Search Results

Search found 12077 results on 484 pages for 'node js'.

Page 2/484 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Real performance of node.js

    - by uther.lightbringer
    I've got a question concerning node.js performance. There is quite lot of "benchmarks" and a lot of fuss about great performance of node.js. But how does it stand in real world? Not just process empty request at high speed. If someone could try to compare this scenario: Java (or equivalent) server running an application with complex business logic between receiving request and sending response. How would node.js deal with it? If there was need for a lot of JavaScript processing on server side, is node.js really so fast that it can execute JavaScript, and stand a chance against more heavyveight competitors?

    Read the article

  • Sending data through POST request from a node.js server to a node.js server

    - by Masiar
    I'm trying to send data through a POST request from a node.js server to another node.js server. What I do in the "client" node.js is the following: var options = { host: 'my.url', port: 80, path: '/login', method: 'POST' }; var req = http.request(options, function(res){ console.log('status: ' + res.statusCode); console.log('headers: ' + JSON.stringify(res.headers)); res.setEncoding('utf8'); res.on('data', function(chunk){ console.log("body: " + chunk); }); }); req.on('error', function(e) { console.log('problem with request: ' + e.message); }); // write data to request body req.write('data\n'); req.write('data\n'); req.end(); This chunk is taken more or less from the node.js website so it should be correct. The only thing I don't see is how to include username and password in the options variable to actually login. This is how I deal with the data in the server node.js (I use express): app.post('/login', function(req, res){ var user = {}; user.username = req.body.username; user.password = req.body.password; ... }); How can I add those username and password fields to the options variable to have it logged in? Thanks

    Read the article

  • Exporting a non public Type through public API

    - by sachin
    I am trying to follow Trees tutorial at: http://cslibrary.stanford.edu/110/BinaryTrees.html Here is the code I have written so far: package trees.bst; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * * @author sachin */ public class BinarySearchTree { Node root = null; class Node { Node left = null; Node right = null; int data = 0; public Node(int data) { this.left = null; this.right = null; this.data = data; } } public void insert(int data) { root = insert(data, root); } public boolean lookup(int data) { return lookup(data, root); } public void buildTree(int numNodes) { for (int i = 0; i < numNodes; i++) { int num = (int) (Math.random() * 10); System.out.println("Inserting number:" + num); insert(num); } } public int size() { return size(root); } public int maxDepth() { return maxDepth(root); } public int minValue() { return minValue(root); } public int maxValue() { return maxValue(root); } public void printTree() { //inorder traversal System.out.println("inorder traversal:"); printTree(root); System.out.println("\n--------------"); } public void printPostorder() { //inorder traversal System.out.println("printPostorder traversal:"); printPostorder(root); System.out.println("\n--------------"); } public int buildTreeFromOutputString(String op) { root = null; int i = 0; StringTokenizer st = new StringTokenizer(op); while (st.hasMoreTokens()) { String stNum = st.nextToken(); int num = Integer.parseInt(stNum); System.out.println("buildTreeFromOutputString: Inserting number:" + num); insert(num); i++; } return i; } public boolean hasPathSum(int pathsum) { return hasPathSum(pathsum, root); } public void mirror() { mirror(root); } public void doubleTree() { doubleTree(root); } public boolean sameTree(BinarySearchTree bst) { //is this tree same as another given tree? return sameTree(this.root, bst.getRoot()); } public void printPaths() { if (root == null) { System.out.println("print path sum: tree is empty"); } List pathSoFar = new ArrayList(); printPaths(root, pathSoFar); } ///-------------------------------------------Public helper functions public Node getRoot() { return root; } //Exporting a non public Type through public API ///-------------------------------------------Helper Functions private boolean isLeaf(Node node) { if (node == null) { return false; } if (node.left == null && node.right == null) { return true; } return false; } ///----------------------------------------------------------- private boolean sameTree(Node n1, Node n2) { if ((n1 == null && n2 == null)) { return true; } else { if ((n1 == null || n2 == null)) { return false; } else { if ((n1.data == n2.data)) { return (sameTree(n1.left, n2.left) && sameTree(n1.right, n2.right)); } } } return false; } private void doubleTree(Node node) { //create a copy //bypass the copy to continue looping if (node == null) { return; } Node copyNode = new Node(node.data); Node temp = node.left; node.left = copyNode; copyNode.left = temp; doubleTree(copyNode.left); doubleTree(node.right); } private void mirror(Node node) { if (node == null) { return; } Node temp = node.left; node.left = node.right; node.right = temp; mirror(node.left); mirror(node.right); } private void printPaths(Node node, List pathSoFar) { if (node == null) { return; } pathSoFar.add(node.data); if (isLeaf(node)) { System.out.println("path in tree:" + pathSoFar); pathSoFar.remove(pathSoFar.lastIndexOf(node.data)); //only the current node, a node.data may be duplicated return; } else { printPaths(node.left, pathSoFar); printPaths(node.right, pathSoFar); } } private boolean hasPathSum(int pathsum, Node node) { if (node == null) { return false; } int val = pathsum - node.data; boolean ret = false; if (val == 0 && isLeaf(node)) { ret = true; } else if (val == 0 && !isLeaf(node)) { ret = false; } else if (val != 0 && isLeaf(node)) { ret = false; } else if (val != 0 && !isLeaf(node)) { //recurse further ret = hasPathSum(val, node.left) || hasPathSum(val, node.right); } return ret; } private void printPostorder(Node node) { //inorder traversal if (node == null) { return; } printPostorder(node.left); printPostorder(node.right); System.out.print(" " + node.data); } private void printTree(Node node) { //inorder traversal if (node == null) { return; } printTree(node.left); System.out.print(" " + node.data); printTree(node.right); } private int minValue(Node node) { if (node == null) { //error case: this is not supported return -1; } if (node.left == null) { return node.data; } else { return minValue(node.left); } } private int maxValue(Node node) { if (node == null) { //error case: this is not supported return -1; } if (node.right == null) { return node.data; } else { return maxValue(node.right); } } private int maxDepth(Node node) { if (node == null || (node.left == null && node.right == null)) { return 0; } int ldepth = 1 + maxDepth(node.left); int rdepth = 1 + maxDepth(node.right); if (ldepth > rdepth) { return ldepth; } else { return rdepth; } } private int size(Node node) { if (node == null) { return 0; } return 1 + size(node.left) + size(node.right); } private Node insert(int data, Node node) { if (node == null) { node = new Node(data); } else if (data <= node.data) { node.left = insert(data, node.left); } else { node.right = insert(data, node.right); } //control should never reach here; return node; } private boolean lookup(int data, Node node) { if (node == null) { return false; } if (node.data == data) { return true; } if (data < node.data) { return lookup(data, node.left); } else { return lookup(data, node.right); } } public static void main(String[] args) { BinarySearchTree bst = new BinarySearchTree(); int treesize = 5; bst.buildTree(treesize); //treesize = bst.buildTreeFromOutputString("4 4 4 6 7"); treesize = bst.buildTreeFromOutputString("3 4 6 3 6"); //treesize = bst.buildTreeFromOutputString("10"); for (int i = 0; i < treesize; i++) { System.out.println("Searching:" + i + " found:" + bst.lookup(i)); } System.out.println("tree size:" + bst.size()); System.out.println("maxDepth :" + bst.maxDepth()); System.out.println("minvalue :" + bst.minValue()); System.out.println("maxvalue :" + bst.maxValue()); bst.printTree(); bst.printPostorder(); int pathSum = 10; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); pathSum = 6; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); pathSum = 19; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); bst.printPaths(); bst.printTree(); //bst.mirror(); System.out.println("Tree after mirror function:"); bst.printTree(); //bst.doubleTree(); System.out.println("Tree after double function:"); bst.printTree(); System.out.println("tree size:" + bst.size()); System.out.println("Same tree:" + bst.sameTree(bst)); BinarySearchTree bst2 = new BinarySearchTree(); bst2.buildTree(treesize); treesize = bst2.buildTreeFromOutputString("3 4 6 3 6"); bst2.printTree(); System.out.println("Same tree:" + bst.sameTree(bst2)); System.out.println("---"); } } Now the problem is that netbeans shows Warning: Exporting a non public Type through public API for function getRoot(). I write this function to get root of tree to be used in sameTree() function, to help comparison of "this" with given tree. Perhaps this is a OOP design issue... How should I restructure the above code that I do not get this warning and what is the concept I am missing here?

    Read the article

  • loading js files and other dependent js files asynchronously

    - by taber
    I'm looking for a clean way to asynchronously load the following types of javascript files: a "core" js file (hmm, let's just call it, oh i don't know, "jquery!" haha), x number of js files that are dependent on the "core" js file being loaded, and y number of other unrelated js files. I have a couple ideas of how to go about it, but not sure what the best way is. I'd like to avoid loading scripts in the document body. So for example, I want the following 4 javascript files to load asynchronously, appropriately named: /js/my-contact-page-js-functions.js // unrelated/independent script /js/jquery-1.3.2.min.js // the "core" script /js/jquery.color.min.js // dependent on jquery being loaded http://thirdparty.com/js/third-party-tracking-script.js // another unrelated/independent script But this won't work because it's not guaranteed that jQuery is loaded before the color plugin... (function() { a=[ '/js/my-contact-page-functions.js', '/js/jquery-1.4.2.min.js', '/js/jquery.color.js', 'http://cdn.thirdparty.com/third-party-tracking-script.js', ], d=document, h=d.getElementsByTagName('head')[0], s, i, l=a.length; for(i=0;i<l;i++){ s=d.createElement('script'); s.type='text/javascript'; s.async=true; s.src=a[i]; h.appendChild(s); } })(); Is it pretty much not possible to load jquery and the color plugin asynchronously? (Since the color plugin requires that jQuery is loaded first.) The first method I was considering is to just combine the color plugin script with jQuery source into one file. Then another idea I had was loading the color plugin like so: $(window).ready(function() { $.getScript("/js/jquery.color.js"); }); Anyone have any thoughts on how you'd go about this? Thanks!

    Read the article

  • Node.js Lockstep Multiplayer Architecture

    - by Wakaka
    Background I'm using the lockstep model for a multiplayer Node.js/Socket.IO game in a client-server architecture. User input (mouse or keypress) is parsed into commands like 'attack' and 'move' on the client, which are sent to the server and scheduled to be executed on a certain tick. This is in contrast to sending state data to clients, which I don't wish to use due to bandwidth issues. Each tick, the server will send the list of commands on that tick (possibly empty) to each client. The server and all clients will then process the commands and simulate that tick in exactly the same way. With Node.js this is actually quite simple due to possibility of code sharing between server and client. I'll just put the deterministic simulator in the /shared folder which can be run by both server and client. The server simulation is required so that there is an authoritative version of the simulation which clients cannot alter. Problem Now, the game has many entity classes, like Unit, Item, Tree etc. Entities are created in the simulator. However, for each class, it has some methods that are shared and some that are client-specific. For instance, the Unit class has addHp method which is shared. It also has methods like getSprite (gets the image of the entity), isVisible (checks if unit can be seen by the client), onDeathInClient (does a bunch of stuff when it dies only on the client like adding announcements) and isMyUnit (quick function to check if the client owns the unit). Up till now, I have been piling all the client functions into the shared Unit class, and adding a this.game.isServer() check when necessary. For instance, when the unit dies, it will call if (!this.game.isServer()) { this.onDeathInClient(); }. This approach has worked pretty fine so far, in terms of functionality. But as the codebase grew bigger, this style of coding seems a little strange. Firstly, the client code is clearly not shared, and yet is placed under the /shared folder. Secondly, client-specific variables for each entity are also instantiated on the server entity (like unit.sprite) and can run into problems when the server cannot instantiate the variable (it doesn't have Image class like on browsers). So my question is, is there a better way to organize the client code, or is this a common way of doing things for lockstep multiplayer games? I can think of a possible workaround, but it does have its own problems. Possible workaround (with problems) I could use Javascript mixins that are only added when in a browser. Thus, in the /shared/unit.js file in the /shared folder, I would have this code at the end: if (typeof exports !== 'undefined') module.exports = Unit; else mixin(Unit, LocalUnit); Then I would have /client/localunit.js store an object LocalUnit of client-side methods for Unit. Now, I already have a publish-subscribe system in place for events in the simulator. To remove the this.game.isServer() checks, I could publish entity-specific events whenever I want the client to do something. For instance, I would do this.publish('Death') in /shared/unit.js and do this.subscribe('Death', this.onDeathInClient) in /client/localunit.js. But this would make the simulator's event listeners list on the server and the client different. Now if I want to clear all subscribed events only from the shared simulator, I can't. Of course, it is possible to create two event subscription systems - one client-specific and one shared - but now the publish() method would have to do if (!this.game.isServer()) { this.publishOnClient(event); }. All in all, the workaround off the top of my head seems pretty complicated for something as simple as separating the client and shared code. Thus, I wonder if there is an established and simpler method for better code organization, hopefully specific to Node.js games.

    Read the article

  • When/how to use Node with PHP or Ruby [closed]

    - by mbuurman
    For fun, I am creating a sort of microblogging webapp where people can comment on certain things. The basic "What is your opinion on this?" should be easy doable with just PHP (input the data in the database). Along with that I want to create a statistics page, also easy doable with PHP. But what if I want to update that page in realtime? How would I integrate Node on that page? Or shouldn't I use Node for that? When would you use Node?

    Read the article

  • redirecting in node.js behind mod_rewrite proxy

    - by chmanie
    I have a node.js application running behind an Apache mod_rewrite proxy configured in a .htaccess file like this: RewriteCond %{HTTP_HOST} =mydomain.com [OR] RewriteCond %{HTTP_HOST} =www.mydomain.com RewriteRule (.*) http://localhost:3000/$1 [QSA,P] When I now do a redirect (e.g. express' res.redirect()) inside my node.js application (which runs on port 3000), the user is always redirected to http://localhost:3000/ (which is in fact exactly what is defined above but not the desired behaviour). Is there any way around this?

    Read the article

  • a server side mustache.js example using node.js

    - by onecoder4u
    I'm looking for an example using mustache.js with node.js here is my example but it is not working. Mustache is undefined. I'm using Mustache.js from the master branch. var sys = require('sys'); var m = require("./mustache"); var view = { title: "Joe", calc: function() { return 2 + 4; } }; var template = "{{title}} spends {{calc}}"; var html = Mustache().to_html(template, view); sys.puts(html);

    Read the article

  • node.js callback getting unexpected value for variable

    - by defrex
    I have a for loop, and inside it a variable is assigned with var. Also inside the loop a method is called which requires a callback. Inside the callback function I'm using the variable from the loop. I would expect that it's value, inside the callback function, would be the same as it was outside the callback during that iteration of the loop. However, it always seems to be the value from the last iteration of the loop. Am I misunderstanding scope in JavaScript, or is there something else wrong? The program in question here is a node.js app that will monitor a working directory for changes and restart the server when it finds one. I'll include all of the code for the curious, but the important bit is the parse_file_list function. var posix = require('posix'); var sys = require('sys'); var server; var child_js_file = process.ARGV[2]; var current_dir = __filename.split('/'); current_dir = current_dir.slice(0, current_dir.length-1).join('/'); var start_server = function(){ server = process.createChildProcess('node', [child_js_file]); server.addListener("output", function(data){sys.puts(data);}); }; var restart_server = function(){ sys.puts('change discovered, restarting server'); server.close(); start_server(); }; var parse_file_list = function(dir, files){ for (var i=0;i<files.length;i++){ var file = dir+'/'+files[i]; sys.puts('file assigned: '+file); posix.stat(file).addCallback(function(stats){ sys.puts('stats returned: '+file); if (stats.isDirectory()) posix.readdir(file).addCallback(function(files){ parse_file_list(file, files); }); else if (stats.isFile()) process.watchFile(file, restart_server); }); } }; posix.readdir(current_dir).addCallback(function(files){ parse_file_list(current_dir, files); }); start_server(); The output from this is: file assigned: /home/defrex/code/node/ejs.js file assigned: /home/defrex/code/node/templates file assigned: /home/defrex/code/node/web file assigned: /home/defrex/code/node/server.js file assigned: /home/defrex/code/node/settings.js file assigned: /home/defrex/code/node/apps file assigned: /home/defrex/code/node/dev_server.js file assigned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js For those from the future: node.devserver.js

    Read the article

  • Review: Backbone.js Testing

    - by george_v_reilly
    Title: Backbone.js Testing Author: Ryan Roemer Rating: $stars(4.5) Publisher: Packt Copyright: 2013 ISBN: 178216524X Pages: 168 Keywords: programming, testing, javascript, backbone, mocha, chai, sinon Reading period: October 2013 Backbone.js Testing is a short, dense introduction to testing JavaScript applications with three testing libraries, Mocha, Chai, and Sinon.JS. Although the author uses a sample application of a personal note manager written with Backbone.js throughout the book, much of the material would apply to any JavaScript client or server framework. Mocha is a test framework that can be executed in the browser or by Node.js, which runs your tests. Chai is a framework-agnostic TDD/BDD assertion library. Sinon.JS provides standalone test spies, stubs and mocks for JavaScript. They complement each other and the author does a good job of explaining when and how to use each. I've written a lot of tests in Python (unittest and mock, primarily) and C# (NUnit), but my experience with JavaScript unit testing was both limited and years out of date. The JavaScript ecosystem continues to evolve rapidly, with new browser frameworks and Node packages springing up everywhere. JavaScript has some particular challenges in testing—notably, asynchrony and callbacks. Mocha, Chai, and Sinon meet those challenges, though they can't take away all the pain. The author describes how to test Backbone models, views, and collections; dealing with asynchrony; provides useful testing heuristics, including isolating components to reduce dependencies; when to use stubs and mocks and fake servers; and test automation with PhantomJS. He does not, however, teach you Backbone.js itself; for that, you'll need another book. There are a few areas which I thought were dealt with too lightly. There's no real discussion of Test-driven_development or Behavior-driven_development, which provide the intellectual foundations of much of the book. Nor does he have much to say about testability and how to make legacy code more testable. The sample Notes app has plenty of testing seams (much of this falls naturally out of the architecture of Backbone); other apps are not so lucky. The chapter on automation is extremely terse—it could be expanded into a very large book!—but it does provide useful indicators to many areas for exploration. I learned a lot from this book and I have no hesitation in recommending it. Disclosure: Thanks to Ryan Roemer and Packt for a review copy of this book.

    Read the article

  • Best way to use Cradle with Express.js (CouchDB, Node.js)

    - by Costa
    I'm building my website ( http://tedxgramercy.jit.su ) with express.js and so far I've been using the http.request method in node to access couch, and that's been cool. I've learned lots about how http, couch, and node work, which is awesome. Anyways, I'm thinking of moving over to cradle now (Let me know if you have a strong opinion about this) and I'd like to know the "right" way to set this up. Should I... require() cradle and make a new connection to my db in each separate route? create my database connection once, and then just pass that connection by require()ing the connection in each route? (if so, how do I do that?) Thanks!!!

    Read the article

  • Node.js for lua?

    - by Shahbaz
    I've been playing around with node.js (nodejs) for the past few day and it is fantastic. As far as I can tell, lua doesn't have a similar integration of libev and libio which let's one avoid almost any blocking calls and interact with the network and the filesystem in an asynchronous manner. I'm slowly porting my java implementation to nodejs, but I'm shocked that luajit is much faster than v8 JavaScript AND uses far less memory! I imagine writing my server in such an environment (very fast and responsive, very low memory usage, very expressive) will improve my project immensly. Being new to lua, I'm just not sure if such a thing exists. I'll appreciate any pointers. Thanks

    Read the article

  • General directions on developing a server side control system for JS/Canvas Action RPG

    - by Billy Ninja
    Well, yesterday I asked on anti-cheat JS, and confirmed what I kind of already knew that it's just not possible. Now I wanna measure roughly how hard it is to implement a server side checking that is agnostic to client input, that does not mess with the game experience so much. I don't wanna waste to much resource on this matter, since it's going to be initially a single player game, that I may or would like to introduce some kind of ranking, trading system later on. I'd rather deliver better more cool game features instead. I don't wanna have to guarantee super fast server response to keep the game going lag free. I'd rather go with more loose discrete control of key variables and instances. Like store user's action on a fifo buffer on the client, and push that actions to the server gradually. I'd love to see a elegant, generic solution that I could plug into my client game logic root (not having to scatter treatments everywhere in my client js) - and have few classes on Node.js server that could handle that - without having to mirror/describe all of my game entities a second time on the server.

    Read the article

  • Compressing/compacting messages over websocket on Node.js

    - by icelava
    We have a websocket implementation (Node.js/Sock.js) that exchanges data as JSON strings. As our use cases grow, so have the size of the data transmitted across the wire. The websocket protocol does not natively offer any compression feature, so in order to reduce the size of our messages we'd have to manually do something about the serialisation. There appear to be a variety of LZW implementations in Javascript, some which confuses me on their compatibility for in-browser use only versus transmission across the wire due to my lack of understanding on low-level encodings. More importantly, all of them seem to take a noticeable performance drag when Javascript is the engine doing the compression/decompression work, which is not desirable for mobile devices. Looking instead other forms of compact serialisation, MessagePack does not appear to have any active support in Javascript itself; BSON does not have any Javascript implementation; and an alternative BISON project that I tested does not deserialise everything back to their original values (large numbers), and it does not look like any further development will happen either. What are some other options others have explored for Node.js?

    Read the article

  • Node.js as a custom (streaming) upload handler for Django

    - by Gijs
    I want to build an upload-centric app using Django. One way to do this is with nginx's upload module (nonblocking) but it has its problems. Node.js is supposed to be a good candidate for this type of application. But how can I make node.js act as an upload_handler() for Django (http://docs.djangoproject.com/en/1.1/topics/http/file-uploads/#modifying-upload-handlers-on-the-fly) I'm not sure where to look for examples?

    Read the article

  • How to write reusable code in node.js

    - by lortabac
    I am trying to understand how to design node.js applications, but it seems there is something I can't grasp about asynchronous programming. Let's say my application needs to access a database. In a synchronous environment I would implement a data access class with a read() method, returning an associative array. In node.js, because code is executed asynchronously, this method can't return a value, so, after execution, it will have to "do" something as a side effect. It will then contain some code which does something else than just reading data. Let's suppose I want to call this method multiple times, each time with a different success callback. Since the callback is included in the method itself, I can't find a clean way to do this without either duplicating the method or specifying all possible callbacks in a long switch statement. What is the proper way to handle this problem? Am I approaching it the wrong way?

    Read the article

  • Programmatically disclosing a node in af:tree and af:treeTable

    - by Frank Nimphius
    A common developer requirement when working with af:tree or af:treeTable components is to programmatically disclose (expand) a specific node in the tree. If the node to disclose is not a top level node, like a location in a LocationsView -> DepartmentsView -> EmployeesView hierarchy, you need to also disclose the node's parent node hierarchy for application users to see the fully expanded tree node structure. Working on ADF Code Corner sample #101, I wrote the following code lines that show a generic option for disclosing a tree node starting from a handle to the node to disclose. The use case in ADF Coder Corner sample #101 is a drag and drop operation from a table component to a tree to relocate employees to a new department. The tree node that receives the drop is a department node contained in a location. In theory the location could be part of a country and so on to indicate the depth the tree may have. Based on this structure, the code below provides a generic solution to parse the current node parent nodes and its child nodes. The drop event provided a rowKey for the tree node that received the drop. Like in af:table, the tree row key is not of type oracle.jbo.domain.Key but an implementation of java.util.List that contains the row keys. The JUCtrlHierBinding class in the ADF Binding layer that represents the ADF tree binding at runtime provides a method named findNodeByKeyPath that allows you to get a handle to the JUCtrlHierNodeBinding instance that represents a tree node in the binding layer. CollectionModel model = (CollectionModel) your_af_tree_reference.getValue(); JUCtrlHierBinding treeBinding = (JUCtrlHierBinding ) model.getWrappedData(); JUCtrlHierNodeBinding treeDropNode = treeBinding.findNodeByKeyPath(dropRowKey); To disclose the tree node, you need to create a RowKeySet, which you do using the RowKeySetImpl class. Because the RowKeySet replaces any existing row key set in the tree, all other nodes are automatically closed. RowKeySetImpl rksImpl = new RowKeySetImpl(); //the first key to add is the node that received the drop //operation (departments).            rksImpl.add(dropRowKey);    Similar, from the tree binding, the root node can be obtained. The root node is the end of all parent node iteration and therefore important. JUCtrlHierNodeBinding rootNode = treeBinding.getRootNodeBinding(); The following code obtains a reference to the hierarchy of parent nodes until the root node is found. JUCtrlHierNodeBinding dropNodeParent = treeDropNode.getParent(); //walk up the tree to expand all parent nodes while(dropNodeParent != null && dropNodeParent != rootNode){    //add the node's keyPath (remember its a List) to the row key set    rksImpl.add(dropNodeParent.getKeyPath());      dropNodeParent = dropNodeParent.getParent(); } Next, you disclose the drop node immediate child nodes as otherwise all you see is the department node. Its not quite exactly "dinner for one", but the procedure is very similar to the one handling the parent node keys ArrayList<JUCtrlHierNodeBinding> childList = (ArrayList<JUCtrlHierNodeBinding>) treeDropNode.getChildren();                     for(JUCtrlHierNodeBinding nb : childList){   rksImpl.add(nb.getKeyPath()); } Next, the row key set is defined as the disclosed row keys on the tree so when you refresh (PPR) the tree, the new disclosed state shows tree.setDisclosedRowKeys(rksImpl); AdfFacesContext.getCurrentInstance().addPartialTarget(tree.getParent()); The refresh in my use case is on the tree parent component (a layout container), which usually shows the best effect for refreshing the tree component. 

    Read the article

  • How to write loosely coupled classes in node.js

    - by lortabac
    I am trying to understand how to design node.js applications, but it seems there is something I can't grasp about asynchronous programming. Let's say my application needs to access a database. In a synchronous environment I would implement a data access class with a read() method, returning an associative array. In node.js, because code is executed asynchronously, this method can't return a value, so, after execution, it will have to "do" something as a side effect. It will then contain at least 1 line of extraneous code which has nothing to do with data access. Multiply this for all methods and all classes and you will very soon have an unmanageable "code soup". What is the proper way to handle this problem? Am I approaching it the wrong way?

    Read the article

  • Three.js Collada import animation not working

    - by Peter Vasilev
    I've been trying to export a Collada animated model to three js. Here is the model: http://bayesianconspiracy.com/files/model.dae It is imported properly(I can see the model) but I can't get it to animate. I've been using the two Collada examples that come with Three js. I've tried just replacing the path with the path to my model but it doesn't work. I've also tried tweaking some stuff but to no avail. When the model is loaded I've checked the 'object.animations' object which seems to be loaded fine(can't tell for sure but there is lots of stuff in it). I've also tried the Three.js editor: http://threejs.org/editor/ which loads the model properly again but I can't play the animation : ( I am using Three JS r62 and Blender 2.68. Any help appreciated!!

    Read the article

  • Collision Detection and Resolution in Three.js

    - by androidmaster
    So at the moment am making a simple game using three.js and three.firstpersonControls.js but with the current Three.js r66, they apparently removed checkWallCollision and then in the r67 firstpersonControls removed support for that collision. SO my question is how would i go about checking collision in 3D using three.js and then resolution to that collision. (Pushing player out of the block) Note I used a 2D array to generate the world so it's only cubes that I have to check collision with.... if this is a bad question or am lacking something please tell me before you -rep me, am just not sure how to do this and google doesn't want to help

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Node.js MMO - process and/or map division

    - by Gipsy King
    I am in the phase of designing a mmo browser based game (certainly not massive, but all connected players are in the same universe), and I am struggling with finding a good solution to the problem of distributing players across processes. I'm using node.js with socket.io. I have read this helpful article, but I would like some advice since I am also concerned with different processes. Solution 1: Tie a process to a map location (like a map-cell), connect players to the process corresponding to their location. When a player performs an action, transmit it to all other players in this process. When a player moves away, he will eventually have to connect to another process (automatically). Pros: Easier to implement Cons: Must divide map into zones Player reconnection when moving into a different zone is probably annoying If one zone/process is always busy (has players in it), it doesn't really load-balance, unless I split the zone which may not be always viable There shouldn't be any visible borders Solution 1b: Same as 1, but connect processes of bordering cells, so that players on the other side of the border are visible and such. Maybe even let them interact. Solution 2: Spawn processes on demand, unrelated to a location. Have one special process to keep track of all connected player handles, their location, and the process they're connected to. Then when a player performs an action, the process finds all other nearby players (from the special player-process-location tracking node), and instructs their matching processes to relay the action. Pros: Easy load balancing: spawn more processes Avoids player reconnecting / borders between zones Cons: Harder to implement and test Additional steps of finding players, and relaying event/action to another process If the player-location-process tracking process fails, all other fail too I would like to hear if I'm missing something, or completely off track.

    Read the article

  • Learning node.js

    - by john smith
    I am not sure if this is the right place to ask but, I thought this was the most suitable. I recently graduated from university. Learned the full php stack; basically all the LAMP stuff, obviously without counting all the other subjects. Not even got my degree and this whole node.js booming out of nowhere. You can imagine how one can feel about this, the story is always the same: you never end learning, and studying. So I recently got my hands on node.js; reading books, tutorials, and everything imaginable on the internet. The problem is one and simple: this is nowhere near to having a teacher standing near you helping you understanding and solving your problems, especially when all you can do is post your doubts on a website and patiently wait for replies. It's not that it isn't good, it's just much slower than what I just expressed above. So, in short words: is there a place where one can find someone willing to teach you about such contents? This would obviously done via remote means, like skype and such. Can anyone here point me into the right direction? Or just downvote me for being in the wrong website? Thanks in advance.

    Read the article

  • Knockout.js mapping plugin with require.js

    - by Ravi
    What is the standard way of loading mapping plugin in require.js ? Below is my config.js (require.js config file) require.config({ // Initialize the application with the main application file. deps:["app"], paths:{ // JavaScript folders. libs:"lib", plugins:"lib/plugin", templates:"../templates", // Libraries. jquery:"lib/jquery-1.7.2.min", underscore:"lib/lodash", text:'text', order:'order', knockout:"lib/knockout", knockoutmapping:"lib/plugin/knockout-mapping" }, shim:{ underscore:{ exports:'_' }, knockout:{ deps:["jquery"], exports:"knockout" } } } In my view model define(['knockout', 'knockoutmapping'], function(ko, mapping) { } However, mapping is not bound to ko.mapping. Any pointers/suggestions would be appreciated. Thanks, Ravi

    Read the article

  • Tips for communication between JS browser game and node.js server?

    - by Petteri Hietavirta
    I am tinkering around with some simple Canvas based cave flyer game and I would like to make it multiplayer eventually. The plan is to use Node.js on the server side. The data sent over would consists of position of each player, direction, velocity and such. The player movements are simple force physics, so I should be able to extrapolate movements before next update from server. Any tips or best practices on the communications side? I guess web sockets are the way to go. Should I send information in every pass of the game loop or with specified intervals? Also, I don't mind if it doesn't work with older browsers.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >