Search Results

Search found 43 results on 2 pages for 'getcustomattributes'.

Page 2/2 | < Previous Page | 1 2 

  • Unit Testing with NUnit and Moles Redux

    - by João Angelo
    Almost two years ago, when Moles was still being packaged alongside Pex, I wrote a post on how to run NUnit tests supporting moled types. A lot has changed since then and Moles is now being distributed independently of Pex, but maintaining support for integration with NUnit and other testing frameworks. For NUnit the support is provided by an addin class library (Microsoft.Moles.NUnit.dll) that you need to reference in your test project so that you can decorate yours tests with the MoledAttribute. The addin DLL must also be placed in the addins folder inside the NUnit installation directory. There is however a downside, since Moles and NUnit follow a different release cycle and the addin DLL must be built against a specific NUnit version, you may find that the release included with the latest version of Moles does not work with your version of NUnit. Fortunately the code for building the NUnit addin is supplied in the archive (moles.samples.zip) that you can found in the Documentation folder inside the Moles installation directory. By rebuilding the addin against your specific version of NUnit you are able to support any version. Also to note that in Moles 0.94.51023.0 the addin code did not support the use of TestCaseAttribute in your moled tests. However, if you need this support, you need to make just a couple of changes. Change the ITestDecorator.Decorate method in the MolesAddin class: Test ITestDecorator.Decorate(Test test, MemberInfo member) { SafeDebug.AssumeNotNull(test, "test"); SafeDebug.AssumeNotNull(member, "member"); bool isTestFixture = true; isTestFixture &= test.IsSuite; isTestFixture &= test.FixtureType != null; bool hasMoledAttribute = true; hasMoledAttribute &= !SafeArray.IsNullOrEmpty( member.GetCustomAttributes(typeof(MoledAttribute), false)); if (!isTestFixture && hasMoledAttribute) { return new MoledTest(test); } return test; } Change the Tests property in the MoledTest class: public override System.Collections.IList Tests { get { if (this.test.Tests == null) { return null; } var moled = new List<Test>(this.test.Tests.Count); foreach (var test in this.test.Tests) { moled.Add(new MoledTest((Test)test)); } return moled; } } Disclaimer: I only tested this implementation against NUnit 2.5.10.11092 version. Finally you just need to run the NUnit console runner through the Moles runner. A quick example follows: moles.runner.exe [Tests.dll] /r:nunit-console.exe /x86 /args:[NUnitArgument1] /args:[NUnitArgument2]

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Silverlight 4 Overriding the DataForm Autogenerate to insert Combo Boxes bound to Converters.

    - by kmacmahon
    I've been working towards a solution for some time and could use a little help. I know I've seen an example of this before, but tonight I cannot find anything close to what I need. I have a service that provides me all my DropDownLists, either from Cache or from the DomainService. They are presented as IEnumerable, and are requested from the a repository with GetLookup(LookupId). I have created a custom attribute that I have decorated my MetaDataClass that looks something like this: [Lookup(Lookup.Products)] public Guid ProductId I have created a custom Data Form that is set to AutoGenerateFields and I am intercepting the autogenerate fields. I am checking for my CustomAttribute and that works. Given this code in my CustomDataForm (standard comments removed for brevity), what is the next step to override the field generation and place a bound combobox in its place? public class CustomDataForm : DataForm { private Dictionary<string, DataField> fields = new Dictionary<string, DataField>(); public Dictionary<string, DataField> Fields { get { return this.fields; } } protected override void OnAutoGeneratingField(DataFormAutoGeneratingFieldEventArgs e) { PropertyInfo propertyInfo = this.CurrentItem.GetType().GetProperty(e.PropertyName); foreach (Attribute attribute in propertyInfo.GetCustomAttributes(true)) { LookupFieldAttribute lookupFieldAttribute = attribute as LookupFieldAttribute; if (lookupFieldAttribute != null) { // Create a combo box. // Bind it to my Lookup IEnumerable // Set the selected item to my Field's Value // Set the binding two way } } this.fields[e.PropertyName] = e.Field; base.OnAutoGeneratingField(e); } } Any cited working examples for SL4/VS2010 would be appreciated. Thanks

    Read the article

  • Retrieve enum value based on XmlEnumAttribute name value

    - by CletusLoomis
    I need a Generic function to retrieve the name or value of an enum based on the XmlEnumAttribute "Name" property of the enum. For example I have the following enum defined: Public Enum Currency <XmlEnum("00")> CDN = 1 <XmlEnum("01")> USA= 2 <XmlEnum("02")> EUR= 3 <XmlEnum("03")> JPN= 4 End Enum The first Currency enum value is 1; the enum name is "CDN"; and the XMLEnumAttribute Name property value is "00". If I have the enum value, I can retrieve the XmlEnumAttribute "Name" value using the following generic function: Public Function GetXmlAttrNameFromEnumValue(Of T)(ByVal pEnumVal As T) As String Dim type As Type = pEnumVal.GetType Dim info As FieldInfo = type.GetField([Enum].GetName(GetType(T), pEnumVal)) Dim att As XmlEnumAttribute = CType(info.GetCustomAttributes(GetType(XmlEnumAttribute), False)(0), XmlEnumAttribute) 'If there is an xmlattribute defined, return the name Return att.Name End Function So using the above function, I can specify the Currency enum type, pass a value of 1, and the return value will be "00". What I need is a function to perform if the opposite. If I have the XmlEnumAttribute Name value "00", I need a function to return a Currency enum with a value of 1. Just as useful would be a function that would return the enum name "CDN". I could then simply parse this to get the enum value. Any assistance would be appreciated.

    Read the article

  • How to use Castle Windsor with ASP.Net web forms?

    - by Xian
    I am trying to wire up dependency injection with Windsor to standard asp.net web forms. I think I have achieved this using a HttpModule and a CustomAttribute (code shown below), although the solution seems a little clunky and was wondering if there is a better supported solution out of the box with Windsor? There are several files all shown together here // index.aspx.cs public partial class IndexPage : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Logger.Write("page loading"); } [Inject] public ILogger Logger { get; set; } } // WindsorHttpModule.cs public class WindsorHttpModule : IHttpModule { private HttpApplication _application; private IoCProvider _iocProvider; public void Init(HttpApplication context) { _application = context; _iocProvider = context as IoCProvider; if(_iocProvider == null) { throw new InvalidOperationException("Application must implement IoCProvider"); } _application.PreRequestHandlerExecute += InitiateWindsor; } private void InitiateWindsor(object sender, System.EventArgs e) { Page currentPage = _application.Context.CurrentHandler as Page; if(currentPage != null) { InjectPropertiesOn(currentPage); currentPage.InitComplete += delegate { InjectUserControls(currentPage); }; } } private void InjectUserControls(Control parent) { if(parent.Controls != null) { foreach (Control control in parent.Controls) { if(control is UserControl) { InjectPropertiesOn(control); } InjectUserControls(control); } } } private void InjectPropertiesOn(object currentPage) { PropertyInfo[] properties = currentPage.GetType().GetProperties(); foreach(PropertyInfo property in properties) { object[] attributes = property.GetCustomAttributes(typeof (InjectAttribute), false); if(attributes != null && attributes.Length > 0) { object valueToInject = _iocProvider.Container.Resolve(property.PropertyType); property.SetValue(currentPage, valueToInject, null); } } } } // Global.asax.cs public class Global : System.Web.HttpApplication, IoCProvider { private IWindsorContainer _container; public override void Init() { base.Init(); InitializeIoC(); } private void InitializeIoC() { _container = new WindsorContainer(); _container.AddComponent<ILogger, Logger>(); } public IWindsorContainer Container { get { return _container; } } } public interface IoCProvider { IWindsorContainer Container { get; } }

    Read the article

  • Unity in C# for Platform Specific Implementations

    - by DxCK
    My program has heavy interaction with the operating system through Win32API functions. now i want to migrate my program to run under Mono under Linux (No wine), and this requires different implementations to the interaction with the operating system. I started designing a code that can have different implementation for difference platform and is extensible for new future platforms. public interface ISomeInterface { void SomePlatformSpecificOperation(); } [PlatformSpecific(PlatformID.Unix)] public class SomeImplementation : ISomeInterface { #region ISomeInterface Members public void SomePlatformSpecificOperation() { Console.WriteLine("From SomeImplementation"); } #endregion } public class PlatformSpecificAttribute : Attribute { private PlatformID _platform; public PlatformSpecificAttribute(PlatformID platform) { _platform = platform; } public PlatformID Platform { get { return _platform; } } } public static class PlatformSpecificUtils { public static IEnumerable<Type> GetImplementationTypes<T>() { foreach (Assembly assembly in AppDomain.CurrentDomain.GetAssemblies()) { foreach (Type type in assembly.GetTypes()) { if (typeof(T).IsAssignableFrom(type) && type != typeof(T) && IsPlatformMatch(type)) { yield return type; } } } } private static bool IsPlatformMatch(Type type) { return GetPlatforms(type).Any(platform => platform == Environment.OSVersion.Platform); } private static IEnumerable<PlatformID> GetPlatforms(Type type) { return type.GetCustomAttributes(typeof(PlatformSpecificAttribute), false) .Select(obj => ((PlatformSpecificAttribute)obj).Platform); } } class Program { static void Main(string[] args) { Type first = PlatformSpecificUtils.GetImplementationTypes<ISomeInterface>().FirstOrDefault(); } } I see two problems with this design: I can't force the implementations of ISomeInterface to have a PlatformSpecificAttribute. Multiple implementations can be marked with the same PlatformID, and i dont know witch to use in the Main. Using the first one is ummm ugly. How to solve those problems? Can you suggest another design?

    Read the article

  • ASP.NET enum dropdownlist validation

    - by Arun Kumar
    I have got a enum public enum TypeDesc { [Description("Please Specify")] PleaseSpecify, Auckland, Wellington, [Description("Palmerston North")] PalmerstonNorth, Christchurch } I am binding this enum to drop down list using the following code on page_Load protected void Page_Load(object sender, EventArgs e) { if (TypeDropDownList.Items.Count == 0) { foreach (TypeDesc newPatient in EnumToDropDown.EnumToList<TypeDesc>()) { TypeDropDownList.Items.Add(EnumToDropDown.GetEnumDescription(newPatient)); } } } public static string GetEnumDescription(Enum value) { FieldInfo fi = value.GetType().GetField(value.ToString()); DescriptionAttribute[] attributes = (DescriptionAttribute[])fi.GetCustomAttributes(typeof(DescriptionAttribute), false); if (attributes != null && attributes.Length > 0) return attributes[0].Description; else return value.ToString(); } public static IEnumerable<T> EnumToList<T>() { Type enumType = typeof(T); // Can't use generic type constraints on value types, // so have to do check like this if (enumType.BaseType != typeof(Enum)) throw new ArgumentException("T must be of type System.Enum"); Array enumValArray = Enum.GetValues(enumType); List<T> enumValList = new List<T>(enumValArray.Length); foreach (int val in enumValArray) { enumValList.Add((T)Enum.Parse(enumType, val.ToString())); } return enumValList; } and my aspx page use the following code to validate <asp:DropDownList ID="TypeDropDownList" runat="server" > </asp:DropDownList> <asp:RequiredFieldValidator ID="TypeRequiredValidator" runat="server" ControlToValidate="TypeDropDownList" ErrorMessage="Please Select a City" Text="<img src='Styles/images/Exclamation.gif' />" ValidationGroup="city"></asp:RequiredFieldValidator> But my validation is accepting "Please Specify" as city name. I want to stop user to submit if the city is not selected.

    Read the article

  • Why is Attributes.IsDefined() missing overloads?

    - by Hans Passant
    Inspired by an SO question. The Attribute class has several overloads for the IsDefined() method. Covered are attributes applied to Assembly, Module, MemberInfo, ParameterInfo. The MemberInfo overload covers PropertyInfo, FieldInfo, EventInfo, MethodInfo, ConstructorInfo. That takes care of most of the AttributeTargets. Except for one biggy: there is no overload for Attribute.IsDefined(Type, Type) so that you could check if an attribute is defined on a class. Or a struct, delegate or enum for that matter. Not that this is a real problem, Type.GetCustomAttributes() can fix that. But all of the BlahInfo types have this too. I wonder at the lack of symmetry. I can't put a finger on why this would be problem for Type. Guessing at an inheritance problem doesn't explain it to me. Having ValueType in the mix might be a lead, still doesn't make sense. I don't buy "they forgot", they never do. Why is this overload missing?

    Read the article

  • what's a good technique for building and running many similar unit tests?

    - by jcollum
    I have a test setup where I have many very similar unit tests that I need to run. For example, there are about 40 stored procedures that need to be checked for existence in the target environment. However I'd like all the tests to be grouped by their business unit. So there'd be 40 instances of a very similar TestMethod in 40 separate classes. Kinda lame. One other thing: each group of tests need to be in their own solution. So Business Unit A will have a solution called Tests.BusinessUnitA. I'm thinking that I can set this all up by passing a configuration object (with the name of the stored proc to check, among other things) to a TestRunner class. The problem is that I'm losing the atomicity of my unit tests. I wouldn't be able to run just one of the tests, I'd have to run all the tests in the TestRunner class. This is what the code looks like at this time. Sure, it's nice and compact, but if Test 8 fails, I have no way of running just Test 8. TestRunner runner = new TestRunner(config, this.TestContext); var runnerType = typeof(TestRunner); var methods = runnerType.GetMethods() .Where(x => x.GetCustomAttributes(typeof(TestMethodAttribute), false) .Count() > 0).ToArray(); foreach (var method in methods) { method.Invoke(runner, null); } So I'm looking for suggestions for making a group of unit tests that take in a configuration object but won't require me to generate many many TestMethods. This looks like it might require code-generation, but I'd like to solve it without that.

    Read the article

  • Event Logging in LINQ C# .NET

    The first thing you'll want to do before using this code is to create a table in your database called TableHistory: CREATE TABLE [dbo].[TableHistory] (     [TableHistoryID] [int] IDENTITY NOT NULL ,     [TableName] [varchar] (50) NOT NULL ,     [Key1] [varchar] (50) NOT NULL ,     [Key2] [varchar] (50) NULL ,     [Key3] [varchar] (50) NULL ,     [Key4] [varchar] (50) NULL ,     [Key5] [varchar] (50) NULL ,     [Key6] [varchar] (50)NULL ,     [ActionType] [varchar] (50) NULL ,     [Property] [varchar] (50) NULL ,     [OldValue] [varchar] (8000) NULL ,     [NewValue] [varchar] (8000) NULL ,     [ActionUserName] [varchar] (50) NOT NULL ,     [ActionDateTime] [datetime] NOT NULL ) Once you have created the table, you'll need to add it to your custom LINQ class (which I will refer to as DboDataContext), thus creating the TableHistory class. Then, you'll need to add the History.cs file to your project. You'll also want to add the following code to your project to get the system date: public partial class DboDataContext{ [Function(Name = "GetDate", IsComposable = true)] public DateTime GetSystemDate() { MethodInfo mi = MethodBase.GetCurrentMethod() as MethodInfo; return (DateTime)this.ExecuteMethodCall(this, mi, new object[] { }).ReturnValue; }}private static Dictionary<type,> _cachedIL = new Dictionary<type,>();public static T CloneObjectWithIL<t>(T myObject){ Delegate myExec = null; if (!_cachedIL.TryGetValue(typeof(T), out myExec)) { // Create ILGenerator DynamicMethod dymMethod = new DynamicMethod("DoClone", typeof(T), new Type[] { typeof(T) }, true); ConstructorInfo cInfo = myObject.GetType().GetConstructor(new Type[] { }); ILGenerator generator = dymMethod.GetILGenerator(); LocalBuilder lbf = generator.DeclareLocal(typeof(T)); //lbf.SetLocalSymInfo("_temp"); generator.Emit(OpCodes.Newobj, cInfo); generator.Emit(OpCodes.Stloc_0); foreach (FieldInfo field in myObject.GetType().GetFields( System.Reflection.BindingFlags.Instance | System.Reflection.BindingFlags.Public | System.Reflection.BindingFlags.NonPublic)) { // Load the new object on the eval stack... (currently 1 item on eval stack) generator.Emit(OpCodes.Ldloc_0); // Load initial object (parameter) (currently 2 items on eval stack) generator.Emit(OpCodes.Ldarg_0); // Replace value by field value (still currently 2 items on eval stack) generator.Emit(OpCodes.Ldfld, field); // Store the value of the top on the eval stack into // the object underneath that value on the value stack. // (0 items on eval stack) generator.Emit(OpCodes.Stfld, field); } // Load new constructed obj on eval stack -> 1 item on stack generator.Emit(OpCodes.Ldloc_0); // Return constructed object. --> 0 items on stack generator.Emit(OpCodes.Ret); myExec = dymMethod.CreateDelegate(typeof(Func<t,>)); _cachedIL.Add(typeof(T), myExec); } return ((Func<t,>)myExec)(myObject);}I got both of the above methods off of the net somewhere (maybe even from CodeProject), but it's been long enough that I can't recall where I got them.Explanation of the History ClassThe History class records changes by creating a TableHistory record, inserting the values for the primary key for the table being modified into the Key1, Key2, ..., Key6 columns (if you have more than 6 values that make up a primary key on any table, you'll want to modify this), setting the type of change being made in the ActionType column (INSERT, UPDATE, or DELETE), old value and new value if it happens to be an update action, and the date and Windows identity of the user who made the change.Let's examine what happens when a call is made to the RecordLinqInsert method:public static void RecordLinqInsert(DboDataContext dbo, IIdentity user, object obj){ TableHistory hist = NewHistoryRecord(obj); hist.ActionType = "INSERT"; hist.ActionUserName = user.Name; hist.ActionDateTime = dbo.GetSystemDate(); dbo.TableHistories.InsertOnSubmit(hist);}private static TableHistory NewHistoryRecord(object obj){ TableHistory hist = new TableHistory(); Type type = obj.GetType(); PropertyInfo[] keys; if (historyRecordExceptions.ContainsKey(type)) { keys = historyRecordExceptions[type].ToArray(); } else { keys = type.GetProperties().Where(o => AttrIsPrimaryKey(o)).ToArray(); } if (keys.Length > KeyMax) throw new HistoryException("object has more than " + KeyMax.ToString() + " keys."); for (int i = 1; i <= keys.Length; i++) { typeof(TableHistory) .GetProperty("Key" + i.ToString()) .SetValue(hist, keys[i - 1].GetValue(obj, null).ToString(), null); } hist.TableName = type.Name; return hist;}protected static bool AttrIsPrimaryKey(PropertyInfo pi){ var attrs = from attr in pi.GetCustomAttributes(typeof(ColumnAttribute), true) where ((ColumnAttribute)attr).IsPrimaryKey select attr; if (attrs != null && attrs.Count() > 0) return true; else return false;}RecordLinqInsert takes as input a data context which it will use to write to the database, the user, and the LINQ object to be recorded (a single object, for instance, a Customer or Order object if you're using AdventureWorks). It then calls the NewHistoryRecord method, which uses LINQ to Objects in conjunction with the AttrIsPrimaryKey method to pull all the primary key properties, set the Key1-KeyN properties of the TableHistory object, and return the new TableHistory object. The code would be called in an application, like so: Continue span.fullpost {display:none;}

    Read the article

  • Generically correcting data before save with Entity Framework

    - by koevoeter
    Been working with Entity Framework (.NET 4.0) for a week now for a data migration job and needed some code that generically corrects string values in the database. You probably also have seen things like empty strings instead of NULL or non-trimmed texts ("United States       ") in "old" databases, and you don't want to apply a correcting function on every column you migrate. Here's how I've done this (extending the partial class of my ObjectContext):public partial class MyDatacontext{    partial void OnContextCreated()    {        SavingChanges += OnSavingChanges;    }     private void OnSavingChanges(object sender, EventArgs e)    {        foreach (var entity in GetPersistingEntities(sender))        {            foreach (var propertyInfo in GetStringProperties(entity))            {                var value = (string)propertyInfo.GetValue(entity, null);                 if (value == null)                {                    continue;                }                 if (value.Trim().Length == 0 && IsNullable(propertyInfo))                {                    propertyInfo.SetValue(entity, null, null);                }                else if (value != value.Trim())                {                    propertyInfo.SetValue(entity, value.Trim(), null);                }            }        }    }     private IEnumerable<object> GetPersistingEntities(object sender)    {        return ((ObjectContext)sender).ObjectStateManager            .GetObjectStateEntries(EntityState.Added | EntityState.Modified)             .Select(e => e.Entity);    }    private IEnumerable<PropertyInfo> GetStringProperties(object entity)    {        return entity.GetType().GetProperties()            .Where(pi => pi.PropertyType == typeof(string));    }    private bool IsNullable(PropertyInfo propertyInfo)    {        return ((EdmScalarPropertyAttribute)propertyInfo             .GetCustomAttributes(typeof(EdmScalarPropertyAttribute), false)            .Single()).IsNullable;    }}   Obviously you can use similar code for other generic corrections.

    Read the article

  • How to inherit from DataAnnotations.ValidationAttribute (it appears SecureCritical under Visual Stud

    - by codetuner
    Hi, I have an [AllowPartiallyTrustedCallers] class library containing subtypes of the System.DataAnnotations.ValidationAttribute. The library is used on contract types of WCF services. In .NET 2/3.5, this worked fine. Since .NET 4.0 however, running a client of the service in the Visual Studio debugger results in the exception "Inheritance security rules violated by type: '(my subtype of ValidationAttribute)'. Derived types must either match the security accessibility of the base type or be less accessible." (System.TypeLoadException) The error appears to occure only when all of the following conditions are met: a subclass of ValidationAttribute is in an AllowPartiallyTrustedCallers assembly reflection is used to check for the attribute the Visual Studio hosting process is enabled (checkbox on Project properties, Debug tab) So basically, in Visual Studio.NET 2010: create a new Console project, add a reference to "System.ComponentModel.DataAnnotations" 4.0.0.0, write the following code: . using System; [assembly: System.Security.AllowPartiallyTrustedCallers()] namespace TestingVaidationAttributeSecurity { public class MyValidationAttribute : System.ComponentModel.DataAnnotations.ValidationAttribute { } [MyValidation] public class FooBar { } class Program { static void Main(string[] args) { Console.WriteLine("ValidationAttribute IsCritical: {0}", typeof(System.ComponentModel.DataAnnotations.ValidationAttribute).IsSecurityCritical); FooBar fb = new FooBar(); fb.GetType().GetCustomAttributes(true); Console.WriteLine("Press enter to end."); Console.ReadLine(); } } } Press F5 and you get the exception ! Press Ctrl-F5 (start without debugging), and it all works fine without exception... The strange thing is that the ValidationAttribute will or will not be securitycritical depending on the way you run the program (F5 or Ctrl+F5). As illustrated by the Console.WriteLine in the above code. But then again, this appear to happen with other attributes (and types?) too. Now the questions... Why do I have this behaviour when inheriting from ValidationAttribute, but not when inheriting from System.Attribute ? (Using Reflector I don't find special settings on the ValidationAttribute class or it's assembly) And what can I do to solve this ? How can I keep MyValidationAttribute inheriting from ValidationAttribute in an AllowPartiallyTrustedCallers assembly without marking it SecurityCritical, still using the new .NET 4 level 2 security model and still have it work using the VS.NET debug host (or other hosts) ?? Thanks a lot! Rudi

    Read the article

  • Why is my Type.GetFields(BindingFlags.Instance|BindingFlags.Public) not working?

    - by granadaCoder
    My code can see the non-public members, but not the public ones. Why? FieldInfo[] publicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.Public); is returning nothing. Note: I'm trying to get at the properties on the abstract class as well as the concrete class. (And read the attributes as well). The MSDN example works with the 2 flags (BindingFlags.Instance | BindingFlags.Public) but my mini inheritance example below does not. private void RunTest1() { try { textBox1.Text = string.Empty; Type t = typeof(MyInheritedClass); //Look at the BindingFlags *** NonPublic *** int fieldCount = 0; while (null != t) { fieldCount += t.GetFields(BindingFlags.Instance | BindingFlags.NonPublic).Length; FieldInfo[] nonPublicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.NonPublic); foreach (FieldInfo field in nonPublicFieldInfos) { if (null != field) { Console.WriteLine(field.Name); } } t = t.BaseType; } Console.WriteLine("\n\r------------------\n\r"); //Look at the BindingFlags *** Public *** t = typeof(MyInheritedClass); FieldInfo[] publicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.Public); foreach (FieldInfo field in publicFieldInfos) { if (null != field) { Console.WriteLine(field.Name); object[] attributes = field.GetCustomAttributes(t, true); if (attributes != null && attributes.Length > 0) { foreach (Attribute att in attributes) { Console.WriteLine(att.GetType().Name); } } } } } catch (Exception ex) { ReportException(ex); } } private void ReportException(Exception ex) { Exception innerException = ex; while (innerException != null) { Console.WriteLine(innerException.Message + System.Environment.NewLine + innerException.StackTrace + System.Environment.NewLine + System.Environment.NewLine); innerException = innerException.InnerException; } } public abstract class MySuperType { public MySuperType(string st) { this.STString = st; } public string STString { get; set; } public abstract string MyAbstractString { get; set; } } public class MyInheritedClass : MySuperType { public MyInheritedClass(string ic) : base(ic) { this.ICString = ic; } [Description("This is an important property"), Category("HowImportant")] public string ICString { get; set; } private string _oldSchoolPropertyString = string.Empty; public string OldSchoolPropertyString { get { return _oldSchoolPropertyString; } set { _oldSchoolPropertyString = value; } } [Description("This is a not so importarnt property"), Category("HowImportant")] public override string MyAbstractString { get; set; } }

    Read the article

  • Why is my (Type).GetFields(BindingFlags.Instance | BindingFlags.Public) not working?

    - by granadaCoder
    My code can see the NonPublic members, but not the Public ones. (???) Full sample code below. FieldInfo[] publicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.Public); is returning nothing. Note, I'm trying to get at the properties on the abstract class as well as the 1 concrete class. (And read the attributes as well). I'm going bonkers on this one....the msdn example works with the 2 flags (BindingFlags.Instance | BindingFlags.Public).....but my mini inheritance example below is not. THANKS in advance. /////////////START CODE private void RunTest1() { try { textBox1.Text = string.Empty; Type t = typeof(MyInheritedClass); //Look at the BindingFlags *** NonPublic *** int fieldCount = 0; while (null != t) { fieldCount += t.GetFields(BindingFlags.Instance | BindingFlags.NonPublic).Length; FieldInfo[] nonPublicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.NonPublic); foreach (FieldInfo field in nonPublicFieldInfos) { if (null != field) { Console.WriteLine(field.Name); } } t = t.BaseType; } Console.WriteLine("\n\r------------------\n\r"); //Look at the BindingFlags *** Public *** t = typeof(MyInheritedClass); FieldInfo[] publicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.Public); foreach (FieldInfo field in publicFieldInfos) { if (null != field) { Console.WriteLine(field.Name); object[] attributes = field.GetCustomAttributes(t, true); if (attributes != null && attributes.Length > 0) { foreach (Attribute att in attributes) { Console.WriteLine(att.GetType().Name); } } } } } catch (Exception ex) { ReportException(ex); } } private void ReportException(Exception ex) { Exception innerException = ex; while (innerException != null) { Console.WriteLine(innerException.Message + System.Environment.NewLine + innerException.StackTrace + System.Environment.NewLine + System.Environment.NewLine); innerException = innerException.InnerException; } } public abstract class MySuperType { public MySuperType(string st) { this.STString = st; } public string STString { get; set; } public abstract string MyAbstractString {get;set;} } public class MyInheritedClass : MySuperType { public MyInheritedClass(string ic) : base(ic) { this.ICString = ic; } [Description("This is an important property"),Category("HowImportant")] public string ICString { get; set; } private string _oldSchoolPropertyString = string.Empty; public string OldSchoolPropertyString { get { return _oldSchoolPropertyString; } set { _oldSchoolPropertyString = value; } } [Description("This is a not so importarnt property"), Category("HowImportant")] public override string MyAbstractString { get; set; } }

    Read the article

  • ASP.NET MVC–How to show asterisk after required field label

    - by DigiMortal
    Usually we have some required fields on our forms and it would be nice if ASP.NET MVC views can detect those fields automatically and display nice red asterisk after field label. As this functionality is not built in I built my own solution based on data annotations. In this posting I will show you how to show red asterisk after label of required fields. Here are the main information sources I used when working out my own solution: How can I modify LabelFor to display an asterisk on required fields? (stackoverflow) ASP.NET MVC – Display visual hints for the required fields in your model (Radu Enuca) Although my code was first written for completely different situation I needed it later and I modified it to work with models that use data annotations. If data member of model has Required attribute set then asterisk is rendered after field. If Required attribute is missing then there will be no asterisk. Here’s my code. You can take just LabelForRequired() methods and paste them to your own HTML extension class. public static class HtmlExtensions {     [SuppressMessage("Microsoft.Design", "CA1006:DoNotNestGenericTypesInMemberSignatures", Justification = "This is an appropriate nesting of generic types")]     public static MvcHtmlString LabelForRequired<TModel, TValue>(this HtmlHelper<TModel> html, Expression<Func<TModel, TValue>> expression, string labelText = "")     {         return LabelHelper(html,             ModelMetadata.FromLambdaExpression(expression, html.ViewData),             ExpressionHelper.GetExpressionText(expression), labelText);     }       private static MvcHtmlString LabelHelper(HtmlHelper html,         ModelMetadata metadata, string htmlFieldName, string labelText)     {         if (string.IsNullOrEmpty(labelText))         {             labelText = metadata.DisplayName ?? metadata.PropertyName ?? htmlFieldName.Split('.').Last();         }           if (string.IsNullOrEmpty(labelText))         {             return MvcHtmlString.Empty;         }           bool isRequired = false;           if (metadata.ContainerType != null)         {             isRequired = metadata.ContainerType.GetProperty(metadata.PropertyName)                             .GetCustomAttributes(typeof(RequiredAttribute), false)                             .Length == 1;         }           TagBuilder tag = new TagBuilder("label");         tag.Attributes.Add(             "for",             TagBuilder.CreateSanitizedId(                 html.ViewContext.ViewData.TemplateInfo.GetFullHtmlFieldName(htmlFieldName)             )         );           if (isRequired)             tag.Attributes.Add("class", "label-required");           tag.SetInnerText(labelText);           var output = tag.ToString(TagRenderMode.Normal);             if (isRequired)         {             var asteriskTag = new TagBuilder("span");             asteriskTag.Attributes.Add("class", "required");             asteriskTag.SetInnerText("*");             output += asteriskTag.ToString(TagRenderMode.Normal);         }         return MvcHtmlString.Create(output);     } } And here’s how to use LabelForRequired extension method in your view: <div class="field">     @Html.LabelForRequired(m => m.Name)     @Html.TextBoxFor(m => m.Name)     @Html.ValidationMessageFor(m => m.Name) </div> After playing with CSS style called .required my example form looks like this: These red asterisks are not part of original view mark-up. LabelForRequired method detected that these properties have Required attribute set and rendered out asterisks after field names. NB! By default asterisks are not red. You have to define CSS class called “required” to modify how asterisk looks like and how it is positioned.

    Read the article

  • Implementing a generic repository for WCF data services

    - by cibrax
    The repository implementation I am going to discuss here is not exactly what someone would call repository in terms of DDD, but it is an abstraction layer that becomes handy at the moment of unit testing the code around this repository. In other words, you can easily create a mock to replace the real repository implementation. The WCF Data Services update for .NET 3.5 introduced a nice feature to support two way data bindings, which is very helpful for developing WPF or Silverlight based application but also for implementing the repository I am going to talk about. As part of this feature, the WCF Data Services Client library introduced a new collection DataServiceCollection<T> that implements INotifyPropertyChanged to notify the data context (DataServiceContext) about any change in the association links. This means that it is not longer necessary to manually set or remove the links in the data context when an item is added or removed from a collection. Before having this new collection, you basically used the following code to add a new item to a collection. Order order = new Order {   Name = "Foo" }; OrderItem item = new OrderItem {   Name = "bar",   UnitPrice = 10,   Qty = 1 }; var context = new OrderContext(); context.AddToOrders(order); context.AddToOrderItems(item); context.SetLink(item, "Order", order); context.SaveChanges(); Now, thanks to this new collection, everything is much simpler and similar to what you have in other ORMs like Entity Framework or L2S. Order order = new Order {   Name = "Foo" }; OrderItem item = new OrderItem {   Name = "bar",   UnitPrice = 10,   Qty = 1 }; order.Items.Add(item); var context = new OrderContext(); context.AddToOrders(order); context.SaveChanges(); In order to use this new feature, you first need to enable V2 in the data service, and then use some specific arguments in the datasvcutil tool (You can find more information about this new feature and how to use it in this post). DataSvcUtil /uri:"http://localhost:3655/MyDataService.svc/" /out:Reference.cs /dataservicecollection /version:2.0 Once you use those two arguments, the generated proxy classes will use DataServiceCollection<T> rather than a simple ObjectCollection<T>, which was the default collection in V1. There are some aspects that you need to know to use this feature correctly. 1. All the entities retrieved directly from the data context with a query track the changes and report those to the data context automatically. 2. A entity created with “new” does not track any change in the properties or associations. In order to enable change tracking in this entity, you need to do the following trick. public Order CreateOrder() {   var collection = new DataServiceCollection<Order>(this.context);   var order = new Order();   collection.Add(order);   return order; } You basically need to create a collection, and add the entity to that collection with the “Add” method to enable change tracking on that entity. 3. If you need to attach an existing entity (For example, if you created the entity with the “new” operator rather than retrieving it from the data context with a query) to a data context for tracking changes, you can use the “Load” method in the DataServiceCollection. var order = new Order {   Id = 1 }; var collection = new DataServiceCollection<Order>(this.context); collection.Load(order); In this case, the order with Id = 1 must exist on the data source exposed by the Data service. Otherwise, you will get an error because the entity did not exist. These cool extensions methods discussed by Stuart Leeks in this post to replace all the magic strings in the “Expand” operation with Expression Trees represent another feature I am going to use to implement this generic repository. Thanks to these extension methods, you could replace the following query with magic strings by a piece of code that only uses expressions. Magic strings, var customers = dataContext.Customers .Expand("Orders")         .Expand("Orders/Items") Expressions, var customers = dataContext.Customers .Expand(c => c.Orders.SubExpand(o => o.Items)) That query basically returns all the customers with their orders and order items. Ok, now that we have the automatic change tracking support and the expression support for explicitly loading entity associations, we are ready to create the repository. The interface for this repository looks like this,public interface IRepository { T Create<T>() where T : new(); void Update<T>(T entity); void Delete<T>(T entity); IQueryable<T> RetrieveAll<T>(params Expression<Func<T, object>>[] eagerProperties); IQueryable<T> Retrieve<T>(Expression<Func<T, bool>> predicate, params Expression<Func<T, object>>[] eagerProperties); void Attach<T>(T entity); void SaveChanges(); } The Retrieve and RetrieveAll methods are used to execute queries against the data service context. While both methods receive an array of expressions to load associations explicitly, only the Retrieve method receives a predicate representing the “where” clause. The following code represents the final implementation of this repository.public class DataServiceRepository: IRepository { ResourceRepositoryContext context; public DataServiceRepository() : this (new DataServiceContext()) { } public DataServiceRepository(DataServiceContext context) { this.context = context; } private static string ResolveEntitySet(Type type) { var entitySetAttribute = (EntitySetAttribute)type.GetCustomAttributes(typeof(EntitySetAttribute), true).FirstOrDefault(); if (entitySetAttribute != null) return entitySetAttribute.EntitySet; return null; } public T Create<T>() where T : new() { var collection = new DataServiceCollection<T>(this.context); var entity = new T(); collection.Add(entity); return entity; } public void Update<T>(T entity) { this.context.UpdateObject(entity); } public void Delete<T>(T entity) { this.context.DeleteObject(entity); } public void Attach<T>(T entity) { var collection = new DataServiceCollection<T>(this.context); collection.Load(entity); } public IQueryable<T> Retrieve<T>(Expression<Func<T, bool>> predicate, params Expression<Func<T, object>>[] eagerProperties) { var entitySet = ResolveEntitySet(typeof(T)); var query = context.CreateQuery<T>(entitySet); foreach (var e in eagerProperties) { query = query.Expand(e); } return query.Where(predicate); } public IQueryable<T> RetrieveAll<T>(params Expression<Func<T, object>>[] eagerProperties) { var entitySet = ResolveEntitySet(typeof(T)); var query = context.CreateQuery<T>(entitySet); foreach (var e in eagerProperties) { query = query.Expand(e); } return query; } public void SaveChanges() { this.context.SaveChanges(SaveChangesOptions.Batch); } } For instance, you can use the following code to retrieve customers with First name equal to “John”, and all their orders in a single call. repository.Retrieve<Customer>(    c => c.FirstName == “John”, //Where    c => c.Orders.SubExpand(o => o.Items)); In case, you want to have some pre-defined queries that you are going to use across several places, you can put them in an specific class. public static class CustomerQueries {   public static Expression<Func<Customer, bool>> LastNameEqualsTo(string lastName)   {     return c => c.LastName == lastName;   } } And then, use it with the repository. repository.Retrieve<Customer>(    CustomerQueries.LastNameEqualsTo("foo"),    c => c.Orders.SubExpand(o => o.Items));

    Read the article

  • MVC Automatic Menu

    - by Nuri Halperin
    An ex-colleague of mine used to call his SQL script generator "Super-Scriptmatic 2000". It impressed our then boss little, but was fun to say and use. We called every batch job and script "something 2000" from that day on. I'm tempted to call this one Menu-Matic 2000, except it's waaaay past 2000. Oh well. The problem: I'm developing a bunch of stuff in MVC. There's no PM to generate mounds of requirements and there's no Ux Architect to create wireframe. During development, things change. Specifically, actions get renamed, moved from controller x to y etc. Well, as the site grows, it becomes a major pain to keep a static menu up to date, because the links change. The HtmlHelper doesn't live up to it's name and provides little help. How do I keep this growing list of pesky little forgotten actions reigned in? The general plan is: Decorate every action you want as a menu item with a custom attribute Reflect out all menu items into a structure at load time Render the menu using as CSS  friendly <ul><li> HTML. The MvcMenuItemAttribute decorates an action, designating it to be included as a menu item: [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)] public class MvcMenuItemAttribute : Attribute {   public string MenuText { get; set; }   public int Order { get; set; }   public string ParentLink { get; set; }   internal string Controller { get; set; }   internal string Action { get; set; }     #region ctor   public MvcMenuItemAttribute(string menuText) : this(menuText, 0) { } public MvcMenuItemAttribute(string menuText, int order) { MenuText = menuText; Order = order; }       internal string Link { get { return string.Format("/{0}/{1}", Controller, this.Action); } }   internal MvcMenuItemAttribute ParentItem { get; set; } #endregion } The MenuText allows overriding the text displayed on the menu. The Order allows the items to be ordered. The ParentLink allows you to make this item a child of another menu item. An example action could then be decorated thusly: [MvcMenuItem("Tracks", Order = 20, ParentLink = "/Session/Index")] . All pretty straightforward methinks. The challenge with menu hierarchy becomes fairly apparent when you try to render a menu and highlight the "current" item or render a breadcrumb control. Both encounter an  ambiguity if you allow a data source to have more than one menu item with the same URL link. The issue is that there is no great way to tell which link a person click. Using referring URL will fail if a user bookmarked the page. Using some extra query string to disambiguate duplicate URLs essentially changes the links, and also ads a chance of collision with other query parameters. Besides, that smells. The stock ASP.Net sitemap provider simply disallows duplicate URLS. I decided not to, and simply pick the first one encountered as the "current". Although it doesn't solve the issue completely – one might say they wanted the second of the 2 links to be "current"- it allows one to include a link twice (home->deals and products->deals etc), and the logic of deciding "current" is easy enough to explain to the customer. Now that we got that out of the way, let's build the menu data structure: public static List<MvcMenuItemAttribute> ListMenuItems(Assembly assembly) { var result = new List<MvcMenuItemAttribute>(); foreach (var type in assembly.GetTypes()) { if (!type.IsSubclassOf(typeof(Controller))) { continue; } foreach (var method in type.GetMethods()) { var items = method.GetCustomAttributes(typeof(MvcMenuItemAttribute), false) as MvcMenuItemAttribute[]; if (items == null) { continue; } foreach (var item in items) { if (String.IsNullOrEmpty(item.Controller)) { item.Controller = type.Name.Substring(0, type.Name.Length - "Controller".Length); } if (String.IsNullOrEmpty(item.Action)) { item.Action = method.Name; } result.Add(item); } } } return result.OrderBy(i => i.Order).ToList(); } Using reflection, the ListMenuItems method takes an assembly (you will hand it your MVC web assembly) and generates a list of menu items. It digs up all the types, and for each one that is an MVC Controller, digs up the methods. Methods decorated with the MvcMenuItemAttribute get plucked and added to the output list. Again, pretty simple. To make the structure hierarchical, a LINQ expression matches up all the items to their parent: public static void RegisterMenuItems(List<MvcMenuItemAttribute> items) { _MenuItems = items; _MenuItems.ForEach(i => i.ParentItem = items.FirstOrDefault(p => String.Equals(p.Link, i.ParentLink, StringComparison.InvariantCultureIgnoreCase))); } The _MenuItems is simply an internal list to keep things around for later rendering. Finally, to package the menu building for easy consumption: public static void RegisterMenuItems(Type mvcApplicationType) { RegisterMenuItems(ListMenuItems(Assembly.GetAssembly(mvcApplicationType))); } To bring this puppy home, a call in Global.asax.cs Application_Start() registers the menu. Notice the ugliness of reflection is tucked away from the innocent developer. All they have to do is call the RegisterMenuItems() and pass in the type of the application. When you use the new project template, global.asax declares a class public class MvcApplication : HttpApplication and that is why the Register call passes in that type. protected void Application_Start() { AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes);   MvcMenu.RegisterMenuItems(typeof(MvcApplication)); }   What else is left to do? Oh, right, render! public static void ShowMenu(this TextWriter output) { var writer = new HtmlTextWriter(output);   renderHierarchy(writer, _MenuItems, null); }   public static void ShowBreadCrumb(this TextWriter output, Uri currentUri) { var writer = new HtmlTextWriter(output); string currentLink = "/" + currentUri.GetComponents(UriComponents.Path, UriFormat.Unescaped);   var menuItem = _MenuItems.FirstOrDefault(m => m.Link.Equals(currentLink, StringComparison.CurrentCultureIgnoreCase)); if (menuItem != null) { renderBreadCrumb(writer, _MenuItems, menuItem); } }   private static void renderBreadCrumb(HtmlTextWriter writer, List<MvcMenuItemAttribute> menuItems, MvcMenuItemAttribute current) { if (current == null) { return; } var parent = current.ParentItem; renderBreadCrumb(writer, menuItems, parent); writer.Write(current.MenuText); writer.Write(" / ");   }     static void renderHierarchy(HtmlTextWriter writer, List<MvcMenuItemAttribute> hierarchy, MvcMenuItemAttribute root) { if (!hierarchy.Any(i => i.ParentItem == root)) return;   writer.RenderBeginTag(HtmlTextWriterTag.Ul); foreach (var current in hierarchy.Where(element => element.ParentItem == root).OrderBy(i => i.Order)) { if (ItemFilter == null || ItemFilter(current)) {   writer.RenderBeginTag(HtmlTextWriterTag.Li); writer.AddAttribute(HtmlTextWriterAttribute.Href, current.Link); writer.AddAttribute(HtmlTextWriterAttribute.Alt, current.MenuText); writer.RenderBeginTag(HtmlTextWriterTag.A); writer.WriteEncodedText(current.MenuText); writer.RenderEndTag(); // link renderHierarchy(writer, hierarchy, current); writer.RenderEndTag(); // li } } writer.RenderEndTag(); // ul } The ShowMenu method renders the menu out to the provided TextWriter. In previous posts I've discussed my partiality to using well debugged, time test HtmlTextWriter to render HTML rather than writing out angled brackets by hand. In addition, writing out using the actual writer on the actual stream rather than generating string and byte intermediaries (yes, StringBuilder being no exception) disturbs me. To carry out the rendering of an hierarchical menu, the recursive renderHierarchy() is used. You may notice that an ItemFilter is called before rendering each item. I figured that at some point one might want to exclude certain items from the menu based on security role or context or something. That delegate is the hook for such future feature. To carry out rendering of a breadcrumb recursion is used again, this time simply to unwind the parent hierarchy from the leaf node, then rendering on the return from the recursion rather than as we go along deeper. I guess I was stuck in LISP that day.. recursion is fun though.   Now all that is left is some usage! Open your Site.Master or wherever you'd like to place a menu or breadcrumb, and plant one of these calls: <% MvcMenu.ShowBreadCrumb(this.Writer, Request.Url); %> to show a breadcrumb trail (notice lack of "=" after <% and the semicolon). <% MvcMenu.ShowMenu(Writer); %> to show the menu.   As mentioned before, the HTML output is nested <UL> <LI> tags, which should make it easy to style using abundant CSS to produce anything from static horizontal or vertical to dynamic drop-downs.   This has been quite a fun little implementation and I was pleased that the code size remained low. The main crux was figuring out how to pass parent information from the attribute to the hierarchy builder because attributes have restricted parameter types. Once I settled on that implementation, the rest falls into place quite easily.

    Read the article

  • InternalsVisibleTo attribute and security vulnerability

    - by Sergey Litvinov
    I found one issue with InternalsVisibleTo attribute usage. The idea of InternalsVisibleTo attribute to allow some other assemblies to use internal classes\methods of this assembly. To make it work you need sign your assemblies. So, if other assemblies isn't specified in main assembly and if they have incorrect public key, then they can't use Internal members. But the issue in Reflection Emit type generation. For example, we have CorpLibrary1 assembly and it has such class: public class TestApi { internal virtual void DoSomething() { Console.WriteLine("Base DoSomething"); } public void DoApiTest() { // some internal logic // ... // call internal method DoSomething(); } } This assembly is marked with such attribute to allow another CorpLibrary2 to make inheritor for that TestAPI and override behaviour of DoSomething method. [assembly: InternalsVisibleTo("CorpLibrary2, PublicKey=0024000004800000940000000602000000240000525341310004000001000100434D9C5E1F9055BF7970B0C106AAA447271ECE0F8FC56F6AF3A906353F0B848A8346DC13C42A6530B4ED2E6CB8A1E56278E664E61C0D633A6F58643A7B8448CB0B15E31218FB8FE17F63906D3BF7E20B9D1A9F7B1C8CD11877C0AF079D454C21F24D5A85A8765395E5CC5252F0BE85CFEB65896EC69FCC75201E09795AAA07D0")] The issue is that I'm able to override this internal DoSomething method and break class logic. My steps to do it: Generate new assembly in runtime via AssemblyBuilder Get AssemblyName from CorpLibrary1 and copy PublikKey to new assembly Generate new assembly that will inherit TestApi class As PublicKey and name of generated assembly is the same as in InternalsVisibleTo, then we can generate new DoSomething method that will override internal method in TestAPI assembly Then we have another assembly that isn't related to this CorpLibrary1 and can't use internal members. We have such test code in it: class Program { static void Main(string[] args) { var builder = new FakeBuilder(InjectBadCode, "DoSomething", true); TestApi fakeType = builder.CreateFake(); fakeType.DoApiTest(); // it will display: // Inject bad code // Base DoSomething Console.ReadLine(); } public static void InjectBadCode() { Console.WriteLine("Inject bad code"); } } And this FakeBuilder class has such code: /// /// Builder that will generate inheritor for specified assembly and will overload specified internal virtual method /// /// Target type public class FakeBuilder { private readonly Action _callback; private readonly Type _targetType; private readonly string _targetMethodName; private readonly string _slotName; private readonly bool _callBaseMethod; public FakeBuilder(Action callback, string targetMethodName, bool callBaseMethod) { int randomId = new Random((int)DateTime.Now.Ticks).Next(); _slotName = string.Format("FakeSlot_{0}", randomId); _callback = callback; _targetType = typeof(TFakeType); _targetMethodName = targetMethodName; _callBaseMethod = callBaseMethod; } public TFakeType CreateFake() { // as CorpLibrary1 can't use code from unreferences assemblies, we need to store this Action somewhere. // And Thread is not bad place for that. It's not the best place as it won't work in multithread application, but it's just a sample LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot(_slotName); Thread.SetData(slot, _callback); // then we generate new assembly with the same nameand public key as target assembly trusts by InternalsVisibleTo attribute var newTypeName = _targetType.Name + "Fake"; var targetAssembly = Assembly.GetAssembly(_targetType); AssemblyName an = new AssemblyName(); an.Name = GetFakeAssemblyName(targetAssembly); // copying public key to new generated assembly var assemblyName = targetAssembly.GetName(); an.SetPublicKey(assemblyName.GetPublicKey()); an.SetPublicKeyToken(assemblyName.GetPublicKeyToken()); AssemblyBuilder assemblyBuilder = Thread.GetDomain().DefineDynamicAssembly(an, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduleBuilder = assemblyBuilder.DefineDynamicModule(assemblyBuilder.GetName().Name, true); // create inheritor for specified type TypeBuilder typeBuilder = moduleBuilder.DefineType(newTypeName, TypeAttributes.Public | TypeAttributes.Class, _targetType); // LambdaExpression.CompileToMethod can be used only with static methods, so we need to create another method that will call our Inject method // we can do the same via ILGenerator, but expression trees are more easy to use MethodInfo methodInfo = CreateMethodInfo(moduleBuilder); MethodBuilder methodBuilder = typeBuilder.DefineMethod(_targetMethodName, MethodAttributes.Public | MethodAttributes.Virtual); ILGenerator ilGenerator = methodBuilder.GetILGenerator(); // call our static method that will call inject method ilGenerator.EmitCall(OpCodes.Call, methodInfo, null); // in case if we need, then we put call to base method if (_callBaseMethod) { var baseMethodInfo = _targetType.GetMethod(_targetMethodName, BindingFlags.NonPublic | BindingFlags.Instance); // place this to stack ilGenerator.Emit(OpCodes.Ldarg_0); // call the base method ilGenerator.EmitCall(OpCodes.Call, baseMethodInfo, new Type[0]); // return ilGenerator.Emit(OpCodes.Ret); } // generate type, create it and return to caller Type cheatType = typeBuilder.CreateType(); object type = Activator.CreateInstance(cheatType); return (TFakeType)type; } /// /// Get name of assembly from InternalsVisibleTo AssemblyName /// private static string GetFakeAssemblyName(Assembly assembly) { var internalsVisibleAttr = assembly.GetCustomAttributes(typeof(InternalsVisibleToAttribute), true).FirstOrDefault() as InternalsVisibleToAttribute; if (internalsVisibleAttr == null) { throw new InvalidOperationException("Assembly hasn't InternalVisibleTo attribute"); } var ind = internalsVisibleAttr.AssemblyName.IndexOf(","); var name = internalsVisibleAttr.AssemblyName.Substring(0, ind); return name; } /// /// Generate such code: /// ((Action)Thread.GetData(Thread.GetNamedDataSlot(_slotName))).Invoke(); /// private LambdaExpression MakeStaticExpressionMethod() { var allocateMethod = typeof(Thread).GetMethod("GetNamedDataSlot", BindingFlags.Static | BindingFlags.Public); var getDataMethod = typeof(Thread).GetMethod("GetData", BindingFlags.Static | BindingFlags.Public); var call = Expression.Call(allocateMethod, Expression.Constant(_slotName)); var getCall = Expression.Call(getDataMethod, call); var convCall = Expression.Convert(getCall, typeof(Action)); var invokExpr = Expression.Invoke(convCall); var lambda = Expression.Lambda(invokExpr); return lambda; } /// /// Generate static class with one static function that will execute Action from Thread NamedDataSlot /// private MethodInfo CreateMethodInfo(ModuleBuilder moduleBuilder) { var methodName = "_StaticTestMethod_" + _slotName; var className = "_StaticClass_" + _slotName; TypeBuilder typeBuilder = moduleBuilder.DefineType(className, TypeAttributes.Public | TypeAttributes.Class); MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, MethodAttributes.Static | MethodAttributes.Public); LambdaExpression expression = MakeStaticExpressionMethod(); expression.CompileToMethod(methodBuilder); var type = typeBuilder.CreateType(); return type.GetMethod(methodName, BindingFlags.Static | BindingFlags.Public); } } remarks about sample: as we need to execute code from another assembly, CorpLibrary1 hasn't access to it, so we need to store this delegate somewhere. Just for testing I stored it in Thread NamedDataSlot. It won't work in multithreaded applications, but it's just a sample. I know that we use Reflection to get private\internal members of any class, but within reflection we can't override them. But this issue is allows anyone to override internal class\method if that assembly has InternalsVisibleTo attribute. I tested it on .Net 3.5\4 and it works for both of them. How does it possible to just copy PublicKey without private key and use it in runtime? The whole sample can be found there - https://github.com/sergey-litvinov/Tests_InternalsVisibleTo UPDATE1: That test code in Program and FakeBuilder classes hasn't access to key.sn file and that library isn't signed, so it hasn't public key at all. It just copying it from CorpLibrary1 by using Reflection.Emit

    Read the article

< Previous Page | 1 2