Search Results

Search found 66 results on 3 pages for 'npm'.

Page 2/3 | < Previous Page | 1 2 3  | Next Page >

  • Where is my Git/Ungit Packages?

    - by T?n Tri?n Nguy?n
    I've install these follow packages: node --version : v0.10.4 npm --version : 1.2.18 git --version : 1.7.1 and i used this command: npm install -g ungit I want to use Ungit/Git via apache. But i don't know where is Git/Ungit DocumentRoot to define on virtualhost 80. I've tried to search folder which's name git or ungit but it seems not really exactly. Anybody help me about this? very thanks.

    Read the article

  • Deploying Socket.IO App to Windows Azure Web Site with Azure CLI

    - by shiju
    In this blog post, I will demonstrate how to deploy Socket.IO app to Windows Azure Website using Windows Azure Cross-Platform Command-Line Interface, which leverages the Windows Azure Website’s new support for Web Sockets. Recently Windows Azure has announced lot of enhancements including the support for Web Sockets in Windows Azure Websites, which lets the Node.js developers deploy Socket.IO apps to Windows Azure Websites. In this blog post, I am using  Windows Azure CLI for create and deploy Windows Azure Website. Install  Windows Azure CLI The Windows Azure CLI available as a NPM module so that you can install Windows Azure CLI using  NPM as shown in the below command. After installing the azure-cli, just enter the command “azure” which will show the useful commands provided by Azure CLI. Import Windows Azure Subscription Account In order to import our Azure subscription account, we need to download the Windows Azure subscription profile. The Azure CLI command “account download” lets you download the  Windows Azure subscription profile as shown in the below command. The command redirect you login to Windows Azure portal and allow you to download the Windows Azure publish settings file. The account import command lets you import the downloaded publish settings file so that you can create and manage Websites, Cloud Services, Virtual Machines and Mobile Services in Windows Azure. Create Windows Azure Website and Enable Web Sockets In this post, we are going to deploy Socket.IO app to Windows Azure Website by using the Web Socket support provided by Windows Azure. Let’s create a Website named “socketiochatapp” using the Azure CLI. The above command will create a Windows Azure Website that will also initialize a Git repository with a remote named Azure. We can see the newly created Website from Azure portal. By default, the Web Sockets will be disabled. So let’s enable it by navigating to the Configure tab of the Website, and select “ON” in Web Sockets option and save the configuration changes. Deploy a Node.js Socket.IO App to Windows Azure Now, our Windows Azure Website supports Web Sockets so that we can easily deploy Socket.IO app to Windows Azure Website. Let’s add Node.js chat app which leverages Socket.IO module. Please note that you have to add npm module dependencies in the package.json file so that Windows Azure can install the dependencies when deploying the app. Let’s add the Node.js app and add the files to git repository. Let’s commit the changes to git repository. We have committed the changes to git local repository. Let’s push the changes to Windows Azure production environment. The successful deployment can see from the Windows Azure portal by navigating to the deployments tab of the selected Windows Azure Website. The screen shot below shows that our chat app is running successfully.   You can follow me on Twitter @shijucv

    Read the article

  • What are some ways people deploy relational database changes using Node.js? [closed]

    - by JamesEggers
    I've been diving more and more into Node.js and hosting services like Heroku and Nodejitsu recently and have been trying to figure out how to best deploy database changes for postgres or mysql. There are a few migration projects under npm that I can see; however, all seem to be really buggy or just not work. I currently manage the Monarch migration project on npm, but it's currently buggy itself and my experiences developing such utilities are in other, more procedural, languages. So what do people use to deploy changes to their databases on these environments? What has worked for people? I'm looking for a better understanding of what the current situation/process looks like.

    Read the article

  • Windows Azure PowerShell for Node.js

    - by shiju
    The Windows Azure PowerShell for Node.js is a command-line tool that  allows the Node developers to build and deploy Node.js apps in Windows Azure using Windows PowerShell cmdlets. Using Windows Azure PowerShell for Node.js, you can develop, test, deploy and manage Node based hosted service in Windows Azure. For getting the PowerShell for Node.js, click All Programs, Windows Azure SDK Node.js and run  Windows Azure PowerShell for Node.js, as Administrator. The followings are the few PowerShell cmdlets that lets you to work with Node.js apps in Windows Azure Create New Hosted Service New-AzureService <HostedServiceName> The below cmdlet will created a Windows Aazure hosted service named NodeOnAzure in the folder C:\nodejs and this will also create ServiceConfiguration.Cloud.cscfg, ServiceConfiguration.Local.cscfg and ServiceDefinition.csdef and deploymentSettings.json files for the hosted service. PS C:\nodejs> New-AzureService NodeOnAzure The below picture shows the files after creating the hosted service Create Web Role Add-AzureNodeWebRole <RoleName> The following cmdlet will create a hosted service named MyNodeApp along with web.config file. PS C:\nodejs\NodeOnAzure> Add-AzureNodeWebRole MyNodeApp The below picture shows the files after creating the web role app. Install Node Module npm install <NodeModule> The following command will install Node Module Express onto your web role app. PS C:\nodejs\NodeOnAzure\MyNodeApp> npm install Express Run Windows Azure Apps Locally in the Emulator Start-AzureEmulator -launch The following cmdlet will create a local package and run Windows Azure app locally in the emulator PS C:\nodejs\NodeOnAzure\MyNodeApp> Start-AzureEmulator -launch Stop Windows Azure Emulator Stop-AzureEmulator The following cmdlet will stop your Windows Azure in the emulator. PS C:\nodejs\NodeOnAzure\MyNodeApp> Stop-AzureEmulator Download Windows Azure Publishing Settings Get-AzurePublishSettings The following cmdlet will redirect to Windows Azure portal where we can download Windows Azure publish settings PS C:\nodejs\NodeOnAzure\MyNodeApp> Get-AzurePublishSettings Import Windows Azure Publishing Settings Import-AzurePublishSettings <Location of .publishSettings file> The following cmdlet will import the publish settings file from the location c:\nodejs PS C:\nodejs\NodeOnAzure\MyNodeApp>  Import-AzurePublishSettings c:\nodejs\shijuvar.publishSettings Publish Apps to Windows Azure Publish-AzureService –name <Name> –location <Location of Data centre> The following cmdlet will publish the app to Windows Azure with name “NodeOnAzure” in the location Southeast Asia. Please keep in mind that the service name should be unique. PS C:\nodejs\NodeOnAzure\MyNodeApp> Publish-AzureService –name NodeonAzure –location "Southeast Asia” –launch Stop Windows Azure Service Stop-AzureService The following cmdlet will stop your service which you have deployed previously. PS C:\nodejs\NodeOnAzure\MyNodeApp> Stop-AzureService Remove Windows Azure Service Remove-AzureService The following cmdlet will remove your service from Windows Azure. PS C:\nodejs\NodeOnAzure\MyNodeApp> Remove-AzureService Quick Summary for PowerShell cmdlets Create  a new Hosted Service New-AzureService <HostedServiceName> Create a Web Role Add-AzureNodeWebRole <RoleName> Install Node Module npm install <NodeModule> Running Windows Azure Apps Locally in Emulator Start-AzureEmulator -launch Stop Windows Azure Emulator Stop-AzureEmulator Download Windows Azure Publishing Settings Get-AzurePublishSettings Import Windows Azure Publishing Settings Import-AzurePublishSettings <Location of .publishSettings file> Publish Apps to Windows Azure Publish-AzureService –name <Name> –location <Location of Data centre> Stop Windows Azure Service Stop-AzureService Remove Windows Azure Service Remove-AzureService

    Read the article

  • How to delete empty folders from a given directory in windows with a script

    - by Nicola Peluchetti
    I'm using r.js as a build tool but as of today that tools doesn't give me the ability to delete empty folders in the build dir. I've found these two scripts for /f "usebackq" %%d in ("dir /ad/b/s | sort /R") do rd "%%d" for /f "delims=" %%i in ('dir /s /b /ad ^| sort /r') do rd "%%i">NUL looking around the net but i always get %%i was unexpected at this time. or %%d was unexpected at this time. And i wouldn't know how to tell the script where my directory is. My build script is @echo off where /q r.js || ( echo requirejs node package is not installed. You must install node, npm and then run npm install -g requirejs goto :eof ) node r.js -o app.build.js :end I need to tell the script to remove all empty directories which are located inside ../../js

    Read the article

  • Mac OS X keeps "old" environment variable around

    - by Xymak1y
    So far I had /Applications/play-1.2.5/ added to my $PATH variable. Now I'm working with 2.2.1, which I installed in /Applications/play-2.2.1 and changed in ~/.bash_profile (which is getting sourced at startup). However, when printing $PATH, 1.2.5 is somehow still around: mbp:~ user$ echo $PATH /usr/local/share/npm/bin:/Applications/play-2.2.1:/usr/local/heroku/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/Applications/play-1.2.5:/Applications/XAMPP/xamppfiles/bin/:/opt/X11/bin As far as I now, I only entered $PATH variables in .bash_profile, which looks like this: mbp:~ user$ cat .bash_profile source ~/.git-completion.bash ### Added by the Heroku Toolbelt export PATH="/usr/local/heroku/bin:$PATH" ### Play Framework export PATH="/Applications/play-2.2.1:$PATH" export PATH="/usr/local/share/npm/bin:$PATH" I'm also not sure where the XAMPP extension to the variable comes from. Can I see somewhere which other files are being sourced on startup?

    Read the article

  • Strategy for versioning on a public repo

    - by biril
    Suppose I'm developing a (javascript) library which is hosted on a public repo (e.g. github). My aim in terms of how version numbers are assigned and incremented is to follow the guidelines of semantic versioning. Now, there's a number of files in my project which compose the actual lib and a number of files that 'support it', the latter being docs, a test suite, etc. My perspective this far has been that version numbers should only apply to the actual lib - not the project as a whole - since the lib alone is 'the unit' that defines the public API. However I'm not satisfied with this approach as, for example, a fix in the test suite constitutes an 'improvement' in my project, which will not be reflected in the version number (or the docs which contain a reference to it). On a more practical level, various tools, such as package managers, may (understandably) not play along with this strategy. For example, when trying to publish a change which is not reflected in the version number, npm publish fails with the suggestion "Bump the 'version' field set the --force flag, or npm unpublish". Am I doing it wrong?

    Read the article

  • Windows Azure: Major Updates for Mobile Backend Development

    - by ScottGu
    This week we released some great updates to Windows Azure that make it significantly easier to develop mobile applications that use the cloud. These new capabilities include: Mobile Services: Custom API support Mobile Services: Git Source Control support Mobile Services: Node.js NPM Module support Mobile Services: A .NET API via NuGet Mobile Services and Web Sites: Free 20MB SQL Database Option for Mobile Services and Web Sites Mobile Notification Hubs: Android Broadcast Push Notification Support All of these improvements are now available to use immediately (note: some are still in preview).  Below are more details about them. Mobile Services: Custom APIs, Git Source Control, and NuGet Windows Azure Mobile Services provides the ability to easily stand up a mobile backend that can be used to support your Windows 8, Windows Phone, iOS, Android and HTML5 client applications.  Starting with the first preview we supported the ability to easily extend your data backend logic with server side scripting that executes as part of client-side CRUD operations against your cloud back data tables. With today’s update we are extending this support even further and introducing the ability for you to also create and expose Custom APIs from your Mobile Service backend, and easily publish them to your Mobile clients without having to associate them with a data table. This capability enables a whole set of new scenarios – including the ability to work with data sources other than SQL Databases (for example: Table Services or MongoDB), broker calls to 3rd party APIs, integrate with Windows Azure Queues or Service Bus, work with custom non-JSON payloads (e.g. Windows Periodic Notifications), route client requests to services back on-premises (e.g. with the new Windows Azure BizTalk Services), or simply implement functionality that doesn’t correspond to a database operation.  The custom APIs can be written in server-side JavaScript (using Node.js) and can use Node’s NPM packages.  We will also be adding support for custom APIs written using .NET in the future as well. Creating a Custom API Adding a custom API to an existing Mobile Service is super easy.  Using the Windows Azure Management Portal you can now simply click the new “API” tab with your Mobile Service, and then click the “Create a Custom API” button to create a new Custom API within it: Give the API whatever name you want to expose, and then choose the security permissions you’d like to apply to the HTTP methods you expose within it.  You can easily lock down the HTTP verbs to your Custom API to be available to anyone, only those who have a valid application key, only authenticated users, or administrators.  Mobile Services will then enforce these permissions without you having to write any code: When you click the ok button you’ll see the new API show up in the API list.  Selecting it will enable you to edit the default script that contains some placeholder functionality: Today’s release enables Custom APIs to be written using Node.js (we will support writing Custom APIs in .NET as well in a future release), and the Custom API programming model follows the Node.js convention for modules, which is to export functions to handle HTTP requests. The default script above exposes functionality for an HTTP POST request. To support a GET, simply change the export statement accordingly.  Below is an example of some code for reading and returning data from Windows Azure Table Storage using the Azure Node API: After saving the changes, you can now call this API from any Mobile Service client application (including Windows 8, Windows Phone, iOS, Android or HTML5 with CORS). Below is the code for how you could invoke the API asynchronously from a Windows Store application using .NET and the new InvokeApiAsync method, and data-bind the results to control within your XAML:     private async void RefreshTodoItems() {         var results = await App.MobileService.InvokeApiAsync<List<TodoItem>>("todos", HttpMethod.Get, parameters: null);         ListItems.ItemsSource = new ObservableCollection<TodoItem>(results);     }    Integrating authentication and authorization with Custom APIs is really easy with Mobile Services. Just like with data requests, custom API requests enjoy the same built-in authentication and authorization support of Mobile Services (including integration with Microsoft ID, Google, Facebook and Twitter authentication providers), and it also enables you to easily integrate your Custom API code with other Mobile Service capabilities like push notifications, logging, SQL, etc. Check out our new tutorials to learn more about to use new Custom API support, and starting adding them to your app today. Mobile Services: Git Source Control Support Today’s Mobile Services update also enables source control integration with Git.  The new source control support provides a Git repository as part your Mobile Service, and it includes all of your existing Mobile Service scripts and permissions. You can clone that git repository on your local machine, make changes to any of your scripts, and then easily deploy the mobile service to production using Git. This enables a really great developer workflow that works on any developer machine (Windows, Mac and Linux). To use the new support, navigate to the dashboard for your mobile service and select the Set up source control link: If this is your first time enabling Git within Windows Azure, you will be prompted to enter the credentials you want to use to access the repository: Once you configure this, you can switch to the configure tab of your Mobile Service and you will see a Git URL you can use to use your repository: You can use this URL to clone the repository locally from your favorite command line: > git clone https://scottgutodo.scm.azure-mobile.net/ScottGuToDo.git Below is the directory structure of the repository: As you can see, the repository contains a service folder with several subfolders. Custom API scripts and associated permissions appear under the api folder as .js and .json files respectively (the .json files persist a JSON representation of the security settings for your endpoints). Similarly, table scripts and table permissions appear as .js and .json files, but since table scripts are separate per CRUD operation, they follow the naming convention of <tablename>.<operationname>.js. Finally, scheduled job scripts appear in the scheduler folder, and the shared folder is provided as a convenient location for you to store code shared by multiple scripts and a few miscellaneous things such as the APNS feedback script. Lets modify the table script todos.js file so that we have slightly better error handling when an exception occurs when we query our Table service: todos.js tableService.queryEntities(query, function(error, todoItems){     if (error) {         console.error("Error querying table: " + error);         response.send(500);     } else {         response.send(200, todoItems);     }        }); Save these changes, and now back in the command line prompt commit the changes and push them to the Mobile Services: > git add . > git commit –m "better error handling in todos.js" > git push Once deployment of the changes is complete, they will take effect immediately, and you will also see the changes be reflected in the portal: With the new Source Control feature, we’re making it really easy for you to edit your mobile service locally and push changes in an atomic fashion without sacrificing ease of use in the Windows Azure Portal. Mobile Services: NPM Module Support The new Mobile Services source control support also allows you to add any Node.js module you need in the scripts beyond the fixed set provided by Mobile Services. For example, you can easily switch to use Mongo instead of Windows Azure table in our example above. Set up Mongo DB by either purchasing a MongoLab subscription (which provides MongoDB as a Service) via the Windows Azure Store or set it up yourself on a Virtual Machine (either Windows or Linux). Then go the service folder of your local git repository and run the following command: > npm install mongoose This will add the Mongoose module to your Mobile Service scripts.  After that you can use and reference the Mongoose module in your custom API scripts to access your Mongo database: var mongoose = require('mongoose'); var schema = mongoose.Schema({ text: String, completed: Boolean });   exports.get = function (request, response) {     mongoose.connect('<your Mongo connection string> ');     TodoItemModel = mongoose.model('todoitem', schema);     TodoItemModel.find(function (err, items) {         if (err) {             console.log('error:' + err);             return response.send(500);         }         response.send(200, items);     }); }; Don’t forget to push your changes to your mobile service once you are done > git add . > git commit –m "Switched to use Mongo Labs" > git push Now our Mobile Service app is using Mongo DB! Note, with today’s update usage of custom Node.js modules is limited to Custom API scripts only. We will enable it in all scripts (including data and custom CRON tasks) shortly. New Mobile Services NuGet package, including .NET 4.5 support A few months ago we announced a new pre-release version of the Mobile Services client SDK based on portable class libraries (PCL). Today, we are excited to announce that this new library is now a stable .NET client SDK for mobile services and is no longer a pre-release package. Today’s update includes full support for Windows Store, Windows Phone 7.x, and .NET 4.5, which allows developers to use Mobile Services from ASP.NET or WPF applications. You can install and use this package today via NuGet. Mobile Services and Web Sites: Free 20MB Database for Mobile Services and Web Sites Starting today, every customer of Windows Azure gets one Free 20MB database to use for 12 months free (for both dev/test and production) with Web Sites and Mobile Services. When creating a Mobile Service or a Web Site, simply chose the new “Create a new Free 20MB database” option to take advantage of it: You can use this free SQL Database together with the 10 free Web Sites and 10 free Mobile Services you get with your Windows Azure subscription, or from any other Windows Azure VM or Cloud Service. Notification Hubs: Android Broadcast Push Notification Support Earlier this year, we introduced a new capability in Windows Azure for sending broadcast push notifications at high scale: Notification Hubs. In the initial preview of Notification Hubs you could use this support with both iOS and Windows devices.  Today we’re excited to announce new Notification Hubs support for sending push notifications to Android devices as well. Push notifications are a vital component of mobile applications.  They are critical not only in consumer apps, where they are used to increase app engagement and usage, but also in enterprise apps where up-to-date information increases employee responsiveness to business events.  You can use Notification Hubs to send push notifications to devices from any type of app (a Mobile Service, Web Site, Cloud Service or Virtual Machine). Notification Hubs provide you with the following capabilities: Cross-platform Push Notifications Support. Notification Hubs provide a common API to send push notifications to iOS, Android, or Windows Store at once.  Your app can send notifications in platform specific formats or in a platform-independent way.  Efficient Multicast. Notification Hubs are optimized to enable push notification broadcast to thousands or millions of devices with low latency.  Your server back-end can fire one message into a Notification Hub, and millions of push notifications can automatically be delivered to your users.  Devices and apps can specify a number of per-user tags when registering with a Notification Hub. These tags do not need to be pre-provisioned or disposed, and provide a very easy way to send filtered notifications to an infinite number of users/devices with a single API call.   Extreme Scale. Notification Hubs enable you to reach millions of devices without you having to re-architect or shard your application.  The pub/sub routing mechanism allows you to broadcast notifications in a super-efficient way.  This makes it incredibly easy to route and deliver notification messages to millions of users without having to build your own routing infrastructure. Usable from any Backend App. Notification Hubs can be easily integrated into any back-end server app, whether it is a Mobile Service, a Web Site, a Cloud Service or an IAAS VM. It is easy to configure Notification Hubs to send push notifications to Android. Create a new Notification Hub within the Windows Azure Management Portal (New->App Services->Service Bus->Notification Hub): Then register for Google Cloud Messaging using https://code.google.com/apis/console and obtain your API key, then simply paste that key on the Configure tab of your Notification Hub management page under the Google Cloud Messaging Settings: Then just add code to the OnCreate method of your Android app’s MainActivity class to register the device with Notification Hubs: gcm = GoogleCloudMessaging.getInstance(this); String connectionString = "<your listen access connection string>"; hub = new NotificationHub("<your notification hub name>", connectionString, this); String regid = gcm.register(SENDER_ID); hub.register(regid, "myTag"); Now you can broadcast notification from your .NET backend (or Node, Java, or PHP) to any Windows Store, Android, or iOS device registered for “myTag” tag via a single API call (you can literally broadcast messages to millions of clients you have registered with just one API call): var hubClient = NotificationHubClient.CreateClientFromConnectionString(                   “<your connection string with full access>”,                   "<your notification hub name>"); hubClient.SendGcmNativeNotification("{ 'data' : {'msg' : 'Hello from Windows Azure!' } }", "myTag”); Notification Hubs provide an extremely scalable, cross-platform, push notification infrastructure that enables you to efficiently route push notification messages to millions of mobile users and devices.  It will make enabling your push notification logic significantly simpler and more scalable, and allow you to build even better apps with it. Learn more about Notification Hubs here on MSDN . Summary The above features are now live and available to start using immediately (note: some of the services are still in preview).  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today.  Visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Microsoft TypeScript : A Typed Superset of JavaScript

    - by shiju
    JavaScript is gradually becoming a ubiquitous programming language for the web, and the popularity of JavaScript is increasing day by day. Earlier, JavaScript was just a language for browser. But now, we can write JavaScript apps for browser, server and mobile. With the advent of Node.js, you can build scalable, high performance apps on the server with JavaScript. But many developers, especially developers who are working with static type languages, are hating the JavaScript language due to the lack of structuring and the maintainability problems of JavaScript. Microsoft TypeScript is trying to solve some problems of JavaScript when we are building scalable JavaScript apps. Microsoft TypeScript TypeScript is Microsoft's solution for writing scalable JavaScript programs with the help of Static Types, Interfaces, Modules and Classes along with greater tooling support. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. This would be more productive for developers who are coming from static type languages. You can write scalable JavaScript  apps in TypeScript with more productive and more maintainable manner, and later you can compiles to plain JavaScript which will be run on any browser and any OS. TypeScript will work with browser based JavaScript apps and JavaScript apps that following CommonJS specification. You can use TypeScript for building HTML 5 apps, Node.JS apps, WinRT apps. TypeScript is providing better tooling support with Visual Studio, Sublime Text, Vi, Emacs. Microsoft has open sourced its TypeScript languages on CodePlex at http://typescript.codeplex.com/    Install TypeScript You can install TypeScript compiler as a Node.js package via the NPM or you can install as a Visual Studio 2012 plug-in which will enable you better tooling support within the Visual Studio IDE. Since TypeScript is distributed as a Node.JS package, and it can be installed on other OS such as Linux and MacOS. The following command will install TypeScript compiler via an npm package for node.js npm install –g typescript TypeScript provides a Visual Studio 2012 plug-in as MSI file which will install TypeScript and also provides great tooling support within the Visual Studio, that lets the developers to write TypeScript apps with greater productivity and better maintainability. You can download the Visual Studio plug-in from here Building JavaScript  apps with TypeScript You can write typed version of JavaScript programs with TypeScript and then compiles it to plain JavaScript code. The beauty of the TypeScript is that it is already JavaScript and normal JavaScript programs are valid TypeScript programs, which means that you can write normal  JavaScript code and can use typed version of JavaScript whenever you want. TypeScript files are using extension .ts and this will be compiled using a compiler named tsc. The following is a sample program written in  TypeScript greeter.ts 1: class Greeter { 2: greeting: string; 3: constructor (message: string) { 4: this.greeting = message; 5: } 6: greet() { 7: return "Hello, " + this.greeting; 8: } 9: } 10:   11: var greeter = new Greeter("world"); 12:   13: var button = document.createElement('button') 14: button.innerText = "Say Hello" 15: button.onclick = function() { 16: alert(greeter.greet()) 17: } 18:   19: document.body.appendChild(button) .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above program is compiling with the TypeScript compiler as shown in the below picture The TypeScript compiler will generate a JavaScript file after compiling the TypeScript program. If your TypeScript programs having any reference to other TypeScript files, it will automatically generate JavaScript files for the each referenced files. The following code block shows the compiled version of plain JavaScript  for the above greeter.ts greeter.js 1: var Greeter = (function () { 2: function Greeter(message) { 3: this.greeting = message; 4: } 5: Greeter.prototype.greet = function () { 6: return "Hello, " + this.greeting; 7: }; 8: return Greeter; 9: })(); 10: var greeter = new Greeter("world"); 11: var button = document.createElement('button'); 12: button.innerText = "Say Hello"; 13: button.onclick = function () { 14: alert(greeter.greet()); 15: }; 16: document.body.appendChild(button); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Tooling Support with Visual Studio TypeScript is providing a plug-in for Visual Studio which will provide an excellent support for writing TypeScript  programs within the Visual Studio. The following screen shot shows the Visual Studio template for TypeScript apps   The following are the few screen shots of Visual Studio IDE for TypeScript apps. Summary TypeScript is Microsoft's solution for writing scalable JavaScript apps which will solve lot of problems involved in larger JavaScript apps. I hope that this solution will attract lot of developers who are really looking for writing maintainable structured code in JavaScript, without losing any productivity. TypeScript lets developers to write JavaScript apps with the help of Static Types, Interfaces, Modules and Classes and also providing better productivity. I am a passionate developer on Node.JS and would definitely try to use TypeScript for building Node.JS apps on the Windows Azure cloud. I am really excited about to writing Node.JS apps by using TypeScript, from my favorite development IDE Visual Studio. You can follow me on twitter at @shijucv

    Read the article

  • Abnormally high amount of Transmit discards reported by Solarwinds for multiple switches

    - by Jared
    I have several 3750X Cisco switches that, according to our Solarwinds NPM, are producing billions of transmit discards per day. I'm not sure why it's reporting these discards. Many of the ports on the 3750X's have 2960's connected to them and are hardcoded as trunk ports. Solarwinds NPM version 10.3 Cisco IOS version 12.2(58)SE2 Total output drops: 29139431: GigabitEthernet1/0/43 is up, line protocol is up (connected) Hardware is Gigabit Ethernet, address is XXXX (bia XXXX) Description: XXXX MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 100Mb/s, media type is 10/100/1000BaseTX input flow-control is off, output flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:47, output 00:00:50, output hang never Last clearing of "show interface" counters 1w4d Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 29139431 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 35000 bits/sec, 56 packets/sec 51376 packets input, 9967594 bytes, 0 no buffer Received 51376 broadcasts (51376 multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 51376 multicast, 0 pause input 0 input packets with dribble condition detected 115672302 packets output, 8673778028 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out sh controllers gigabitEthernet 1/0/43 utilization: Receive Bandwidth Percentage Utilization : 0 Transmit Bandwidth Percentage Utilization : 0

    Read the article

  • How do I install websocket module for Node.js on Debian VPS?

    - by Ollie Shaw
    I currently am renting a VPS from Dreamhost which runs Debian. I am still learning command line on this OS, but fast! I have successfully installed Node.js, now I want to install the websocket module found here: https://github.com/Worlize/WebSocket-Node From the root user, I have run the following command: npm install websocket The error thrown is: [websocket v1.0.7] Native code compile failed!! On Windows, native extensions require Visual Studio and Python. On Unix, native extensions require Python, make and a C++ compiler. Start npm with --websocket:verbose to show compilation output (if any). What commands should I issue to install this websocket module and its requirements? Thanks very much! Edit: When I run sudo apt-get install gcc make I get this message: Reading package lists... Done Building dependency tree Reading state information... Done gcc is already the newest version. gcc set to manually installed. make is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 44 not upgraded. And the same error when trying to install WebSocket.

    Read the article

  • which package i should choose, if i want to install virtualenv for python?

    - by hugemeow
    pip search just returns so many matches, i am confused about which package i should choose to install .. should i only install virtualenv? or i'd better also install virtualenv-commands and virtualenv-commands, etc, but i really don't know exactly what virtualenv-commands is ... mirror0@lab:~$ pip search virtualenv virtualenvwrapper - Enhancements to virtualenv virtualenv - Virtual Python Environment builder veh - virtualenv for hg pyutilib.virtualenv - PyUtilib utility for building custom virtualenv bootstrap scripts. envbuilder - A package for automatic generation of virtualenvs virtstrap-core - A bootstrapping mechanism for virtualenv+pip and shell scripts tox - virtualenv-based automation of test activities virtualenvwrapper-win - Port of Doug Hellmann's virtualenvwrapper to Windows batch scripts everyapp.bootstrap - Enhanced virtualenv bootstrap script creation. orb - pip/virtualenv shell script wrapper monupco-virtualenv-python - monupco.com registration agent for stand-alone Python virtualenv applications virtualenvwrapper-powershell - Enhancements to virtualenv (for Windows). A clone of Doug Hellmann's virtualenvwrapper RVirtualEnv - relocatable python virtual environment virtualenv-clone - script to clone virtualenvs. virtualenvcontext - switch virtualenvs with a python context manager lessrb - Wrapper for ruby less so that it's in a virtualenv. carton - make self-extracting virtualenvs virtualenv5 - Virtual Python 3 Environment builder clever-alexis - Clever redhead girl that builds and packs Python project with Virtualenv into rpm, deb, etc. kforgeinstall - Virtualenv bootstrap script for KForge pypyenv - Install PyPy in virtualenv virtualenv-distribute - Virtual Python Environment builder virtualenvwrapper.project - virtualenvwrapper plugin to manage a project work directory virtualenv-commands - Additional commands for virtualenv. rjm.recipe.venv - zc.buildout recipe to turn the entire buildout tree into a virtualenv virtualenvwrapper.bitbucket - virtualenvwrapper plugin to manage a project work directory based on a BitBucket repository tg_bootstrap - Bootstrap a TurboGears app in a VirtualEnv django-env - Automaticly manages virtualenv for django project virtual-node - Install node.js into your virtualenv django-environment - A plugin for virtualenvwrapper that makes setting up and creating new Django environments easier. vip - vip is a simple library that makes your python aware of existing virtualenv underneath. virtualenvwrapper.django - virtualenvwrapper plugin to create a Django project work directory terrarium - Package and ship relocatable python virtualenvs venv_dependencies - Easy to install any dependencies in a virtualenviroment(without making symlinks by hand and etc...) virtualenv-sh - Convenient shell interface to virtualenv virtualenvwrapper.github - Plugin for virtualenvwrapper to automatically create projects based on github repositories. virtualenvwrapper.configvar - Plugin for virtualenvwrapper to automatically export config vars found in your project level .env file. virtualenvwrapper-emacs-desktop - virtualenvwrapper plugin to control emacs desktop mode bootstrapper - Bootstrap Python projects with virtualenv and pip. virtualenv3 - Obsolete fork of virtualenv isotoma.depends.zope2_13_8 - Running zope in a virtualenv virtual-less - Install lessc into your virtualenv virtualenvwrapper.tmpenv - Temporary virtualenvs are automatically deleted when deactivated isotoma.plone.heroku - Tooling for running Plone on heroku in a virtualenv gae-virtualenv - Using virtualenv with zipimport on Google App Engine pinvenv - VirtualEnv plugins for pin isotoma.depends.plone4_1 - Running plone in a virtualenv virtualenv-tools - A set of tools for virtualenv virtualenvwrapper.npm - Plugin for virtualenvwrapper to automatically encapsulate inside the virtual environment any npm installed globaly when the venv is activated d51.django.virtualenv.test_runner - Simple package for running isolated Django tests from within virtualenv difio-virtualenv-python - Difio registration agent for stand-alone Python virtualenv applications VirtualEnvManager - A package to manage various virtual environments. virtualenvwrapper.gem - Plugin for virtualenvwrapper to automatically encapsulate inside the virtual environment any gems installed when the venv is activated

    Read the article

  • Node.js Adventure - Host Node.js on Windows Azure Worker Role

    - by Shaun
    In my previous post I demonstrated about how to develop and deploy a Node.js application on Windows Azure Web Site (a.k.a. WAWS). WAWS is a new feature in Windows Azure platform. Since it’s low-cost, and it provides IIS and IISNode components so that we can host our Node.js application though Git, FTP and WebMatrix without any configuration and component installation. But sometimes we need to use the Windows Azure Cloud Service (a.k.a. WACS) and host our Node.js on worker role. Below are some benefits of using worker role. - WAWS leverages IIS and IISNode to host Node.js application, which runs in x86 WOW mode. It reduces the performance comparing with x64 in some cases. - WACS worker role does not need IIS, hence there’s no restriction of IIS, such as 8000 concurrent requests limitation. - WACS provides more flexibility and controls to the developers. For example, we can RDP to the virtual machines of our worker role instances. - WACS provides the service configuration features which can be changed when the role is running. - WACS provides more scaling capability than WAWS. In WAWS we can have at most 3 reserved instances per web site while in WACS we can have up to 20 instances in a subscription. - Since when using WACS worker role we starts the node by ourselves in a process, we can control the input, output and error stream. We can also control the version of Node.js.   Run Node.js in Worker Role Node.js can be started by just having its execution file. This means in Windows Azure, we can have a worker role with the “node.exe” and the Node.js source files, then start it in Run method of the worker role entry class. Let’s create a new windows azure project in Visual Studio and add a new worker role. Since we need our worker role execute the “node.exe” with our application code we need to add the “node.exe” into our project. Right click on the worker role project and add an existing item. By default the Node.js will be installed in the “Program Files\nodejs” folder so we can navigate there and add the “node.exe”. Then we need to create the entry code of Node.js. In WAWS the entry file must be named “server.js”, which is because it’s hosted by IIS and IISNode and IISNode only accept “server.js”. But here as we control everything we can choose any files as the entry code. For example, I created a new JavaScript file named “index.js” in project root. Since we created a C# Windows Azure project we cannot create a JavaScript file from the context menu “Add new item”. We have to create a text file, and then rename it to JavaScript extension. After we added these two files we should set their “Copy to Output Directory” property to “Copy Always”, or “Copy if Newer”. Otherwise they will not be involved in the package when deployed. Let’s paste a very simple Node.js code in the “index.js” as below. As you can see I created a web server listening at port 12345. 1: var http = require("http"); 2: var port = 12345; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then we need to start “node.exe” with this file when our worker role was started. This can be done in its Run method. I found the Node.js and entry JavaScript file name, and then create a new process to run it. Our worker role will wait for the process to be exited. If everything is OK once our web server was opened the process will be there listening for incoming requests, and should not be terminated. The code in worker role would be like this. 1: public override void Run() 2: { 3: // This is a sample worker implementation. Replace with your logic. 4: Trace.WriteLine("NodejsHost entry point called", "Information"); 5:  6: // retrieve the node.exe and entry node.js source code file name. 7: var node = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot\node.exe"); 8: var js = "index.js"; 9:  10: // prepare the process starting of node.exe 11: var info = new ProcessStartInfo(node, js) 12: { 13: CreateNoWindow = false, 14: ErrorDialog = true, 15: WindowStyle = ProcessWindowStyle.Normal, 16: UseShellExecute = false, 17: WorkingDirectory = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot") 18: }; 19: Trace.WriteLine(string.Format("{0} {1}", node, js), "Information"); 20:  21: // start the node.exe with entry code and wait for exit 22: var process = Process.Start(info); 23: process.WaitForExit(); 24: } Then we can run it locally. In the computer emulator UI the worker role started and it executed the Node.js, then Node.js windows appeared. Open the browser to verify the website hosted by our worker role. Next let’s deploy it to azure. But we need some additional steps. First, we need to create an input endpoint. By default there’s no endpoint defined in a worker role. So we will open the role property window in Visual Studio, create a new input TCP endpoint to the port we want our website to use. In this case I will use 80. Even though we created a web server we should add a TCP endpoint of the worker role, since Node.js always listen on TCP instead of HTTP. And then changed the “index.js”, let our web server listen on 80. 1: var http = require("http"); 2: var port = 80; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then publish it to Windows Azure. And then in browser we can see our Node.js website was running on WACS worker role. We may encounter an error if we tried to run our Node.js website on 80 port at local emulator. This is because the compute emulator registered 80 and map the 80 endpoint to 81. But our Node.js cannot detect this operation. So when it tried to listen on 80 it will failed since 80 have been used.   Use NPM Modules When we are using WAWS to host Node.js, we can simply install modules we need, and then just publish or upload all files to WAWS. But if we are using WACS worker role, we have to do some extra steps to make the modules work. Assuming that we plan to use “express” in our application. Firstly of all we should download and install this module through NPM command. But after the install finished, they are just in the disk but not included in the worker role project. If we deploy the worker role right now the module will not be packaged and uploaded to azure. Hence we need to add them to the project. On solution explorer window click the “Show all files” button, select the “node_modules” folder and in the context menu select “Include In Project”. But that not enough. We also need to make all files in this module to “Copy always” or “Copy if newer”, so that they can be uploaded to azure with the “node.exe” and “index.js”. This is painful step since there might be many files in a module. So I created a small tool which can update a C# project file, make its all items as “Copy always”. The code is very simple. 1: static void Main(string[] args) 2: { 3: if (args.Length < 1) 4: { 5: Console.WriteLine("Usage: copyallalways [project file]"); 6: return; 7: } 8:  9: var proj = args[0]; 10: File.Copy(proj, string.Format("{0}.bak", proj)); 11:  12: var xml = new XmlDocument(); 13: xml.Load(proj); 14: var nsManager = new XmlNamespaceManager(xml.NameTable); 15: nsManager.AddNamespace("pf", "http://schemas.microsoft.com/developer/msbuild/2003"); 16:  17: // add the output setting to copy always 18: var contentNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:Content", nsManager); 19: UpdateNodes(contentNodes, xml, nsManager); 20: var noneNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:None", nsManager); 21: UpdateNodes(noneNodes, xml, nsManager); 22: xml.Save(proj); 23:  24: // remove the namespace attributes 25: var content = xml.InnerXml.Replace("<CopyToOutputDirectory xmlns=\"\">", "<CopyToOutputDirectory>"); 26: xml.LoadXml(content); 27: xml.Save(proj); 28: } 29:  30: static void UpdateNodes(XmlNodeList nodes, XmlDocument xml, XmlNamespaceManager nsManager) 31: { 32: foreach (XmlNode node in nodes) 33: { 34: var copyToOutputDirectoryNode = node.SelectSingleNode("pf:CopyToOutputDirectory", nsManager); 35: if (copyToOutputDirectoryNode == null) 36: { 37: var n = xml.CreateNode(XmlNodeType.Element, "CopyToOutputDirectory", null); 38: n.InnerText = "Always"; 39: node.AppendChild(n); 40: } 41: else 42: { 43: if (string.Compare(copyToOutputDirectoryNode.InnerText, "Always", true) != 0) 44: { 45: copyToOutputDirectoryNode.InnerText = "Always"; 46: } 47: } 48: } 49: } Please be careful when use this tool. I created only for demo so do not use it directly in a production environment. Unload the worker role project, execute this tool with the worker role project file name as the command line argument, it will set all items as “Copy always”. Then reload this worker role project. Now let’s change the “index.js” to use express. 1: var express = require("express"); 2: var app = express(); 3:  4: var port = 80; 5:  6: app.configure(function () { 7: }); 8:  9: app.get("/", function (req, res) { 10: res.send("Hello Node.js!"); 11: }); 12:  13: app.get("/User/:id", function (req, res) { 14: var id = req.params.id; 15: res.json({ 16: "id": id, 17: "name": "user " + id, 18: "company": "IGT" 19: }); 20: }); 21:  22: app.listen(port); Finally let’s publish it and have a look in browser.   Use Windows Azure SQL Database We can use Windows Azure SQL Database (a.k.a. WACD) from Node.js as well on worker role hosting. Since we can control the version of Node.js, here we can use x64 version of “node-sqlserver” now. This is better than if we host Node.js on WAWS since it only support x86. Just install the “node-sqlserver” module from NPM, copy the “sqlserver.node” from “Build\Release” folder to “Lib” folder. Include them in worker role project and run my tool to make them to “Copy always”. Finally update the “index.js” to use WASD. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:{SERVER NAME}.database.windows.net,1433;Database={DATABASE NAME};Uid={LOGIN}@{SERVER NAME};Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Publish to azure and now we can see our Node.js is working with WASD through x64 version “node-sqlserver”.   Summary In this post I demonstrated how to host our Node.js in Windows Azure Cloud Service worker role. By using worker role we can control the version of Node.js, as well as the entry code. And it’s possible to do some pre jobs before the Node.js application started. It also removed the IIS and IISNode limitation. I personally recommended to use worker role as our Node.js hosting. But there are some problem if you use the approach I mentioned here. The first one is, we need to set all JavaScript files and module files as “Copy always” or “Copy if newer” manually. The second one is, in this way we cannot retrieve the cloud service configuration information. For example, we defined the endpoint in worker role property but we also specified the listening port in Node.js hardcoded. It should be changed that our Node.js can retrieve the endpoint. But I can tell you it won’t be working here. In the next post I will describe another way to execute the “node.exe” and Node.js application, so that we can get the cloud service configuration in Node.js. I will also demonstrate how to use Windows Azure Storage from Node.js by using the Windows Azure Node.js SDK.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Microsoft Sql Server driver for Nodejs - Part 2

    - by chanderdhall
    Nodejs, Sql server and Json response with Rest This post is part 2 of Microsoft Sql Server driver for Node js.In this post we will look at the JSON responses from the Microsoft Sql Server driver for Node js. Pre-requisites: If you have read the Part 1 of the series, you should be good. We will be using a framework for Rest within Nodejs - Restify, but that would need no prior learning. Restify: Restify is a simple node module for building RESTful services. It is slimmer than Express. Express is a complete module that has all what you need to create a full-blown browser app. However, Restify does not have additional overhead of templating, rendering etc that would be needed if your app has views. So, as the name suggests it's an awesome framework for building RESTful services and is very light-weight. Set up - You can continue with the same directory or project structure we had in the previous post, or can start a new one. Install restify using npm and you are good to go. npm install restify Go to Server.js and include Restify in your solution. Then create the server object using restify.CreateServer() - SLICK - ha? var restify = require('restify'); var server = restify.createServer(); server.listen(8080, function () { console.log('%s listening at %s', server.name, server.url); }); Then make sure you provide a port for the Server to listen at. The call back function is optional but helps you for debugging purposes. Once you are done, save the file and then go to the command prompt and hit 'node server.js' and you should see the following:   To test the server, go to your browser and type the address 'http://localhost:8080/' and oops you will see an error.   Why is that? - Well because we haven't defined any routes. Let's go ahead and create a route. To begin with I'd like to return whatever is typed in the url after my name and the following code should do it. server.get('/ChanderDhall/:status', function respond(req, res, next) { res.end("hello " + req.params.name + "") }); You can also avoid writing call backs inline. Something like this. function respond(req, res, next) { res.end("Chander Dhall " + req.params.name + ""); } server.get('/hello/:name', respond); Now if you go ahead and type http://localhost:8080/ChanderDhall/LovesNode you will get the response 'Chander Dhall loves node'. NOTE: Make sure your url has the right case as it's case-sensitive. You could have also typed it in as 'server.get('/chanderdhall/:name', respond);' Stored procedure: We've talked a lot about Restify now, but keep in mind the post is about being able to use Sql server with Node and return JSON. To see this in action, let's go ahead and create another route to a list of Employees from a stored procedure. server.get('/Employees', Employees); The following code will return a JSON response.  function Employees(req, res, next) { res.header("Content-Type: application/json"); //Need to specify the Content-Type which is //JSON in our case. sql.open(conn_str, function (err, conn) { if (err) { //Logs an error console.log("Error opening the database connection!"); return; } console.log("before query!"); conn.queryRaw("exec sp_GetEmployees", function (err, results) { if (err) { //Connection is open but an error occurs whileWhat else can be done? May be create a formatter or may be even come up with a hypermedia type but that may upset some pragmatists. Well, that's going to be a totally different discussion and is really not part of this series. Summary: We've discussed how to execute a stored procedure using Microsoft Sql Server driver for Node. Also, we have discussed how to format and send out a clean JSON to the app calling this API.  

    Read the article

  • Why should I use Bower? [closed]

    - by Wil
    I can fully appreciate the benefits of a package manager like Python PIP, Node npm, or Ruby Gems since they're doing much more than adding files to your applications path. Maybe I'm missing the point, or I'm being obtuse, but here are the negatives I can see: Separate step when building a project Separate dependency to install via another package manager (yo dawg) More clutter in the projects root with bower.json and / or .bowerrc Reliance on the registry being up to date, correct, and available Some imports / references to things like images won't work The positives I can see are these: I don't have to download the dependencies manually Optionally install packages as part of scaffolding based on user prompts or the like I'd really like to know of any benefits I'm unaware of, and I should say I'm not trying to be provocative I genuinely want to know.

    Read the article

  • Choice of node.js modules to demo flexibility

    - by John K
    I'm putting together a presentation to talk about and demo node.js to client-side JavaScript developers. The language concepts and syntax are not an issue for them, so instead I'd like to get right into things and show off node's abilities that differ from client-side scripting. There are numerous modules available in the NPM registry and many people have much more experience with the registry than I do. I'm looking for a selection of node modules based on recommendations from your experience that show a variety of uses for node that are practical, broadly useful and can be demonstrated with a small code sample without requiring much domain knowledge on behalf of the audience. Neat and impressive is good too - I can throw in a couple of shock and awe items for cool factor. To be fair, top-voted answers will get most consideration for inclusion. My hope is this will result in a well-rounded demonstration of node technology.

    Read the article

  • Using packages (gems, eggs, etc.) to create decoupled architectures

    - by Juan Carlos Coto
    The main issue Seeing the good support most modern programming platforms have for package management (think gem, npm, pip, etc), does it make sense to design an application or system be composed of internally developed packages, so as to promote and create a loosely coupled architecture? Example An example of this would be to create packages for database access, as well as for authentication and other components of the system. These, of course, use external packages as well. Then, your system imports and uses these packages - instead of including their code within its own code base. Considerations To me, it seems that this would promote code decoupling and help maintainability, almost in a Web-based-vs.-desktop-application kind of way (updates are applied almost automatically, single code base for single functionality, etc.). Does this seem like a rational and sane design concept? Is this actually used as a standard way of structuring applications today? Thanks very much!

    Read the article

  • Powershell: Get-Process Returns "Invalid" VM Size

    - by dewald
    I'm running PowerShell 2.0 on Windows XP SP3 and I execute: PS> ps firefox And it returns: Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName ------- ------ ----- ----- ----- ------ -- ----------- 859 44 340972 351580 684 9,088.22 7744 firefox However, Windows Task Manager shows the following stats for firefox.exe: Mem Usage: 354,720 K VM Size: 347,322 K Why is the VM output from PowerShell 300 MB more than that output from Windows Task Manager?

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Elastic beanstalk access private git repo

    - by user221676
    I am trying to currently add an ssh key to my elastic beanstalk instances using .ebextensions commands. The keys I have stored are in my application code and I try to copy them to the root .ssh folder so I can access them when doing a git+ssh clone later here is an example of the config file in my .ebextensions folder packages: yum: git: [] container_commands: 01-move-ssh-keys: command: "cp .ssh/* ~root/.ssh/; chmod 400 ~root/.ssh/tca_read_rsa; chmod 400 ~root/.ssh/tca_read_rsa.pub; chmod 644 ~root/.ssh/known_hosts;" 02-add-ssh-keys: command: "ssh-add ~root/.ssh/tca_read_rsa" the problem is that I get is an error when attempting to clone the repo Host key verification failed. I have tried many ways of try to add the host to the known_hosts file but none have worked! The command that is doing the clone is npm install as the repo points to a node module

    Read the article

  • What build tools do not depend on java (or Ruby)?

    - by Mohamed Meligy
    I'm wondering what generic build tools out there include their binary run-times and do not depend on another environment not shipped with them. For example, ANT requires Java, Rake requires Ruby, etc.. would be great if talking about also target-platform-agnostic tools, where I'd just give whatever command for building, whatever command for testing, etc.. and can then define my artifacts in CI or so. Would see something like that useful for building .NET projects (say, on both Windows .NET and Mono), and Node JS projects especially. I do not want to install Java and / or Ruby if what I want is a .NET build or a Node JS build. This is a bit of general awareness question not an exact problem I'm facing, that's why it's here not on StackOverflow. Update: To explain a bit more, what I'm after is the build script that would run MSBuild for compiling for example ( in .NET, and then maybe several Node/NPM commands in Node, etc..), and then have the rest build/test steps, instead of setting these all in MSBuild (again, in .NET case, also, wondering if there is equivalent story in Node).

    Read the article

  • ubuntu 11.10 foreman error

    - by user1060759
    Like this post I am also trying to complete this heroku tutorial I have installed and used everything (node.js, npm, express) successfully until I got to Foreman. I installed Foreman by first installing Ruby: alex@ubuntu:~$ sudo apt-get install ruby1.9.1 then installing Foreman. I am a newbie to Unix so I "sudo" perhaps unnecessarily here, but I got confirmation in the terminal that it had installed but also some errors: alex@ubuntu:~/NodeHelloWorld$ sudo gem install foreman Invalid gemspec in [/var/lib/gems/1.8/specifications/foreman-0.26.1.gemspec]: invalid date format in specification: "2011-11-10 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/term-ansicolor-1.0.7.gemspec]: invalid date format in specification: "2011-10-13 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/foreman-0.26.1.gemspec]: invalid date format in specification: "2011-11-10 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/term-ansicolor-1.0.7.gemspec]: invalid date format in specification: "2011-10-13 00:00:00.000000000Z" Successfully installed term-ansicolor-1.0.7 Successfully installed foreman-0.26.1 Then when I try to start foreman I get similar: alex@ubuntu:~/NodeHelloWorld$ foreman start Invalid gemspec in [/var/lib/gems/1.8/specifications/foreman-0.26.1.gemspec]: invalid date format in specification: "2011-11-10 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/term-ansicolor-1.0.7.gemspec]: invalid date format in specification: "2011-10-13 00:00:00.000000000Z" /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:926:in `report_activate_error': Could not find RubyGem foreman (>= 0) (Gem::LoadError) from /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:244:in `activate_dep' from /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:236:in `activate' from /usr/lib/ruby/vendor_ruby/1.8/rubygems.rb:1307:in `gem' from /usr/local/bin/foreman:18 Can anyone help me? I am a newbie to Unix after finally dumping windows as I found I could not get foreman-windows to work for me either I have found this post from someone with apparently the same issue. Does this mean my version of ruby could be wrong? I am running 1.9.1, though again new to ruby as well; alex@ubuntu:~/NodeHelloWorld$ ruby1.9.1 -v ruby 1.9.2p290 (2011-07-09 revision 32553) [i686-linux] Thanks

    Read the article

  • Completing install of ruby 1.9.3 with Ruby for for Mac OS X 10.7.5 Leopard, Xcode 4.5.2 -- problems with rvm pkg install openssl

    - by user1848361
    First, many thanks in advance for any help. I'm a complete novice with programming and I'm trying to get started with this Ruby on Rails tutorial (http://ruby.railstutorial.org/ruby-on-rails-tutorial-book?version=3.2) I have been trying figure this out for about 7 hours now and since I don't have any hair left to pull out I'm turning to these hallowed pages. I have searched for solutions here again and again. System: Mac OS X 10.7.5 Leopard, Xcode 4.5.2 I installed homebrew and have updated it multiple times I used homebrew to install rvm and have updated it multiple times I installed git The standard ruby on the system (checking with $ ruby -v) is 1.8.7 My problem is that every time I try to use rvm to install a new version of Ruby ($ rvm install 1.9.3) I get the following error: Ruby (and needed base gems) for your selection will be installed shortly. Before it happens, please read and execute the instructions below. Please use a separate terminal to execute any additional commands. Notes for Mac OS X 10.7.5, Xcode 4.5.2. For JRuby: Install the JDK. See http://developer.apple.com/java/download/ # Current Java version "1.6.0_26" For IronRuby: Install Mono >= 2.6 For Ruby 1.9.3: Install libksba # If using Homebrew, 'brew install libksba' For Opal: Install Nodejs with NPM. See http://nodejs.org/download/ To use an RVM installed Ruby as default, instead of the system ruby: rvm install 1.8.7 # installs patch 357: closest supported version rvm system ; rvm gemset export system.gems ; rvm 1.8.7 ; rvm gemset import system.gems # migrate your gems rvm alias create default 1.8.7 And reopen your terminal windows. Xcode and gcc: : I have performed $ brew install libksba and when I try to do it again it tells me that libksba is installed already. When I type "$ rvm requirements" I get: Notes for Mac OS X 10.7.5, Xcode 4.5.2. For JRuby: Install the JDK. See http://developer.apple.com/java/download/ # Current Java version "1.6.0_26" For IronRuby: Install Mono >= 2.6 For Ruby 1.9.3: Install libksba # If using Homebrew, 'brew install libksba' For Opal: Install Nodejs with NPM. See http://nodejs.org/download/ To use an RVM installed Ruby as default, instead of the system ruby: rvm install 1.8.7 # installs patch 357: closest supported version rvm system ; rvm gemset export system.gems ; rvm 1.8.7 ; rvm gemset import system.gems # migrate your gems rvm alias create default 1.8.7 And reopen your terminal windows. Xcode and gcc: Right now Ruby requires gcc to compile, but Xcode 4.2 and later no longer ship with gcc. Instead they ship with llvm-gcc (to which gcc is a symlink) and clang, neither of which are supported for building Ruby. Xcode 4.1 was the last version to ship gcc, which was /usr/bin/gcc-4.2. Xcode 4.1 and earlier: - Ruby will build fine. Xcode 4.2 and later (including Command Line Tools for Xcode): - If you have gcc-4.2 (and friends) from an earlier Xcode version, Ruby will build fine. - If you don't have gcc-4.2, you have two options to get it: * Install apple-gcc42 from Homebrew * Install osx-gcc-installer Homebrew: If you are using Homebrew, you can install the apple-gcc42 and required libraries from homebrew/dupes: brew update brew tap homebrew/dupes brew install autoconf automake apple-gcc42 rvm pkg install openssl Xcode 4.2+ install or/and Command Line Tools for Xcode is required to provide make and other tools. osx-gcc-installer: If you don't use Homebrew, you can download and install osx-gcc-installer: https://github.com/kennethreitz/osx-gcc-installer. Warning: Installing osx-gcc-installer on top of a recent Xcode is known to cause problems, so you must uninstall Xcode before installing osx-gcc-installer. Afterwards you may install Xcode 4.2+ or Command Line Tools for Xcode if you desire. ** NOTE: Currently, Node.js is having issues building with osx-gcc-installer. The only fix is to install Xcode over osx-gcc-installer. So I assume I have to do something with brew update brew tap homebrew/dupes brew install autoconf automake apple-gcc42 rvm pkg install openssl Everything seemed to work fine until "$ rvm pkg install openssl", which returns: Fetching openssl-1.0.1c.tar.gz to /Users/thierinvestmentservices/.rvm/archives Extracting openssl to /Users/thierinvestmentservices/.rvm/src/openssl-1.0.1c Configuring openssl in /Users/thierinvestmentservices/.rvm/src/openssl-1.0.1c. Compiling openssl in /Users/thierinvestmentservices/.rvm/src/openssl-1.0.1c. Error running 'make', please read /Users/thierinvestmentservices/.rvm/log/openssl/make.log Please note that it's required to reinstall all rubies: rvm reinstall all --force Updating openssl certificates Error running 'update_openssl_certs', please read /Users/thierinvestmentservices/.rvm/log/openssl.certs.log Johns-MacBook-Pro:~ thierinvestmentservices$ rvm pkg install openssl Fetching openssl-1.0.1c.tar.gz to /Users/thierinvestmentservices/.rvm/archives Extracting openssl to /Users/thierinvestmentservices/.rvm/src/openssl-1.0.1c Configuring openssl in /Users/thierinvestmentservices/.rvm/src/openssl-1.0.1c. Compiling openssl in /Users/thierinvestmentservices/.rvm/src/openssl-1.0.1c. Error running 'make', please read /Users/thierinvestmentservices/.rvm/log/openssl/make.log Please note that it's required to reinstall all rubies: rvm reinstall all --force Updating openssl certificates Error running 'update_openssl_certs', please read /Users/thierinvestmentservices/.rvm/log/openssl.certs.log make.log reads "[2012-11-23 13:15:28] make /Users/thierinvestmentservices/.rvm/scripts/functions/utility: line 116: make: command not found" and openssl.certs.log reads "[2012-11-23 14:04:04] update_openssl_certs update_openssl_certs () { ( chpwd_functions="" builtin cd $rvm_usr_path/ssl && command curl -O http://curl.haxx.se/ca/cacert.pem && mv cacert.pem cert.pem ) } current path: /Users/thierinvestmentservices command(1): update_openssl_certs /Users/thierinvestmentservices/.rvm/scripts/functions/pkg: line 205: cd: /Users/thierinvestmentservices/.rvm/usr/ssl: No such file or directory" At this point the letters might as well be wingdings I have no idea what is going on. I have tried to install rvm make with something I saw on one forum post but I got a bunch of warnings. If anyone has any suggestions I would be deeply grateful, I am completely in over my head,

    Read the article

  • What's the best graphics library for node.js for image cropping?

    - by Travis
    I'm creating a website using node.js. I have seen many libraries mentioned that piggy back on top of imagemagick etc. There is a list here: https://github.com/ry/node/wiki/modules#graphics What I'm trying to do is take the image that a user uploads, crop it/size it to certain dimensions the site requires. What is the best/most active script to do this? I'd like one with npm support. Does anyone have actual experience using some of these?

    Read the article

  • An Introduction to Meteor

    - by Stephen.Walther
    The goal of this blog post is to give you a brief introduction to Meteor which is a framework for building Single Page Apps. In this blog entry, I provide a walkthrough of building a simple Movie database app. What is special about Meteor? Meteor has two jaw-dropping features: Live HTML – If you make any changes to the HTML, CSS, JavaScript, or data on the server then every client shows the changes automatically without a browser refresh. For example, if you change the background color of a page to yellow then every open browser will show the new yellow background color without a refresh. Or, if you add a new movie to a collection of movies, then every open browser will display the new movie automatically. With Live HTML, users no longer need a refresh button. Changes to an application happen everywhere automatically without any effort. The Meteor framework handles all of the messy details of keeping all of the clients in sync with the server for you. Latency Compensation – When you modify data on the client, these modifications appear as if they happened on the server without any delay. For example, if you create a new movie then the movie appears instantly. However, that is all an illusion. In the background, Meteor updates the database with the new movie. If, for whatever reason, the movie cannot be added to the database then Meteor removes the movie from the client automatically. Latency compensation is extremely important for creating a responsive web application. You want the user to be able to make instant modifications in the browser and the framework to handle the details of updating the database without slowing down the user. Installing Meteor Meteor is licensed under the open-source MIT license and you can start building production apps with the framework right now. Be warned that Meteor is still in the “early preview” stage. It has not reached a 1.0 release. According to the Meteor FAQ, Meteor will reach version 1.0 in “More than a month, less than a year.” Don’t be scared away by that. You should be aware that, unlike most open source projects, Meteor has financial backing. The Meteor project received an $11.2 million round of financing from Andreessen Horowitz. So, it would be a good bet that this project will reach the 1.0 mark. And, if it doesn’t, the framework as it exists right now is still very powerful. Meteor runs on top of Node.js. You write Meteor apps by writing JavaScript which runs both on the client and on the server. You can build Meteor apps on Windows, Mac, or Linux (Although the support for Windows is still officially unofficial). If you want to install Meteor on Windows then download the MSI from the following URL: http://win.meteor.com/ If you want to install Meteor on Mac/Linux then run the following CURL command from your terminal: curl https://install.meteor.com | /bin/sh Meteor will install all of its dependencies automatically including Node.js. However, I recommend that you install Node.js before installing Meteor by installing Node.js from the following address: http://nodejs.org/ If you let Meteor install Node.js then Meteor won’t install NPM which is the standard package manager for Node.js. If you install Node.js and then you install Meteor then you get NPM automatically. Creating a New Meteor App To get a sense of how Meteor works, I am going to walk through the steps required to create a simple Movie database app. Our app will display a list of movies and contain a form for creating a new movie. The first thing that we need to do is create our new Meteor app. Open a command prompt/terminal window and execute the following command: Meteor create MovieApp After you execute this command, you should see something like the following: Follow the instructions: execute cd MovieApp to change to your MovieApp directory, and run the meteor command. Executing the meteor command starts Meteor on port 3000. Open up your favorite web browser and navigate to http://localhost:3000 and you should see the default Meteor Hello World page: Open up your favorite development environment to see what the Meteor app looks like. Open the MovieApp folder which we just created. Here’s what the MovieApp looks like in Visual Studio 2012: Notice that our MovieApp contains three files named MovieApp.css, MovieApp.html, and MovieApp.js. In other words, it contains a Cascading Style Sheet file, an HTML file, and a JavaScript file. Just for fun, let’s see how the Live HTML feature works. Open up multiple browsers and point each browser at http://localhost:3000. Now, open the MovieApp.html page and modify the text “Hello World!” to “Hello Cruel World!” and save the change. The text in all of the browsers should update automatically without a browser refresh. Pretty amazing, right? Controlling Where JavaScript Executes You write a Meteor app using JavaScript. Some of the JavaScript executes on the client (the browser) and some of the JavaScript executes on the server and some of the JavaScript executes in both places. For a super simple app, you can use the Meteor.isServer and Meteor.isClient properties to control where your JavaScript code executes. For example, the following JavaScript contains a section of code which executes on the server and a section of code which executes in the browser: if (Meteor.isClient) { console.log("Hello Browser!"); } if (Meteor.isServer) { console.log("Hello Server!"); } console.log("Hello Browser and Server!"); When you run the app, the message “Hello Browser!” is written to the browser JavaScript console. The message “Hello Server!” is written to the command/terminal window where you ran Meteor. Finally, the message “Hello Browser and Server!” is execute on both the browser and server and the message appears in both places. For simple apps, using Meteor.isClient and Meteor.isServer to control where JavaScript executes is fine. For more complex apps, you should create separate folders for your server and client code. Here are the folders which you can use in a Meteor app: · client – This folder contains any JavaScript which executes only on the client. · server – This folder contains any JavaScript which executes only on the server. · common – This folder contains any JavaScript code which executes on both the client and server. · lib – This folder contains any JavaScript files which you want to execute before any other JavaScript files. · public – This folder contains static application assets such as images. For the Movie App, we need the client, server, and common folders. Delete the existing MovieApp.js, MovieApp.html, and MovieApp.css files. We will create new files in the right locations later in this walkthrough. Combining HTML, CSS, and JavaScript Files Meteor combines all of your JavaScript files, and all of your Cascading Style Sheet files, and all of your HTML files automatically. If you want to create one humongous JavaScript file which contains all of the code for your app then that is your business. However, if you want to build a more maintainable application, then you should break your JavaScript files into many separate JavaScript files and let Meteor combine them for you. Meteor also combines all of your HTML files into a single file. HTML files are allowed to have the following top-level elements: <head> — All <head> files are combined into a single <head> and served with the initial page load. <body> — All <body> files are combined into a single <body> and served with the initial page load. <template> — All <template> files are compiled into JavaScript templates. Because you are creating a single page app, a Meteor app typically will contain a single HTML file for the <head> and <body> content. However, a Meteor app typically will contain several template files. In other words, all of the interesting stuff happens within the <template> files. Displaying a List of Movies Let me start building the Movie App by displaying a list of movies. In order to display a list of movies, we need to create the following four files: · client\movies.html – Contains the HTML for the <head> and <body> of the page for the Movie app. · client\moviesTemplate.html – Contains the HTML template for displaying the list of movies. · client\movies.js – Contains the JavaScript for supplying data to the moviesTemplate. · server\movies.js – Contains the JavaScript for seeding the database with movies. After you create these files, your folder structure should looks like this: Here’s what the client\movies.html file looks like: <head> <title>My Movie App</title> </head> <body> <h1>Movies</h1> {{> moviesTemplate }} </body>   Notice that it contains <head> and <body> top-level elements. The <body> element includes the moviesTemplate with the syntax {{> moviesTemplate }}. The moviesTemplate is defined in the client/moviesTemplate.html file: <template name="moviesTemplate"> <ul> {{#each movies}} <li> {{title}} </li> {{/each}} </ul> </template> By default, Meteor uses the Handlebars templating library. In the moviesTemplate above, Handlebars is used to loop through each of the movies using {{#each}}…{{/each}} and display the title for each movie using {{title}}. The client\movies.js JavaScript file is used to bind the moviesTemplate to the Movies collection on the client. Here’s what this JavaScript file looks like: // Declare client Movies collection Movies = new Meteor.Collection("movies"); // Bind moviesTemplate to Movies collection Template.moviesTemplate.movies = function () { return Movies.find(); }; The Movies collection is a client-side proxy for the server-side Movies database collection. Whenever you want to interact with the collection of Movies stored in the database, you use the Movies collection instead of communicating back to the server. The moviesTemplate is bound to the Movies collection by assigning a function to the Template.moviesTemplate.movies property. The function simply returns all of the movies from the Movies collection. The final file which we need is the server-side server\movies.js file: // Declare server Movies collection Movies = new Meteor.Collection("movies"); // Seed the movie database with a few movies Meteor.startup(function () { if (Movies.find().count() == 0) { Movies.insert({ title: "Star Wars", director: "Lucas" }); Movies.insert({ title: "Memento", director: "Nolan" }); Movies.insert({ title: "King Kong", director: "Jackson" }); } }); The server\movies.js file does two things. First, it declares the server-side Meteor Movies collection. When you declare a server-side Meteor collection, a collection is created in the MongoDB database associated with your Meteor app automatically (Meteor uses MongoDB as its database automatically). Second, the server\movies.js file seeds the Movies collection (MongoDB collection) with three movies. Seeding the database gives us some movies to look at when we open the Movies app in a browser. Creating New Movies Let me modify the Movies Database App so that we can add new movies to the database of movies. First, I need to create a new template file – named client\movieForm.html – which contains an HTML form for creating a new movie: <template name="movieForm"> <fieldset> <legend>Add New Movie</legend> <form> <div> <label> Title: <input id="title" /> </label> </div> <div> <label> Director: <input id="director" /> </label> </div> <div> <input type="submit" value="Add Movie" /> </div> </form> </fieldset> </template> In order for the new form to show up, I need to modify the client\movies.html file to include the movieForm.html template. Notice that I added {{> movieForm }} to the client\movies.html file: <head> <title>My Movie App</title> </head> <body> <h1>Movies</h1> {{> moviesTemplate }} {{> movieForm }} </body> After I make these modifications, our Movie app will display the form: The next step is to handle the submit event for the movie form. Below, I’ve modified the client\movies.js file so that it contains a handler for the submit event raised when you submit the form contained in the movieForm.html template: // Declare client Movies collection Movies = new Meteor.Collection("movies"); // Bind moviesTemplate to Movies collection Template.moviesTemplate.movies = function () { return Movies.find(); }; // Handle movieForm events Template.movieForm.events = { 'submit': function (e, tmpl) { // Don't postback e.preventDefault(); // create the new movie var newMovie = { title: tmpl.find("#title").value, director: tmpl.find("#director").value }; // add the movie to the db Movies.insert(newMovie); } }; The Template.movieForm.events property contains an event map which maps event names to handlers. In this case, I am mapping the form submit event to an anonymous function which handles the event. In the event handler, I am first preventing a postback by calling e.preventDefault(). This is a single page app, no postbacks are allowed! Next, I am grabbing the new movie from the HTML form. I’m taking advantage of the template find() method to retrieve the form field values. Finally, I am calling Movies.insert() to insert the new movie into the Movies collection. Here, I am explicitly inserting the new movie into the client-side Movies collection. Meteor inserts the new movie into the server-side Movies collection behind the scenes. When Meteor inserts the movie into the server-side collection, the new movie is added to the MongoDB database associated with the Movies app automatically. If server-side insertion fails for whatever reasons – for example, your internet connection is lost – then Meteor will remove the movie from the client-side Movies collection automatically. In other words, Meteor takes care of keeping the client Movies collection and the server Movies collection in sync. If you open multiple browsers, and add movies, then you should notice that all of the movies appear on all of the open browser automatically. You don’t need to refresh individual browsers to update the client-side Movies collection. Meteor keeps everything synchronized between the browsers and server for you. Removing the Insecure Module To make it easier to develop and debug a new Meteor app, by default, you can modify the database directly from the client. For example, you can delete all of the data in the database by opening up your browser console window and executing multiple Movies.remove() commands. Obviously, enabling anyone to modify your database from the browser is not a good idea in a production application. Before you make a Meteor app public, you should first run the meteor remove insecure command from a command/terminal window: Running meteor remove insecure removes the insecure package from the Movie app. Unfortunately, it also breaks our Movie app. We’ll get an “Access denied” error in our browser console whenever we try to insert a new movie. No worries. I’ll fix this issue in the next section. Creating Meteor Methods By taking advantage of Meteor Methods, you can create methods which can be invoked on both the client and the server. By taking advantage of Meteor Methods you can: 1. Perform form validation on both the client and the server. For example, even if an evil hacker bypasses your client code, you can still prevent the hacker from submitting an invalid value for a form field by enforcing validation on the server. 2. Simulate database operations on the client but actually perform the operations on the server. Let me show you how we can modify our Movie app so it uses Meteor Methods to insert a new movie. First, we need to create a new file named common\methods.js which contains the definition of our Meteor Methods: Meteor.methods({ addMovie: function (newMovie) { // Perform form validation if (newMovie.title == "") { throw new Meteor.Error(413, "Missing title!"); } if (newMovie.director == "") { throw new Meteor.Error(413, "Missing director!"); } // Insert movie (simulate on client, do it on server) return Movies.insert(newMovie); } }); The addMovie() method is called from both the client and the server. This method does two things. First, it performs some basic validation. If you don’t enter a title or you don’t enter a director then an error is thrown. Second, the addMovie() method inserts the new movie into the Movies collection. When called on the client, inserting the new movie into the Movies collection just updates the collection. When called on the server, inserting the new movie into the Movies collection causes the database (MongoDB) to be updated with the new movie. You must add the common\methods.js file to the common folder so it will get executed on both the client and the server. Our folder structure now looks like this: We actually call the addMovie() method within our client code in the client\movies.js file. Here’s what the updated file looks like: // Declare client Movies collection Movies = new Meteor.Collection("movies"); // Bind moviesTemplate to Movies collection Template.moviesTemplate.movies = function () { return Movies.find(); }; // Handle movieForm events Template.movieForm.events = { 'submit': function (e, tmpl) { // Don't postback e.preventDefault(); // create the new movie var newMovie = { title: tmpl.find("#title").value, director: tmpl.find("#director").value }; // add the movie to the db Meteor.call( "addMovie", newMovie, function (err, result) { if (err) { alert("Could not add movie " + err.reason); } } ); } }; The addMovie() method is called – on both the client and the server – by calling the Meteor.call() method. This method accepts the following parameters: · The string name of the method to call. · The data to pass to the method (You can actually pass multiple params for the data if you like). · A callback function to invoke after the method completes. In the JavaScript code above, the addMovie() method is called with the new movie retrieved from the HTML form. The callback checks for an error. If there is an error then the error reason is displayed in an alert (please don’t use alerts for validation errors in a production app because they are ugly!). Summary The goal of this blog post was to provide you with a brief walk through of a simple Meteor app. I showed you how you can create a simple Movie Database app which enables you to display a list of movies and create new movies. I also explained why it is important to remove the Meteor insecure package from a production app. I showed you how to use Meteor Methods to insert data into the database instead of doing it directly from the client. I’m very impressed with the Meteor framework. The support for Live HTML and Latency Compensation are required features for many real world Single Page Apps but implementing these features by hand is not easy. Meteor makes it easy.

    Read the article

< Previous Page | 1 2 3  | Next Page >