Search Results

Search found 32 results on 2 pages for 'netboot'.

Page 2/2 | < Previous Page | 1 2 

  • NetInstall working on some systems, not working on others

    - by cduruk
    Hi, I'm having an issue where my NetInstall setup works on some computers and fails on others. I am not able to diagnose the issue. I created an image of a Mac Mini and then created a NetRestore image using the System Image Utility found on Snow Leopard Server. NetBoot and NFS all seem to be working fine on the server, which is an XServe. Then I select the NetInstall image from the Startup Disk on a machine. On some of the machines, the process works as expected. On some of them, I see the globe icon blink a few times and then the system boots to the regular hard drive. I have captured the tracedump and the system.log logs from the server on both cases where NetInstall seems to work and fail. Here is the link that has all the logs http://gist.github.com/232232 The gist of the failure seems to be from the lack of BSDP DISCOVER in the failure but I'm not able to identify why that exactly is happening. I'd really appreciate any help on this issue.

    Read the article

  • Installing Windows 7 over PXE, preferably with domain autojoin

    - by Ivan Vucica
    At an educational non-profit, I've inherited a previously set-up Windows domain that, after the first reinstall of the machines, we ended up not using by simply not joining machines back into the domain. Over last summer, before the annual reinstall for shipping machines to the summer school, I toyed with the idea of installing Windows 7 over network, instead of just imaging the machines. It took a bit longer than I expected to figure out the basics; honestly, I expected that Windows would be more friendly for PXE installation out of the box. What I'm interested in is best practices for installing Windows 7 over PXE with domain autojoin. I'd love it if the whole setup could optionally be hosted on a UNIX based system as well. I've had some success by preparing an ISO using Windows Deployment Kit, and loading the ISO into memory. This was needed since I wanted a menu, and I think I couldn't get PXELINUX to chainload into Windows' bootloader. Unfortunately, I couldn't figure out much about customization of the Windows setup in that timeframe nor could I get Samba to work properly; studying the stuff ended up being too lengthy, especially the portion where I edited a disk image on Windows and copied it outside. WDK didn't make things easier by mounting the disk image into RAM, and writing it in its entirety when done with it, making me a very sad boy. I've recently found a different approach, too, that appears to be closer to Microsoft's original idea for netboot deployment and does not involve ISOs. So my question boils down to the following. What exact approach do you use for netbooting Windows 7 setup? How can Windows 7 setup be best customized to be completely unattended, including installation on specific system partition and not destroying the data partition, creation of passworded admin and default user, choice of MAC-address-based hostname, and joining a domain? As much details as possible for everyone's future reference would be appreciated. WDS isn't a bad choice, but if a Linux-based install can be used, that'd be better.

    Read the article

  • Cobbler 2.2.2 problems

    - by Peter
    I have setup a dedicated LAN for Cobbler tests. My setup is: Cobbler server: openSUSE 12.3, cobbler 2.2.2 (from openSUSE repos) Imported distros: Centos 6.5, Red Hat 6.5, Red Hat 7.0, openSUSE 13.1 Target Machine: VMs in a Windows 7 Virtualbox Systems provisioning works OK, but I have some problems. The first one is that cobbler does not honor the "pxe_just_once: 1" setting. When the setup of the target OS is finished, after the reboot the target systems continues to PXE boot! The second problem is that the target server is not correctly configured! See my setup: cobbler system report --name=test Name : test TFTP Boot Files : {} Comment : Fetchable Files : {} Gateway : 192.168.0.1 Hostname : testcob1.example.com Image : IPv6 Autoconfiguration : False IPv6 Default Device : Kernel Options : {} Kernel Options (Post Install) : {} Kickstart : <<inherit>> Kickstart Metadata : {} LDAP Enabled : False LDAP Management Type : authconfig Management Classes : [] Management Parameters : <<inherit>> Monit Enabled : False Name Servers : ['192.168.0.1', '8.8.8.8'] Name Servers Search Path : [] Netboot Enabled : False Owners : ['admin'] Power Management Address : Power ID : Power Password : Power Management Type : ipmitool Power Username : Profile : RHEL-6.5-x86_64 Proxy : <<inherit>> Red Hat Management Key : <<inherit>> Red Hat Management Server : <<inherit>> Repos Enabled : False Server Override : <<inherit>> Status : testing Template Files : {} Virt Auto Boot : <<inherit>> Virt CPUs : <<inherit>> Virt Disk Driver Type : <<inherit>> Virt File Size(GB) : <<inherit>> Virt Path : <<inherit>> Virt RAM (MB) : <<inherit>> Virt Type : <<inherit>> Interface ===== : eth0 Bonding Opts : Bridge Opts : DHCP Tag : DNS Name : Master Interface : Interface Type : IP Address : 192.168.0.200 IPv6 Address : IPv6 Default Gateway : IPv6 MTU : IPv6 Secondaries : [] IPv6 Static Routes : [] MAC Address : Management Interface : True MTU : Subnet Mask : 255.255.255.0 Static : True Static Routes : [] Virt Bridge : So, although I have setup the hostname and the network interface of the target system, after the setup, the hostname is set to localhost.localdomain and eth0 is configured as a DHCP not static! How can I find the problem and fix it? Note that I have synced and restarted cobbler a couple of times, but the problems persists.

    Read the article

  • The Linux powered LAN Gaming House

    - by sachinghalot
    LAN parties offer the enjoyment of head to head gaming in a real-life social environment. In general, they are experiencing decline thanks to the convenience of Internet gaming, but Kenton Varda is a man who takes his LAN gaming very seriously. His LAN gaming house is a fascinating project, and best of all, Linux plays a part in making it all work.Varda has done his own write ups (short, long), so I'm only going to give an overview here. The setup is a large house with 12 gaming stations and a single server computer.The client computers themselves are rack mounted in a server room, and they are linked to the gaming stations on the floor above via extension cables (HDMI for video and audio and USB for mouse and keyboard). Each client computer, built into a 3U rack mount case, is a well specced gaming rig in its own right, sporting an Intel Core i5 processor, 4GB of RAM and an Nvidia GeForce 560 along with a 60GB SSD drive.Originally, the client computers ran Ubuntu Linux rather than Windows and the games executed under WINE, but Varda had to abandon this scheme. As he explains on his site:"Amazingly, a majority of games worked fine, although many had minor bugs (e.g. flickering mouse cursor, minor rendering artifacts, etc.). Some games, however, did not work, or had bad bugs that made them annoying to play."Subsequently, the gaming computers have been moved onto a more conventional gaming choice, Windows 7. It's a shame that WINE couldn't be made to work, but I can sympathize as it's rare to find modern games that work perfectly and at full native speed. Another problem with WINE is that it tends to suffer from regressions, which is hardly surprising when considering the difficulty of constantly improving the emulation of the Windows API. Varda points out that he preferred working with Linux clients as they were easier to modify and came with less licensing baggage.Linux still runs the server and all of the tools used are open source software. The hardware here is a Intel Xeon E3-1230 with 4GB of RAM. The storage hanging off this machine is a bit more complex than the clients. In addition to the 60GB SSD, it also has 2x1TB drives and a 240GB SDD.When the clients were running Linux, they booted over PXE using a toolchain that will be familiar to anyone who has setup Linux network booting. DHCP pointed the clients to the server which then supplied PXELINUX using TFTP. When booted, file access was accomplished through network block device (NBD). This is a very easy to use system that allows you to serve the contents of a file as a block device over the network. The client computer runs a user mode device driver and the device can be mounted within the file system using the mount command.One snag with offering file access via NBD is that it's difficult to impose any security restrictions on different areas of the file system as the server only sees a single file. The advantage is perfomance as the client operating system simply sees a block device, and besides, these security issues aren't relevant in this setup.Unfortunately, Windows 7 can't use NBD, so, Varda had to switch to iSCSI (which works in both server and client mode under Linux). His network cards are not compliant with this standard when doing a netboot, but fortunately, gPXE came to the rescue, and he boostraps it over PXE. gPXE is also available as an ISO image and is worth knowing about if you encounter an awkward machine that can't manage a network boot. It can also optionally boot from a HTTP server rather than the more traditional TFTP server.According to Varda, booting all 12 machines over the Gigabit Ethernet network is surprisingly fast, and once booted, the machines don't seem noticeably slower than if they were using local storage. Once loaded, most games attempt to load in as much data as possible, filling the RAM, and the the disk and network bandwidth required is small. It's worth noting that these are aspects of this project that might differ from some other thin client scenarios.At time of writing, it doesn't seem as though the local storage of the client machines is being utilized. Instead, the clients boot into Windows from an image on the server that contains the operating system and the games themselves. It uses the copy on write feature of LVM so that any writes from a client are added to a differencing image allocated to that client. As the administrator, Varda can log into the Linux server and authorize changes to the master image for updates etc.SummaryOverall, Varda estimates the total cost of the project at about $40,000, and of course, he needed a property that offered a large physical space in order to house the computers and the gaming workstations. Obviously, this project has stark differences to most thin client projects. The balance between storage, network usage, GPU power and security would not be typical of an office installation, for example. The only letdown is that WINE proved to be insufficiently compatible to run a wide variety of modern games, but that is, perhaps, asking too much of it, and hats off to Varda for trying to make it work.

    Read the article

  • Unity not Working 14.04

    - by Back.Slash
    I am using Ubuntu 14.04 LTS x64. I did a sudo apt-get upgrade yesterday and restarted my PC. Now my taskbar and panel are missing. When I try to restart Unity using unity --replace Then I get error: unity-panel-service stop/waiting compiz (core) - Info: Loading plugin: core compiz (core) - Info: Starting plugin: core unity-panel-service start/running, process 3906 compiz (core) - Info: Loading plugin: ccp compiz (core) - Info: Starting plugin: ccp compizconfig - Info: Backend : gsettings compizconfig - Info: Integration : true compizconfig - Info: Profile : unity compiz (core) - Info: Loading plugin: composite compiz (core) - Info: Starting plugin: composite compiz (core) - Info: Loading plugin: opengl compiz (core) - Info: Unity is fully supported by your hardware. compiz (core) - Info: Unity is fully supported by your hardware. compiz (core) - Info: Starting plugin: opengl libGL error: dlopen /usr/lib/x86_64-linux-gnu/dri/i965_dri.so failed (/usr/lib/x86_64-linux-gnu/dri/i965_dri.so: undefined symbol: _glapi_tls_Dispatch) libGL error: dlopen ${ORIGIN}/dri/i965_dri.so failed (${ORIGIN}/dri/i965_dri.so: cannot open shared object file: No such file or directory) libGL error: dlopen /usr/lib/dri/i965_dri.so failed (/usr/lib/dri/i965_dri.so: cannot open shared object file: No such file or directory) libGL error: unable to load driver: i965_dri.so libGL error: driver pointer missing libGL error: failed to load driver: i965 libGL error: dlopen /usr/lib/x86_64-linux-gnu/dri/swrast_dri.so failed (/usr/lib/x86_64-linux-gnu/dri/swrast_dri.so: undefined symbol: _glapi_tls_Dispatch) libGL error: dlopen ${ORIGIN}/dri/swrast_dri.so failed (${ORIGIN}/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL error: dlopen /usr/lib/dri/swrast_dri.so failed (/usr/lib/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL error: unable to load driver: swrast_dri.so libGL error: failed to load driver: swrast compiz (core) - Info: Loading plugin: compiztoolbox compiz (core) - Info: Starting plugin: compiztoolbox compiz (core) - Info: Loading plugin: decor compiz (core) - Info: Starting plugin: decor compiz (core) - Info: Loading plugin: vpswitch compiz (core) - Info: Starting plugin: vpswitch compiz (core) - Info: Loading plugin: snap compiz (core) - Info: Starting plugin: snap compiz (core) - Info: Loading plugin: mousepoll compiz (core) - Info: Starting plugin: mousepoll compiz (core) - Info: Loading plugin: resize compiz (core) - Info: Starting plugin: resize compiz (core) - Info: Loading plugin: place compiz (core) - Info: Starting plugin: place compiz (core) - Info: Loading plugin: move compiz (core) - Info: Starting plugin: move compiz (core) - Info: Loading plugin: wall compiz (core) - Info: Starting plugin: wall compiz (core) - Info: Loading plugin: grid compiz (core) - Info: Starting plugin: grid compiz (core) - Info: Loading plugin: regex compiz (core) - Info: Starting plugin: regex compiz (core) - Info: Loading plugin: imgpng compiz (core) - Info: Starting plugin: imgpng compiz (core) - Info: Loading plugin: session compiz (core) - Info: Starting plugin: session I/O warning : failed to load external entity "/home/sumeet/.compiz/session/10de541a813cc1a8fc140170575114755000000020350005" compiz (core) - Info: Loading plugin: gnomecompat compiz (core) - Info: Starting plugin: gnomecompat compiz (core) - Info: Loading plugin: animation compiz (core) - Info: Starting plugin: animation compiz (core) - Info: Loading plugin: fade compiz (core) - Info: Starting plugin: fade compiz (core) - Info: Loading plugin: unitymtgrabhandles compiz (core) - Info: Starting plugin: unitymtgrabhandles compiz (core) - Info: Loading plugin: workarounds compiz (core) - Info: Starting plugin: workarounds compiz (core) - Info: Loading plugin: scale compiz (core) - Info: Starting plugin: scale compiz (core) - Info: Loading plugin: expo compiz (core) - Info: Starting plugin: expo compiz (core) - Info: Loading plugin: ezoom compiz (core) - Info: Starting plugin: ezoom compiz (core) - Info: Loading plugin: unityshell compiz (core) - Info: Starting plugin: unityshell WARN 2014-06-02 18:46:23 unity.glib.dbus.server GLibDBusServer.cpp:579 Can't register object 'org.gnome.Shell' yet as we don't have a connection, waiting for it... ERROR 2014-06-02 18:46:23 unity.debug.interface DebugDBusInterface.cpp:216 Unable to load entry point in libxpathselect: libxpathselect.so.1.4: cannot open shared object file: No such file or directory compiz (unityshell) - Error: GL_ARB_vertex_buffer_object not supported ERROR 2014-06-02 18:46:23 unity.shell.compiz unityshell.cpp:3850 Impossible to delete the unity locked stamp file compiz (core) - Error: Plugin initScreen failed: unityshell compiz (core) - Error: Failed to start plugin: unityshell compiz (core) - Info: Unloading plugin: unityshell X Error of failed request: BadWindow (invalid Window parameter) Major opcode of failed request: 3 (X_GetWindowAttributes) Resource id in failed request: 0x3e000c9 Serial number of failed request: 10115 Current serial number in output stream: 10116 Any help would be highly appreciated. EDIT : My PC configuration description: Portable Computer product: Dell System XPS L502X (System SKUNumber) vendor: Dell Inc. version: 0.1 serial: 1006ZP1 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: administrator_password=unknown boot=normal chassis=portable family=HuronRiver System frontpanel_password=unknown keyboard_password=unknown power-on_password=unknown sku=System SKUNumber uuid=44454C4C-3000-1030-8036-B1C04F5A5031 *-core description: Motherboard product: 0YR8NN vendor: Dell Inc. physical id: 0 version: A00 serial: .1006ZP1.CN4864314C0560. slot: Part Component *-firmware description: BIOS vendor: Dell Inc. physical id: 0 version: A11 date: 05/29/2012 size: 128KiB capacity: 2496KiB capabilities: pci pnp upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy360 int13floppy1200 int13floppy720 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot smartbattery biosbootspecification netboot *-cpu description: CPU product: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz vendor: Intel Corp. physical id: 19 bus info: cpu@0 version: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz serial: Not Supported by CPU slot: CPU size: 800MHz capacity: 800MHz width: 64 bits clock: 100MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=4 threads=8 *-cache:0 description: L1 cache physical id: 1a slot: L1-Cache size: 64KiB capacity: 64KiB capabilities: synchronous internal write-through data *-cache:1 description: L2 cache physical id: 1b slot: L2-Cache size: 256KiB capacity: 256KiB capabilities: synchronous internal write-through data *-cache:2 description: L3 cache physical id: 1c slot: L3-Cache size: 6MiB capacity: 6MiB capabilities: synchronous internal write-back unified *-memory description: System Memory physical id: 1d slot: System board or motherboard size: 6GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: M471B5273DH0-CH9 vendor: Samsung physical id: 0 serial: 450F1160 slot: ChannelA-DIMM0 size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: HMT325S6BFR8C-H9 vendor: Hynix/Hyundai physical id: 1 serial: 0CA0E8E2 slot: ChannelB-DIMM0 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-pci description: Host bridge product: 2nd Generation Core Processor Family DRAM Controller vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 09 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port vendor: Intel Corporation physical id: 1 bus info: pci@0000:00:01.0 version: 09 width: 32 bits clock: 33MHz capabilities: pci pm msi pciexpress normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:3000(size=4096) memory:f0000000-f10fffff ioport:c0000000(size=301989888) *-generic UNCLAIMED description: Unassigned class product: Illegal Vendor ID vendor: Illegal Vendor ID physical id: 0 bus info: pci@0000:01:00.0 version: ff width: 32 bits clock: 66MHz capabilities: bus_master vga_palette cap_list configuration: latency=255 maxlatency=255 mingnt=255 resources: memory:f0000000-f0ffffff memory:c0000000-cfffffff memory:d0000000-d1ffffff ioport:3000(size=128) memory:f1000000-f107ffff *-display description: VGA compatible controller product: 2nd Generation Core Processor Family Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 09 width: 64 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:52 memory:f1400000-f17fffff memory:e0000000-efffffff ioport:4000(size=64) *-communication description: Communication controller product: 6 Series/C200 Series Chipset Family MEI Controller #1 vendor: Intel Corporation physical id: 16 bus info: pci@0000:00:16.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: driver=mei_me latency=0 resources: irq:50 memory:f1c05000-f1c0500f *-usb:0 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 vendor: Intel Corporation physical id: 1a bus info: pci@0000:00:1a.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:16 memory:f1c09000-f1c093ff *-multimedia description: Audio device product: 6 Series/C200 Series Chipset Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:53 memory:f1c00000-f1c03fff *-pci:1 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode cap_list configuration: driver=pcieport resources: irq:16 *-pci:2 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 memory:f1b00000-f1bfffff *-network description: Wireless interface product: Centrino Wireless-N 1030 [Rainbow Peak] vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: mon.wlan0 version: 34 serial: bc:77:37:14:47:e5 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list logical wireless ethernet physical configuration: broadcast=yes driver=iwlwifi driverversion=3.13.0-27-generic firmware=18.168.6.1 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:51 memory:f1b00000-f1b01fff *-pci:3 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 4 vendor: Intel Corporation physical id: 1c.3 bus info: pci@0000:00:1c.3 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:19 memory:f1a00000-f1afffff *-usb description: USB controller product: uPD720200 USB 3.0 Host Controller vendor: NEC Corporation physical id: 0 bus info: pci@0000:04:00.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi msix pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:19 memory:f1a00000-f1a01fff *-pci:4 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 5 vendor: Intel Corporation physical id: 1c.4 bus info: pci@0000:00:1c.4 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 memory:f1900000-f19fffff *-pci:5 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 6 vendor: Intel Corporation physical id: 1c.5 bus info: pci@0000:00:1c.5 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 ioport:2000(size=4096) ioport:f1800000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:06:00.0 logical name: eth0 version: 06 serial: 14:fe:b5:a3:ac:40 size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw ip=172.19.167.151 latency=0 link=yes multicast=yes port=MII speed=1Gbit/s resources: irq:49 ioport:2000(size=256) memory:f1804000-f1804fff memory:f1800000-f1803fff *-usb:1 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:23 memory:f1c08000-f1c083ff *-isa description: ISA bridge product: HM67 Express Chipset Family LPC Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: driver=lpc_ich latency=0 resources: irq:0 *-ide:0 description: IDE interface product: 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 05 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:40b8(size=8) ioport:40cc(size=4) ioport:40b0(size=8) ioport:40c8(size=4) ioport:4090(size=16) ioport:4080(size=16) *-serial UNCLAIMED description: SMBus product: 6 Series/C200 Series Chipset Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:f1c04000-f1c040ff ioport:efa0(size=32) *-ide:1 description: IDE interface product: 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller vendor: Intel Corporation physical id: 1f.5 bus info: pci@0000:00:1f.5 version: 05 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:40a8(size=8) ioport:40c4(size=4) ioport:40a0(size=8) ioport:40c0(size=4) ioport:4070(size=16) ioport:4060(size=16) *-scsi:0 physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: SAMSUNG HN-M640M physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 2AR1 serial: S2T3J1KBC00006 size: 596GiB (640GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=6b746d91 *-volume:0 description: Windows NTFS volume physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 version: 3.1 serial: 0272-3e7f size: 348MiB capacity: 350MiB capabilities: primary bootable ntfs initialized configuration: clustersize=4096 created=2013-09-18 12:20:45 filesystem=ntfs label=System Reserved modified_by_chkdsk=true mounted_on_nt4=true resize_log_file=true state=dirty upgrade_on_mount=true *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 116GiB capacity: 116GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 6037MiB capabilities: nofs *-logicalvolume:1 description: Linux filesystem partition physical id: 6 logical name: /dev/sda6 logical name: / capacity: 110GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered state=mounted *-volume:2 description: Windows NTFS volume physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 logical name: /media/os version: 3.1 serial: 4e7853ec-5555-a74d-82e0-9f49798d3772 size: 156GiB capacity: 156GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2013-09-19 09:19:00 filesystem=ntfs label=OS mount.fstype=fuseblk mount.options=ro,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other,blksize=4096 state=mounted *-volume:3 description: Windows NTFS volume physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 logical name: /media/data version: 3.1 serial: 7666d55f-e1bf-e645-9791-2a1a31b24b9a size: 322GiB capacity: 322GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2013-09-17 23:27:01 filesystem=ntfs label=Data modified_by_chkdsk=true mount.fstype=fuseblk mount.options=rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other,blksize=4096 mounted_on_nt4=true resize_log_file=true state=mounted upgrade_on_mount=true *-scsi:1 physical id: 2 logical name: scsi1 capabilities: emulated *-cdrom description: DVD-RAM writer product: DVD+-RW GT32N vendor: HL-DT-ST physical id: 0.0.0 bus info: scsi@1:0.0.0 logical name: /dev/cdrom logical name: /dev/sr0 version: A201 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-battery product: DELL vendor: SANYO physical id: 1 version: 2008 serial: 1.0 slot: Rear capacity: 57720mWh configuration: voltage=11.1V `

    Read the article

  • usb wifi dongle on ubuntu server, cannot install realtek driver RTL 8188cus

    - by Sandro Dzneladze
    I got cheap Ebay wifi dongle from HongKong, Im trying to set it up on my ubuntu server. Occasionally need to move server, so it cannot always be connected to router via lan. Anyhow, usb wifi came with a driver cd. I uploaded files to my home directory and tried to run install script (RTL 8188cus): sudo bash install.sh But I get error: Authentication requested [root] for make driver: make ARCH=x86_64 CROSS_COMPILE= -C /lib/modules/2.6.38-8-server/build M=/home/minime/RTL 8188cus/Linux/driver/rtl8192CU_linux_v2.0.1324.20110126 modules make[1]: Entering directory `/usr/src/linux-headers-2.6.38-8-server' make[1]: *** No rule to make target `8188cus/Linux/driver/rtl8192CU_linux_v2.0.1324.20110126'. Stop. make[1]: Leaving directory `/usr/src/linux-headers-2.6.38-8-server' make: *** [modules] Error 2 Compile make driver error: 2, Please check error Mesg Any ideas what Im doing wrong? There is another driver folder for linux called: RTL 81XX, which doesn't have install.sh at all! I tried to use make command, but I get: make: *** No targets specified and no makefile found. Stop. Any help? this is first time I'm installing driver from source. Im on Ubuntu 11.04 server. lsusb Bus 001 Device 002: ID 0bda:8176 Realtek Semiconductor Corp. lspci -nn 00:00.0 Host bridge [0600]: Intel Corporation N10 Family DMI Bridge [8086:a000] (rev 02) 00:02.0 VGA compatible controller [0300]: Intel Corporation N10 Family Integrated Graphics Controller [8086:a001] (rev 02) 00:1b.0 Audio device [0403]: Intel Corporation N10/ICH 7 Family High Definition Audio Controller [8086:27d8] (rev 02) 00:1c.0 PCI bridge [0604]: Intel Corporation N10/ICH 7 Family PCI Express Port 1 [8086:27d0] (rev 02) 00:1d.0 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #1 [8086:27c8] (rev 02) 00:1d.1 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #2 [8086:27c9] (rev 02) 00:1d.2 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #3 [8086:27ca] (rev 02) 00:1d.3 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #4 [8086:27cb] (rev 02) 00:1d.7 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB2 EHCI Controller [8086:27cc] (rev 02) 00:1e.0 PCI bridge [0604]: Intel Corporation 82801 Mobile PCI Bridge [8086:2448] (rev e2) 00:1f.0 ISA bridge [0601]: Intel Corporation NM10 Family LPC Controller [8086:27bc] (rev 02) 00:1f.2 IDE interface [0101]: Intel Corporation N10/ICH7 Family SATA IDE Controller [8086:27c0] (rev 02) 00:1f.3 SMBus [0c05]: Intel Corporation N10/ICH 7 Family SMBus Controller [8086:27da] (rev 02) 01:00.0 Ethernet controller [0200]: Atheros Communications Device [1969:1083] (rev c0) sudo lshw description: Desktop Computer product: To Be Filled By O.E.M. (To Be Filled By O.E.M.) vendor: To Be Filled By O.E.M. version: To Be Filled By O.E.M. serial: To Be Filled By O.E.M. width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall64 vsyscall32 configuration: boot=normal chassis=desktop family=To Be Filled By O.E.M. sku=To Be Filled By O.E.M. uuid=00020003-0004-0005-0006-000700080009 *-core description: Motherboard product: AD525PV3 vendor: ASRock physical id: 0 *-firmware description: BIOS vendor: American Megatrends Inc. physical id: 0 version: P1.20 date: 04/01/2011 size: 64KiB capacity: 448KiB capabilities: pci upgrade shadowing cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot zipboot biosbootspecification netboot *-cpu description: CPU product: Intel(R) Atom(TM) CPU D525 @ 1.80GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Atom(TM) CPU D525 @ 1.80GHz serial: To Be Filled By O.E.M. slot: CPUSocket size: 1800MHz capacity: 1800MHz width: 64 bits clock: 200MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx constant_tsc arch_perfmon pebs bts rep_good nopl aperfmperf pni dtes64 monitor ds_cpl tm2 ssse3 cx16 xtpr pdcm movbe lahf_lm configuration: cores=2 enabledcores=2 threads=4 *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 48KiB capacity: 48KiB capabilities: internal write-back data *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 1MiB capacity: 1MiB capabilities: internal write-back unified *-memory description: System Memory physical id: c slot: System board or motherboard size: 2GiB *-bank:0 description: SODIMM DDR2 Synchronous 800 MHz (1.2 ns) product: ModulePartNumber00 vendor: Manufacturer00 physical id: 0 serial: SerNum00 slot: DIMM0 size: 2GiB width: 64 bits clock: 800MHz (1.2ns) *-bank:1 description: DIMM [empty] product: ModulePartNumber01 vendor: Manufacturer01 physical id: 1 serial: SerNum01 slot: DIMM1 *-pci description: Host bridge product: N10 Family DMI Bridge vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 02 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display description: VGA compatible controller product: N10 Family Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 02 width: 32 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:41 memory:fea80000-feafffff ioport:dc00(size=8) memory:e0000000-efffffff memory:fe900000-fe9fffff *-multimedia description: Audio device product: N10/ICH 7 Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 02 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=HDA Intel latency=0 resources: irq:43 memory:fea78000-fea7bfff *-pci:0 description: PCI bridge product: N10/ICH 7 Family PCI Express Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:e000(size=4096) memory:feb00000-febfffff ioport:80000000(size=2097152) *-network description: Ethernet interface product: Atheros Communications vendor: Atheros Communications physical id: 0 bus info: pci@0000:01:00.0 logical name: eth0 version: c0 serial: XX size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI duplex=full firmware=N/A ip=192.168.1.99 latency=0 link=yes multicast=yes port=twisted pair speed=100Mbit/s resources: irq:42 memory:febc0000-febfffff ioport:ec00(size=128) *-usb:0 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:23 ioport:d880(size=32) *-usb:1 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #2 vendor: Intel Corporation physical id: 1d.1 bus info: pci@0000:00:1d.1 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:19 ioport:d800(size=32) *-usb:2 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #3 vendor: Intel Corporation physical id: 1d.2 bus info: pci@0000:00:1d.2 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:18 ioport:d480(size=32) *-usb:3 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #4 vendor: Intel Corporation physical id: 1d.3 bus info: pci@0000:00:1d.3 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:16 ioport:d400(size=32) *-usb:4 description: USB Controller product: N10/ICH 7 Family USB2 EHCI Controller vendor: Intel Corporation physical id: 1d.7 bus info: pci@0000:00:1d.7 version: 02 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:23 memory:fea77c00-fea77fff *-pci:1 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: e2 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list *-isa description: ISA bridge product: NM10 Family LPC Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 02 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-ide description: IDE interface product: N10/ICH7 Family SATA IDE Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 version: 02 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list emulated configuration: driver=ata_piix latency=0 resources: irq:19 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:ff90(size=16) memory:80200000-802003ff *-disk description: ATA Disk product: WDC WD10TPVT-11U vendor: Western Digital physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 01.0 serial: WD-WXC1A80P0314 size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=00088c47 *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: /media/private version: 1.0 serial: 042daf2d-350c-4640-a76a-4554c9d98c59 size: 300GiB capacity: 300GiB capabilities: primary journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2011-11-06 11:05:03 filesystem=ext4 label=Private lastmountpoint=/media/private modified=2012-04-13 20:01:16 mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered mounted=2012-04-13 20:01:16 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 625GiB capacity: 625GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux filesystem partition physical id: 5 logical name: /dev/sda5 logical name: /media/storage capacity: 600GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered state=mounted *-logicalvolume:1 description: Linux filesystem partition physical id: 6 logical name: /dev/sda6 logical name: /media/dropbox capacity: 24GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered state=mounted *-volume:2 description: EXT4 volume vendor: Linux physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 logical name: /media/www version: 1.0 serial: 9b0a27b4-05d8-40d5-bfc7-4aeba198db7b size: 2570MiB capacity: 2570MiB capabilities: primary journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2011-11-06 11:05:11 filesystem=ext4 label=www lastmountpoint=/media/www modified=2012-04-15 11:31:12 mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered mounted=2012-04-15 11:31:12 state=mounted *-volume:3 description: Linux swap volume physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 version: 1 serial: 6ed1130e-3aad-4fa6-890b-77e729121e3b size: 4098MiB capacity: 4098MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-serial UNCLAIMED description: SMBus product: N10/ICH 7 Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 02 width: 32 bits clock: 33MHz configuration: latency=0 resources: ioport:400(size=32) *-scsi physical id: 1 bus info: usb@1:4 logical name: scsi2 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk description: SCSI Disk physical id: 0.0.0 bus info: scsi@2:0.0.0 logical name: /dev/sdb size: 3864MiB (4051MB) capabilities: partitioned partitioned:dos configuration: signature=000b4c55 *-volume description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@2:0.0.0,1 logical name: /dev/sdb1 logical name: / version: 1.0 serial: 33926e39-4685-4f63-b83c-f2a67824b69a size: 3862MiB capacity: 3862MiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2011-10-11 14:03:46 filesystem=ext4 lastmountpoint=/ modified=2012-03-19 11:47:29 mount.fstype=ext4 mount.options=rw,noatime,errors=remount-ro,barrier=1,data=ordered mounted=2012-04-15 11:31:11 state=mounted rfkill list all Doesnt show anything! dmesg | grep -i firmware [ 0.715481] pci 0000:00:1f.0: [Firmware Bug]: TigerPoint LPC.BM_STS cleared

    Read the article

  • Ops Center 12c - Provisioning Solaris Using a Card-Based NIC

    - by scottdickson
    It's been a long time since last I added something here, but having some conversations this last week, I got inspired to update things. I've been spending a lot of time with Ops Center for managing and installing systems these days.  So, I suspect a number of my upcoming posts will be in that area. Today, I want to look at how to provision Solaris using Ops Center when your network is not connected to one of the built-in NICs.  We'll talk about how this can work for both Solaris 10 and Solaris 11, since they are pretty similar.  In both cases, WANboot is a key piece of the story. Here's what I want to do:  I have a Sun Fire T2000 server with a Quad-GbE nxge card installed.  The only network is connected to port 2 on that card rather than the built-in network interfaces.  I want to install Solaris on it across the network, either Solaris 10 or Solaris 11.  I have met with a lot of customers lately who have a similar architecture.  Usually, they have T4-4 servers with the network connected via 10GbE connections. Add to this mix the fact that I use Ops Center to manage the systems in my lab, so I really would like to add this to Ops Center.  If possible, I would like this to be completely hands free.  I can't quite do that yet. Close, but not quite. WANBoot or Old-Style NetBoot? When a system is installed from the network, it needs some help getting the process rolling.  It has to figure out what its network configuration (IP address, gateway, etc.) ought to be.  It needs to figure out what server is going to help it boot and install, and it needs the instructions for the installation.  There are two different ways to bootstrap an installation of Solaris on SPARC across the network.   The old way uses a broadcast of RARP or more recently DHCP to obtain the IP configuration and the rest of the information needed.  The second is to explicitly configure this information in the OBP and use WANBoot for installation WANBoot has a number of benefits over broadcast-based installation: it is not restricted to a single subnet; it does not require special DHCP configuration or DHCP helpers; it uses standard HTTP and HTTPS protocols which traverse firewalls much more easily than NFS-based package installation.  But, WANBoot is not available on really old hardware and WANBoot requires the use o Flash Archives in Solaris 10.  Still, for many people, this is a great approach. As it turns out, WANBoot is necessary if you plan to install using a NIC on a card rather than a built-in NIC. Identifying Which Network Interface to Use One of the trickiest aspects to this process, and the one that actually requires manual intervention to set up, is identifying how the OBP and Solaris refer to the NIC that we want to use to boot.  The OBP already has device aliases configured for the built-in NICs called net, net0, net1, net2, net3.  The device alias net typically points to net0 so that when you issue the command  "boot net -v install", it uses net0 for the boot.  Our task is to figure out the network instance for the NIC we want to use.  We will need to get to the OBP console of the system we want to install in order to figure out what the network should be called.  I will presume you know how to get to the ok prompt.  Once there, we have to see what networks the OBP sees and identify which one is associated with our NIC using the OBP command show-nets. SunOS Release 5.11 Version 11.0 64-bit Copyright (c) 1983, 2011, Oracle and/or its affiliates. All rights reserved. {4} ok banner Sun Fire T200, No Keyboard Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved. OpenBoot 4.30.4.b, 32640 MB memory available, Serial #69057548. Ethernet address 0:14:4f:1d:bc:c, Host ID: 841dbc0c. {4} ok show-nets a) /pci@7c0/pci@0/pci@2/network@0,1 b) /pci@7c0/pci@0/pci@2/network@0 c) /pci@780/pci@0/pci@8/network@0,3 d) /pci@780/pci@0/pci@8/network@0,2 e) /pci@780/pci@0/pci@8/network@0,1 f) /pci@780/pci@0/pci@8/network@0 g) /pci@780/pci@0/pci@1/network@0,1 h) /pci@780/pci@0/pci@1/network@0 q) NO SELECTION Enter Selection, q to quit: d /pci@780/pci@0/pci@8/network@0,2 has been selected. Type ^Y ( Control-Y ) to insert it in the command line. e.g. ok nvalias mydev ^Y for creating devalias mydev for /pci@780/pci@0/pci@8/network@0,2 {4} ok devalias ... net3 /pci@7c0/pci@0/pci@2/network@0,1 net2 /pci@7c0/pci@0/pci@2/network@0 net1 /pci@780/pci@0/pci@1/network@0,1 net0 /pci@780/pci@0/pci@1/network@0 net /pci@780/pci@0/pci@1/network@0 ... name aliases By looking at the devalias and the show-nets output, we can see that our Quad-GbE card must be the device nodes starting with  /pci@780/pci@0/pci@8/network@0.  The cable for our network is plugged into the 3rd slot, so the device address for our network must be /pci@780/pci@0/pci@8/network@0,2. With that, we can create a device alias for our network interface.  Naming the device alias may take a little bit of trial and error, especially in Solaris 11 where the device alias seems to matter more with the new virtualized network stack. So far in my testing, since this is the "next" network interface to be used, I have found success in naming it net4, even though it's a NIC in the middle of a card that might, by rights, be called net6 (assuming the 0th interface on the card is the next interface identified by Solaris and this is the 3rd interface on the card).  So, we will call it net4.  We need to assign a device alias to it: {4} ok nvalias net4 /pci@780/pci@0/pci@8/network@0,2 {4} ok devalias net4 /pci@780/pci@0/pci@8/network@0,2 ... We also may need to have the MAC for this particular interface, so let's get it, too.  To do this, we go to the device and interrogate its properties. {4} ok cd /pci@780/pci@0/pci@8/network@0,2 {4} ok .properties assigned-addresses 82060210 00000000 03000000 00000000 01000000 82060218 00000000 00320000 00000000 00008000 82060220 00000000 00328000 00000000 00008000 82060230 00000000 00600000 00000000 00100000 local-mac-address 00 21 28 20 42 92 phy-type mif ... From this, we can see that the MAC for this interface is  00:21:28:20:42:92.  We will need this later. This is all we need to do at the OBP.  Now, we can configure Ops Center to use this interface. Network Boot in Solaris 10 Solaris 10 turns out to be a little simpler than Solaris 11 for this sort of a network boot.  Since WANBoot in Solaris 10 fetches a specified In order to install the system using Ops Center, it is necessary to create a OS Provisioning profile and its corresponding plan.  I am going to presume that you already know how to do this within Ops Center 12c and I will just cover the differences between a regular profile and a profile that can use an alternate interface. Create a OS Provisioning profile for Solaris 10 as usual.  However, when you specify the network resources for the primary network, click on the name of the NIC, probably GB_0, and rename it to GB_N/netN, where N is the instance number you used previously in creating the device alias.  This is where the trial and error may come into play.  You may need to try a few instance numbers before you, the OBP, and Solaris all agree on the instance number.  Mark this as the boot network. For Solaris 10, you ought to be able to then apply the OS Provisioning profile to the server and it should install using that interface.  And if you put your cards in the same slots and plug the networks into the same NICs, this profile is reusable across multiple servers. Why This Works If you watch the console as Solaris boots during the OSP process, Ops Center is going to look for the device alias netN.  Since WANBoot requires a device alias called just net, Ops Center uses the value of your netN device alias and assigns that device to the net alias.  That means that boot net will automatically use this device.  Very cool!  Here's a trace from the console as Ops Center provisions a server: Sun Sun Fire T200, No KeyboardCopyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.OpenBoot 4.30.4.b, 32640 MB memory available, Serial #69057548.Ethernet address 0:14:4f:1d:bc:c, Host ID: 841dbc0c.auto-boot? =            false{0} ok  {0} ok printenv network-boot-argumentsnetwork-boot-arguments =  host-ip=10.140.204.234,router-ip=10.140.204.1,subnet-mask=255.255.254.0,hostname=atl-sewr-52,client-id=0100144F1DBC0C,file=http://10.140.204.22:5555/cgi-bin/wanboot-cgi{0} ok {0} ok devalias net net                      /pci@780/pci@0/pci@1/network@0{0} ok devalias net4 net4                     /pci@780/pci@0/pci@8/network@0,2{0} ok devalias net /pci@780/pci@0/pci@8/network@0,2{0} ok setenv network-boot-arguments host-ip=10.140.204.234,router-ip=10.140.204.1,subnet-mask=255.255.254.0,hostname=atl-sewr-52,client-id=0100144F1DBC0C,file=http://10.140.204.22:8004/cgi-bin/wanboot-cginetwork-boot-arguments =  host-ip=10.140.204.234,router-ip=10.140.204.1,subnet-mask=255.255.254.0,hostname=atl-sewr-52,client-id=0100144F1DBC0C,file=http://10.140.204.22:8004/cgi-bin/wanboot-cgi{0} ok {0} ok boot net - installBoot device: /pci@780/pci@0/pci@8/network@0,2  File and args: - install/pci@780/pci@0/pci@8/network@0,2: 1000 Mbps link up<time unavailable> wanboot info: WAN boot messages->console<time unavailable> wanboot info: configuring /pci@780/pci@0/pci@8/network@0,2 See what happened?  Ops Center looked for the network device alias called net4 that we specified in the profile, took the value from it, and made it the net device alias for the boot.  Pretty cool! WANBoot and Solaris 11 Solaris 11 requires an additional step since the Automated Installer in Solaris 11 uses the MAC address of the network to figure out which manifest to use for system installation.  In order to make sure this is available, we have to take an extra step to associate the MAC of the NIC on the card with the host.  So, in addition to creating the device alias like we did above, we also have to declare to Ops Center that the host has this new MAC. Declaring the NIC Start out by discovering the hardware as usual.  Once you have discovered it, take a look under the Connectivity tab to see what networks it has discovered.  In the case of this system, it shows the 4 built-in networks, but not the networks on the additional cards.  These are not directly visible to the system controller.  In order to add the additional network interface to the hardware asset, it is necessary to Declare it.  We will declare that we have a server with this additional NIC, but we will also  specify the existing GB_0 network so that Ops Center can associate the right resources together.  The GB_0 acts as sort of a key to tie our new declaration to the old system already discovered.  Go to the Assets tab, select All Assets, and then in the Actions tab, select Add Asset.  Rather than going through a discovery this time, we will manually declare a new asset. When we declare it, we will give the hostname, IP address, system model that match those that have already been discovered.  Then, we will declare both GB_0 with its existing MAC and the new GB_4 with its MAC.  Remember that we collected the MAC for GB_4 when we created its device alias. After you declare the asset, you will see the new NIC in the connectivity tab for the asset.  You will notice that only the NICs you listed when you declared it are seen now.  If you want Ops Center to see all of the existing NICs as well as the additional one, declare them as well.  Add the other GB_1, GB_2, GB_3 links and their MACs just as you did GB_0 and GB_4.  Installing the OS  Once you have declared the asset, you can create an OS Provisioning profile for Solaris 11 in the same way that you did for Solaris 10.  The only difference from any other provisioning profile you might have created already is the network to use for installation.  Again, use GB_N/netN where N is the interface number you used for your device alias and in your declaration.  And away you go.  When the system boots from the network, the automated installer (AI) is able to see which system manifest to use, based on the new MAC that was associated, and the system gets installed. {0} ok {0} ok printenv network-boot-argumentsnetwork-boot-arguments =  host-ip=10.140.204.234,router-ip=10.140.204.1,subnet-mask=255.255.254.0,hostname=atl-sewr-52,client-id=01002128204292,file=http://10.140.204.22:5555/cgi-bin/wanboot-cgi{0} ok {0} ok devalias net net                      /pci@780/pci@0/pci@1/network@0{0} ok devalias net4 net4                     /pci@780/pci@0/pci@8/network@0,2{0} ok devalias net /pci@780/pci@0/pci@8/network@0,2{0} ok setenv network-boot-arguments host-ip=10.140.204.234,router-ip=10.140.204.1,subnet-mask=255.255.254.0,hostname=atl-sewr-52,client-id=01002128204292,file=http://10.140.204.22:5555/cgi-bin/wanboot-cginetwork-boot-arguments =  host-ip=10.140.204.234,router-ip=10.140.204.1,subnet-mask=255.255.254.0,hostname=atl-sewr-52,client-id=01002128204292,file=http://10.140.204.22:5555/cgi-bin/wanboot-cgi{0} ok {0} ok boot net - installBoot device: /pci@780/pci@0/pci@8/network@0,2  File and args: - install/pci@780/pci@0/pci@8/network@0,2: 1000 Mbps link up<time unavailable> wanboot info: WAN boot messages->console<time unavailable> wanboot info: configuring /pci@780/pci@0/pci@8/network@0,2...SunOS Release 5.11 Version 11.0 64-bitCopyright (c) 1983, 2011, Oracle and/or its affiliates. All rights reserved.Remounting root read/writeProbing for device nodes ...Preparing network image for useDownloading solaris.zlib--2012-02-17 15:10:17--  http://10.140.204.22:5555/var/js/AI/sparc//solaris.zlibConnecting to 10.140.204.22:5555... connected.HTTP request sent, awaiting response... 200 OKLength: 126752256 (121M) [text/plain]Saving to: `/tmp/solaris.zlib'100%[======================================>] 126,752,256 28.6M/s   in 4.4s    2012-02-17 15:10:21 (27.3 MB/s) - `/tmp/solaris.zlib' saved [126752256/126752256] Conclusion So, why go to all of this trouble?  More and more, I find that customers are wiring their data center to only use higher speed networks - 10GbE only to the hosts.  Some customers are moving aggressively toward consolidated networks combining storage and network on CNA NICs.  All of this means that network-based provisioning cannot rely exclusively on the built-in network interfaces.  So, it's important to be able to provision a system using other than the built-in networks.  Turns out, that this is pretty straight-forward for both Solaris 10 and Solaris 11 and fits into the Ops Center deployment process quite nicely. Hopefully, you will be able to use this as you build out your own private cloud solutions with Ops Center.

    Read the article

< Previous Page | 1 2