Search Results

Search found 28 results on 2 pages for 'iproute2'.

Page 2/2 | < Previous Page | 1 2 

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • Linux Mint 10 LXDE computer to act as LTSP Server without luck

    - by Rautamiekka
    So I've tried to make our screen-broken HP laptop to also serve as LTSP Server in addition to various other tasks, without luck, which may be cuz I'm running LM10 LXDE while the instructions are for Ubuntu. Excuse my ignorance. The entire output from Terminal after installing LTSP stuff along with a Server kernel and a load of other packages: administrator@rauta-mint-turion ~ $ sudo lt ltrace ltsp-build-client ltsp-chroot ltspfs ltspfsmounter ltsp-info ltsp-localapps ltsp-update-image ltsp-update-kernels ltsp-update-sshkeys administrator@rauta-mint-turion ~ $ sudo ltsp-update-sshkeys administrator@rauta-mint-turion ~ $ sudo ltsp-update-kernels find: `/opt/ltsp/': No such file or directory administrator@rauta-mint-turion ~ $ sudo ltsp-build-client /usr/share/ltsp/plugins/ltsp-build-client/common/010-chroot-tagging: line 3: /opt/ltsp/i386/etc/ltsp_chroot: No such file or directory error: LTSP client installation ended abnormally administrator@rauta-mint-turion ~ $ sudo ltsp-update-image Cannot determine assigned port. Assigning to port 2000. mkdir: cannot create directory `/opt/ltsp/i386/etc/ltsp': No such file or directory /usr/sbin/ltsp-update-image: 274: cannot create /opt/ltsp/i386/etc/ltsp/update-kernels.conf: Directory nonexistent /usr/sbin/ltsp-update-image: 274: cannot create /opt/ltsp/i386/etc/ltsp/update-kernels.conf: Directory nonexistent Regenerating kernel... chroot: failed to run command `/usr/share/ltsp/update-kernels': No such file or directory Done. Configuring inetd... Done. Updating pxelinux default configuration...Done. Skipping invalid chroot: /opt/ltsp/i386 chroot: failed to run command `test': No such file or directory administrator@rauta-mint-turion ~ $ sudo ltsp-chroot chroot: failed to run command `/bin/bash': No such file or directory administrator@rauta-mint-turion ~ $ bash administrator@rauta-mint-turion ~ $ exit exit administrator@rauta-mint-turion ~ $ sudo ls /opt/ltsp i386 administrator@rauta-mint-turion ~ $ sudo ls /opt/ltsp/i386/ administrator@rauta-mint-turion ~ $ sudo ltsp-build-client NOTE: Root directory /opt/ltsp/i386 already exists, this will lead to problems, please remove it before trying again. Exiting. error: LTSP client installation ended abnormally administrator@rauta-mint-turion ~ $ sudo rm -rv /opt/ltsp/i386 removed directory: `/opt/ltsp/i386' administrator@rauta-mint-turion ~ $ sudo ltsp-build-client /usr/share/ltsp/plugins/ltsp-build-client/common/010-chroot-tagging: line 3: /opt/ltsp/i386/etc/ltsp_chroot: No such file or directory error: LTSP client installation ended abnormally administrator@rauta-mint-turion ~ $ aptitude search ltsp p fts-ltsp-ldap - LDAP LTSP module for the TFTP/Fuse supplicant p ltsp-client - LTSP client environment p ltsp-client-core - LTSP client environment (core) p ltsp-cluster-accountmanager - Account creation and management daemon for LTSP p ltsp-cluster-control - Web based thin-client configuration management p ltsp-cluster-lbagent - LTSP loadbalancer agent offers variables about the state of the ltsp server p ltsp-cluster-lbserver - LTSP loadbalancer server returns the optimal ltsp server to terminal p ltsp-cluster-nxloadbalancer - Minimal NX loadbalancer for ltsp-cluster p ltsp-cluster-pxeconfig - LTSP-Cluster symlink generator p ltsp-controlaula - Classroom management tool with ltsp clients p ltsp-docs - LTSP Documentation p ltsp-livecd - starts an LTSP live server on an Ubuntu livecd session p ltsp-manager - Ubuntu LTSP server management GUI i A ltsp-server - Basic LTSP server environment i ltsp-server-standalone - Complete LTSP server environment i A ltspfs - Fuse based remote filesystem for LTSP thin clients p ltspfsd - Fuse based remote filesystem hooks for LTSP thin clients p ltspfsd-core - Fuse based remote filesystem daemon for LTSP thin clients p python-ltsp - provides ltsp related functions administrator@rauta-mint-turion ~ $ sudo aptitude purge ltsp-server ltsp-server-standalone ltspfs The following packages will be REMOVED: debconf-utils{u} debootstrap{u} dhcp3-server{u} gstreamer0.10-pulseaudio{u} ldm-server{u} libpulse-browse0{u} ltsp-server{p} ltsp-server-standalone{p} ltspfs{p} nbd-server{u} openbsd-inetd{u} pulseaudio{u} pulseaudio-esound-compat{u} pulseaudio-module-x11{u} pulseaudio-utils{u} squashfs-tools{u} tftpd-hpa{u} 0 packages upgraded, 0 newly installed, 17 to remove and 0 not upgraded. Need to get 0B of archives. After unpacking 6,996kB will be freed. Do you want to continue? [Y/n/?] (Reading database ... 158454 files and directories currently installed.) Removing ltsp-server-standalone ... Purging configuration files for ltsp-server-standalone ... Removing ltsp-server ... Purging configuration files for ltsp-server ... dpkg: warning: while removing ltsp-server, directory '/var/lib/tftpboot/ltsp' not empty so not removed. dpkg: warning: while removing ltsp-server, directory '/var/lib/tftpboot' not empty so not removed. Processing triggers for man-db ... (Reading database ... 158195 files and directories currently installed.) Removing debconf-utils ... Removing debootstrap ... Removing dhcp3-server ... * Stopping DHCP server dhcpd3 [ OK ] Removing gstreamer0.10-pulseaudio ... Removing ldm-server ... Removing pulseaudio-module-x11 ... Removing pulseaudio-esound-compat ... Removing pulseaudio ... * PulseAudio configured for per-user sessions Removing pulseaudio-utils ... Removing libpulse-browse0 ... Processing triggers for man-db ... Processing triggers for ureadahead ... ureadahead will be reprofiled on next reboot Processing triggers for libc-bin ... ldconfig deferred processing now taking place (Reading database ... 157944 files and directories currently installed.) Removing ltspfs ... Processing triggers for man-db ... (Reading database ... 157932 files and directories currently installed.) Removing nbd-server ... Stopping Network Block Device server: nbd-server. Removing openbsd-inetd ... * Stopping internet superserver inetd [ OK ] Removing squashfs-tools ... Removing tftpd-hpa ... tftpd-hpa stop/waiting Processing triggers for ureadahead ... Processing triggers for man-db ... administrator@rauta-mint-turion ~ $ sudo aptitude purge ~c The following packages will be REMOVED: dhcp3-server{p} libpulse-browse0{p} nbd-server{p} openbsd-inetd{p} pulseaudio{p} tftpd-hpa{p} 0 packages upgraded, 0 newly installed, 6 to remove and 0 not upgraded. Need to get 0B of archives. After unpacking 0B will be used. Do you want to continue? [Y/n/?] (Reading database ... 157881 files and directories currently installed.) Removing dhcp3-server ... Purging configuration files for dhcp3-server ... Removing libpulse-browse0 ... Purging configuration files for libpulse-browse0 ... Removing nbd-server ... Purging configuration files for nbd-server ... Removing openbsd-inetd ... Purging configuration files for openbsd-inetd ... Removing pulseaudio ... Purging configuration files for pulseaudio ... Removing tftpd-hpa ... Purging configuration files for tftpd-hpa ... Processing triggers for ureadahead ... administrator@rauta-mint-turion ~ $ sudo aptitude install ltsp-server-standalone The following NEW packages will be installed: debconf-utils{a} debootstrap{a} ldm-server{a} ltsp-server{a} ltsp-server-standalone ltspfs{a} nbd-server{a} openbsd-inetd{a} squashfs-tools{a} The following packages are RECOMMENDED but will NOT be installed: dhcp3-server pulseaudio-esound-compat tftpd-hpa 0 packages upgraded, 9 newly installed, 0 to remove and 0 not upgraded. Need to get 0B/498kB of archives. After unpacking 2,437kB will be used. Do you want to continue? [Y/n/?] Preconfiguring packages ... Selecting previously deselected package openbsd-inetd. (Reading database ... 157868 files and directories currently installed.) Unpacking openbsd-inetd (from .../openbsd-inetd_0.20080125-4ubuntu2_i386.deb) ... Processing triggers for man-db ... Processing triggers for ureadahead ... Setting up openbsd-inetd (0.20080125-4ubuntu2) ... * Stopping internet superserver inetd [ OK ] * Starting internet superserver inetd [ OK ] Selecting previously deselected package ldm-server. (Reading database ... 157877 files and directories currently installed.) Unpacking ldm-server (from .../ldm-server_2%3a2.1.3-0ubuntu1_all.deb) ... Selecting previously deselected package debconf-utils. Unpacking debconf-utils (from .../debconf-utils_1.5.32ubuntu3_all.deb) ... Selecting previously deselected package debootstrap. Unpacking debootstrap (from .../debootstrap_1.0.23ubuntu1_all.deb) ... Selecting previously deselected package nbd-server. Unpacking nbd-server (from .../nbd-server_1%3a2.9.14-2ubuntu1_i386.deb) ... Selecting previously deselected package squashfs-tools. Unpacking squashfs-tools (from .../squashfs-tools_1%3a4.0-8_i386.deb) ... Selecting previously deselected package ltsp-server. GNU nano 2.2.4 File: /etc/ltsp/ltsp-update-image.conf # Configuration file for ltsp-update-image # By default, do not compress the image # as it's reported to make it unstable NO_COMP="-noF -noD -noI -no-exports" [ Switched to /etc/ltsp/ltsp-update-image.conf ] administrator@rauta-mint-turion ~ $ ls /opt/ firefox/ ltsp/ mint-flashplugin/ administrator@rauta-mint-turion ~ $ ls /opt/ltsp/i386/ administrator@rauta-mint-turion ~ $ ls /opt/ltsp/ i386 administrator@rauta-mint-turion ~ $ sudo ltsp ltsp-build-client ltsp-chroot ltspfs ltspfsmounter ltsp-info ltsp-localapps ltsp-update-image ltsp-update-kernels ltsp-update-sshkeys administrator@rauta-mint-turion ~ $ sudo ltsp-build-client NOTE: Root directory /opt/ltsp/i386 already exists, this will lead to problems, please remove it before trying again. Exiting. error: LTSP client installation ended abnormally administrator@rauta-mint-turion ~ $ ^C administrator@rauta-mint-turion ~ $ sudo aptitude purge ltsp ltspfs ltsp-server ltsp-server-standalone administrator@rauta-mint-turion ~ $ sudo aptitude purge ltsp-server The following packages will be REMOVED: ltsp-server{p} 0 packages upgraded, 0 newly installed, 1 to remove and 0 not upgraded. Need to get 0B of archives. After unpacking 1,073kB will be freed. The following packages have unmet dependencies: ltsp-server-standalone: Depends: ltsp-server but it is not going to be installed. The following actions will resolve these dependencies: Remove the following packages: 1) ltsp-server-standalone Accept this solution? [Y/n/q/?] The following packages will be REMOVED: debconf-utils{u} debootstrap{u} ldm-server{u} ltsp-server{p} ltsp-server-standalone{a} ltspfs{u} nbd-server{u} openbsd-inetd{u} squashfs-tools{u} 0 packages upgraded, 0 newly installed, 9 to remove and 0 not upgraded. Need to get 0B of archives. After unpacking 2,437kB will be freed. Do you want to continue? [Y/n/?] (Reading database ... 158244 files and directories currently installed.) Removing ltsp-server-standalone ... (Reading database ... 158240 files and directories currently installed.) Removing ltsp-server ... Purging configuration files for ltsp-server ... dpkg: warning: while removing ltsp-server, directory '/var/lib/tftpboot/ltsp' not empty so not removed. dpkg: warning: while removing ltsp-server, directory '/var/lib/tftpboot' not empty so not removed. Processing triggers for man-db ... (Reading database ... 157987 files and directories currently installed.) Removing debconf-utils ... Removing debootstrap ... Removing ldm-server ... Removing ltspfs ... Removing nbd-server ... Stopping Network Block Device server: nbd-server. Removing openbsd-inetd ... * Stopping internet superserver inetd [ OK ] Removing squashfs-tools ... Processing triggers for man-db ... Processing triggers for ureadahead ... administrator@rauta-mint-turion ~ $ sudo aptitude purge ~c The following packages will be REMOVED: ltsp-server-standalone{p} nbd-server{p} openbsd-inetd{p} 0 packages upgraded, 0 newly installed, 3 to remove and 0 not upgraded. Need to get 0B of archives. After unpacking 0B will be used. Do you want to continue? [Y/n/?] (Reading database ... 157871 files and directories currently installed.) Removing ltsp-server-standalone ... Purging configuration files for ltsp-server-standalone ... Removing nbd-server ... Purging configuration files for nbd-server ... Removing openbsd-inetd ... Purging configuration files for openbsd-inetd ... Processing triggers for ureadahead ... administrator@rauta-mint-turion ~ $ sudo rm -rv /var/lib/t teamspeak-server/ tftpboot/ transmission-daemon/ administrator@rauta-mint-turion ~ $ sudo rm -rv /var/lib/tftpboot removed `/var/lib/tftpboot/ltsp/i386/pxelinux.cfg/default' removed directory: `/var/lib/tftpboot/ltsp/i386/pxelinux.cfg' removed directory: `/var/lib/tftpboot/ltsp/i386' removed directory: `/var/lib/tftpboot/ltsp' removed directory: `/var/lib/tftpboot' administrator@rauta-mint-turion ~ $ sudo find / -name "ltsp" /opt/ltsp administrator@rauta-mint-turion ~ $ sudo rm -rv /opt/ltsp removed directory: `/opt/ltsp/i386' removed directory: `/opt/ltsp' administrator@rauta-mint-turion ~ $ sudo aptitude install ltsp-server-standalone The following NEW packages will be installed: debconf-utils{a} debootstrap{a} ldm-server{a} ltsp-server{a} ltsp-server-standalone ltspfs{a} nbd-server{a} openbsd-inetd{a} squashfs-tools{a} The following packages are RECOMMENDED but will NOT be installed: dhcp3-server pulseaudio-esound-compat tftpd-hpa 0 packages upgraded, 9 newly installed, 0 to remove and 0 not upgraded. Need to get 0B/498kB of archives. After unpacking 2,437kB will be used. Do you want to continue? [Y/n/?] Preconfiguring packages ... Selecting previously deselected package openbsd-inetd. (Reading database ... 157868 files and directories currently installed.) Unpacking openbsd-inetd (from .../openbsd-inetd_0.20080125-4ubuntu2_i386.deb) ... Processing triggers for man-db ... GNU nano 2.2.4 New Buffer GNU nano 2.2.4 File: /etc/ltsp/dhcpd.conf # # Default LTSP dhcpd.conf config file. # authoritative; subnet 192.168.2.0 netmask 255.255.255.0 { range 192.168.2.70 192.168.2.79; option domain-name "jarvinen"; option domain-name-servers 192.168.2.254; option broadcast-address 192.168.2.255; option routers 192.168.2.254; # next-server 192.168.0.1; # get-lease-hostnames true; option subnet-mask 255.255.255.0; option root-path "/opt/ltsp/i386"; if substring( option vendor-class-identifier, 0, 9 ) = "PXEClient" { filename "/ltsp/i386/pxelinux.0"; } else { filename "/ltsp/i386/nbi.img"; } } [ Wrote 22 lines ] administrator@rauta-mint-turion ~ $ sudo service dhcp3-server start * Starting DHCP server dhcpd3 [ OK ] administrator@rauta-mint-turion ~ $ sudo ltsp-build-client /usr/share/ltsp/plugins/ltsp-build-client/common/010-chroot-tagging: line 3: /opt/ltsp/i386/etc/ltsp_chroot: No such file or directory error: LTSP client installation ended abnormally administrator@rauta-mint-turion ~ $ sudo cat /usr/share/ltsp/plugins/ltsp-build-client/common/010-chroot-tagging case "$MODE" in after-install) echo LTSP_CHROOT=$ROOT >> $ROOT/etc/ltsp_chroot ;; esac administrator@rauta-mint-turion ~ $ cd $ROOT/etc/ltsp_chroot bash: cd: /etc/ltsp_chroot: No such file or directory administrator@rauta-mint-turion ~ $ cd $ROOT/etc/ administrator@rauta-mint-turion /etc $ ls acpi chatscripts emacs group insserv.conf.d logrotate.conf mysql php5 rc6.d smbnetfs.conf UPower adduser.conf ConsoleKit environment group- iproute2 logrotate.d nanorc phpmyadmin rc.local snmp usb_modeswitch.conf alternatives console-setup esound grub.d issue lsb-base nbd-server pm rcS.d sound usb_modeswitch.d anacrontab cron.d firefox gshadow issue.net lsb-base-logging.sh ndiswrapper pnm2ppa.conf request-key.conf ssh ushare.conf apache2 cron.daily firefox-3.5 gshadow- java lsb-release netscsid.conf polkit-1 resolvconf ssl vga apm cron.hourly firestarter gtk-2.0 java-6-sun ltrace.conf network popularity-contest.conf resolv.conf sudoers vim apparmor cron.monthly fonts gtkmathview kbd ltsp NetworkManager ppp rmt sudoers.d vlc apparmor.d crontab foomatic gufw kernel lxdm networks printcap rpc su-to-rootrc vsftpd.conf apport cron.weekly fstab hal kernel-img.conf magic nsswitch.conf profile rsyslog.conf sweeprc w3m apt crypttab ftpusers hdparm.conf kerneloops.conf magic.mime ntp.conf profile.d rsyslog.d sysctl.conf wgetrc at.deny cups fuse.conf host.conf kompozer mailcap obex-data-server protocols samba sysctl.d wildmidi auto-apt dbconfig-common gai.conf hostname ldap mailcap.order ODBCDataSources psiconv sane.d teamspeak-server wodim.conf avahi dbus-1 gamin hosts ld.so.cache manpath.config odbc.ini pulse screenrc terminfo wpa_supplicant bash.bashrc debconf.conf gconf hosts.allow ld.so.conf menu openal purple securetty thunderbird X11 bash_completion debian_version gdb hosts.deny ld.so.conf.d menu-methods openoffice python security timezone xdg bash_completion.d default gdm hp legal mime.types opt python2.6 sensors3.conf transmission-daemon xml bindresvport.blacklist defoma ghostscript ifplugd lftp.conf mke2fs.conf pam.conf python2.7 sensors.d ts.conf xulrunner-1.9.2 blkid.conf deluser.conf gimp inetd.conf libpaper.d modprobe.d pam.d python3.1 services ucf.conf zsh_command_not_found blkid.tab depmod.d gnome init libreoffice modules pango rc0.d sgml udev bluetooth dhcp gnome-system-tools init.d linuxmint motd papersize rc1.d shadow ufw bonobo-activation dhcp3 gnome-vfs-2.0 initramfs-tools locale.alias mplayer passwd rc2.d shadow- updatedb.conf ca-certificates dictionaries-common gnome-vfs-mime-magic inputrc localtime mtab passwd- rc3.d shells update-manager ca-certificates.conf doc-base gre.d insserv logcheck mtab.fuselock pcmcia rc4.d skel update-motd.d calendar dpkg groff insserv.conf login.defs mtools.conf perl rc5.d smb2www update-notifier administrator@rauta-mint-turion /etc $ cd ltsp/ administrator@rauta-mint-turion /etc/ltsp $ ls dhcpd.conf ltsp-update-image.conf administrator@rauta-mint-turion /etc/ltsp $ cat dhcpd.conf # # Default LTSP dhcpd.conf config file. # authoritative; subnet 192.168.2.0 netmask 255.255.255.0 { range 192.168.2.70 192.168.2.79; option domain-name "jarvinen"; option domain-name-servers 192.168.2.254; option broadcast-address 192.168.2.255; option routers 192.168.2.254; # next-server 192.168.0.1; # get-lease-hostnames true; option subnet-mask 255.255.255.0; option root-path "/opt/ltsp/i386"; if substring( option vendor-class-identifier, 0, 9 ) = "PXEClient" { filename "/ltsp/i386/pxelinux.0"; } else { filename "/ltsp/i386/nbi.img"; } } administrator@rauta-mint-turion /etc/ltsp $

    Read the article

< Previous Page | 1 2