Search Results

Search found 258 results on 11 pages for 'inversion'.

Page 2/11 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Inversion of Control Container for PHP?

    - by George Mauer
    I am trying to code TDD style in PHP and one of my biggest stumbling blocks (other than lack of a decent IDE) is that I have to make my own hacked together IoC container just to inject all my mock objects properly. Has anyone used an Ioc container in php? All I've been able to find is PHP IOC on the ever-annoying phpclasses.org and it seems to have almost no documentation and not much of a following.

    Read the article

  • Connect ViewModel and View using Unity

    - by brainbox
    In this post i want to describe the approach of connecting View and ViewModel which I'm using in my last project.The main idea is to do it during resolve inside of unity container. It can be achived using InjectionFactory introduced in Unity 2.0 public static class MVVMUnityExtensions{    public static void RegisterView<TView, TViewModel>(this IUnityContainer container) where TView : FrameworkElement    {        container.RegisterView<TView, TView, TViewModel>();    }    public static void RegisterView<TViewFrom, TViewTo, TViewModel>(this IUnityContainer container)        where TViewTo : FrameworkElement, TViewFrom    {        container.RegisterType<TViewFrom>(new InjectionFactory(            c =>            {                var model = c.Resolve<TViewModel>();                var view = Activator.CreateInstance<TViewTo>();                view.DataContext = model;                return view;            }         ));    }}}And here is the sample how it could be used:var unityContainer = new UnityContainer();unityContainer.RegisterView<IFooView, FooView, FooViewModel>();IFooView view = unityContainer.Resolve<IFooView>(); // view with injected viewmodel in its datacontextPlease tell me your prefered way to connect viewmodel and view.

    Read the article

  • Single Responsibility Principle - How Can I Avoid Code Fragmentation?

    - by Dean Chalk
    I'm working on a team where the team leader is a virulent advocate of SOLID development principles. However, he lacks a lot of experience in getting complex software out of the door. We have a situation where he has applied SRP to what was already quite a complex code base, which has now become very highly fragmented and difficult to understand and debug. We now have a problem not only with code fragmentation, but also encapsulation, as methods within a class that may have been private or protected have been judged to represent a 'reason to change' and have been extracted to public or internal classes and interfaces which is not in keeping with the encapsulation goals of the application. We have some class constructors which take over 20 interface parameters, so our IoC registration and resolution is becoming a monster in its own right. I want to know if there is any 'refactor away from SRP' approach we could use to help fix some of these issues. I have read that it doesn't violate SOLID if I create a number of empty courser-grained classes that 'wrap' a number of closely related classes to provide a single-point of access to the sum of their functionality (i.e. mimicking a less overly SRP'd class implementation). Apart from that, I cannot think of a solution which will allow us to pragmatically continue with our development efforts, while keeping everyone happy. Any suggestions ?

    Read the article

  • Mock RequireJS define dependencies with config.map

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2014/08/18/mock-requirejs-define-dependencies-with-config.map.aspxI had a module dependency, that I’m pulling down with RequireJS that I needed to use and write tests against. In this case, I don’t care about the actual implementation of the module (it’s simple enough that I’m just avoiding some AJAX calls). EDIT: make sure you look at the bottom example after the edit before using the config.map approach. I found that there is an easier way. I did not want to change the constructor of the consumer as I had a chain of changes that would have to be made and that would have been to invasive for this task. I found a question on StackOverflow with a short, but helpful answer from “Artem Oboturov”. We can use the config.map from RequireJs to achieve this. Here is some code: A module example (“usefulModule” in Common/Modules/usefulModule.js): define([], function() { "use strict"; var testMethod = function() { ... }; // add more functionality of the module return { testMethod; } }); A consumer of usefulModule example: define([ "Commmon/Modules/usefulModule" ], function(usefulModule) { "use strict"; var consumerModule = function(){ var self = this; // add functionality of the module } }); Using config.map in the html of the test runner page (and in your Karma config –> I’m still trying to figure this out): map: {'*': { // replace usefulModule with a mock 'Common/Modules/usefulModule': '/Tests/Specs/Common/usefulModuleMock.js' } } With the new mapping, Require will load usefulModuleMock.js from Tests/Specs/Common instead of the real implementation. Some of the answers on StackOverflow mentioned Squire.js, which looked interesting, but I wasn’t ready to introduce a new library at this time. That’s all you need to be able to mock a depency in RequireJS. However, there are many good cases when you should pass it in through the constructor instead of this approach.   EDIT: After all that, here’s another, probably better way: The consumer class, updated: define([ "Commmon/Modules/usefulModule" ], function(UsefulModule) { "use strict"; var consumerModule = function(){ var self = this; self.usefulModule = new UsefulModule(); // add functionality of the module } }); Jasmine test: define([ "consumerModule", "/UnitTests/Specs/Common/Mocks/usefulModuleMock.js" ], function(consumerModule, UsefulModuleMock){ describe("when mocking out the module", function(){ it("should probably just override the property", function(){ var consumer = new consumerModule(); consumer.usefulModule = new UsefulModuleMock(); }); }); });   Thanks for letting me think out loud :-).

    Read the article

  • Dependency Injection: Only for single-instance objects?

    - by HappyDeveloper
    What if I want to also decouple my application, from classes like Product or User? (which usually have more than one instance) Take a look at this example: class Controller { public function someAction() { $product_1 = new Product(); $product_2 = new Product(); // do something with the products } } Is it right to say that Controller now depends on Product? I was thinking that we could decouple them too (as we would with single-instance objects like Database) In this example, however ugly, they are decoupled: class Controller { public function someAction(ProductInterface $new_product) { $product_1 = clone $new_product; $product_2 = clone $new_product; // do something with the products } } Has anyone done something like this before? Is it excessive?

    Read the article

  • Dependency injection and IOC containers in a closed project

    - by Puckl
    Does it make sense to assemble my project with dependency injection containers if I am the only one who will use the code of that project? The question came up when I read this IOC Article http://martinfowler.com/articles/injection.html The justification for using dependency injection in this article is that friends can reuse a class, and replace depending classes with their own classes because they get injected and not instantiated in the class. I would only use it to inject objects where they are needed instead of passing them through layers to their target. (Which is not so bad I learned here: Is it bad practice to pass instances through several layers?) (Maybe I will reuse parts of the project, who knows, but I don´t know if that is a good justification)

    Read the article

  • Explicitly pass context object versus injecting with IoC

    - by SonOfPirate
    I have a layered service application where the service layer delegates operations into the domain layer for execution. Many of these operations need to know the context under which they are operation. (The context included the identity of the current user, culture information, etc. received from the caller.) For example, I have an API method that returns a list of announcements. The list is based on the current user's role and each announcement is localized to their culture. The API is a thin-facade that delegates to an Application Service in my domain layer. The Application Service method obviously needs to know the context of the current request/operation as another call to the same API from another user should result in a different list. Within this method, we also have logging that uses some of the context information so we a clear understanding of the context when the operation was performed (this is especially useful if something goes wrong.) While this is a contrived example, in the real world, my Application Services will coordinate operations with many collaborative components, any number of them also needing the context information. My choice is to pass the context to the Application Service which would then pass it with any calls to collaborators or have the IoC container satisfy the dependency the Application Service and any collaborators have on the context. I am wondering if it is considered good/bad, best practices/code smell, etc. if I pass the context object as a parameter to the domain methods or if injecting the context via an IoC container is preferred. (EDIT: I should mention that the context object is instantiated per-request.)

    Read the article

  • mod_rewrite params inversion

    - by Fernando Constantino
    How can I create the mod_rewrite rule so I can convert the following URLs: From: domain/something/param/action ex:domain/cities/Chicago/view to: domain/something/action.php?param1=param ex: domain/cities/view.php?city=Chicago Changing to cities/view/Chicago cannot be an alternative. Thanks in advance.

    Read the article

  • what's a good approach to working with multiple databases?

    - by Riz
    I'm working on a project that has its own database call it InternalDb, but also it queries two other databases, call them ExternalDb1 and ExternalDb2. Both ExternalDb1 and ExternalDb2 are actually required by a few other projects. I'm wondering what the best approach for dealing with this is? Currently, I've just created a project for each of these external databases and then generated Edmx and entities using the entity-framework approach. My thought was that I could then include these projects in any of my solutions that require access to these databases. Also, I don't have any separate business layers. I just have a solution like below: Project.Domain ExternalDb1Project.Domain ExternalDb2Project.Domain Project.Web So my Domain projects contain the data access as well as the POCOs generated by Entity Framework and any business logic. But I'm not sure if this is a good approach. For example if I want to do Validation in my Project.Domain on the entities in the InternalDb, it's fine. But if I want to do Validation for entities from either of the ExternalDbs, then I wonder where it should go? To be more specific, I retrieve Employees from ExternalDb1Project.Domain. However, I want to make sure they are Active. Where should this Validation go? How to architect a project like this at a high level? Also, I want to make sure that I use IoC for my data contexts so I can create Fakes when writing tests. I wonder where the interfaces for these various data contexts would reside?

    Read the article

  • Database Context and Singleton injection with IoC

    - by zaitsman
    All of the below relates to a ASP.NET c# app. I have a Singleton Settings MemoryCache that reads values from database on first access and caches these, then invalidates them using SQL Service Broker message and re-reads as required. For the purposes of standard controllers, i create my Db Context in a request scope. However, this obviously means that i can't use the same context in the Settings Cache class, since that is a singleton and we have a scope collision. At the moment, i ended up with two db contexts - the Controllers get it via IoC container, whereas a Singleton just creates it's own. However, i am not satisfied with this approach (mostly due to the way i feel about two contexts, the cache doesn't set anything on the db hence concurrency is not an issue as much). What is a better way to do it?

    Read the article

  • Tension between the dependency inversion principle and avoiding "new" in C++?

    - by Kazark
    I have seen a lot of advice that it is better to do Type object; than Type* object = new Type(); in C++ whenever possible. I understand the rational behind this and appreciate it. But according to my understanding, to practice dependency inversion requires pointers, e.g.: Type* object = new Implementation();. (Or am I wrong about that?) Is there an inherent tension between the DIP and avoiding new when using C++? If so, what patterns/principles/practices can be used to mitigate this tension?

    Read the article

  • Why do I need an IoC container as opposed to straightforward DI code?

    - by Vadim
    I've been using Dependency Injection (DI) for awhile, injecting either in a constructor, property, or method. I've never felt a need to use an Inversion of Control (IoC) container. However, the more I read, the more pressure I feel from the community to use an IoC container. I played with .NET containers like StructureMap, NInject, Unity, and Funq. I still fail to see how an IoC container is going to benefit / improve my code. I'm also afraid to start using a container at work because many of my co-workers will see code which they don't understand. Many of them may be reluctant to learn new technology. Please, convince me that I need to use an IoC container. I'm going to use these arguments when I talk to my fellow developers at work.

    Read the article

  • Illustration for code presentation

    - by Lasse V. Karlsen
    I got an odd request, and I fear it will be closed as off-topic. So be it, but it's worth a shot. I'm creating a presentation about dependency injection and inversion of control, and I thought I'd make the point of interchangeable parts that serve a common purpose, but has different implementations, by showing an image I've seen before. Basically the image is of a man or a woman, but the image is split up into four parts: Head Torso uhm... not sure the name of this part, stomach, etc. Legs Possibly a fifth with feet and for each part you can choose among a few variants, creating odd people in the process. ie. a man torso with a woman head. But, I can't find such an image now of course. Does anyone know of such an image and can provide me with an url?

    Read the article

  • Performance question: Inverting an array of pointers in-place vs array of values

    - by Anders
    The background for asking this question is that I am solving a linearized equation system (Ax=b), where A is a matrix (typically of dimension less than 100x100) and x and b are vectors. I am using a direct method, meaning that I first invert A, then find the solution by x=A^(-1)b. This step is repated in an iterative process until convergence. The way I'm doing it now, using a matrix library (MTL4): For every iteration I copy all coeffiecients of A (values) in to the matrix object, then invert. This the easiest and safest option. Using an array of pointers instead: For my particular case, the coefficients of A happen to be updated between each iteration. These coefficients are stored in different variables (some are arrays, some are not). Would there be a potential for performance gain if I set up A as an array containing pointers to these coefficient variables, then inverting A in-place? The nice thing about the last option is that once I have set up the pointers in A before the first iteration, I would not need to copy any values between successive iterations. The values which are pointed to in A would automatically be updated between iterations. So the performance question boils down to this, as I see it: - The matrix inversion process takes roughly the same amount of time, assuming de-referencing of pointers is non-expensive. - The array of pointers does not need the extra memory for matrix A containing values. - The array of pointers option does not have to copy all NxN values of A between each iteration. - The values that are pointed to the array of pointers option are generally NOT ordered in memory. Hopefully, all values lie relatively close in memory, but *A[0][1] is generally not next to *A[0][0] etc. Any comments to this? Will the last remark affect performance negatively, thus weighing up for the positive performance effects?

    Read the article

  • Is dependency injection only for service type objects and singletons? (and NOT for gui?)

    - by sensui
    I'm currently experimenting with the Google's guice inversion of control container. I previously had singletons for just about any service (database, active directory) my application used. Now I refactored the code: all the dependencies are given as parameters to constructors. So far, so good. Now the hardest part is with the graphical user interface. I face this problem: I have a table (JTable) of products wrapped in an ProductFrame. I give the dependencies as parameters (EditProductDialog). @Inject public ProductFrame(EditProductDialog editProductDialog) { // ... } // ... @Inject public EditProductDialog(DBProductController productController, Product product) { // ... } The problem is that guice can't know what Product I have selected in the table, so it can't know what to inject in the EditProductDialog. Dependency Injection is pretty viral (if I modify one class to use dependency injection I also need to modify all the other classes it interacts with) so my question is should I directly instantiate EditProductDialog? But then I would have to pass manually the DBProductController to the EditProductDialog and I will also need to pass it to the ProductFrame and all this boils down to not using dependency injection at all. Or is my design flawed and because of that I can't really adapt the project to dependecy injection? Give me some examples of how you used dependency injection with the graphical user interface. All the examples found on the Internet are really simple examples where you use some services (mostly databases) with dependency injection.

    Read the article

  • IoC/DI in the face of winforms and other generated code

    - by Kaleb Pederson
    When using dependency injection (DI) and inversion of control (IoC) objects will typically have a constructor that accepts the set of dependencies required for the object to function properly. For example, if I have a form that requires a service to populate a combo box you might see something like this: // my files public interface IDataService { IList<MyData> GetData(); } public interface IComboDataService { IList<MyComboData> GetComboData(); } public partial class PopulatedForm : BaseForm { private IDataService service; public PopulatedForm(IDataService service) { //... InitializeComponent(); } } This works fine at the top level, I just use my IoC container to resolve the dependencies: var form = ioc.Resolve<PopulatedForm>(); But in the face of generated code, this gets harder. In winforms a second file composing the rest of the partial class is generated. This file references other components, such as custom controls, and uses no-args constructors to create such controls: // generated file: PopulatedForm.Designer.cs public partial class PopulatedForm { private void InitializeComponent() { this.customComboBox = new UserCreatedComboBox(); // customComboBox has an IComboDataService dependency } } Since this is generated code, I can't pass in the dependencies and there's no easy way to have my IoC container automatically inject all the dependencies. One solution is to pass in the dependencies of each child component to PopulatedForm even though it may not need them directly, such as with the IComboDataService required by the UserCreatedComboBox. I then have the responsibility to make sure that the dependencies are provided through various properties or setter methods. Then, my PopulatedForm constructor might look as follows: public PopulatedForm(IDataService service, IComboDataService comboDataService) { this.service = service; InitializeComponent(); this.customComboBox.ComboDataService = comboDataService; } Another possible solution is to have the no-args constructor to do the necessary resolution: public class UserCreatedComboBox { private IComboDataService comboDataService; public UserCreatedComboBox() { if (!DesignMode && IoC.Instance != null) { comboDataService = Ioc.Instance.Resolve<IComboDataService>(); } } } Neither solution is particularly good. What patterns and alternatives are available to more capably handle dependency-injection in the face of generated code? I'd love to see both general solutions, such as patterns, and ones specific to C#, Winforms, and Autofac.

    Read the article

  • When to use an IOC container?

    - by nivlam
    I'm trying to understand when I should use a container versus manually injecting dependencies. If I have an application that uses a 1-2 interfaces and only has 1-2 concrete implementations for each interface, I would lean towards just handling that myself. If I have a small application that uses 2-3 interfaces and each interface has 2-3 concrete implementations, should I use a full-blown container? Would something something simple like this suffice? Basically I'm trying to understand when it's appropriate to manually handle these dependencies, when (or if) I should use something simple like the above, and when to use an IOC container like Ninject, Windsor, etc....

    Read the article

  • Using Ninject 2.0 with ASP .Net 3.5

    - by GK
    Hi, I am trying to use Ninject 2.0 with Asp .Net 3.5 web application. Following are the DLLS and it's versions I am using. Ninject.dll - v2.0.0.0 Ninject.Extensions.Logging.dll v2.0.0.0 Ninject.Web.dll v1.0.0.0 In my global.ascx.cs I have following method. protected override IKernel CreateKernel() { IKernel kernel = new StandardKernel(); kernel.Bind<IDataAccess>().To<DataAccessEntBlock>().InSingletonScope(); return kernel; } When I run the application I get following error. Error activating ILoggerFactory No matching bindings are available, and the type is not self-bindable. Activation path: 1) Request for ILoggerFactory Suggestions: 1) Ensure that you have defined a binding for ILoggerFactory. 2) If the binding was defined in a module, ensure that the module has been loaded into the kernel. 3) Ensure you have not accidentally created more than one kernel. 4) If you are using automatic module loading, ensure the search path and filters are correct. I am not understanding even though I am not trying to register Logger, it seems it is trying to create it's own. How can I resolve this error ? Do I have to use any of the Ninject's extension Logger ? Thanks GK

    Read the article

  • Dependency Injection Constructor Madness

    - by JP
    I find that my constructors are starting to look like this: public MyClass(Container con, SomeClass1 obj1, SomeClass2, obj2.... ) with ever increasing parameter list. Since "Container" is my dependency injection container, why can't I just do this: public MyClass(Container con) for every class? What are the downsides? If I do this, it feels like I'm using a glorified static. Please share your thoughts on IoC and Dependency Injection madness. Thanks in advance. -JP

    Read the article

  • can I use the IOC when using a 3rd party library

    - by Greg
    Hi, Q1 If I have a reusable library that is available, that uses interfaces with classes that use the getInstance concept to create concrete classes for you to use, then in this case would that make sense on the client side to use the IOC container to create instances of these classes? Or is that really applying a double layer of abstraction? Q2 Or in the cases where I'm building the reusable library myself and want the client to use an IOC container, then in my reusable library would I then dispense with any overhead of having factories or "getInstance" methods to instantiate the classes in the client? (i.e. as the IOC container would do this no?)

    Read the article

  • StructureMap : How to define default constructor by code ?

    - by cik
    Hi, I can't figure out how to define the default constructor (when it exists overloads) for a type in StructureMap (version 2.5) by code. I want to get an instance of a service and the container has to inject a Linq2Sql data context instance into it. I wrote this in my 'bootstrapper' method : ForRequestedType<MyDataContext>().TheDefault.Is.OfConcreteType<MyDataContext>(); When I run my app, I got this error : StructureMap Exception Code: 202 No Default Instance defined for PluginFamily MyNamespace.Data.SqlRepository.MyDataContext, MyNamespace.Data, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null If I comment out all Linq2Sql generated contructors that I don't need, it works fine. Update : Oh, and I forgot to say that I would not use the [StructureMap.DefaultConstructor] attribute.

    Read the article

  • MVVM && IOC && Sub-ViewModels

    - by Lee Treveil
    I have a ViewModel, it takes two parameters in the constructor that are of the same type: public class CustomerComparerViewModel { public CustomerComparerViewModel(CustomerViewModel customerViewModel1, CustomerViewModel customerViewModel2) { } } public class CustomerViewModel { public string FirstName { get; set; } public string LastName { get; set; } } If I wasn't using IOC I could just new up the viewmodel and pass the sub-viewmodels in. I could package the two viewmodels into one class and pass that into the constructor but if I had another viewmodel that only needed one CustomerViewModel I would need to pass in something that the viewmodel does not need. How do I go about dealing with this using IOC? I'm using Ninject btw. Thanks

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >