas-gpa: Codigo de los coding dojo acerca de patrones de diseñoKendoUI: Demonstrations using Kendo UI Complete for ASP.NET MVCLTorrent: C# BitTorrent and peer-to-peer protocol implementation MECopter: A real summary will follow soon...Migrate AD Group Permissions in Sharepoint/WSS: Sharepoint AD Group Migration tool, allows conversion of AD security principals used in Sharepoint ACLs from source domain to destination domainNetSend Manager: NetSend Manager is an Asp.Net console which enables you to send windows popup messages over a domain network. Messages can be send to a single user or to a grouNONAME0: ?? ? ???????-?????? ??? ?????? ???? ?????? ???? ??? ?? ???????????????? ??? ? ?????? ??? ??????????npr2012: Projekt testowy Personal News Assistant: Vision: The Personal News Assistant is an application which collects information from different sources and informs the user either on demand or preventive.PGIrony - Tookit & Examples for AST Generation with Irony: A tool-kit to ease AST generation,, and further ease grammr construction, with Irony.Proboscis: A query provider to work against HBase. Will be developed against HBase on Windows Azure.Project13251106: papaProject13271106: sdgProjet IMA: rtjRenderCraft: This is an editor like a AMD's RenderMonkey. But this supports Direct3D 11.Rx (Reactive Extensions): The Reactive Extensions (Rx) is a library for composing asynchronous and event-based programs using observable sequences and LINQ-style query operators. Sanle: sanle project with c++Screener: Screen sharing software.SemantEx: Adds a validation wrapper around regular expressions, allowing you to automatically apply conditional logic to capture groups.SharePoint CAML Extensions: SharePoint CAML ExtensionsSilentPlace: Turn on silence mode when you are in a silence placeSmartMacros: SmartMacros allows developers to define macros in C# and use them inside other source code. These macros are much stronger and safer than C/C++ macros, therefore they're called "Smart" :-)SoundArea link grabber: Soundarea link grabber the script put a list of links in your clipboard.Time Tracker Kickstart: This project is currently a work-in-progress.TransparentImage: TransparentImage is a console application that converts BMPS into PNG files. TransparentImage is written in VB and supports drop n drag.Travis7: A Travis-CI client for Windows PhoneWindows 8 Accelerator: A set of components and controls to accelerate your Windows 8 and Windows Phone 8 application development.Windows and Windows Phone DNS Library: Simple DNS lookup library for Windows and Windows Phone applicationsWinJS Toolkit - JavaScript Toolkit for Windows 8: The WinJS Toolkit is a set of classes, helper functions and tools that help creating Windows Store applications in HTML5, CSS3 and JavaScript.WPF TB: Study WPF????????: ZJU software project homework,One part of the total stocktrade system.

    Read the article

  • Could the assign function for containers possibly overflow?

    - by Kristo
    I ran into this question today and thought I should post it for the community's reference and/or opinions. The standard C++ containers vector, deque, list, and string provide an assign member function. There are two versions; I'm primarily interested in the one accepting an iterator range. The Josuttis book is a little ambiguous with its description. From p. 237... Assigns all elements of the range [beg,end); this is, is replaces all existing elements with copies of the elements of [beg,end). It doesn't say what happens if the size of the assignee container is different from the range being assigned. Does it truncate? Does it automagically expand? Is it undefined behavior?

    Read the article

  • Oracle AQ dequeue order

    - by yawn
    A trigger in an Oracle 10g generates upsert and delete messages for a subset of rows in a regular table. These messages consist out of two fields: A unique row id. A non-unique id. When consuming these message I want to impose an order on the deque process that respects the following constraints: Messages must be dequeued in insertion order. Messages belonging to the same id must be dequeued in such a fashion that no other dequeuing process should be able to dequeue a potential successor message (or messages) with this id. Since the messages are generated using a trigger I cannot use groups for this purpose. I am using the Oracle Java interface for AQ. Any pointers on how that could be achieved?

    Read the article

  • Initialization of std::vector<unsigned int> with a list of consecutive unsigned integers

    - by Thomas
    I want to use a special method to initialize a std::vector<unsigned int> which is described in a C++ book I use as a reference (the German book 'Der C++ Programmer' by Ulrich Breymann, in case that matters). In that book is a section on sequence types of the STL, referring in particular to list, vector and deque. In this section he writes that there are two special constructors of such sequence types, namely, if Xrefers to such a type, X(n, t) // creates a sequence with n copies of t X(i, j) // creates a sequence from the elements of the interval [i, j) I want to use the second one for an interval of unsigned int, that is std::vector<unsigned int> l(1U, 10U); to get a list initialized with {1,2,...,9}. What I get, however, is a vector with one unsigned int with value 10 :-| Does the second variant exist, and if yes, how do I force that it is called?

    Read the article

  • C++ Inheritance Question

    - by shaz
    I have a base class MessageHandler and 2 derived classes, MessageHandler_CB and MessageHandler_DQ. The derived classes redefine the handleMessage(...) method. MH_DQ processes a message and puts the result in a deque while MH_CB processes the message and then executes a callback function. The base class has a static callback function that I pass along with a this pointer to a library which calls the static callback when a new message is available for processing. My problem comes when I am in the static callback with a void * pointing to either a MH_DQ or a MH_CB. If I cast it to the base class the empty MessageHandler::handleMessage(...) method is called, rather than the version in the appropriate derived class. What is the best way to address this situation from a design perspective and/or what language features might help me to implement a solution to my problem? Thanks in advance!

    Read the article

  • Optimizing sorting container of objects with heap-allocated buffers - how to avoid hard-copying buff

    - by Kache4
    I was making sure I knew how to do the op= and copy constructor correctly in order to sort() properly, so I wrote up a test case. After getting it to work, I realized that the op= was hard-copying all the data_. I figure if I wanted to sort a container with this structure (its elements have heap allocated char buffer arrays), it'd be faster to just swap the pointers around. Is there a way to do that? Would I have to write my own sort/swap function? #include <deque> //#include <string> //#include <utility> //#include <cstdlib> #include <cstring> #include <iostream> //#include <algorithm> // I use sort(), so why does this still compile when commented out? #include <boost/filesystem.hpp> #include <boost/foreach.hpp> using namespace std; namespace fs = boost::filesystem; class Page { public: // constructor Page(const char* path, const char* data, int size) : path_(fs::path(path)), size_(size), data_(new char[size]) { // cout << "Creating Page..." << endl; strncpy(data_, data, size); // cout << "done creating Page..." << endl; } // copy constructor Page(const Page& other) : path_(fs::path(other.path())), size_(other.size()), data_(new char[other.size()]) { // cout << "Copying Page..." << endl; strncpy(data_, other.data(), size_); // cout << "done copying Page..." << endl; } // destructor ~Page() { delete[] data_; } // accessors const fs::path& path() const { return path_; } const char* data() const { return data_; } int size() const { return size_; } // operators Page& operator = (const Page& other) { if (this == &other) return *this; char* newImage = new char[other.size()]; strncpy(newImage, other.data(), other.size()); delete[] data_; data_ = newImage; path_ = fs::path(other.path()); size_ = other.size(); return *this; } bool operator < (const Page& other) const { return path_ < other.path(); } private: fs::path path_; int size_; char* data_; }; class Book { public: Book(const char* path) : path_(fs::path(path)) { cout << "Creating Book..." << endl; cout << "pushing back #1" << endl; pages_.push_back(Page("image1.jpg", "firstImageData", 14)); cout << "pushing back #3" << endl; pages_.push_back(Page("image3.jpg", "thirdImageData", 14)); cout << "pushing back #2" << endl; pages_.push_back(Page("image2.jpg", "secondImageData", 15)); cout << "testing operator <" << endl; cout << pages_[0].path().string() << (pages_[0] < pages_[1]? " < " : " > ") << pages_[1].path().string() << endl; cout << pages_[1].path().string() << (pages_[1] < pages_[2]? " < " : " > ") << pages_[2].path().string() << endl; cout << pages_[0].path().string() << (pages_[0] < pages_[2]? " < " : " > ") << pages_[2].path().string() << endl; cout << "sorting" << endl; BOOST_FOREACH (Page p, pages_) cout << p.path().string() << endl; sort(pages_.begin(), pages_.end()); cout << "done sorting\n"; BOOST_FOREACH (Page p, pages_) cout << p.path().string() << endl; cout << "checking datas" << endl; BOOST_FOREACH (Page p, pages_) { char data[p.size() + 1]; strncpy((char*)&data, p.data(), p.size()); data[p.size()] = '\0'; cout << p.path().string() << " " << data << endl; } cout << "done Creating Book" << endl; } private: deque<Page> pages_; fs::path path_; }; int main() { Book* book = new Book("/some/path/"); }

    Read the article

  • Hopcroft–Karp algorithm in Python

    - by Simon
    I am trying to implement the Hopcroft Karp algorithm in Python using networkx as graph representation. Currently I am as far as this: #Algorithms for bipartite graphs import networkx as nx import collections class HopcroftKarp(object): INFINITY = -1 def __init__(self, G): self.G = G def match(self): self.N1, self.N2 = self.partition() self.pair = {} self.dist = {} self.q = collections.deque() #init for v in self.G: self.pair[v] = None self.dist[v] = HopcroftKarp.INFINITY matching = 0 while self.bfs(): for v in self.N1: if self.pair[v] and self.dfs(v): matching = matching + 1 return matching def dfs(self, v): if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == self.dist[v] + 1 and self.dfs(self.pair[u]): self.pair[u] = v self.pair[v] = u return True self.dist[v] = HopcroftKarp.INFINITY return False return True def bfs(self): for v in self.N1: if self.pair[v] == None: self.dist[v] = 0 self.q.append(v) else: self.dist[v] = HopcroftKarp.INFINITY self.dist[None] = HopcroftKarp.INFINITY while len(self.q) > 0: v = self.q.pop() if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == HopcroftKarp.INFINITY: self.dist[ self.pair[u] ] = self.dist[v] + 1 self.q.append(self.pair[u]) return self.dist[None] != HopcroftKarp.INFINITY def partition(self): return nx.bipartite_sets(self.G) The algorithm is taken from http://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm However it does not work. I use the following test code G = nx.Graph([ (1,"a"), (1,"c"), (2,"a"), (2,"b"), (3,"a"), (3,"c"), (4,"d"), (4,"e"),(4,"f"),(4,"g"), (5,"b"), (5,"c"), (6,"c"), (6,"d") ]) matching = HopcroftKarp(G).match() print matching Unfortunately this does not work, I end up in an endless loop :(. Can someone spot the error, I am out of ideas and I must admit that I have not yet fully understand the algorithm, so it is mostly an implementation of the pseudo code on wikipedia

    Read the article

  • How to write a streaming 'operator<<' that can take arbitary containers (of type 'X')?

    - by Drew Dormann
    I have a C++ class "X" which would have special meaning if a container of them were to be sent to a std::ostream. I originally implemented it specifically for std::vector<X>: std::ostream& operator << ( std::ostream &os, const std::vector<X> &c ) { // The specialized logic here expects c to be a "container" in simple // terms - only that c.begin() and c.end() return input iterators to X } If I wanted to support std::ostream << std::deque<X> or std::ostream << std::set<X> or any similar container type, the only solution I know of is to copy-paste the entire function and change only the function signature! Is there a way to generically code operator << ( std::ostream &, const Container & )? ("Container" here would be any type that satisfies the commented description above.)

    Read the article

  • Processing command-line arguments in prefix notation in Python

    - by ejm
    I'm trying to parse a command-line in Python which looks like the following: $ ./command -o option1 arg1 -o option2 arg2 arg3 In other words, the command takes an unlimited number of arguments, and each argument may optionally be preceded with an -o option, which relates specifically to that argument. I think this is called a "prefix notation". In the Bourne shell I would do something like the following: while test -n "$1" do if test "$1" = '-o' then option="$2" shift 2 fi # Work with $1 (the argument) and $option (the option) # ... shift done Looking around at the Bash tutorials, etc. this seems to be the accepted idiom, so I'm guessing Bash is optimized to work with command-line arguments this way. Trying to implement this pattern in Python, my first guess was to use pop(), as this is basically a stack operation. But I'm guessing this won't work as well on Python because the list of arguments in sys.argv is in the wrong order and would have to be processed like a queue (i.e. pop from the left). I've read that lists are not optimized for use as queues in Python. So, my ideas are: convert argv to a collections.deque and use popleft(), reverse argv using reverse() and use pop(), or maybe just work with the int list indices themselves. Does anyone know of a better way to do this, otherwise which of my ideas would be best-practise in Python?

    Read the article

  • is back_insert_iterator<> safe to be passed by value?

    - by afriza
    I have a code that looks something like: struct Data { int value; }; class A { public: typedef std::deque<boost::shared_ptr<Data> > TList; std::back_insert_iterator<TList> GetInserter() { return std::back_inserter(m_List); } private: TList m_List; }; class AA { boost::scoped_ptr<A> m_a; public: AA() : m_a(new A()) {} std::back_insert_iterator<A::TList> GetDataInserter() { return m_a->GetInserter(); } }; class B { template<class OutIt> CopyInterestingDataTo(OutIt outIt) { // loop and check conditions for interesting data // for every `it` in a Container<Data*> // create a copy and store it for( ... it = ..; .. ; ..) if (...) { *outIt = OutIt::container_type::value_type(new Data(**it)); outIt++; // dummy } } void func() { AA aa; CopyInterestingDataTo(aa.GetInserter()); // aa.m_a->m_List is empty! } }; The problem is that A::m_List is always empty even after CopyInterestingDataTo() is called. However, if I debug and step into CopyInterestingDataTo(), the iterator does store the supposedly inserted data!

    Read the article

  • How does does ifstream eof() work?

    - by Chan
    Hello everyone, #include <vector> #include <list> #include <map> #include <set> #include <deque> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstdlib> #include <ctime> #include <cctype> #include <fstream> using namespace std; int main() { fstream inf( "ex.txt", ios::in ); while( !inf.eof() ) { std::cout << inf.get() << "\n"; } inf.close(); inf.clear(); inf.open( "ex.txt", ios::in ); char c; while( inf >> c ) { std::cout << c << "\n"; } return 0; } I'm really confused about eof() function. Suppose my ex.txt's content is: abc It always reads an extra character and show -1. when reading using eof()? But the inf c gave the correct output which was 'abc'? Can anyone help me explain this? Best regards, Chan Nguyen

    Read the article

  • Introducción a ENUM (E.164 Number Mapping)

    - by raul.goycoolea
    E.164 Number Mapping (ENUM o Enum) se diseñó para resolver la cuestión de como se pueden encontrar servicios de internet mediante un número telefónico, es decir cómo se pueden usar los los teléfonos, que solamente tienen 12 teclas, para acceder a servicios de Internet. La parte más básica de ENUM es por tanto la convergencia de las redes del STDP y la IP; ENUM hace que pueda haber una correspondencia entre un número telefónico y un identificador de Internet. En síntesis, Enum es un conjunto de protocolos para convertir números E.164 en URIs, y viceversa, de modo que el sistema de numeración E.164 tenga una función de correspondencia con las direcciones URI en Internet. Esta función es necesaria porque un número telefónico no tiene sentido en el mundo IP, ni una dirección IP tiene sentido en las redes telefónicas. Así, mediante esta técnica, las comunicaciones cuyo destino se marque con un número E.164, puedan terminar en el identificador correcto (número E.164 si termina en el STDP, o URI si termina en redes IP). La solución técnica de mirar en una base de datos cual es el identificador de destino tiene consecuencias muy interesantes, como que la llamada se pueda terminar donde desee el abonado llamado. Esta es una de las características que ofrece ENUM : el destino concreto, el terminal o terminales de terminación, no lo decide quien inicia la llamada o envía el mensaje sino la persona que es llamada o recibe el mensaje, que ha escrito sus preferencias en una base de datos. En otras palabras, el destinatario de la llamada decide cómo quiere ser contactado, tanto si lo que se le comunica es un email, o un sms, o telefax, o una llamada de voz. Cuando alguien quiera llamarle a usted, lo que tiene que hacer el llamante es seleccionar su nombre (el del llamado) en la libreta de direcciones del terminal o marcar su número ENUM. Una aplicación informática obtendrá de una base de datos los datos de contacto y disponibilidad que usted decidió. Y el mensaje le será remitido tal como usted especificó en dicha base de datos. Esto es algo nuevo que permite que usted, como persona llamada, defina sus preferencias de terminación para cualquier tipo de contenido. Por ejemplo, usted puede querer que todos los emails le sean enviados como sms o que los mensajes de voz se le remitan como emails; las comunicaciones ya no dependen de donde esté usted o deque tipo de terminal utiliza (teléfono, pda, internet). Además, con ENUM usted puede gestionar la portabilidad de sus números fijos y móviles. ENUM emplea una técnica de búsqueda indirecta en una base de datos que tiene los registros NAPTR ("Naming Authority Pointer Resource Records" tal como lo define el RFC 2915), y que utiliza el número telefónico Enum como clave de búsqueda, para obtener qué URIs corresponden a cada número telefónico. La base de datos que almacena estos registros es del tipo DNS.Si bien en uno de sus diversos usos sirve para facilitar las llamadas de usuarios de VoIP entre redes tradicionales del STDP y redes IP, debe tenerse en cuenta que ENUM no es una función de VoIP sino que es un mecanismo de conversión entre números/identificadores. Por tanto no debe ser confundido con el uso normal de enrutar las llamadas de VoIP mediante los protocolos SIP y H.323. ENUM puede ser muy útil para aquellas organizaciones que quieran tener normalizada la manera en que las aplicaciones acceden a los datos de comunicación de cada usuario. FundamentosPara que la convergencia entre el Sistema Telefónico Disponible al Público (STDP) y la Telefonía por Internet o Voz sobre IP (VoIP) y que el desarrollo de nuevos servicios multimedia tengan menos obstáculos, es fundamental que los usuarios puedan realizar sus llamadas tal como están acostumbrados a hacerlo, marcando números. Para eso, es preciso que haya un sistema universal de correspondencia de número a direcciones IP (y viceversa) y que las diferentes redes se puedan interconectar. Hay varias fórmulas que permiten que un número telefónico sirva para establecer comunicación con múltiples servicios. Una de estas fórmulas es el Electronic Number Mapping System ENUM, normalizado por el grupo de tareas especiales de ingeniería en Internet (IETF, Internet engineering task force), del que trata este artículo, que emplea la numeración E.164, los protocolos y la infraestructura telefónica para acceder indirectamente a diferentes servicios. Por tanto, se accede a un servicio mediante un identificador numérico universal: un número telefónico tradicional. ENUM permite comunicar las direcciones del mundo IP con las del mundo telefónico, y viceversa, sin problemas. Antes de entrar en mayores profundidades, conviene dar una breve pincelada para aclarar cómo se organiza la correspondencia entre números o URI. Para ello imaginemos una llamada que se inicia desde el servicio telefónico tradicional con destino a un número Enum. En ENUM Público, el abonado o usuario Enum a quien va destinada lallamada, habrá decidido incluir en la base de datos Enum uno o varios URI o números E.164, que forman una lista con sus preferencias para terminar la llamada. Y el sistema como se explica más adelante, elegirá cual es el número o URI adecuado para dicha terminación. Por tanto como resultado de la consulta a la base dedatos Enum siempre se da una relación unívoca entre el número Enum marcado y el de terminación, conforme a los deseos de la persona llamada.Variedades de ENUMUna posible fuente de confusión cuando se trata sobre ENUM es la variedad de soluciones o sistemas que emplean este calificativo. Lo habitual es que cuando se haga una referencia a ENUM se trate de uno de los siguientes casos: ENUM Público: Es la visión original de ENUM, como base de datos pública, parecida a un directorio, donde el abonado "opta" a ser incluido en la base de datos, que está gestionada en el dominio e164.arpa, delegando a cada país la gestión de la base de datos y la numeración. También se conoce como ENUM de usuario. Carrier ENUM, o ENUM Infraestructura, o de Operador: Cuando grupos de operadores proveedores de servicios de comunicaciones electrónicas acuerdan compartir la información de los abonados por medio de ENUM mediante acuerdos privados. En este caso son los operadores quienes controlan la información del abonado en vez de hacerlo (optar) los propios abonados. Carrier ENUM o ENUM de Operador también se conoce como Infrastructure ENUM o ENUM Infraestructura, y está siendo normalizado por IETF para la interconexión de VoIP (mediante acuerdos de peering). Como se explicará en la correspondiente sección, también se puede utilizar para la portabilidad o conservación de número. ENUM Privado: Un operador de telefonía o de VoIP, o un ISP, o un gran usuario, puede utilizar las técnicas de ENUM en sus redes y en las de sus clientes sin emplear DNS públicos, con DNS privados o internos. Resulta fácil imaginar como puede utilizarse esta técnica para que compañías multinacionales, o bancos, o agencias de viajes, tengan planes de numeración muy coherentes y eficaces. Cómo funciona ENUMPara conocer cómo funciona Enum, le remitimos a la página correspondiente a ENUM Público, puesto que esa variedad de Enum es la típica, la que dió lugar a todos los procedimientos y normas de IETF .Más detalles sobre: @page { margin: 0.79in } P { margin-bottom: 0.08in } H4 { margin-bottom: 0.08in } H4.ctl { font-family: "Lohit Hindi" } A:link { so-language: zxx } -- ENUM Público. En esta página se explica con cierto detalle como funciona Enum Carrier ENUM o ENUM de Operador ENUM Privado Normas técnicas: RFC 2915: NAPTR RR. The Naming Authority Pointer (NAPTR) DNS Resource Record RFC 3761: ENUM Protocol. The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM). (obsoletes RFC 2916). RFC 3762: Usage of H323 addresses in ENUM Protocol RFC 3764: Usage of SIP addresses in ENUM Protocol RFC 3824: Using E.164 numbers with SIP RFC 4769: IANA Registration for an Enumservice Containing Public Switched Telephone Network (PSTN) Signaling Information RFC 3026: Berlin Liaison Statement RFC 3953: Telephone Number Mapping (ENUM) Service Registration for Presence Services RFC 2870: Root Name Server Operational Requirements RFC 3482: Number Portability in the Global Switched Telephone Network (GSTN): An Overview RFC 2168: Resolution of Uniform Resource Identifiers using the Domain Name System Organizaciones relacionadas con ENUM RIPE - Adimistrador del nivel 0 de ENUM e164.arpa. ITU-T TSB - Unión Internacional de Telecomunicaciones ETSI - European Telecommunications Standards Institute VisionNG - Administrador del rango ENUM 878-10 IETF ENUM Chapter

    Read the article

  • [C++] Producer/Consumer Implementation -- Feedback Wanted

    - by bobber205
    I'm preparing for an interview in a few weeks and I thougth I would give threads in boost a go, as well as do the simple producer/consumer problem I learned in school. Haven't done it quite awhile so I was curious what you guys think of this? What should I add to make it a better example etc. Thanks for the feedback! :) ////////////////////////////////////////////////////////////////////////// boost::mutex bufferMutex; deque<int> buffer; const int maxBufferSize = 5; ////////////////////////////////////////////////////////////////////////// bool AddToBuffer(int i) { if (buffer.size() < maxBufferSize) { buffer.push_back(i); return true; } else { return false; } } bool GetFromBuffer(int& toReturn) { if (buffer.size() == 0) { return false; } else { toReturn = buffer[buffer.size()-1]; buffer.pop_back(); return true; } } struct Producer { int ID; void operator()() { while (true) { boost::mutex::scoped_lock lock(bufferMutex); int num = dice(); bool result = AddToBuffer(num); lock.unlock(); //safe area done if (result) { cout << "Producer " << this->ID << " Added " << num << endl; } else { cout << "!!Buffer was Full!!" << endl; } //Added //Now wait boost::xtime xt; xtime_get( &xt, boost::TIME_UTC); xt.nsec += 1000000 + 100000 * (rand() % 1000); boost::thread::sleep(xt); } } }; struct Consumer { int ID; void operator()() { while (true) { int returnedInt = 0; boost::mutex::scoped_lock lock(bufferMutex); bool result = GetFromBuffer(returnedInt); lock.unlock(); //safe area done if (result) { cout << "\tConsumer " << this->ID << " Took Out " << returnedInt << endl; } else { cout << "!!Buffer was Empty!!" << endl; } //Added //Now wait boost::xtime xt; xtime_get( &xt, boost::TIME_UTC); xt.nsec += 1000000 + 100000 * (rand() % 1000); boost::thread::sleep(xt); } } }; void main() { Producer p, p2; Consumer c, c2; p.ID = 1; p2.ID = 2; c.ID = 1; c2.ID = 2; boost::thread thread1(boost::ref(p)); boost::thread thread2(boost::ref(c)); boost::thread thread3(boost::ref(p2)); boost::thread thread4(boost::ref(c2)); int x; cin >> x; }

    Read the article

  • One letter game problem?

    - by Alex K
    Recently at a job interview I was given the following problem: Write a script capable of running on the command line as python It should take in two words on the command line (or optionally if you'd prefer it can query the user to supply the two words via the console). Given those two words: a. Ensure they are of equal length b. Ensure they are both words present in the dictionary of valid words in the English language that you downloaded. If so compute whether you can reach the second word from the first by a series of steps as follows a. You can change one letter at a time b. Each time you change a letter the resulting word must also exist in the dictionary c. You cannot add or remove letters If the two words are reachable, the script should print out the path which leads as a single, shortest path from one word to the other. You can /usr/share/dict/words for your dictionary of words. My solution consisted of using breadth first search to find a shortest path between two words. But apparently that wasn't good enough to get the job :( Would you guys know what I could have done wrong? Thank you so much. import collections import functools import re def time_func(func): import time def wrapper(*args, **kwargs): start = time.time() res = func(*args, **kwargs) timed = time.time() - start setattr(wrapper, 'time_taken', timed) return res functools.update_wrapper(wrapper, func) return wrapper class OneLetterGame: def __init__(self, dict_path): self.dict_path = dict_path self.words = set() def run(self, start_word, end_word): '''Runs the one letter game with the given start and end words. ''' assert len(start_word) == len(end_word), \ 'Start word and end word must of the same length.' self.read_dict(len(start_word)) path = self.shortest_path(start_word, end_word) if not path: print 'There is no path between %s and %s (took %.2f sec.)' % ( start_word, end_word, find_shortest_path.time_taken) else: print 'The shortest path (found in %.2f sec.) is:\n=> %s' % ( self.shortest_path.time_taken, ' -- '.join(path)) def _bfs(self, start): '''Implementation of breadth first search as a generator. The portion of the graph to explore is given on demand using get_neighboors. Care was taken so that a vertex / node is explored only once. ''' queue = collections.deque([(None, start)]) inqueue = set([start]) while queue: parent, node = queue.popleft() yield parent, node new = set(self.get_neighbours(node)) - inqueue inqueue = inqueue | new queue.extend([(node, child) for child in new]) @time_func def shortest_path(self, start, end): '''Returns the shortest path from start to end using bfs. ''' assert start in self.words, 'Start word not in dictionnary.' assert end in self.words, 'End word not in dictionnary.' paths = {None: []} for parent, child in self._bfs(start): paths[child] = paths[parent] + [child] if child == end: return paths[child] return None def get_neighbours(self, word): '''Gets every word one letter away from the a given word. We do not keep these words in memory because bfs accesses a given vertex only once. ''' neighbours = [] p_word = ['^' + word[0:i] + '\w' + word[i+1:] + '$' for i, w in enumerate(word)] p_word = '|'.join(p_word) for w in self.words: if w != word and re.match(p_word, w, re.I|re.U): neighbours += [w] return neighbours def read_dict(self, size): '''Loads every word of a specific size from the dictionnary into memory. ''' for l in open(self.dict_path): l = l.decode('latin-1').strip().lower() if len(l) == size: self.words.add(l) if __name__ == '__main__': import sys if len(sys.argv) not in [3, 4]: print 'Usage: python one_letter_game.py start_word end_word' else: g = OneLetterGame(dict_path = '/usr/share/dict/words') try: g.run(*sys.argv[1:]) except AssertionError, e: print e

    Read the article

  • C++ MySQL++ Delete query statement brain killer question

    - by shauny
    Hello all, I'm relatively new to the MySQL++ connector in C++, and have an really annoying issue with it already! I've managed to get stored procedures working, however i'm having issues with the delete statements. I've looked high and low and have found no documentation with examples. First I thought maybe the code needs to free the query/connection results after calling the stored procedure, but of course MySQL++ doesn't have a free_result method... or does it? Anyways, here's what I've got: #include <iostream> #include <stdio.h> #include <queue> #include <deque> #include <sys/stat.h> #include <mysql++/mysql++.h> #include <boost/thread/thread.hpp> #include "RepositoryQueue.h" using namespace boost; using namespace mysqlpp; class RepositoryChecker { private: bool _isRunning; Connection _con; public: RepositoryChecker() { try { this->_con = Connection(false); this->_con.set_option(new MultiStatementsOption(true)); this->_con.set_option(new ReconnectOption(true)); this->_con.connect("**", "***", "***", "***"); this->ChangeRunningState(true); } catch(const Exception& e) { this->ChangeRunningState(false); } } /** * Thread method which runs and creates the repositories */ void CheckRepositoryQueues() { //while(this->IsRunning()) //{ std::queue<RepositoryQueue> queues = this->GetQueue(); if(queues.size() > 0) { while(!queues.empty()) { RepositoryQueue &q = queues.front(); char cmd[256]; sprintf(cmd, "svnadmin create /home/svn/%s/%s/%s", q.GetPublicStatus().c_str(), q.GetUsername().c_str(), q.GetRepositoryName().c_str()); if(this->DeleteQueuedRepository(q.GetQueueId())) { printf("query deleted?\n"); } printf("Repository created!\n"); queues.pop(); } } boost::this_thread::sleep(boost::posix_time::milliseconds(500)); //} } protected: /** * Gets the latest queue of repositories from the database * and returns them inside a cool queue defined with the * RepositoryQueue class. */ std::queue<RepositoryQueue> GetQueue() { std::queue<RepositoryQueue> queues; Query query = this->_con.query("CALL sp_GetRepositoryQueue();"); StoreQueryResult result = query.store(); RepositoryQueue rQ; if(result.num_rows() > 0) { for(unsigned int i = 0;i < result.num_rows(); ++i) { rQ = RepositoryQueue((unsigned int)result[i][0], (unsigned int)result[i][1], (String)result[i][2], (String)result[i][3], (String)result[i][4], (bool)result[i][5]); queues.push(rQ); } } return queues; } /** * Allows the thread to be shut off. */ void ChangeRunningState(bool isRunning) { this->_isRunning = isRunning; } /** * Returns the running value of the active thread. */ bool IsRunning() { return this->_isRunning; } /** * Deletes the repository from the mysql queue table. This is * only called once it has been created. */ bool DeleteQueuedRepository(unsigned int id) { char cmd[256]; sprintf(cmd, "DELETE FROM RepositoryQueue WHERE Id = %d LIMIT 1;", id); Query query = this->_con.query(cmd); return (query.exec()); } }; I've removed all the other methods as they're not needed... Basically it's the DeleteQueuedRepository method which isn't working, the GetQueue works fine. PS: This is on a Linux OS (Ubuntu server) Many thanks, Shaun

    Read the article

  • How to make negate_unary work with any type?

    - by Chan
    Hi, Following this question: How to negate a predicate function using operator ! in C++? I want to create an operator ! can work with any functor that inherited from unary_function. I tried: template<typename T> inline std::unary_negate<T> operator !( const T& pred ) { return std::not1( pred ); } The compiler complained: Error 5 error C2955: 'std::unary_function' : use of class template requires template argument list c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 223 1 Graphic Error 7 error C2451: conditional expression of type 'std::unary_negate<_Fn1>' is illegal c:\program files\microsoft visual studio 10.0\vc\include\ostream 529 1 Graphic Error 3 error C2146: syntax error : missing ',' before identifier 'argument_type' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 4 error C2065: 'argument_type' : undeclared identifier c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 2 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 6 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 230 1 Graphic Any idea? Update Follow "templatetypedef" solution, I got new error: Error 3 error C2831: 'operator !' cannot have default parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 2 error C2808: unary 'operator !' has too many formal parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 4 error C2675: unary '!' : 'is_prime' does not define this operator or a conversion to a type acceptable to the predefined operator c:\visual studio 2010 projects\graphic\graphic\main.cpp 52 1 Graphic Update 1 Complete code: #include <iostream> #include <functional> #include <utility> #include <cmath> #include <algorithm> #include <iterator> #include <string> #include <boost/assign.hpp> #include <boost/assign/std/vector.hpp> #include <boost/assign/std/map.hpp> #include <boost/assign/std/set.hpp> #include <boost/assign/std/list.hpp> #include <boost/assign/std/stack.hpp> #include <boost/assign/std/deque.hpp> struct is_prime : std::unary_function<int, bool> { bool operator()( int n ) const { if( n < 2 ) return 0; if( n == 2 || n == 3 ) return 1; if( n % 2 == 0 || n % 3 == 0 ) return 0; int upper_bound = std::sqrt( static_cast<double>( n ) ); for( int pf = 5, step = 2; pf <= upper_bound; ) { if( n % pf == 0 ) return 0; pf += step; step = 6 - step; } return 1; } }; /* template<typename T> inline std::unary_negate<T> operator !( const T& pred, typename T::argument_type* dummy = 0 ) { return std::not1<T>( pred ); } */ inline std::unary_negate<is_prime> operator !( const is_prime& pred ) { return std::not1( pred ); } template<typename T> inline void print_con( const T& con, const std::string& ms = "", const std::string& sep = ", " ) { std::cout << ms << '\n'; std::copy( con.begin(), con.end(), std::ostream_iterator<typename T::value_type>( std::cout, sep.c_str() ) ); std::cout << "\n\n"; } int main() { using namespace boost::assign; std::vector<int> nums; nums += 1, 3, 5, 7, 9; nums.erase( remove_if( nums.begin(), nums.end(), !is_prime() ), nums.end() ); print_con( nums, "After remove all primes" ); } Thanks, Chan Nguyen

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

< Previous Page | 1 2