Search Results

Search found 4204 results on 169 pages for 'green computing'.

Page 2/169 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Distributed computing for a company? Is there such a 'free' thing?

    - by Jakub
    I am new to the whole distributed computing / cloud thing. But I had an idea at work for our multimedia stuff like movie encoding / cpu intensive things tasks (which sometimes take a few hours). Is there a 'free' (linux?) way to go about using a Windows machine, and offsetting those cpu cycles for that task to say 10 servers that are generally idle (cpu wise)? I'm just curious if there is a way to do this or am I just grasping at straws here. My thought is that a 'cloud' setup would achieve this, however like I stated initially, I am a total newbie when it comes to it. This is just an idea, looking for some thoughts? Anyone achieve this?

    Read the article

  • Sales Career in Cloud Computing

    - by ricky
    I am working with a Google's business partner and selling Google Apps which is based on cloud computing concept. As we all know cloud computing is ready to capture the IT world, So I just wanted to take suggestion from you experts here about the sales career in Cloud computing I am a Post graduate in Sales and Marketing and planning to dig deeper into Cloud computing from sales point of view. I would appreciate if you can assist me with my path creation to achieve good career in cloud computing. Regards, Jason Robb

    Read the article

  • Master Data Management and Cloud Computing

    - by david.butler(at)oracle.com
    Cloud Computing is all the rage these days. There are many reasons why this is so. But like its predecessor, Service Oriented Architecture, it can fall on hard times if the underlying data is left unmanaged. Master Data Management is the perfect Cloud companion. It can materially increase the chances for successful Cloud initiatives. In this blog, I'll review the nature of the Cloud and show how MDM fits in.   Here's the National Institute of Standards and Technology Cloud definition: •          Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction.   Cloud architectures have three main layers: applications or Software as a Service (SaaS), Platforms as a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS generally refers to applications that are delivered to end-users over the Internet. Oracle CRM On Demand is an example of a SaaS application. Today there are hundreds of SaaS providers covering a wide variety of applications including Salesforce.com, Workday, and Netsuite. Oracle MDM applications are located in this layer of Oracle's On Demand enterprise Cloud platform. We call it Master Data as a Service (MDaaS). PaaS generally refers to an application deployment platform delivered as a service. They are often built on a grid computing architecture and include database and middleware. Oracle Fusion Middleware is in this category and includes the SOA and Data Integration products used to connect SaaS applications including MDM. Finally, IaaS generally refers to computing hardware (servers, storage and network) delivered as a service.  This typically includes the associated software as well: operating systems, virtualization, clustering, etc.    Cloud Computing benefits are compelling for a large number of organizations. These include significant cost savings, increased flexibility, and fast deployments. Cost advantages include paying for just what you use. This is especially critical for organizations with variable or seasonal usage. Companies don't have to invest to support peak computing periods. Costs are also more predictable and controllable. Increased agility includes access to the latest technology and experts without making significant up front investments.   While Cloud Computing is certainly very alluring with a clear value proposition, it is not without its challenges. An IDC survey of 244 IT executives/CIOs and their line-of-business (LOB) colleagues identified a number of issues:   Security - 74% identified security as an issue involving data privacy and resource access control. Integration - 61% found that it is hard to integrate Cloud Apps with in-house applications. Operational Costs - 50% are worried that On Demand will actually cost more given the impact of poor data quality on the rest of the enterprise. Compliance - 49% felt that compliance with required regulatory, legal and general industry requirements (such as PCI, HIPAA and Sarbanes-Oxley) would be a major issue. When control is lost, the ability of a provider to directly manage how and where data is deployed, used and destroyed is negatively impacted.  There are others, but I singled out these four top issues because Master Data Management, properly incorporated into a Cloud Computing infrastructure, can significantly ameliorate all of these problems. Cloud Computing can literally rain raw data across the enterprise.   According to fellow blogger, Mike Ferguson, "the fracturing of data caused by the adoption of cloud computing raises the importance of MDM in keeping disparate data synchronized."   David Linthicum, CTO Blue Mountain Labs blogs that "the lack of MDM will become more of an issue as cloud computing rises. We're moving from complex federated on-premise systems, to complex federated on-premise and cloud-delivered systems."    Left unmanaged, non-standard, inconsistent, ungoverned data with questionable quality can pollute analytical systems, increase operational costs, and reduce the ROI in Cloud and On-Premise applications. As cloud computing becomes more relevant, and more data, applications, services, and processes are moved out to cloud computing platforms, the need for MDM becomes ever more important. Oracle's MDM suite is designed to deal with all four of the above Cloud issues listed in the IDC survey.   Security - MDM manages all master data attribute privacy and resource access control issues. Integration - MDM pre-integrates Cloud Apps with each other and with On Premise applications at the data level. Operational Costs - MDM significantly reduces operational costs by increasing data quality, thereby improving enterprise business processes efficiency. Compliance - MDM, with its built in Data Governance capabilities, insures that the data is governed according to organizational standards. This facilitates rapid and accurate reporting for compliance purposes. Oracle MDM creates governed high quality master data. A unified cleansed and standardized data view is produced. The Oracle Customer Hub creates a single view of the customer. The Oracle Product Hub creates high quality product data designed to support all go-to-market processes. Oracle Supplier Hub dramatically reduces the chances of 'supplier exceptions'. Oracle Site Hub masters locations. And Oracle Hyperion Data Relationship Management masters financial reference data and manages enterprise hierarchies across operational areas from ERP to EPM and CRM to SCM. Oracle Fusion Middleware connects Cloud and On Premise applications to MDM Hubs and brings high quality master data to your enterprise business processes.   An independent analyst once said "Poor data quality is like dirt on the windshield. You may be able to drive for a long time with slowly degrading vision, but at some point, you either have to stop and clear the windshield or risk everything."  Cloud Computing has the potential to significantly degrade data quality across the enterprise over time. Deploying a Master Data Management solution prior to or in conjunction with a move to the Cloud can insure that the data flowing into the enterprise from the Cloud is clean and governed. This will in turn insure that expected returns on the investment in Cloud Computing will be realized.       Oracle MDM has proven its metal in this area and has the customers to back that up. In fact, I will be hosting a webcast on Tuesday, April 10th at 10 am PT with one of our top Cloud customers, the Church Pension Group. They have moved all mainline applications to a hosted model and use Oracle MDM to insure the master data is managed and cleansed before it is propagated to other cloud and internal systems. I invite you join Martin Hossfeld, VP, IT Operations, and Danette Patterson, Enterprise Data Manager as they review business drivers for MDM and hosted applications, how they did it, the benefits achieved, and lessons learned. You can register for this free webcast here.  Hope to see you there.

    Read the article

  • Why not Green Threads?

    - by redjamjar
    Whilst I know questions on this have been covered already (e.g. http://stackoverflow.com/questions/5713142/green-threads-vs-non-green-threads), I don't feel like I've got a satisfactory answer. The question is: why don't JVM's support green threads anymore? It says this on the code-style Java FAQ: A green thread refers to a mode of operation for the Java Virtual Machine (JVM) in which all code is executed in a single operating system thread. And this over on java.sun.com: The downside is that using green threads means system threads on Linux are not taken advantage of and so the Java virtual machine is not scalable when additional CPUs are added. It seems to me that the JVM could have a pool of system processes equal to the number of cores, and then run green threads on top of that. This could offer some big advantages when you have a very number large of threads which block often (mostly because current JVM's cap the number of threads). Thoughts?

    Read the article

  • What's a good open source cloud computing software? [closed]

    - by boy
    In particular, the "cloud" computing that I'm referring to is: I'm going to get some Linux servers. Then I have pretty big computing tasks to do every day. So my goal is to be able to run some shell command to request an "instance" (ie, if a server has 4 CPU, then the computing software will configure that server to have 4 instances, assuming all my tasks are single thread). Ideally, then I can run the following command: ./addjobs somebatchfile where somebatch file contains one command per line ./removejobs all ./listalljobs (ie, everything is done in shell. And the "computing software" can return me the hostname that's available in some environment variable, etc) And that's all I needed. I run into OpenStack.. but it seems too complicated for this purpose (ie, it does all the Imagine sharing stuff, etc).. All I want, is something SIMPLE that manages the Linux boxes for me and I'm just going to run shell commands on them... Is there such open source software? Thanks,

    Read the article

  • Learn Cloud Computing – It’s Time

    - by Ben Griswold
    Last week, I gave an in-house presentation on cloud computing.  I walked through an overview of cloud computing – characteristics (on demand, elastic, fully managed by provider), why are we interested (virtualization, distributed computing, increased access to high-speed internet, weak economy), various types (public, private, virtual private cloud) and services models (IaaS, PaaS, SaaS.)  Though numerous providers have emerged in the cloud computing space, the presentation focused on Amazon, Google and Microsoft offerings and provided an overview of their platforms, costs, data tier technologies, management and security.  One of the biggest talking points was why developers should consider the cloud as part of their deployment strategy: You only have to pay for what you consume You will be well-positioned for one time event provisioning You will reap the benefits of automated growth and scalable technologies For the record: having deployed dozens of applications on various platforms over the years, pricing tends to be the biggest customer concern.  Yes, scalability is a customer consideration, too, but it comes in distant second.  Boy do I hope you’re still reading… You may be thinking, “Cloud computing is well and good and it sounds catchy, but should I bother?  After all, it’s just another technology bundle which I’m supposed to ramp up on because it’s the latest thing, right?”  Well, my clients used to be 100% reliant upon me to find adequate hosting for them.  Now I find they are often aware of cloud services and some come to me with the “possibility” that deploying to the cloud is the best solution for them.  It’s like the patient who walks into the doctor’s office with their diagnosis and treatment already in mind thanks to the handful of Internet searches they performed earlier that day.  You know what?  The customer may be correct about the cloud. It may be a perfect fit for their app.  But maybe not…  I don’t think there’s a need to learn about every technical thing under the sun, but if you are responsible for identifying hosting solutions for your customers, it is time to get up to speed on cloud computing and the various offerings (if you haven’t already.)  Here are a few references to get you going: DZone Refcardz #82 Getting Started with Cloud Computing by Daniel Rubio Wikipedia Cloud Computing – What is it? Amazon Machine Images (AMI) Google App Engine SDK Azure SDK EC2 Spot Pricing Google App Engine Team Blog Amazon EC2 Team Blog Microsoft Azure Team Blog Amazon EC2 – Cost Calculator Google App Engine – Cost and Billing Resources Microsoft Azure – Cost Calculator Larry Ellison has stated that cloud computing has been defined as "everything that we currently do" and that it will have no effect except to "change the wording on some of our ads" Oracle launches worldwide cloud-computing tour NoSQL Movement  

    Read the article

  • Oracle's Cloud Computing Events

    - by Peeyush Tugnawat
    Here is a useful link to Oracle full day events on Cloud Computing worldwide http://www.oracle.com/events/cloudcomputing/index.html   Other Oracle Cloud Computing Resources Oracle's Cloud Computing Products and Services Oracle's Cloud Computing Resource Center   Others My Previous Post about Cloud Computing

    Read the article

  • Microsoft Technical Computing

    - by Daniel Moth
    In the past I have described the team I belong to here at Microsoft (Parallel Computing Platform) in terms of contributing to Visual Studio and related products, e.g. .NET Framework. To be more precise, our team is part of the Technical Computing group, which is still part of the Developer Division. This was officially announced externally earlier this month in an exec email (from Bob Muglia, the president of STB, to which DevDiv belongs). Here is an extract: "… As we build the Technical Computing initiative, we will invest in three core areas: 1. Technical computing to the cloud: Microsoft will play a leading role in bringing technical computing power to scientists, engineers and analysts through the cloud. Existing high- performance computing users will benefit from the ability to augment their on-premises systems with cloud resources that enable ‘just-in-time’ processing. This platform will help ensure processing resources are available whenever they are needed—reliably, consistently and quickly. 2. Simplify parallel development: Today, computers are shipping with more processing power than ever, including multiple cores, but most modern software only uses a small amount of the available processing power. Parallel programs are extremely difficult to write, test and trouble shoot. However, a consistent model for parallel programming can help more developers unlock the tremendous power in today’s modern computers and enable a new generation of technical computing. We are delivering new tools to automate and simplify writing software through parallel processing from the desktop… to the cluster… to the cloud. 3. Develop powerful new technical computing tools and applications: We know scientists, engineers and analysts are pushing common tools (i.e., spreadsheets and databases) to the limits with complex, data-intensive models. They need easy access to more computing power and simplified tools to increase the speed of their work. We are building a platform to do this. Our development efforts will yield new, easy-to-use tools and applications that automate data acquisition, modeling, simulation, visualization, workflow and collaboration. This will allow them to spend more time on their work and less time wrestling with complicated technology. …" Our Parallel Computing Platform team is directly responsible for item #2, and we work very closely with the teams delivering items #1 and #3. At the same time as the exec email, our marketing team unveiled a website with interviews that I invite you to check out: Modeling the World. Comments about this post welcome at the original blog.

    Read the article

  • Windows Azure Use Case: Web Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many applications have a requirement to be located outside of the organization’s internal infrastructure control. For instance, the company website for a brick-and-mortar retail company may want to post not only static but interactive content to be available to their external customers, and not want the customers to have access inside the organization’s firewall. There are also cases of pure web applications used for a great many of the internal functions of the business. This allows for remote workers, shared customer/employee workloads and data and other advantages. Some firms choose to host these web servers internally, others choose to contract out the infrastructure to an “ASP” (Application Service Provider) or an Infrastructure as a Service (IaaS) company. In any case, the design of these applications often resembles the following: In this design, a server (or perhaps more than one) hosts the presentation function (http or https) access to the application, and this same system may hold the computational aspects of the program. Authorization and Access is controlled programmatically, or is more open if this is a customer-facing application. Storage is either placed on the same or other servers, hosted within an RDBMS or NoSQL database, or a combination of the options, all coded into the application. High-Availability within this scenario is often the responsibility of the architects of the application, and by purchasing more hosting resources which must be built, licensed and configured, and manually added as demand requires, although some IaaS providers have a partially automatic method to add nodes for scale-out, if the architecture of the application supports it. Disaster Recovery is the responsibility of the system architect as well. Implementation: In a Windows Azure Platform as a Service (PaaS) environment, many of these architectural considerations are designed into the system. The Azure “Fabric” (not to be confused with the Azure implementation of Application Fabric - more on that in a moment) is designed to provide scalability. Compute resources can be added and removed programmatically based on any number of factors. Balancers at the request-level of the Fabric automatically route http and https requests. The fabric also provides High-Availability for storage and other components. Disaster recovery is a shared responsibility between the facilities (which have the ability to restore in case of catastrophic failure) and your code, which should build in recovery. In a Windows Azure-based web application, you have the ability to separate out the various functions and components. Presentation can be coded for multiple platforms like smart phones, tablets and PC’s, while the computation can be a single entity shared between them. This makes the applications more resilient and more object-oriented, and lends itself to a SOA or Distributed Computing architecture. It is true that you could code up a similar set of functionality in a traditional web-farm, but the difference here is that the components are built into the very design of the architecture. The API’s and DLL’s you call in a Windows Azure code base contains components as first-class citizens. For instance, if you need storage, it is simply called within the application as an object.  Computation has multiple options and the ability to scale linearly. You also gain another component that you would either have to write or bolt-in to a typical web-farm: the Application Fabric. This Windows Azure component provides communication between applications or even to on-premise systems. It provides authorization in either person-based or claims-based perspectives. SQL Azure provides relational storage as another option, and can also be used or accessed from on-premise systems. It should be noted that you can use all or some of these components individually. Resources: Design Strategies for Scalable Active Server Applications - http://msdn.microsoft.com/en-us/library/ms972349.aspx  Physical Tiers and Deployment  - http://msdn.microsoft.com/en-us/library/ee658120.aspx

    Read the article

  • Cloud computing?

    - by Shawn H
    I'm an analyst and intermediate programmer working for a consulting company. Sometimes we are doing some intensive computing in Excel which can be frustrating because we have slow computers. My company does not have enough money to buy everyone new computers right now. Is there a cloud computing service that allows me to login to a high performance virtual computer from remote desktop? We are not that technical so preferrably the computer is running Windows and I can run Excel and other applications from this computer. Thanks

    Read the article

  • What is "Cloud Computing"?

    - by Zimmy-DUB-Zongy-Zong-DUBBY
    Everywhere I turn, I keep seeing the term "cloud computing". I've done the usual drill of reading Wikipedia, searching around a bit, but it's hard to sort the wheat from the chaff. Can someone provide a buzzword-free definition of clouding computing? It's a bit of a struggle given that seemingly every tech company uses the term now, probably incorrectly.

    Read the article

  • Open Grid Engine or Akka/Something more fault tolerant?

    - by Mike Lyons
    My use case is that I have a pipeline of independent, stand alone programs, that I want to execute in a certain order on specific pieces of data that our output from previous pipeline stages. The pipeline is entirely linear and doesn't do anything in terms of alternate paths through the pipe. I'm currently using SGE to do this and it works OK, however occasionally a job will overstep it's memory bounds, fail, and all jobs that require that output data will fail. The pipe needs to be restarted in that case, and it seems that whatever is providing the fault tolerance in akka might solve that for me?

    Read the article

  • Dans le Cloud computing, un tutoriel pour débutant, traduit par Nicolas vieux et Vincent Viale

    Qu'est-ce que le Cloud computing ? Le Cloud computing est devenu le nouveau mot à la mode tirée en grande partie par le marketing et les offres de services de grands groupes comme Google, IBM et Amazon. Cloud computing est la prochaine étape dans l'évolution d'Internet. Cloud computing fournit le moyen par lequel tout - de la puissance de calcul de l'infrastructure informatique, des applications, des processus d'affaires pour une autoentreprise - peut être livré comme un service où et quand vous en avez besoin.

    Read the article

  • Parallel computing in .net

    - by HotTester
    Since the launch of .net 4.0 a new term that has got into lime light is parallel computing. Does parallel computing provide us some benefits or its just another concept or feature. Further is .net really going to utilize it in applications ? Further is parallel computing different from parallel programming ? Kindly throw some light on the issue in perspective of .net and some examples would be helpful. Thanks...

    Read the article

  • The future of cloud computing? [closed]

    - by Vimvq1987
    As far as I know, cloud computing is growing rapidly. Amazon EC2, Google App Engine, Microsoft Windows Azure...But I can't imagine how cloud computing will change the world. Will cloud computing will play the main role in software industry? Will our data be stored at one place and then can be accessed from any where? Shall we need powerful PCs no more because everything will be processed at "cloud"? Thank you so much

    Read the article

  • Cloud computing?

    - by Suraj
    I'm writing a report advising on future technologies that a manufacturing company could use. I've highlighted a number of advanced manufacturing technologies such as CAD etc. However, I want to bring cloud computing into the report just to score some extra points. I am not sure how one would bring together cloud computing with the advanced technologies though. Basically what would be the process of integrating these technologies into a cloud computing "environment"? Say the organisation buys a CAD package, how could they make use of cloud computing here?

    Read the article

  • Open source Distributed computing tool

    - by Prasenjit Chatterjee
    I want to set up distributed computing on my Local Area Network consisting a bunch of PCs. Say for the time being each one has the same OS - Windows 7. Is there any opensource tool available so that I can share the resources of these PCs over the LAN and increase the speed of my applications and the memory space. I know that if its a graphics intensive application then, it is not very practical, because the speed of LAN is much slower than Graphics processors. But I only want to share general applications, some basic softwares, Programming language IDEs etc. Can anyone shed some light on it? Thanks in Advance..

    Read the article

  • Cloud Computing - Multiple Physical Computers, One Logical Computer

    - by Koobz
    I know that you can set up multiple virtual machines per physical computer. I'm wondering if it's possible to make multiple physical computers behave as one logical unit? Fundamentally the way I imagine it working is that you can throw 10 computers into a facility one day. You've got one client that requires the equivalent of two computers worth, and 100 others that eat up the remaining 8. As demands change you're just reallocating logical resources, maybe the 2 computer client now requires a third physical system. You just add it to the cloud, and don't worry about sharding the database, or migrating data over to a new server. Can it work this way? If yes, why would anyone ever do things like partition their database servers anymore? Just add more computing resources. You scale horizontally with the hardware, but your server appears to scale vertically. There's no need to modify your application's infrastructure to support multiple databases etc.

    Read the article

  • Cloud Computing - Multiple Physical Computers, One Logical Computer

    - by bundini
    I know that you can set up multiple virtual machines per physical computer. I'm wondering if it's possible to make multiple physical computers behave as one logical unit? Fundamentally the way I imagine it working is that you can throw 10 computers into a facility one day. You've got one client that requires the equivalent of two computers worth, and 100 others that eat up the remaining 8. As demands change you're just reallocating logical resources, maybe the 2 computer client now requires a third physical system. You just add it to the cloud, and don't worry about sharding the database, or migrating data over to a new server. Can it work this way? If yes, why would anyone ever do things like hand partition their database servers anymore? Just add more computing resources. You scale horizontally with the hardware, but your server appears to scale vertically. There's no need to modify your application's supporting infrastructure to support multiple databases etc.

    Read the article

  • cloud computing ? Eucalyptus

    - by neolix
    Hi Greeting!! I want to setup small cloud computing using our old 2 core server system? we are new to cloud system we have google for the same. We are looking host VM's on top any one has done pls share me doc or how to ? we have 50 plus server which we are not using. 2 core each 4GB RAM, 1TB HDD centos is my base os we looking host windows. Right now we can use this server only paravirtualization ignore my english Thanks

    Read the article

  • Configuration management in support of scientific computing

    - by Sharpie
    For the past few years I have been involved with developing and maintaining a system for forecasting near-shore waves. Our team has just received a significant grant for further development and as a result we are taking the opportunity to refactor many components of the old system. We will also be receiving a new server to run the model and so I am taking this opportunity to consider how we set up the system. Basically, the steps that need to happen are: Some standard packages and libraries such as compilers and databases need to be downloaded and installed. Some custom scientific models need to be downloaded and compiled from source as they are not commonly provided as packages. New users need to be created to manage the databases and run the models. A suite of scripts that manage model-database interaction needs to be checked out from source code control and installed. Crontabs need to be set up to run the scripts at regular intervals in order to generate forecasts. I have been pondering applying tools such as Puppet, Capistrano or Fabric to automate the above steps. It seems perfectly possible to implement most of the above functionality except there are a couple usage cases that I am wondering about: During my preliminary research, I have found few examples and little discussion on how to use these systems to abstract and automate the process of building custom components from source. We may have to deploy on machines that are isolated from the Internet- i.e. all configuration and set up files will have to come in on a USB key that can be inserted into a terminal that can connect to the server that will run the models. I see this as an opportunity to learn a new tool that will help me automate my workflow, but I am unsure which tool I should start with. If any member of the community could suggest a tool that would support the above workflow and the issues specific to scientific computing, I would be very grateful. Our production server will be running Linux, but support for OS X would be a bonus as it would allow the development team to setup test installations outside of VirtualBox.

    Read the article

  • Configuration management in support of scientific computing

    - by Sharpie
    For the past few years I have been involved with developing and maintaining a system for forecasting near-shore waves. Our team has just received a significant grant for further development and as a result we are taking the opportunity to refactor many components of the old system. We will also be receiving a new server to run the model and so I am taking this opportunity to consider how we set up the system. Basically, the steps that need to happen are: Some standard packages and libraries such as compilers and databases need to be downloaded and installed. Some custom scientific models need to be downloaded and compiled from source as they are not commonly provided as packages. New users need to be created to manage the databases and run the models. A suite of scripts that manage model-database interaction needs to be checked out from source code control and installed. Crontabs need to be set up to run the scripts at regular intervals in order to generate forecasts. I have been pondering applying tools such as Puppet, Capistrano or Fabric to automate the above steps. It seems perfectly possible to implement most of the above functionality except there are a couple usage cases that I am wondering about: During my preliminary research, I have found few examples and little discussion on how to use these systems to abstract and automate the process of building custom components from source. We may have to deploy on machines that are isolated from the Internet- i.e. all configuration and set up files will have to come in on a USB key that can be inserted into a terminal that can connect to the server that will run the models. I see this as an opportunity to learn a new tool that will help me automate my workflow, but I am unsure which tool I should start with. If any member of the community could suggest a tool that would support the above workflow and the issues specific to scientific computing, I would be very grateful. Our production server will be running Linux, but support for OS X would be a bonus as it would allow the development team to setup test installations outside of VirtualBox.

    Read the article

  • Distributed storage and computing

    - by Tim van Elteren
    Dear Serverfault community, After researching a number of distributed file systems for deployment in a production environment with the main purpose of performing both batch and real-time distributed computing I've identified the following list as potential candidates, mainly on maturity, license and support: Ceph Lustre GlusterFS HDFS FhGFS MooseFS XtreemFS The key properties that our system should exhibit: an open source, liberally licensed, yet production ready, e.g. a mature, reliable, community and commercially supported solution; ability to run on commodity hardware, preferably be designed for it; provide high availability of the data with the most focus on reads; high scalability, so operation over multiple data centres, possibly on a global scale; removal of single points of failure with the use of replication and distribution of (meta-)data, e.g. provide fault-tolerance. The sensitivity points that were identified, and resulted in the following questions, are: transparency to the processing layer / application with respect to data locality, e.g. know where data is physically located on a server level, mainly for resource allocation and fast processing, high performance, how can this be accomplished? Do you from experience know what solutions provide this transparency and to what extent? posix compliance, or conformance, is mentioned on the wiki pages of most of the above listed solutions. The question here mainly is, how relevant is support for the posix standard? Hadoop for example isn't posix compliant by design, what are the pro's and con's? what about the difference between synchronous and asynchronous opeartion of a distributed file system. Though a synchronous distributed file system has the preference because of reliability it also imposes certain limitations with respect to scalability. What would be, from your expertise, the way to go on this? I'm looking forward to your replies. Thanks in advance! :) With kind regards, Tim van Elteren

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >