Search Results

Search found 160 results on 7 pages for 'maxvalue'.

Page 2/7 | < Previous Page | 1 2 3 4 5 6 7  | Next Page >

  • Taming Hopping Windows

    - by Roman Schindlauer
    At first glance, hopping windows seem fairly innocuous and obvious. They organize events into windows with a simple periodic definition: the windows have some duration d (e.g. a window covers 5 second time intervals), an interval or period p (e.g. a new window starts every 2 seconds) and an alignment a (e.g. one of those windows starts at 12:00 PM on March 15, 2012 UTC). var wins = xs     .HoppingWindow(TimeSpan.FromSeconds(5),                    TimeSpan.FromSeconds(2),                    new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc)); Logically, there is a window with start time a + np and end time a + np + d for every integer n. That’s a lot of windows. So why doesn’t the following query (always) blow up? var query = wins.Select(win => win.Count()); A few users have asked why StreamInsight doesn’t produce output for empty windows. Primarily it’s because there is an infinite number of empty windows! (Actually, StreamInsight uses DateTimeOffset.MaxValue to approximate “the end of time” and DateTimeOffset.MinValue to approximate “the beginning of time”, so the number of windows is lower in practice.) That was the good news. Now the bad news. Events also have duration. Consider the following simple input: var xs = this.Application                 .DefineEnumerable(() => new[]                     { EdgeEvent.CreateStart(DateTimeOffset.UtcNow, 0) })                 .ToStreamable(AdvanceTimeSettings.IncreasingStartTime); Because the event has no explicit end edge, it lasts until the end of time. So there are lots of non-empty windows if we apply a hopping window to that single event! For this reason, we need to be careful with hopping window queries in StreamInsight. Or we can switch to a custom implementation of hopping windows that doesn’t suffer from this shortcoming. The alternate window implementation produces output only when the input changes. We start by breaking up the timeline into non-overlapping intervals assigned to each window. In figure 1, six hopping windows (“Windows”) are assigned to six intervals (“Assignments”) in the timeline. Next we take input events (“Events”) and alter their lifetimes (“Altered Events”) so that they cover the intervals of the windows they intersect. In figure 1, you can see that the first event e1 intersects windows w1 and w2 so it is adjusted to cover assignments a1 and a2. Finally, we can use snapshot windows (“Snapshots”) to produce output for the hopping windows. Notice however that instead of having six windows generating output, we have only four. The first and second snapshots correspond to the first and second hopping windows. The remaining snapshots however cover two hopping windows each! While in this example we saved only two events, the savings can be more significant when the ratio of event duration to window duration is higher. Figure 1: Timeline The implementation of this strategy is straightforward. We need to set the start times of events to the start time of the interval assigned to the earliest window including the start time. Similarly, we need to modify the end times of events to the end time of the interval assigned to the latest window including the end time. The following snap-to-boundary function that rounds a timestamp value t down to the nearest value t' <= t such that t' is a + np for some integer n will be useful. For convenience, we will represent both DateTime and TimeSpan values using long ticks: static long SnapToBoundary(long t, long a, long p) {     return t - ((t - a) % p) - (t > a ? 0L : p); } How do we find the earliest window including the start time for an event? It’s the window following the last window that does not include the start time assuming that there are no gaps in the windows (i.e. duration < interval), and limitation of this solution. To find the end time of that antecedent window, we need to know the alignment of window ends: long e = a + (d % p); Using the window end alignment, we are finally ready to describe the start time selector: static long AdjustStartTime(long t, long e, long p) {     return SnapToBoundary(t, e, p) + p; } To find the latest window including the end time for an event, we look for the last window start time (non-inclusive): public static long AdjustEndTime(long t, long a, long d, long p) {     return SnapToBoundary(t - 1, a, p) + p + d; } Bringing it together, we can define the translation from events to ‘altered events’ as in Figure 1: public static IQStreamable<T> SnapToWindowIntervals<T>(IQStreamable<T> source, TimeSpan duration, TimeSpan interval, DateTime alignment) {     if (source == null) throw new ArgumentNullException("source");     // reason about DateTime and TimeSpan in ticks     long d = Math.Min(DateTime.MaxValue.Ticks, duration.Ticks);     long p = Math.Min(DateTime.MaxValue.Ticks, Math.Abs(interval.Ticks));     // set alignment to earliest possible window     var a = alignment.ToUniversalTime().Ticks % p;     // verify constraints of this solution     if (d <= 0L) { throw new ArgumentOutOfRangeException("duration"); }     if (p == 0L || p > d) { throw new ArgumentOutOfRangeException("interval"); }     // find the alignment of window ends     long e = a + (d % p);     return source.AlterEventLifetime(         evt => ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p)),         evt => ToDateTime(AdjustEndTime(evt.EndTime.ToUniversalTime().Ticks, a, d, p)) -             ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p))); } public static DateTime ToDateTime(long ticks) {     // just snap to min or max value rather than under/overflowing     return ticks < DateTime.MinValue.Ticks         ? new DateTime(DateTime.MinValue.Ticks, DateTimeKind.Utc)         : ticks > DateTime.MaxValue.Ticks         ? new DateTime(DateTime.MaxValue.Ticks, DateTimeKind.Utc)         : new DateTime(ticks, DateTimeKind.Utc); } Finally, we can describe our custom hopping window operator: public static IQWindowedStreamable<T> HoppingWindow2<T>(     IQStreamable<T> source,     TimeSpan duration,     TimeSpan interval,     DateTime alignment) {     if (source == null) { throw new ArgumentNullException("source"); }     return SnapToWindowIntervals(source, duration, interval, alignment).SnapshotWindow(); } By switching from HoppingWindow to HoppingWindow2 in the following example, the query returns quickly rather than gobbling resources and ultimately failing! public void Main() {     var start = new DateTimeOffset(new DateTime(2012, 6, 28), TimeSpan.Zero);     var duration = TimeSpan.FromSeconds(5);     var interval = TimeSpan.FromSeconds(2);     var alignment = new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc);     var events = this.Application.DefineEnumerable(() => new[]     {         EdgeEvent.CreateStart(start.AddSeconds(0), "e0"),         EdgeEvent.CreateStart(start.AddSeconds(1), "e1"),         EdgeEvent.CreateEnd(start.AddSeconds(1), start.AddSeconds(2), "e1"),         EdgeEvent.CreateStart(start.AddSeconds(3), "e2"),         EdgeEvent.CreateStart(start.AddSeconds(9), "e3"),         EdgeEvent.CreateEnd(start.AddSeconds(3), start.AddSeconds(10), "e2"),         EdgeEvent.CreateEnd(start.AddSeconds(9), start.AddSeconds(10), "e3"),     }).ToStreamable(AdvanceTimeSettings.IncreasingStartTime);     var adjustedEvents = SnapToWindowIntervals(events, duration, interval, alignment);     var query = from win in HoppingWindow2(events, duration, interval, alignment)                 select win.Count();     DisplayResults(adjustedEvents, "Adjusted Events");     DisplayResults(query, "Query"); } As you can see, instead of producing a massive number of windows for the open start edge e0, a single window is emitted from 12:00:15 AM until the end of time: Adjusted Events StartTime EndTime Payload 6/28/2012 12:00:01 AM 12/31/9999 11:59:59 PM e0 6/28/2012 12:00:03 AM 6/28/2012 12:00:07 AM e1 6/28/2012 12:00:05 AM 6/28/2012 12:00:15 AM e2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM e3 Query StartTime EndTime Payload 6/28/2012 12:00:01 AM 6/28/2012 12:00:03 AM 1 6/28/2012 12:00:03 AM 6/28/2012 12:00:05 AM 2 6/28/2012 12:00:05 AM 6/28/2012 12:00:07 AM 3 6/28/2012 12:00:07 AM 6/28/2012 12:00:11 AM 2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM 3 6/28/2012 12:00:15 AM 12/31/9999 11:59:59 PM 1 Regards, The StreamInsight Team

    Read the article

  • Parametrizing max value of a jQuery ui slider

    - by Gandalf StormCrow
    I'm trying to create this slider http://jqueryui.com/demos/slider/#rangemax Is it possible to parametrize the max value? For ex: $("#slider-range-max").slider({ range: "max", min: 1, max: maxValue, value: 2, slide: function(event, ui) { $("#amount").val(ui.value); } }); Is it possible to pass maxValue value, when I click on something? After its been initialized? Not on document ready function, but even after that?

    Read the article

  • Binding problem in C# wpf

    - by Cinaird
    I have a problem whit binding in wpf i have a textbox where i can do some input, then i try to bind the textinput to a custom usercontrol. This work for the usercontrol within RowDetailsTemplate but not in the CellTemplate. For each object in the CellTemplate i get this error output: System.Windows.Data Error: 4 : Cannot find source for binding with reference 'ElementName=ScaleTextBox'. BindingExpression:Path=Text; DataItem=null; target element is 'Chart' (Name=''); target property is 'MaxValue' (type 'Int32') My code looks like this: XAML <ToolBarTray ToolBarTray.IsLocked="True" DockPanel.Dock="Top" Height="25"> <ToolBar Name="ButtonBar" > <TextBox Height="23" Name="ScaleTextBox" Width="120" Text="400"/> </ToolBar> </ToolBarTray> <DataGrid ItemsSource="{Binding Path=Items}" AutoGenerateColumns="False" IsReadOnly="True" RowHeight="25" RowDetailsVisibilityMode="VisibleWhenSelected"> <DataGrid.RowDetailsTemplate> <DataTemplate> <StackPanel Orientation="Vertical" > <my:UserControl ItemsSource="{Binding Path=Samples}" MaxValue="{Binding ElementName=ScaleTextBox, Path=Text}"/>--> </StackPanel> </DataTemplate> </DataGrid.RowDetailsTemplate> <DataGrid.Columns> <DataGridTemplateColumn MinWidth="150" Header="Chart" > <DataGridTemplateColumn.CellTemplate> <DataTemplate> <my:UserControl ItemsSource="{Binding Path=Samples}" MaxValue="{Binding ElementName=ScaleTextBox, Path=Text}"/><!-- this is the problem --> </DataTemplate> </DataGridTemplateColumn.CellTemplate> </DataGridTemplateColumn> </DataGrid.Columns> </DataGrid> C# public static readonly DependencyProperty MaxValueProperty = DependencyProperty.Register("MaxValue", typeof(int), typeof(PingChart), new FrameworkPropertyMetadata(MaxValuePropertyChanged)); private static void MaxValuePropertyChanged(DependencyObject source, DependencyPropertyChangedEventArgs e) { Console.WriteLine(e.NewValue); } What do i do wrong?

    Read the article

  • Parameterizing max value of a jQuery ui slider

    - by Gandalf StormCrow
    I'm trying to create this slider http://jqueryui.com/demos/slider/#rangemax Is it possible to parametrize the max value? For ex: $("#slider-range-max").slider({ range: "max", min: 1, max: maxValue, value: 2, slide: function(event, ui) { $("#amount").val(ui.value); } }); Is it possible to pass maxValue value, when I click on something? After its been initialized? Not on document ready function, but even after that?

    Read the article

  • Need help with jquery ui slider

    - by Gandalf StormCrow
    I'm trying to create this slider http://jqueryui.com/demos/slider/#rangemax Is it possible to parametrize the max value? For ex: $("#slider-range-max").slider({ range: "max", min: 1, max: maxValue, value: 2, slide: function(event, ui) { $("#amount").val(ui.value); } }); Is it possible to pass maxValue value, when I click on something ?After its been initialized? not on document ready function, after that?

    Read the article

  • .NET 3.5SP1 64-bit memory model vs. 32-bit memory model

    - by James Dunne
    As I understand it, the .NET memory model on a 32-bit machine guarantees 32-bit word writes and reads to be atomic operations but does not provide this guarantee on 64-bit words. I have written a quick tool to demonstrate this effect on a Windows XP 32-bit OS and am getting results consistent with that memory model description. However, I have taken this same tool's executable and run it on a Windows 7 Enterprise 64-bit OS and am getting wildly different results. Both the machines are identical specs just with different OSes installed. I would have expected that the .NET memory model would guarantee writes and reads to BOTH 32-bit and 64-bit words to be atomic on a 64-bit OS. I find results completely contrary to BOTH assumptions. 32-bit reads and writes are not demonstrated to be atomic on this OS. Can someone explain to me why this fails on a 64-bit OS? Tool code: using System; using System.Threading; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { var th = new Thread(new ThreadStart(RunThread)); var th2 = new Thread(new ThreadStart(RunThread)); int lastRecordedInt = 0; long lastRecordedLong = 0L; th.Start(); th2.Start(); while (!done) { int newIntValue = intValue; long newLongValue = longValue; if (lastRecordedInt > newIntValue) Console.WriteLine("BING(int)! {0} > {1}, {2}", lastRecordedInt, newIntValue, (lastRecordedInt - newIntValue)); if (lastRecordedLong > newLongValue) Console.WriteLine("BING(long)! {0} > {1}, {2}", lastRecordedLong, newLongValue, (lastRecordedLong - newLongValue)); lastRecordedInt = newIntValue; lastRecordedLong = newLongValue; } th.Join(); th2.Join(); Console.WriteLine("{0} =? {2}, {1} =? {3}", intValue, longValue, Int32.MaxValue / 2, (long)Int32.MaxValue + (Int32.MaxValue / 2)); } private static long longValue = Int32.MaxValue; private static int intValue; private static bool done = false; static void RunThread() { for (int i = 0; i < Int32.MaxValue / 4; ++i) { ++longValue; ++intValue; } done = true; } } } Results on Windows XP 32-bit: Windows XP 32-bit Intel Core2 Duo P8700 @ 2.53GHz BING(long)! 2161093208 > 2161092246, 962 BING(long)! 2162448397 > 2161273312, 1175085 BING(long)! 2270110050 > 2270109040, 1010 BING(long)! 2270115061 > 2270110059, 5002 BING(long)! 2558052223 > 2557528157, 524066 BING(long)! 2571660540 > 2571659563, 977 BING(long)! 2646433569 > 2646432557, 1012 BING(long)! 2660841714 > 2660840732, 982 BING(long)! 2661795522 > 2660841715, 953807 BING(long)! 2712855281 > 2712854239, 1042 BING(long)! 2737627472 > 2735210929, 2416543 1025780885 =? 1073741823, 3168207035 =? 3221225470 Notice how BING(int) is never written and demonstrates that 32-bit reads/writes are atomic on this 32-bit OS. Results on Windows 7 Enterprise 64-bit: Windows 7 Enterprise 64-bit Intel Core2 Duo P8700 @ 2.53GHz BING(long)! 2208482159 > 2208121217, 360942 BING(int)! 280292777 > 279704627, 588150 BING(int)! 308158865 > 308131694, 27171 BING(long)! 2549116628 > 2548884894, 231734 BING(int)! 534815527 > 534708027, 107500 BING(int)! 545113548 > 544270063, 843485 BING(long)! 2710030799 > 2709941968, 88831 BING(int)! 668662394 > 667539649, 1122745 1006355562 =? 1073741823, 3154727581 =? 3221225470 Notice that BING(long) AND BING(int) are both displayed! Why are the 32-bit operations failing, let alone the 64-bit ones?

    Read the article

  • WCF sending the same exception even if the service endpoint address is valid

    - by ALexr111
    Hi, I'm running into a really strange problem with WCF. I need to implement some recovery behavior for WCF service if not reachable endpoint IP address received or service can not bind. The flow is simple if the application fail on exception on service creation it terminate it and request from user another IP address and perform another attempt to create the service. (The code snippet below). If the address is not valid I get "A TCP error (10049: The requested address is not valid in its context) occurred while listening on IP Endpoint=.121.10.11.11" exception, but for any reason if I try the second attempt with valid address I've got the same exception with wrong IP address from previous attempt. Here is a code: ServiceHost service = null; try { Uri[] uris = { new Uri(Constants.PROTOCOL + "://" + address + ":" + port) }; service = new ServiceHost(typeof(IRemoteService), uris); NetTcpBinding tcpBinding = WcfTcpRemoteServicesManager.LessLimitedNewNetTcpBinding(int.MaxValue, int.MaxValue, int.MaxValue); ServiceEndpoint ep = service.AddServiceEndpoint(implementedContract.FullName, tcpBinding, serviceName); var throttle = service.Description.Behaviors.Find<ServiceThrottlingBehavior>(); if (throttle == null) { throttle = new ServiceThrottlingBehavior { MaxConcurrentCalls = Constants.MAX_CONCURRENT_CALLS, MaxConcurrentSessions = Constants.MAX_CONCURRENT_SESSIONS, MaxConcurrentInstances = Constants.MAX_CONCURRENT_INSTANCES }; service.Description.Behaviors.Add(throttle); } service.Open(); } catch (Exception e) { _debugLog.WriteLineMessage( "Failed to open or create service exception. Exception message:" + e.Message); if (service!=null) { try { service.Close(); } catch (Exception) { service.Abort(); service.Close(); throw e; } } } Thanks

    Read the article

  • Exporting a non public Type through public API

    - by sachin
    I am trying to follow Trees tutorial at: http://cslibrary.stanford.edu/110/BinaryTrees.html Here is the code I have written so far: package trees.bst; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * * @author sachin */ public class BinarySearchTree { Node root = null; class Node { Node left = null; Node right = null; int data = 0; public Node(int data) { this.left = null; this.right = null; this.data = data; } } public void insert(int data) { root = insert(data, root); } public boolean lookup(int data) { return lookup(data, root); } public void buildTree(int numNodes) { for (int i = 0; i < numNodes; i++) { int num = (int) (Math.random() * 10); System.out.println("Inserting number:" + num); insert(num); } } public int size() { return size(root); } public int maxDepth() { return maxDepth(root); } public int minValue() { return minValue(root); } public int maxValue() { return maxValue(root); } public void printTree() { //inorder traversal System.out.println("inorder traversal:"); printTree(root); System.out.println("\n--------------"); } public void printPostorder() { //inorder traversal System.out.println("printPostorder traversal:"); printPostorder(root); System.out.println("\n--------------"); } public int buildTreeFromOutputString(String op) { root = null; int i = 0; StringTokenizer st = new StringTokenizer(op); while (st.hasMoreTokens()) { String stNum = st.nextToken(); int num = Integer.parseInt(stNum); System.out.println("buildTreeFromOutputString: Inserting number:" + num); insert(num); i++; } return i; } public boolean hasPathSum(int pathsum) { return hasPathSum(pathsum, root); } public void mirror() { mirror(root); } public void doubleTree() { doubleTree(root); } public boolean sameTree(BinarySearchTree bst) { //is this tree same as another given tree? return sameTree(this.root, bst.getRoot()); } public void printPaths() { if (root == null) { System.out.println("print path sum: tree is empty"); } List pathSoFar = new ArrayList(); printPaths(root, pathSoFar); } ///-------------------------------------------Public helper functions public Node getRoot() { return root; } //Exporting a non public Type through public API ///-------------------------------------------Helper Functions private boolean isLeaf(Node node) { if (node == null) { return false; } if (node.left == null && node.right == null) { return true; } return false; } ///----------------------------------------------------------- private boolean sameTree(Node n1, Node n2) { if ((n1 == null && n2 == null)) { return true; } else { if ((n1 == null || n2 == null)) { return false; } else { if ((n1.data == n2.data)) { return (sameTree(n1.left, n2.left) && sameTree(n1.right, n2.right)); } } } return false; } private void doubleTree(Node node) { //create a copy //bypass the copy to continue looping if (node == null) { return; } Node copyNode = new Node(node.data); Node temp = node.left; node.left = copyNode; copyNode.left = temp; doubleTree(copyNode.left); doubleTree(node.right); } private void mirror(Node node) { if (node == null) { return; } Node temp = node.left; node.left = node.right; node.right = temp; mirror(node.left); mirror(node.right); } private void printPaths(Node node, List pathSoFar) { if (node == null) { return; } pathSoFar.add(node.data); if (isLeaf(node)) { System.out.println("path in tree:" + pathSoFar); pathSoFar.remove(pathSoFar.lastIndexOf(node.data)); //only the current node, a node.data may be duplicated return; } else { printPaths(node.left, pathSoFar); printPaths(node.right, pathSoFar); } } private boolean hasPathSum(int pathsum, Node node) { if (node == null) { return false; } int val = pathsum - node.data; boolean ret = false; if (val == 0 && isLeaf(node)) { ret = true; } else if (val == 0 && !isLeaf(node)) { ret = false; } else if (val != 0 && isLeaf(node)) { ret = false; } else if (val != 0 && !isLeaf(node)) { //recurse further ret = hasPathSum(val, node.left) || hasPathSum(val, node.right); } return ret; } private void printPostorder(Node node) { //inorder traversal if (node == null) { return; } printPostorder(node.left); printPostorder(node.right); System.out.print(" " + node.data); } private void printTree(Node node) { //inorder traversal if (node == null) { return; } printTree(node.left); System.out.print(" " + node.data); printTree(node.right); } private int minValue(Node node) { if (node == null) { //error case: this is not supported return -1; } if (node.left == null) { return node.data; } else { return minValue(node.left); } } private int maxValue(Node node) { if (node == null) { //error case: this is not supported return -1; } if (node.right == null) { return node.data; } else { return maxValue(node.right); } } private int maxDepth(Node node) { if (node == null || (node.left == null && node.right == null)) { return 0; } int ldepth = 1 + maxDepth(node.left); int rdepth = 1 + maxDepth(node.right); if (ldepth > rdepth) { return ldepth; } else { return rdepth; } } private int size(Node node) { if (node == null) { return 0; } return 1 + size(node.left) + size(node.right); } private Node insert(int data, Node node) { if (node == null) { node = new Node(data); } else if (data <= node.data) { node.left = insert(data, node.left); } else { node.right = insert(data, node.right); } //control should never reach here; return node; } private boolean lookup(int data, Node node) { if (node == null) { return false; } if (node.data == data) { return true; } if (data < node.data) { return lookup(data, node.left); } else { return lookup(data, node.right); } } public static void main(String[] args) { BinarySearchTree bst = new BinarySearchTree(); int treesize = 5; bst.buildTree(treesize); //treesize = bst.buildTreeFromOutputString("4 4 4 6 7"); treesize = bst.buildTreeFromOutputString("3 4 6 3 6"); //treesize = bst.buildTreeFromOutputString("10"); for (int i = 0; i < treesize; i++) { System.out.println("Searching:" + i + " found:" + bst.lookup(i)); } System.out.println("tree size:" + bst.size()); System.out.println("maxDepth :" + bst.maxDepth()); System.out.println("minvalue :" + bst.minValue()); System.out.println("maxvalue :" + bst.maxValue()); bst.printTree(); bst.printPostorder(); int pathSum = 10; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); pathSum = 6; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); pathSum = 19; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); bst.printPaths(); bst.printTree(); //bst.mirror(); System.out.println("Tree after mirror function:"); bst.printTree(); //bst.doubleTree(); System.out.println("Tree after double function:"); bst.printTree(); System.out.println("tree size:" + bst.size()); System.out.println("Same tree:" + bst.sameTree(bst)); BinarySearchTree bst2 = new BinarySearchTree(); bst2.buildTree(treesize); treesize = bst2.buildTreeFromOutputString("3 4 6 3 6"); bst2.printTree(); System.out.println("Same tree:" + bst.sameTree(bst2)); System.out.println("---"); } } Now the problem is that netbeans shows Warning: Exporting a non public Type through public API for function getRoot(). I write this function to get root of tree to be used in sameTree() function, to help comparison of "this" with given tree. Perhaps this is a OOP design issue... How should I restructure the above code that I do not get this warning and what is the concept I am missing here?

    Read the article

  • In .NET, What Is Fastest Way to Initialize Multi-Dimensional Array to Non-Default Value

    - by AMissico
    How do I initialize a multi-dimensional array of a primitive type as fast as possible? I am stuck with using multi-dimensional arrays. My problem is performance. The following routine initializes a 100x100 array in approx. 500 ticks. Removing the int.MaxValue initialization results in approx. 180 ticks just for the looping. Approximately 100 ticks to create the array without looping and without initializing to int.MaxValue. Routines similiar to this are called a few tens-of-thousands to several million times. I am open to suggestions on how to optimize this non-default initialization of an array. One idea I had is to use a smaller primitive type when available. For instance, using byte instead of int, saves 100 ticks. I would be happy with this, but I am hoping that I don't have to change the primitive data type. public int[,] CreateArray(Size size) { int[,] array = new int[size.Width, size.Height]; for (int x = 0; x < size.Width; x++) { for (int y = 0; y < size.Height; y++) { array[x, y] = int.MaxValue; } } return array; }

    Read the article

  • how to run this qt script? (newbie question)

    - by GB_J
    I have a qt script(barchart.qs) that creates a graph for me. I don't know how i can incorporate(ie show the graph) in my qt mainwindow. Can some one please help me look at the code and what its outputs are? I tried engine.evaluate, but i do not know what is the QScriptValue i'm getting in return. Thanks sooo much. This is the script: BarChart.prototype = new QWidget; BarChart.prototype.suffix = ""; function BarChart(parent) { QWidget.call(this, parent); } // find the maximum value and widest (pixel-wise) label and suffix BarChart.prototype.showEvent = function(event) { var fm = new QFontMetrics(this); this.margin = 20; this.titleHeight = fm.height(); this.barHeight = 1.5 * fm.height(); this.barSpacing = 0.6 * fm.height(); this.maxValue = this.suffixWidth = this.labelWidth = 0; var count = 0; for (d in this.data) { this.labelWidth = Math.max(this.labelWidth, fm.width(d)); this.maxValue = Math.max(this.maxValue, this.data[d]); this.suffixWidth = Math.max(this.suffixWidth, fm.width(String(this.data[d]) + " " + this.suffix)); count++; } this.startHue = 15; this.hueDelta = 360 / count; this.size = new QSize(640, this.titleHeight + 2 * this.margin + (this.barHeight + this.barSpacing) * count); } BarChart.prototype.paintEvent = function(event) { var p = new QPainter; p.begin(this); // background and title p.fillRect(this.rect, new QBrush(new QColor(255, 255, 255))); p.drawText(0, 0, this.width, this.margin + this.titleHeight, Qt.AlignCenter, this.windowTitle, 0); var ofs = this.labelWidth + this.margin; var ww = this.width - this.suffixWidth - ofs - 2 * this.margin; var hue = this.startHue; var y = 0; p.translate(this.margin, this.titleHeight + 1.5 * this.margin); for (d in this.data) { // label on the left side p.setPen(new QColor(Qt.black)); p.drawText(0, y, this.labelWidth, this.barHeight, Qt.AlignVCenter + Qt.AlignRight, d, 0); // the colored bar var gradient = new QLinearGradient(new QPoint(ofs, y), new QPoint(ofs, y + this.barHeight)); gradient.setColorAt(0, QColor.fromHsv(hue, 255, 240)); gradient.setColorAt(1, QColor.fromHsv(hue, 255, 92)); p.setBrush(new QBrush(gradient)); p.setPen(new QColor(96, 96, 96)); var bw = this.data[d] * ww / this.maxValue; p.drawRect(ofs, y, bw, this.barHeight); // extra text at the end of the bar var text = new String(this.data[d] + " " + this.suffix); p.setPen(new QColor(Qt.black)); p.drawText(ofs + bw + this.margin/2, y, this.suffixWidth, this.barHeight, Qt.AlignVCenter + Qt.AlignLeft, text, 0); // for the next bar y += (this.barHeight + this.barSpacing); hue += this.hueDelta; if (hue >= 360) hue -= 360; } p.end(); } BarChart.prototype.wheelEvent = function(event) { this.startHue += event.delta() / 8 / 5; if (this.startHue = 360) this.startHue -= 360; if (this.startHue < 0) this.startHue += 360; this.update(); event.ignore(); } BarChart.prototype.mousePressEvent = function(event) { var fname = QFileDialog.getSaveFileName(this, "Save", ".", "*.png", 0, 0); if (fname.length > 0) { var img = new QImage(this.size, QImage.Format_ARGB32_Premultiplied); this.render(img); img.save(new QFile(fname)); } } var chart = new BarChart; chart.windowTitle = "Monthly"; chart.suffix = "reports"; chart.data = { "September" : 45, "October" : 60, "November" : 56, "December" : 0 }; chart.show(); QCoreApplication.exec();

    Read the article

  • Processing Kinect v2 Color Streams in Parallel

    - by Chris Gardner
    Originally posted on: http://geekswithblogs.net/freestylecoding/archive/2014/08/20/processing-kinect-v2-color-streams-in-parallel.aspxProcessing Kinect v2 Color Streams in Parallel I've really been enjoying being a part of the Kinect for Windows Developer's Preview. The new hardware has some really impressive capabilities. However, with great power comes great system specs. Unfortunately, my little laptop that could is not 100% up to the task; I've had to get a little creative. The most disappointing thing I've run into is that I can't always cleanly display the color camera stream in managed code. I managed to strip the code down to what I believe is the bear minimum: using( ColorFrame _ColorFrame = e.FrameReference.AcquireFrame() ) { if( null == _ColorFrame ) return;   BitmapToDisplay.Lock(); _ColorFrame.CopyConvertedFrameDataToIntPtr( BitmapToDisplay.BackBuffer, Convert.ToUInt32( BitmapToDisplay.BackBufferStride * BitmapToDisplay.PixelHeight ), ColorImageFormat.Bgra ); BitmapToDisplay.AddDirtyRect( new Int32Rect( 0, 0, _ColorFrame.FrameDescription.Width, _ColorFrame.FrameDescription.Height ) ); BitmapToDisplay.Unlock(); } With this snippet, I'm placing the converted Bgra32 color stream directly on the BackBuffer of the WriteableBitmap. This gives me pretty smooth playback, but I still get the occasional freeze for half a second. After a bit of profiling, I discovered there were a few problems. The first problem is the size of the buffer along with the conversion on the buffer. At this time, the raw image format of the data from the Kinect is Yuy2. This is great for direct video processing. It would be ideal if I had a WriteableVideo object in WPF. However, this is not the case. Further digging led me to the real problem. It appears that the SDK is converting the input serially. Let's think about this for a second. The color camera is a 1080p camera. As we should all know, this give us a native resolution of 1920 x 1080. This produces 2,073,600 pixels. Yuy2 uses 4 bytes per 2 pixel, for a buffer size of 4,147,200 bytes. Bgra32 uses 4 bytes per pixel, for a buffer size of 8,294,400 bytes. The SDK appears to be doing this on one thread. I started wondering if I chould do this better myself. I mean, I have 8 cores in my system. Why can't I use them all? The first problem is converting a Yuy2 frame into a Bgra32 frame. It is NOT trivial. I spent a day of research of just how to do this. In the end, I didn't even produce the best algorithm possible, but it did work. After I managed to get that to work, I knew my next step was the get the conversion operation off the UI Thread. This was a simple process of throwing the work into a Task. Of course, this meant I had to marshal the final write to the WriteableBitmap back to the UI thread. Finally, I needed to vectorize the operation so I could run it safely in parallel. This was, mercifully, not quite as hard as I thought it would be. I had my loop return an index to a pair of pixels. From there, I had to tell the loop to do everything for this pair of pixels. If you're wondering why I did it for pairs of pixels, look back above at the specification for the Yuy2 format. I won't go into full detail on why each 4 bytes contains 2 pixels of information, but rest assured that there is a reason why the format is described in that way. The first working attempt at this algorithm successfully turned my poor laptop into a space heater. I very quickly brought and maintained all 8 cores up to about 97% usage. That's when I remembered that obscure option in the Task Parallel Library where you could limit the amount of parallelism used. After a little trial and error, I discovered 4 parallel tasks was enough for most cases. This yielded the follow code: private byte ClipToByte( int p_ValueToClip ) { return Convert.ToByte( ( p_ValueToClip < byte.MinValue ) ? byte.MinValue : ( ( p_ValueToClip > byte.MaxValue ) ? byte.MaxValue : p_ValueToClip ) ); }   private void ColorFrameArrived( object sender, ColorFrameArrivedEventArgs e ) { if( null == e.FrameReference ) return;   // If you do not dispose of the frame, you never get another one... using( ColorFrame _ColorFrame = e.FrameReference.AcquireFrame() ) { if( null == _ColorFrame ) return;   byte[] _InputImage = new byte[_ColorFrame.FrameDescription.LengthInPixels * _ColorFrame.FrameDescription.BytesPerPixel]; byte[] _OutputImage = new byte[BitmapToDisplay.BackBufferStride * BitmapToDisplay.PixelHeight]; _ColorFrame.CopyRawFrameDataToArray( _InputImage );   Task.Factory.StartNew( () => { ParallelOptions _ParallelOptions = new ParallelOptions(); _ParallelOptions.MaxDegreeOfParallelism = 4;   Parallel.For( 0, Sensor.ColorFrameSource.FrameDescription.LengthInPixels / 2, _ParallelOptions, ( _Index ) => { // See http://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx int _Y0 = _InputImage[( _Index << 2 ) + 0] - 16; int _U = _InputImage[( _Index << 2 ) + 1] - 128; int _Y1 = _InputImage[( _Index << 2 ) + 2] - 16; int _V = _InputImage[( _Index << 2 ) + 3] - 128;   byte _R = ClipToByte( ( 298 * _Y0 + 409 * _V + 128 ) >> 8 ); byte _G = ClipToByte( ( 298 * _Y0 - 100 * _U - 208 * _V + 128 ) >> 8 ); byte _B = ClipToByte( ( 298 * _Y0 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 0] = _B; _OutputImage[( _Index << 3 ) + 1] = _G; _OutputImage[( _Index << 3 ) + 2] = _R; _OutputImage[( _Index << 3 ) + 3] = 0xFF; // A   _R = ClipToByte( ( 298 * _Y1 + 409 * _V + 128 ) >> 8 ); _G = ClipToByte( ( 298 * _Y1 - 100 * _U - 208 * _V + 128 ) >> 8 ); _B = ClipToByte( ( 298 * _Y1 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 4] = _B; _OutputImage[( _Index << 3 ) + 5] = _G; _OutputImage[( _Index << 3 ) + 6] = _R; _OutputImage[( _Index << 3 ) + 7] = 0xFF; } );   Application.Current.Dispatcher.Invoke( () => { BitmapToDisplay.WritePixels( new Int32Rect( 0, 0, Sensor.ColorFrameSource.FrameDescription.Width, Sensor.ColorFrameSource.FrameDescription.Height ), _OutputImage, BitmapToDisplay.BackBufferStride, 0 ); } ); } ); } } This seemed to yield a results I wanted, but there was still the occasional stutter. This lead to what I realized was the second problem. There is a race condition between the UI Thread and me locking the WriteableBitmap so I can write the next frame. Again, I'm writing approximately 8MB to the back buffer. Then, I started thinking I could cheat. The Kinect is running at 30 frames per second. The WPF UI Thread runs at 60 frames per second. This made me not feel bad about exploiting the Composition Thread. I moved the bulk of the code from the FrameArrived handler into CompositionTarget.Rendering. Once I was in there, I polled from a frame, and rendered it if it existed. Since, in theory, I'm only killing the Composition Thread every other hit, I decided I was ok with this for cases where silky smooth video performance REALLY mattered. This ode looked like this: private byte ClipToByte( int p_ValueToClip ) { return Convert.ToByte( ( p_ValueToClip < byte.MinValue ) ? byte.MinValue : ( ( p_ValueToClip > byte.MaxValue ) ? byte.MaxValue : p_ValueToClip ) ); }   void CompositionTarget_Rendering( object sender, EventArgs e ) { using( ColorFrame _ColorFrame = FrameReader.AcquireLatestFrame() ) { if( null == _ColorFrame ) return;   byte[] _InputImage = new byte[_ColorFrame.FrameDescription.LengthInPixels * _ColorFrame.FrameDescription.BytesPerPixel]; byte[] _OutputImage = new byte[BitmapToDisplay.BackBufferStride * BitmapToDisplay.PixelHeight]; _ColorFrame.CopyRawFrameDataToArray( _InputImage );   ParallelOptions _ParallelOptions = new ParallelOptions(); _ParallelOptions.MaxDegreeOfParallelism = 4;   Parallel.For( 0, Sensor.ColorFrameSource.FrameDescription.LengthInPixels / 2, _ParallelOptions, ( _Index ) => { // See http://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx int _Y0 = _InputImage[( _Index << 2 ) + 0] - 16; int _U = _InputImage[( _Index << 2 ) + 1] - 128; int _Y1 = _InputImage[( _Index << 2 ) + 2] - 16; int _V = _InputImage[( _Index << 2 ) + 3] - 128;   byte _R = ClipToByte( ( 298 * _Y0 + 409 * _V + 128 ) >> 8 ); byte _G = ClipToByte( ( 298 * _Y0 - 100 * _U - 208 * _V + 128 ) >> 8 ); byte _B = ClipToByte( ( 298 * _Y0 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 0] = _B; _OutputImage[( _Index << 3 ) + 1] = _G; _OutputImage[( _Index << 3 ) + 2] = _R; _OutputImage[( _Index << 3 ) + 3] = 0xFF; // A   _R = ClipToByte( ( 298 * _Y1 + 409 * _V + 128 ) >> 8 ); _G = ClipToByte( ( 298 * _Y1 - 100 * _U - 208 * _V + 128 ) >> 8 ); _B = ClipToByte( ( 298 * _Y1 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 4] = _B; _OutputImage[( _Index << 3 ) + 5] = _G; _OutputImage[( _Index << 3 ) + 6] = _R; _OutputImage[( _Index << 3 ) + 7] = 0xFF; } );   BitmapToDisplay.WritePixels( new Int32Rect( 0, 0, Sensor.ColorFrameSource.FrameDescription.Width, Sensor.ColorFrameSource.FrameDescription.Height ), _OutputImage, BitmapToDisplay.BackBufferStride, 0 ); } }

    Read the article

  • How to set MinWorkingSet and MaxWorkingSet in a 64-bit .NET process?

    - by Gravitas
    How do I set MinWorkingSet and MaxWorking set for a 64-bit .NET process? p.s. I can set the MinWorkingSet and MaxWorking set for a 32-bit process, as follows: [DllImport("KERNEL32.DLL", EntryPoint = "SetProcessWorkingSetSize", SetLastError = true, CallingConvention = CallingConvention.StdCall)] internal static extern bool SetProcessWorkingSetSize(IntPtr pProcess, int dwMinimumWorkingSetSize, int dwMaximumWorkingSetSize); [DllImport("KERNEL32.DLL", EntryPoint = "GetCurrentProcess", SetLastError = true, CallingConvention = CallingConvention.StdCall)] internal static extern IntPtr MyGetCurrentProcess(); // In main(): SetProcessWorkingSetSize(Process.GetCurrentProcess().Handle, int.MaxValue, int.MaxValue); Update: Unfortunately, even if we do this call, the garbage collection trims the working set down anyway, bypassing MinWorkingSet (see "Automatic GC.Collect() in the diagram below). Question: Is there a way to lock the WorkingSet (the green line) to 1GB, to avoid the spike in page faults (the red lines) that occur when allocating new memory into the process? p.s. Every time a page fault occurs, it blocks the thread for 250us, which hits application performance badly.

    Read the article

  • Strange "INavigatorContent" error compiling in 4.0

    - by Stephano
    I've recently decided to try an upgrade to 4.0. The only error I still can't work out is this one: "The children of Halo navigators must implement INavigatorContent" I seem to be getting it on all my ViewStacks that have validators. <mx:ViewStack xmlns:mx="http://www.adobe.com/2006/mxml"> <mx:NumberValidator id="systolicValidator" source="{systolic}" required="true" property="text" minValue="10" maxValue="300" domain="int"/> <mx:NumberValidator id="diastolicValidator" source="{diastolic}" required="true" property="text" minValue="10" maxValue="200" domain="int"/> <mx:TextInput id="systolic"/> <mx:TextInput id="diastolic"/> ... The error gets thrown on the validator tags. My compiler is set to "flex 3 compatibility mode" and my theme is set to Halo (default). This seems like it should be a really straight forward fix, so I hate to spin my wheels on it for too long. Any ideas what I might be missing?

    Read the article

  • How can I set the maxItemsInObjectGraph property programmatically from a Silverlight Application?

    - by Corey Sunwold
    I have a Silverlight 3.0 application that is using a WCF service to communicate with the database, and when I have large amounts of data being returned from the service methods I get Service Not Found errors. I am fairly confident that the solution to it is to simply update the maxItemsInObjectGraph property, but I am creating the service client progrogrammatically and cannot find where to set this property. Here is what I am doing right now: BasicHttpBinding binding = new BasicHttpBinding(BasicHttpSecurityMode.None) { MaxReceivedMessageSize = int.MaxValue, MaxBufferSize = int.MaxValue }; MyService.MyServiceServiceClient client = new MyService.MyServiceProxyServiceClient(binding, new EndpointAddress(new Uri(Application.Current.Host.Source, "../MyService.svc")));

    Read the article

  • List of objects sent over WCF, but null list received?

    - by GONeale
    Hey there, I have an object containing a list of custom objects which I am returning over a response in WCF, however on the receiving end, the list is null? But it contains 112 objects just prior to stepping out of the service on the server. This wasn't always the case, I have seen it return a list. I've just recently upgraded it to use NET TCP bindings, but I can't confirm when I started losing the data or if it was since the conversion from wsHttpBinding to netTcpBinding as it moved along with about four other services. I have looked on the WCF Service messages and trace file and also the WCF client's messages and trace file, no exceptions reported, and both message logs indicate they are sending the List<T> and for client, receiving the list - very frustrating! It's not a super light array, but not huge either, around 100KB. it has about 12 properties each and as stated 112 items are being sent. I have tried everything I can think of on client and server, note: Client: this.binding = new NetTcpBinding(SecurityMode.None) { MaxReceivedMessageSize = int.MaxValue, ReaderQuotas = { MaxStringContentLength = int.MaxValue, MaxArrayLength = int.MaxValue } }; ... Server app.config (sorry I have no idea if the quota settings have any bearing on net tcp? I only just added it similar to what I use for wsHttpBinding to test, but still list is null): <netTcpBinding> <binding name="SecurityByNetTcpTransportBinding" sendTimeout="00:03:00" maxReceivedMessageSize="2147483647"> <readerQuotas maxStringContentLength="2147483647" maxArrayLength="2147483647" /> <security mode="None" /> </binding> </netTcpBinding> and something else I tried in my net tcp binding behavior: <dataContractSerializer maxItemsInObjectGraph="2147483647" /> <serviceTimeouts transactionTimeout="05:05:00" /> <serviceThrottling maxConcurrentSessions="400" maxConcurrentInstances="400" maxConcurrentCalls="400"/> I hope somebody can help, I hate 5 steps forward 3 steps backward which always seems to be the case with WCF :P In the interim until I [hopefully] get a response I will now try reducing this array just to see if it's a sizing issue.. Ok, It seems I have bigger problems. Because the list was the only thing I was sending, I thought it was an array issue. I am even setting an int to "25" and it's coming back as 0 - Anybody? I know I must have done something obviously stupid.

    Read the article

  • is it possible to lock oracle 10g database table with ADO.NET?

    - by matti
    I have a table that contains a maximum value that needs to be get and set by multiple programs. How can I lock the table for a while when old value is got and new is updated in C#? In other words: string sql = "lock table MaxValueTable in exclusive mode"; using (DbCommand cmd = cnctn.CreateCommand()) { cmd.CommandText = sql; // execute command somehow!! } maxValue = GetMaxValue(); SetMaxValue(maxValue + X); sql = "lock table MaxValueTable in share mode"; using (DbCommand cmd = cnctn.CreateCommand()) { cmd.CommandText = sql; // execute command somehow!! }

    Read the article

  • is it possible to lock oracle 10g database table with C#/(ADO?).NET 2.0

    - by matti
    I have a table that contains a maximum value that needs to be get and set by multiple programs. How can I lock the table for a while when old value is got and new is updated in C#? In other words: string sql = "lock table MaxValueTable in exclusive mode"; using (DbCommand cmd = cnctn.CreateCommand()) { cmd.CommandText = sql; // execute command somehow!! } maxValue = GetMaxValue(); SetMaxValue(maxValue + X); sql = "lock table MaxValueTable in share mode"; using (DbCommand cmd = cnctn.CreateCommand()) { cmd.CommandText = sql; // execute command somehow!! } -BR: Matti

    Read the article

  • ASP.NET MCV 2 controller-url problems

    - by cc0
    I am still very new to the MVC framework, but I managed to create a controller that reads from a database and writes JSON to an url; host.com/Controllername?minValue=something&maxValue=something However when I move the site to a subfolder; host.com/mvc/ it doesn't seem to be able to call the controller from there when I do it like this; host.com/mvc/Procedure?minValue=something&maxValue=something Did I forget to do something somewhere to make this url call valid from that subfolder? Any help here would be greatly appreciated.

    Read the article

  • ASP.NET MVC 2 controller-url problems

    - by cc0
    I am still very new to the MVC framework, but I managed to create a controller that reads from a database and writes JSON to an url; host.com/Controllername?minValue=something&maxValue=something However when I move the site to a subfolder; host.com/mvc/ it doesn't seem to be able to call the controller from there when I do it like this; host.com/mvc/Controllername?minValue=something&maxValue=something Did I forget to do something somewhere to make this url call valid from that subfolder? Any help here would be greatly appreciated.

    Read the article

  • Linq query: append column to query results

    - by jrubengb
    I am trying to figure out how to append a column to Linq query results based on the max value of the query. Essentially, I want to create an EnumerableRowCollection of DataRows that would include a max value record with the same value for each record. So if i have a hundred records returned through the query, I want to next calculate the max value of one of the fields, then append that max value to the original query table: DataTable dt = new DataTable(); dt = myDataSet.myDataTable; EnumerableRowCollection<DataRow> qrySelectRecords = (from d in dt.AsEnumerable() where d.Field<DateTime>("readingDate") >= startDate && g.Field<DateTime>("readingDate") <= endDate select d); Here's where I need help: double maxValue = qrySelectRecords.Field<double>("field1").Max(); foreach (DataRow dr in qrySelectRecords) { qrySelectRecords.Column.Append(maxValue) }

    Read the article

  • Loop on enumeration values

    - by Rachel
    How awful is it - or is it perfectly acceptable - to index a loop on an enumeration? I have an enumeration defined. The values of the literals are default values. The assigned values do not have any significance, will not have any significance, and the values of any literals added in the future will also not have any significance. It's just defined to limit the allowed values and to make things easier to follow. Therefore the values will always start at 0 and increase by 1. Can I set up a loop like so: enum MyEnum { value1, value2, value3, maxValue } for(MyEnum i = value1; i < maxValue; i = static_cast<MyEnum>(i+1)){}

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • Is it OK to repeat code for unit tests?

    - by Pete
    I wrote some sorting algorithms for a class assignment and I also wrote a few tests to make sure the algorithms were implemented correctly. My tests are only like 10 lines long and there are 3 of them but only 1 line changes between the 3 so there is a lot of repeated code. Is it better to refactor this code into another method that is then called from each test? Wouldn't I then need to write another test to test the refactoring? Some of the variables can even be moved up to the class level. Should testing classes and methods follow the same rules as regular classes/methods? Here's an example: [TestMethod] public void MergeSortAssertArrayIsSorted() { int[] a = new int[1000]; Random rand = new Random(DateTime.Now.Millisecond); for(int i = 0; i < a.Length; i++) { a[i] = rand.Next(Int16.MaxValue); } int[] b = new int[1000]; a.CopyTo(b, 0); List<int> temp = b.ToList(); temp.Sort(); b = temp.ToArray(); MergeSort merge = new MergeSort(); merge.mergeSort(a, 0, a.Length - 1); CollectionAssert.AreEqual(a, b); } [TestMethod] public void InsertionSortAssertArrayIsSorted() { int[] a = new int[1000]; Random rand = new Random(DateTime.Now.Millisecond); for (int i = 0; i < a.Length; i++) { a[i] = rand.Next(Int16.MaxValue); } int[] b = new int[1000]; a.CopyTo(b, 0); List<int> temp = b.ToList(); temp.Sort(); b = temp.ToArray(); InsertionSort merge = new InsertionSort(); merge.insertionSort(a); CollectionAssert.AreEqual(a, b); }

    Read the article

< Previous Page | 1 2 3 4 5 6 7  | Next Page >