Search Results

Search found 39047 results on 1562 pages for 'process control'.

Page 2/1562 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Take Control Of Web Control ClientID Values in ASP.NET 4.0

    Each server-side Web control in an ASP.NET Web Forms application has an ID property that identifies the Web control and is name by which the Web control is accessed in the code-behind class. When rendered into HTML, the Web control turns its server-side ID value into a client-side id attribute. Ideally, there would be a one-to-one correspondence between the value of the server-side ID property and the generated client-side id, but in reality things aren't so simple. By default, the rendered client-side id is formed by taking the Web control's ID property and prefixed it with the ID properties of its naming containers. In short, a Web control with an ID of txtName can get rendered into an HTML element with a client-side id like ctl00_MainContent_txtName. This default translation from the server-side ID property value to the rendered client-side id attribute can introduce challenges when trying to access an HTML element via JavaScript, which is typically done by id, as the page developer building the web page and writing the JavaScript does not know what the id value of the rendered Web control will be at design time. (The client-side id value can be determined at runtime via the Web control's ClientID property.) ASP.NET 4.0 affords page developers much greater flexibility in how Web controls render their ID property into a client-side id. This article starts with an explanation as to why and how ASP.NET translates the server-side ID value into the client-side id value and then shows how to take control of this process using ASP.NET 4.0. Read on to learn more! Read More >Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Issues with signal handling [closed]

    - by user34790
    I am trying to actually study the signal handling behavior in multiprocess system. I have a system where there are three signal generating processes generating signals of type SIGUSR1 and SIGUSR1. I have two handler processes that handle a particular type of signal. I have another monitoring process that also receives the signals and then does its work. I have a certain issue. Whenever my signal handling processes generate a signal of a particular type, it is sent to the process group so it is received by the signal handling processes as well as the monitoring processes. Whenever the signal handlers of monitoring and signal handling processes are called, I have printed to indicate the signal handling. I was expecting a uniform series of calls for the signal handlers of the monitoring and handling processes. However, looking at the output I could see like at the beginning the monitoring and signal handling processes's signal handlers are called uniformly. However, after I could see like signal handler processes handlers being called in a burst followed by the signal handler of monitoring process being called in a burst. Here is my code and output #include <iostream> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <cstdio> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define NUM_SENDER_PROCESSES 3 #define NUM_HANDLER_PROCESSES 4 #define NUM_SIGNAL_REPORT 10 #define MAX_SIGNAL_COUNT 100000 using namespace std; volatile int *usrsig1_handler_count; volatile int *usrsig2_handler_count; volatile int *usrsig1_sender_count; volatile int *usrsig2_sender_count; volatile int *lock_1; volatile int *lock_2; volatile int *lock_3; volatile int *lock_4; volatile int *lock_5; volatile int *lock_6; //Used only by the monitoring process volatile int monitor_count; volatile int usrsig1_monitor_count; volatile int usrsig2_monitor_count; double time_1[NUM_SIGNAL_REPORT]; double time_2[NUM_SIGNAL_REPORT]; //Used only by the main process int total_signal_count; //For shared memory int shmid; const int shareSize = sizeof(int) * (10); double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } pid_t senders[NUM_SENDER_PROCESSES]; pid_t handlers[NUM_HANDLER_PROCESSES]; pid_t reporter; void signal_catcher_1(int); void signal_catcher_2(int); void signal_catcher_int(int); void signal_catcher_monitor(int); void signal_catcher_main(int); void terminate_processes() { //Kill the child processes int status; cout << "Time up terminating the child processes" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); //Wait for the child processes to finish for(int i=0; i<NUM_SENDER_PROCESSES; i++) { waitpid(senders[i], &status, 0); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { waitpid(handlers[i], &status, 0); } waitpid(reporter, &status, 0); } int main(int argc, char *argv[]) { if(argc != 2) { cout << "Required parameters missing. " << endl; cout << "Option 1 = 1 which means run for 30 seconds" << endl; cout << "Option 2 = 2 which means run until 100000 signals" << endl; exit(0); } int option = atoi(argv[1]); pid_t pid; if(option == 2) { if(signal(SIGUSR1, signal_catcher_main) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, signal_catcher_main) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } if(signal(SIGINT, signal_catcher_int) == SIG_ERR) { perror("3"); exit(1); } /////////////////////////////////////////////////////////////////////////////////////// ////////////////////// Initializing the shared memory ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// cout << "Initializing the shared memory" << endl; if ((shmid=shmget(IPC_PRIVATE,shareSize,IPC_CREAT|0660))< 0) { perror("shmget fail"); exit(1); } usrsig1_handler_count = (int *) shmat(shmid, NULL, 0); usrsig2_handler_count = usrsig1_handler_count + 1; usrsig1_sender_count = usrsig2_handler_count + 1; usrsig2_sender_count = usrsig1_sender_count + 1; lock_1 = usrsig2_sender_count + 1; lock_2 = lock_1 + 1; lock_3 = lock_2 + 1; lock_4 = lock_3 + 1; lock_5 = lock_4 + 1; lock_6 = lock_5 + 1; //Initialize them to be zero *usrsig1_handler_count = 0; *usrsig2_handler_count = 0; *usrsig1_sender_count = 0; *usrsig2_sender_count = 0; *lock_1 = 0; *lock_2 = 0; *lock_3 = 0; *lock_4 = 0; *lock_5 = 0; *lock_6 = 0; cout << "End of initializing the shared memory" << endl; ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////// End of initializing the shared memory /////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////Registering the signal handlers/////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal handlers" << endl; for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { if((pid = fork()) == 0) { if(i%2 == 0) { struct sigaction action; action.sa_handler = signal_catcher_1; sigset_t block_mask; action.sa_flags = 0; sigaction(SIGUSR1,&action,NULL); if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1 ,SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } struct sigaction action; action.sa_handler = signal_catcher_2; action.sa_flags = 0; sigaction(SIGUSR2,&action,NULL); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { //cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } cout << "End of registering the signal handlers" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////End of registering the signal handlers ////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////Registering the monitoring process ////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the monitoring process" << endl; if((pid = fork()) == 0) { struct sigaction action; action.sa_handler = signal_catcher_monitor; sigemptyset(&action.sa_mask); sigset_t block_mask; sigemptyset(&block_mask); sigaddset(&block_mask,SIGUSR1); sigaddset(&block_mask,SIGUSR2); action.sa_flags = 0; action.sa_mask = block_mask; sigaction(SIGUSR1,&action,NULL); sigaction(SIGUSR2,&action,NULL); if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { cout << "Monitor's pid is " << pid << endl; reporter = pid; } cout << "End of registering the monitoring process" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////End of registering the monitoring process//////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Sleep to make sure that the monitor and handler processes are well initialized and ready to handle signals sleep(5); ////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////Registering the signal generators/////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal generators" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } srand(i); while(true) { int signal_id = rand()%2 + 1; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); while(__sync_lock_test_and_set(lock_4,1) != 0) { } (*usrsig1_sender_count)++; *lock_4 = 0; } else { killpg(getpgid(getpid()), SIGUSR2); while(__sync_lock_test_and_set(lock_5,1) != 0) { } (*usrsig2_sender_count)++; *lock_5=0; } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { //cout << "Registered the sender " << pid << endl; senders[i] = pid; } } //cout << "End of registering the signal generators" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////End of registering the signal generators/////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Either sleep for 30 seconds and terminate the program or if the number of signals generated reaches 10000, terminate the program if(option = 1) { sleep(90); terminate_processes(); } else { while(true) { if(total_signal_count >= MAX_SIGNAL_COUNT) { terminate_processes(); } else { sleep(0.001); } } } } void signal_catcher_1(int the_sig) { while(__sync_lock_test_and_set(lock_1,1) != 0) { } (*usrsig1_handler_count) = (*usrsig1_handler_count) + 1; cout << "Signal Handler 1 " << *usrsig1_handler_count << endl; __sync_lock_release(lock_1); } void signal_catcher_2(int the_sig) { while(__sync_lock_test_and_set(lock_2,1) != 0) { } (*usrsig2_handler_count) = (*usrsig2_handler_count) + 1; __sync_lock_release(lock_2); } void signal_catcher_main(int the_sig) { while(__sync_lock_test_and_set(lock_6,1) != 0) { } total_signal_count++; *lock_6 = 0; } void signal_catcher_int(int the_sig) { for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } void signal_catcher_monitor(int the_sig) { cout << "Monitoring process " << *usrsig1_handler_count << endl; } Here is the initial segment of output Monitoring process 0 Monitoring process 0 Monitoring process 0 Monitoring process 0 Signal Handler 1 1 Monitoring process 2 Signal Handler 1 2 Signal Handler 1 3 Signal Handler 1 4 Monitoring process 4 Monitoring process Signal Handler 1 6 Signal Handler 1 7 Monitoring process 7 Monitoring process 8 Monitoring process 8 Signal Handler 1 9 Monitoring process 9 Monitoring process 9 Monitoring process 10 Signal Handler 1 11 Monitoring process 11 Monitoring process 12 Signal Handler 1 13 Signal Handler 1 14 Signal Handler 1 15 Signal Handler 1 16 Signal Handler 1 17 Signal Handler 1 18 Monitoring process 19 Signal Handler 1 20 Monitoring process 20 Signal Handler 1 21 Monitoring process 21 Monitoring process 21 Monitoring process 22 Monitoring process 22 Monitoring process 23 Signal Handler 1 24 Signal Handler 1 25 Monitoring process 25 Signal Handler 1 27 Signal Handler 1 28 Signal Handler 1 29 Here is the segment when the signal handler processes signal handlers are called in a burst Signal Handler 1 456 Signal Handler 1 457 Signal Handler 1 458 Signal Handler 1 459 Signal Handler 1 460 Signal Handler 1 461 Signal Handler 1 462 Signal Handler 1 463 Signal Handler 1 464 Signal Handler 1 465 Signal Handler 1 466 Signal Handler 1 467 Signal Handler 1 468 Signal Handler 1 469 Signal Handler 1 470 Signal Handler 1 471 Signal Handler 1 472 Signal Handler 1 473 Signal Handler 1 474 Signal Handler 1 475 Signal Handler 1 476 Signal Handler 1 477 Signal Handler 1 478 Signal Handler 1 479 Signal Handler 1 480 Signal Handler 1 481 Signal Handler 1 482 Signal Handler 1 483 Signal Handler 1 484 Signal Handler 1 485 Signal Handler 1 486 Signal Handler 1 487 Signal Handler 1 488 Signal Handler 1 489 Signal Handler 1 490 Signal Handler 1 491 Signal Handler 1 492 Signal Handler 1 493 Signal Handler 1 494 Signal Handler 1 495 Signal Handler 1 496 Signal Handler 1 497 Signal Handler 1 498 Signal Handler 1 499 Signal Handler 1 500 Signal Handler 1 501 Signal Handler 1 502 Signal Handler 1 503 Signal Handler 1 504 Signal Handler 1 505 Signal Handler 1 506 Here is the segment when the monitoring processes signal handlers are called in a burst Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Why isn't it uniform afterwards. Why are they called in a burst?

    Read the article

  • When should I make the first commit to source control?

    - by Kendall Frey
    I'm never sure when a project is far enough along to first commit to source control. I tend to put off committing until the project is 'framework-complete' and primarily commit features from then on. (I haven't done any personal projects large enough to have a core framework too big for this.) I have a feeling this isn't best practice, though I'm not sure what all could go wrong. Let's say, for example, I have a project which consists of a single code file. It will take about 10 lines of boilerplate code, and 100 lines to get the project working with extremely basic functionality (1 or 2 features). Should I first check in: The empty file? The boilerplate code? The first features? At some other point? Also, what are the reasons to check in at a specific point?

    Read the article

  • Tips/tricks/gotchas for using System.Diagnostics.Process and Process.Start

    - by puffpio
    I've used Process.Start to shell out and call 7zip to archive stuff I've also used it to call ffmpeg to compress video files. That was a while ago..but I rememeber there was some issue about the pcocess stalling if you don't read off the standardoutput/error. I don't remember everything about it. Does anyone have experience using System.Diagnostics.Process for the purposes of initiating a long running process and waiting for it to finish? Thanks

    Read the article

  • SSH main process ended

    - by Khaled
    I have a running ubuntu server 10.04.1. When I tried to login to the server via ssh, I could not. Instead, I got connection refused error. I tried to ping the machine and I got reply! So, the clear reason is that SSH daemon is stopped. After reboot, I was able to login to my server via ssh. After some time, I looked at my logs /var/log/syslog and found the following records: Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2465) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2469) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2473) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2477) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2481) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2485) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2489) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2493) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2497) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2501) terminated with status 255 Jan 16 10:57:09 myserver init: ssh respawning too fast, stopped I searched for a similar problem/solution. Some people said that this is caused by the SSH daemon trying to start before networking and they suggest to change ListenAddress in /etc/ssh/sshd_config to be 0.0.0.0. I think this is not the cause in my case, because my problem occurs after system is up and running. Any idea what is causing this? This is ubuntu server and it should be running and accessed remotely using ssh.

    Read the article

  • Leadership does not see value in standard process for machine configuration and new developer orientation

    - by opensourcechris
    About 3 months ago our lead web developer and designer(same person) left the company, greener pastures was the reason for leaving. Good for them I say. My problem is that his department was completely undocumented. Things have been tough since the lead left, there is a lot of knowledge both theoretical knowledge we use to quote new projects and technical/implementation knowledge of our existing products that we have lost as a result of his departure. My normal role is as a product manager (for our products themselves) and as a business analyst for some of our project based consulting work. I've taught myself to code over the past year and in an effort to continue moving forward I've taken on the task of setting my laptop up as a development machine with hopes of implementing some of the easier feature requests and fixing some of the no brainer bugs that get submitted into our ticketing system. But, no one knows how to take a fresh Windows machine and configure it to work seamlessly with our production apps. I have requested my boss, who is still in contact with the developer who left, ask them to document and create a process to onboard a new developer, software installation, required packages, process to deploy to the productions application servers, etc. None of this exists, and I'm spinning my wheels trying to get my computer working as a functional development machine. But she does not seem to understand the need for such a process to exist. Apparently the new developer who replaced the one who left has been using a machine that was pre-configured for our environment, so even the new developer could not set up a new machine if we added another developer. My question is two part: Am I wrong in assuming a process to on-board and configure a new computer to be part of our development eco-system should exist? Am I being a whinny baby and should I figure the process out and create a document on my own?

    Read the article

  • BAM Data Control in multiple ADF Faces Components

    - by [email protected]
    As we know Oracle BAM data control instance sharing is not supported.When two or more ADF Faces components must display the same data, and are bound to the same Oracle BAM data control definition, we have to make sure that we wrap each ADF Faces component in an ADF task flow, and set the Data Control Scope to isolated. This blog will show a small sample to demonstrate this. In this sample we will create a Pie and Bar using same BAM DC, such that both components use same Data control but have isolated scope.This sample can be downloaded  fromSample1.zip Set-up: Create a BAM data control using employees DO (sample) Steps: Right click on View Controller project and select "New->ADF Task Flow" Check "Create Bounded Task Flow" and give some meaningful name (ex:EmpPieTF.xml ) to the TaskFlow(TF) and click on "OK"CreateTF.bmpFrom the "Components Palette", drag and drop "View" into the task flow diagram. Give a meaningful name to the view. Double Click and Click "Ok" for  "Create New JSF Page Fragment" From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Pie" (Pie: Sales_Number and Slices: Salesperson) Repeat step 1 through 4 for another Task Flow (ex: EmpBarTF). From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Bar" (Bars :Sales_Number and X-axis : Salesperson). Open the Taskflow created in step 2. In the Structure Pane, right click on "Task Flow Definition -EmpPieTF" Click "Insert inside Task Flow Definition - EmpPieTF -> ADF Task Flow -> Data Control Scope". Click "OK"TFDCScope.bmpFor the "Data Control Scope", In the Property Inspector ->General section, change data control scope from Shared to Isolated. Repeat step 8 through 11 for the 2nd Task flow created. Now create a new jspx page example: Main.jspxDrag and drop both the Task flows (ex: "EmpPieTF" and "EmpBarTF") as regions. Surround with panel components as needed.Run the page Main.jspxMainPage.bmpNow when the page runs although both components are created using same Data control the bindings are not shared and each component will have a separate instance of the data control.

    Read the article

  • C#: Process.HasExited returns false even though the process has terminated

    - by Jeremy
    Possibly the inverse of this question: http://stackoverflow.com/questions/2519673/ I called Kill() on a process and it seems to have exited. But when I test HasExited, I get false: myProcess.Kill(); while ( !myProcess.HasExited ) { Thread.Sleep(1000); } And this continues indefinitely. Granted, I have to change this code to stop waiting eventually, but I'm curious as to why HasExited still returns false when the process seems to have dropped off the map so to speak.

    Read the article

  • WMI Remote Process Starting

    - by Goober
    Scenario I've written a WMI Wrapper that seems to be quite sufficient, however whenever I run the code to start a remote process on a server, I see the process name appear in the task manager but the process itself does not start like it should (as in, I don't see the command line log window of the process that prints out what it's doing etc.) The process I am trying to start is just a C# application executable that I have written. Below is my WMI Wrapper Code and the code I am using to start running the process. Question Is the process actually running? - Even if it is only displaying the process name in the task manager and not actually launching the application to the users window? Code To Start The Process IPHostEntry hostEntry = Dns.GetHostEntry("InsertServerName"); WMIWrapper wrapper = new WMIWrapper("Insert User Name", "Insert Password", hostEntry.HostName); List<Process> processes = wrapper.GetProcesses(); foreach (Process process in processes) { if (process.Caption.Equals("MyAppName.exe")) { Console.WriteLine(process.Caption); Console.WriteLine(process.CommandLine); int processId; wrapper.StartProcess("E:\\MyData\\Data\\MyAppName.exe", out processId); Console.WriteLine(processId.ToString()); } } Console.ReadLine(); WMI Wrapper Code using System; using System.Collections.Generic; using System.Management; using System.Runtime.InteropServices; using Common.WMI.Objects; using System.Net; namespace Common.WMIWrapper { public class WMIWrapper : IDisposable { #region Constructor /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string server) { Initialise(server); } /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string username, string password, string server) { Initialise(username, password, server); } #endregion #region Destructor /// <summary> /// Clean up unmanaged references /// </summary> ~WMIWrapper() { Dispose(false); } #endregion #region Initialise /// <summary> /// Initialise the WMI Connection (local machine) /// </summary> /// <param name="server"></param> private void Initialise(string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); } /// <summary> /// Initialise the WMI connection /// </summary> /// <param jobName="username">Username to connect to server with</param> /// <param jobName="password">Password to connect to server with</param> /// <param jobName="server">Server to connect to</param> private void Initialise(string username, string password, string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); if (host.HostName.Equals(server, StringComparison.OrdinalIgnoreCase)) return; m_connectOptions.Username = username; m_connectOptions.Password = password; m_connectOptions.Impersonation = ImpersonationLevel.Impersonate; m_connectOptions.EnablePrivileges = true; } #endregion /// <summary> /// Return a list of available wmi namespaces /// </summary> /// <returns></returns> public List<String> GetWMINamespaces() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root", this.Server), this.ConnectionOptions); List<String> wmiNamespaceList = new List<String>(); ManagementClass wmiNamespaces = new ManagementClass(wmiScope, new ManagementPath("__namespace"), null); ; foreach (ManagementObject ns in wmiNamespaces.GetInstances()) wmiNamespaceList.Add(ns["Name"].ToString()); return wmiNamespaceList; } /// <summary> /// Return a list of available classes in a namespace /// </summary> /// <param jobName="wmiNameSpace">Namespace to get wmi classes for</param> /// <returns>List of classes in the requested namespace</returns> public List<String> GetWMIClassList(string wmiNameSpace) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<String> wmiClasses = new List<String>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery("SELECT * FROM meta_Class"), null); foreach (ManagementClass wmiClass in wmiSearcher.Get()) wmiClasses.Add(wmiClass["__CLASS"].ToString()); return wmiClasses; } /// <summary> /// Get a list of wmi properties for the specified class /// </summary> /// <param jobName="wmiNameSpace">WMI Namespace</param> /// <param jobName="wmiClass">WMI Class</param> /// <returns>List of properties for the class</returns> public List<String> GetWMIClassPropertyList(string wmiNameSpace, string wmiClass) { List<String> wmiClassProperties = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (PropertyData property in managementClass.Properties) wmiClassProperties.Add(property.Name); return wmiClassProperties; } /// <summary> /// Returns a list of methods for the class /// </summary> /// <param jobName="wmiNameSpace"></param> /// <param jobName="wmiClass"></param> /// <returns></returns> public List<String> GetWMIClassMethodList(string wmiNameSpace, string wmiClass) { List<String> wmiClassMethods = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (MethodData method in managementClass.Methods) wmiClassMethods.Add(method.Name); return wmiClassMethods; } /// <summary> /// Retrieve the specified management class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the class</param> /// <param jobName="wmiClass">Type of the class</param> /// <returns></returns> public ManagementClass GetWMIClass(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM meta_Class WHERE __CLASS = '{0}'", wmiClass)), null); foreach (ManagementClass wmiObject in wmiSearcher.Get()) managementClass = wmiObject; return managementClass; } /// <summary> /// Get an instance of the specficied class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the classes</param> /// <param jobName="wmiClass">Type of the classes</param> /// <returns>Array of management classes</returns> public ManagementObject[] GetWMIClassObjects(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<ManagementObject> wmiClasses = new List<ManagementObject>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM {0}", wmiClass)), null); foreach (ManagementObject wmiObject in wmiSearcher.Get()) wmiClasses.Add(wmiObject); return wmiClasses.ToArray(); } /// <summary> /// Get a full list of services /// </summary> /// <returns></returns> public List<Service> GetServices() { return GetService(null); } /// <summary> /// Get a list of services /// </summary> /// <returns></returns> public List<Service> GetService(string name) { ManagementObject[] services = GetWMIClassObjects("CIMV2", "WIN32_Service"); List<Service> serviceList = new List<Service>(); for (int i = 0; i < services.Length; i++) { ManagementObject managementObject = services[i]; Service service = new Service(managementObject); service.Status = (string)managementObject["Status"]; service.Name = (string)managementObject["Name"]; service.DisplayName = (string)managementObject["DisplayName"]; service.PathName = (string)managementObject["PathName"]; service.ProcessId = (uint)managementObject["ProcessId"]; service.Started = (bool)managementObject["Started"]; service.StartMode = (string)managementObject["StartMode"]; service.ServiceType = (string)managementObject["ServiceType"]; service.InstallDate = (string)managementObject["InstallDate"]; service.Description = (string)managementObject["Description"]; service.Caption = (string)managementObject["Caption"]; if (String.IsNullOrEmpty(name) || name.Equals(service.Name, StringComparison.OrdinalIgnoreCase)) serviceList.Add(service); } return serviceList; } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcesses() { return GetProcess(null); } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcess(uint? processId) { ManagementObject[] processes = GetWMIClassObjects("CIMV2", "WIN32_Process"); List<Process> processList = new List<Process>(); for (int i = 0; i < processes.Length; i++) { ManagementObject managementObject = processes[i]; Process process = new Process(managementObject); process.Priority = (uint)managementObject["Priority"]; process.ProcessId = (uint)managementObject["ProcessId"]; process.Status = (string)managementObject["Status"]; DateTime createDate; if (ConvertFromWmiDate((string)managementObject["CreationDate"], out createDate)) process.CreationDate = createDate.ToString("dd-MMM-yyyy HH:mm:ss"); process.Caption = (string)managementObject["Caption"]; process.CommandLine = (string)managementObject["CommandLine"]; process.Description = (string)managementObject["Description"]; process.ExecutablePath = (string)managementObject["ExecutablePath"]; process.ExecutionState = (string)managementObject["ExecutionState"]; process.MaximumWorkingSetSize = (UInt32?)managementObject ["MaximumWorkingSetSize"]; process.MinimumWorkingSetSize = (UInt32?)managementObject["MinimumWorkingSetSize"]; process.KernelModeTime = (UInt64)managementObject["KernelModeTime"]; process.ThreadCount = (UInt32)managementObject["ThreadCount"]; process.UserModeTime = (UInt64)managementObject["UserModeTime"]; process.VirtualSize = (UInt64)managementObject["VirtualSize"]; process.WorkingSetSize = (UInt64)managementObject["WorkingSetSize"]; if (processId == null || process.ProcessId == processId.Value) processList.Add(process); } return processList; } /// <summary> /// Start the specified process /// </summary> /// <param jobName="commandLine"></param> /// <returns></returns> public bool StartProcess(string command, out int processId) { processId = int.MaxValue; ManagementClass processClass = GetWMIClass("CIMV2", "WIN32_Process"); object[] objectsIn = new object[4]; objectsIn[0] = command; processClass.InvokeMethod("Create", objectsIn); if (objectsIn[3] == null) return false; processId = int.Parse(objectsIn[3].ToString()); return true; } /// <summary> /// Schedule a process on the remote machine /// </summary> /// <param name="command"></param> /// <param name="scheduleTime"></param> /// <param name="jobName"></param> /// <returns></returns> public bool ScheduleProcess(string command, DateTime scheduleTime, out string jobName) { jobName = String.Empty; ManagementClass scheduleClass = GetWMIClass("CIMV2", "Win32_ScheduledJob"); object[] objectsIn = new object[7]; objectsIn[0] = command; objectsIn[1] = String.Format("********{0:00}{1:00}{2:00}.000000+060", scheduleTime.Hour, scheduleTime.Minute, scheduleTime.Second); objectsIn[5] = true; scheduleClass.InvokeMethod("Create", objectsIn); if (objectsIn[6] == null) return false; UInt32 scheduleid = (uint)objectsIn[6]; jobName = scheduleid.ToString(); return true; } /// <summary> /// Returns the current time on the remote server /// </summary> /// <returns></returns> public DateTime Now() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, "CIMV2"), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM Win32_LocalTime")), null); DateTime localTime = DateTime.MinValue; foreach (ManagementObject time in wmiSearcher.Get()) { UInt32 day = (UInt32)time["Day"]; UInt32 month = (UInt32)time["Month"]; UInt32 year = (UInt32)time["Year"]; UInt32 hour = (UInt32)time["Hour"]; UInt32 minute = (UInt32)time["Minute"]; UInt32 second = (UInt32)time["Second"]; localTime = new DateTime((int)year, (int)month, (int)day, (int)hour, (int)minute, (int)second); }; return localTime; } /// <summary> /// Converts a wmi date into a proper date /// </summary> /// <param jobName="wmiDate">Wmi formatted date</param> /// <returns>Date time object</returns> private static bool ConvertFromWmiDate(string wmiDate, out DateTime properDate) { properDate = DateTime.MinValue; string properDateString; // check if string is populated if (String.IsNullOrEmpty(wmiDate)) return false; wmiDate = wmiDate.Trim().ToLower().Replace("*", "0"); string[] months = new string[] { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; try { properDateString = String.Format("{0}-{1}-{2} {3}:{4}:{5}.{6}", wmiDate.Substring(6, 2), months[int.Parse(wmiDate.Substring(4, 2)) - 1], wmiDate.Substring(0, 4), wmiDate.Substring(8, 2), wmiDate.Substring(10, 2), wmiDate.Substring(12, 2), wmiDate.Substring(15, 6)); } catch (InvalidCastException) { return false; } catch (ArgumentOutOfRangeException) { return false; } // try and parse the new date if (!DateTime.TryParse(properDateString, out properDate)) return false; // true if conversion successful return true; } private bool m_disposed; #region IDisposable Members /// <summary> /// Managed dispose /// </summary> public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } /// <summary> /// Dispose of managed and unmanaged objects /// </summary> /// <param jobName="disposing"></param> public void Dispose(bool disposing) { if (disposing) { m_connectOptions = null; } } #endregion #region Properties private ConnectionOptions m_connectOptions; /// <summary> /// Gets or sets the management scope /// </summary> private ConnectionOptions ConnectionOptions { get { return m_connectOptions; } set { m_connectOptions = value; } } private String m_server; /// <summary> /// Gets or sets the server to connect to /// </summary> public String Server { get { return m_server; } set { m_server = value; } } #endregion } }

    Read the article

  • Java process is not terminating after starting an external process

    - by tangens
    On Windows I've started a program "async.cmd" with a ProcessBuilder like this: ProcessBuilder processBuilder = new ProcessBuilder( "async.cmd" ); processBuilder.redirectErrorStream( true ); processBuilder.start(); Then I read the output of the process in a separate thread like this: byte[] buffer = new byte[ 8192 ]; while( !interrupted() ) { int available = m_inputStream.available(); if( available == 0 ) { Thread.sleep( 100 ); continue; } int len = Math.min( buffer.length, available ); len = m_inputStream.read( buffer, 0, len ); if( len == -1 ) { throw new CX_InternalError(); } String outString = new String( buffer, 0, len ); m_output.append( outString ); } Now it happened that the content of the file "async.cmd" was this: REM start a command window start cmd /k The process that started this extenal program terminated (process.waitFor() returned the exit value). Then I sent an readerThread.interrupt() to the reader thread and the thread terminated, too. But there was still a thread running that wasn't terminating. This thread kept my java application running even if it exited its main method. With the debugger (eclipse) I wasn't able to suspend this thread. After I quit the opened command window, my java program exited, too. Question How can I quit my java program while the command window stays open?

    Read the article

  • Is there a process-oriented IDE ?

    - by Raveline
    My problem is simple : when I'm programming in an OO paradigm, I'm often having part of a main business process divided in many classes. Which means, if I want to examine the whole functional chain that leads to the output, for debugging or for optimization research, it can be a bit painful. So I was wondering : is there an IDE that let you put a "process tag" on functions coming from different objects, and give you a view of all those functions having the same tag ? edit : To give an example (that I'm making up completely, sorry if it doesn't sound very realistic). Let's say we have the following business process for a HR application : receive a holiday-request by an employee, check the validity of the request, then give an alert to his boss ("one of those lazy programmer wants another day off"); at the same time, let's say the boss will want to have a table of all employee's timetable during the time the employee wants his vacations; then handle the answer of the boss, send a nice little mail to the employee ("No way, lazy bones"). Even if we get rid of everything not purely business-related (mail sending process, db handling to get the useful info, GUI functionalities, and so on), we still have something that doesn't really fit in "one class". I'd like to have an IDE that would give me the opportunity to embrace quickly, at the very least : The function handling the validation of the request by the employee; The function preparing the "timetable" for the boss; The function handling the validation of the request by the boss; I wouldn't put all those functions in the same class (but perhaps that's my mistake ?). This is where my dreamed IDE could be helpful.

    Read the article

  • Personal Software Process (PSP1)

    - by gentoo_drummer
    I'm trying to figure out an exercise but it doesn't really makes to much sense.. I'm not asking someone to provide the solution. just to try and analyse what needs to be done in order to solve this. I'm trying to understand which PSP 1.0 1.1 process I should use. PROBE? Or something else? I would greatly appreciate some help on this one from someone that has experience with the Personal Software Process Methodology.. Here is the question. For the reference case (“code1.c”), the following s/w metrics are provided: man-hours spent in implementation phase (per-module): 2,7 mh/file man-hours spent in testing phase (per-module): 4,3 mh/file estimated number of bugs remaining (per-module): 0,3 errors/function, 4 errors/module (remaining) Based on the corresponding values provided for the reference case, each of the following tasks focus on some s/w metrics to be estimated for the test case (“code2.c”): [25 marks] (estimated) man-hours required in implementation phase (per-module) [8 marks] (estimated) man-hours required in testing phase (per-module) [8 marks] (estimated) number of bugs remaining at the end of testing phase (per-module) [9 marks] Tasks 4 through 6 should use the data provided for the reference case within the context of Personal Software Process level-1 (PSP-1), using them as a single-point historic data log. Specifically, the same s/w metrics are to be estimated for the test case (“code2.c”), using PSP as the basic estimation model. In order to perform the above listed tasks, students are advised to consider all phases of the PSP software development process, especially at levels PSP0 and PSP1. Both cases are to be treated as separate case-studies in the context of classic s/w development.

    Read the article

  • A free standing ASP.NET Pager Web Control

    - by Rick Strahl
    Paging in ASP.NET has been relatively easy with stock controls supporting basic paging functionality. However, recently I built an MVC application and one of the things I ran into was that I HAD TO build manual paging support into a few of my pages. Dealing with list controls and rendering markup is easy enough, but doing paging is a little more involved. I ended up with a small but flexible component that can be dropped anywhere. As it turns out the task of creating a semi-generic Pager control for MVC was fairly easily. Now I’m back to working in Web Forms and thought to myself that the way I created the pager in MVC actually would also work in ASP.NET – in fact quite a bit easier since the whole thing can be conveniently wrapped up into an easily reusable control. A standalone pager would provider easier reuse in various pages and a more consistent pager display regardless of what kind of 'control’ the pager is associated with. Why a Pager Control? At first blush it might sound silly to create a new pager control – after all Web Forms has pretty decent paging support, doesn’t it? Well, sort of. Yes the GridView control has automatic paging built in and the ListView control has the related DataPager control. The built in ASP.NET paging has several issues though: Postback and JavaScript requirements If you look at paging links in ASP.NET they are always postback links with javascript:__doPostback() calls that go back to the server. While that works fine and actually has some benefit like the fact that paging saves changes to the page and post them back, it’s not very SEO friendly. Basically if you use javascript based navigation nosearch engine will follow the paging links which effectively cuts off list content on the first page. The DataPager control does support GET based links via the QueryStringParameter property, but the control is effectively tied to the ListView control (which is the only control that implements IPageableItemContainer). DataSource Controls required for Efficient Data Paging Retrieval The only way you can get paging to work efficiently where only the few records you display on the page are queried for and retrieved from the database you have to use a DataSource control - only the Linq and Entity DataSource controls  support this natively. While you can retrieve this data yourself manually, there’s no way to just assign the page number and render the pager based on this custom subset. Other than that default paging requires a full resultset for ASP.NET to filter the data and display only a subset which can be very resource intensive and wasteful if you’re dealing with largish resultsets (although I’m a firm believer in returning actually usable sets :-}). If you use your own business layer that doesn’t fit an ObjectDataSource you’re SOL. That’s a real shame too because with LINQ based querying it’s real easy to retrieve a subset of data that is just the data you want to display but the native Pager functionality doesn’t support just setting properties to display just the subset AFAIK. DataPager is not Free Standing The DataPager control is the closest thing to a decent Pager implementation that ASP.NET has, but alas it’s not a free standing component – it works off a related control and the only one that it effectively supports from the stock ASP.NET controls is the ListView control. This means you can’t use the same data pager formatting for a grid and a list view or vice versa and you’re always tied to the control. Paging Events In order to handle paging you have to deal with paging events. The events fire at specific time instances in the page pipeline and because of this you often have to handle data binding in a way to work around the paging events or else end up double binding your data sources based on paging. Yuk. Styling The GridView pager is a royal pain to beat into submission for styled rendering. The DataPager control has many more options and template layout and it renders somewhat cleaner, but it too is not exactly easy to get a decent display for. Not a Generic Solution The problem with the ASP.NET controls too is that it’s not generic. GridView, DataGrid use their own internal paging, ListView can use a DataPager and if you want to manually create data layout – well you’re on your own. IOW, depending on what you use you likely have very different looking Paging experiences. So, I figured I’ve struggled with this once too many and finally sat down and built a Pager control. The Pager Control My goal was to create a totally free standing control that has no dependencies on other controls and certainly no requirements for using DataSource controls. The idea is that you should be able to use this pager control without any sort of data requirements at all – you should just be able to set properties and be able to display a pager. The Pager control I ended up with has the following features: Completely free standing Pager control – no control or data dependencies Complete manual control – Pager can render without any data dependency Easy to use: Only need to set PageSize, ActivePage and TotalItems Supports optional filtering of IQueryable for efficient queries and Pager rendering Supports optional full set filtering of IEnumerable<T> and DataTable Page links are plain HTTP GET href Links Control automatically picks up Page links on the URL and assigns them (automatic page detection no page index changing events to hookup) Full CSS Styling support On the downside there’s no templating support for the control so the layout of the pager is relatively fixed. All elements however are stylable and there are options to control the text, and layout options such as whether to display first and last pages and the previous/next buttons and so on. To give you an idea what the pager looks like, here are two differently styled examples (all via CSS):   The markup for these two pagers looks like this: <ww:Pager runat="server" id="ItemPager" PageSize="5" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PagesTextCssClass="gridpagertext" CssClass="gridpager" RenderContainerDiv="true" ContainerDivCssClass="gridpagercontainer" MaxPagesToDisplay="6" PagesText="Item Pages:" NextText="next" PreviousText="previous" /> <ww:Pager runat="server" id="ItemPager2" PageSize="5" RenderContainerDiv="true" MaxPagesToDisplay="6" /> The latter example uses default style settings so it there’s not much to set. The first example on the other hand explicitly assigns custom styles and overrides a few of the formatting options. Styling The styling is based on a number of CSS classes of which the the main pager, pagerbutton and pagerbutton-selected classes are the important ones. Other styles like pagerbutton-next/prev/first/last are based on the pagerbutton style. The default styling shown for the red outlined pager looks like this: .pagercontainer { margin: 20px 0; background: whitesmoke; padding: 5px; } .pager { float: right; font-size: 10pt; text-align: left; } .pagerbutton,.pagerbutton-selected,.pagertext { display: block; float: left; text-align: center; border: solid 2px maroon; min-width: 18px; margin-left: 3px; text-decoration: none; padding: 4px; } .pagerbutton-selected { font-size: 130%; font-weight: bold; color: maroon; border-width: 0px; background: khaki; } .pagerbutton-first { margin-right: 12px; } .pagerbutton-last,.pagerbutton-prev { margin-left: 12px; } .pagertext { border: none; margin-left: 30px; font-weight: bold; } .pagerbutton a { text-decoration: none; } .pagerbutton:hover { background-color: maroon; color: cornsilk; } .pagerbutton-prev { background-image: url(images/prev.png); background-position: 2px center; background-repeat: no-repeat; width: 35px; padding-left: 20px; } .pagerbutton-next { background-image: url(images/next.png); background-position: 40px center; background-repeat: no-repeat; width: 35px; padding-right: 20px; margin-right: 0px; } Yup that’s a lot of styling settings although not all of them are required. The key ones are pagerbutton, pager and pager selection. The others (which are implicitly created by the control based on the pagerbutton style) are for custom markup of the ‘special’ buttons. In my apps I tend to have two kinds of pages: Those that are associated with typical ‘grid’ displays that display purely tabular data and those that have a more looser list like layout. The two pagers shown above represent these two views and the pager and gridpager styles in my standard style sheet reflect these two styles. Configuring the Pager with Code Finally lets look at what it takes to hook up the pager. As mentioned in the highlights the Pager control is completely independent of other controls so if you just want to display a pager on its own it’s as simple as dropping the control and assigning the PageSize, ActivePage and either TotalPages or TotalItems. So for this markup: <ww:Pager runat="server" id="ItemPagerManual" PageSize="5" MaxPagesToDisplay="6" /> I can use code as simple as: ItemPagerManual.PageSize = 3; ItemPagerManual.ActivePage = 4;ItemPagerManual.TotalItems = 20; Note that ActivePage is not required - it will automatically use any Page=x query string value and assign it, although you can override it as I did above. TotalItems can be any value that you retrieve from a result set or manually assign as I did above. A more realistic scenario based on a LINQ to SQL IQueryable result is even easier. In this example, I have a UserControl that contains a ListView control that renders IQueryable data. I use a User Control here because there are different views the user can choose from with each view being a different user control. This incidentally also highlights one of the nice features of the pager: Because the pager is independent of the control I can put the pager on the host page instead of into each of the user controls. IOW, there’s only one Pager control, but there are potentially many user controls/listviews that hold the actual display data. The following code demonstrates how to use the Pager with an IQueryable that loads only the records it displays: protected voidPage_Load(objectsender, EventArgs e) {     Category = Request.Params["Category"] ?? string.Empty;     IQueryable<wws_Item> ItemList = ItemRepository.GetItemsByCategory(Category);     // Update the page and filter the list down     ItemList = ItemPager.FilterIQueryable<wws_Item>(ItemList); // Render user control with a list view Control ulItemList = LoadControl("~/usercontrols/" + App.Configuration.ItemListType + ".ascx"); ((IInventoryItemListControl)ulItemList).InventoryItemList = ItemList; phItemList.Controls.Add(ulItemList); // placeholder } The code uses a business object to retrieve Items by category as an IQueryable which means that the result is only an expression tree that hasn’t execute SQL yet and can be further filtered. I then pass this IQueryable to the FilterIQueryable() helper method of the control which does two main things: Filters the IQueryable to retrieve only the data displayed on the active page Sets the Totaltems property and calculates TotalPages on the Pager and that’s it! When the Pager renders it uses those values, plus the PageSize and ActivePage properties to render the Pager. In addition to IQueryable there are also filter methods for IEnumerable<T> and DataTable, but these versions just filter the data by removing rows/items from the entire already retrieved data. Output Generated and Paging Links The output generated creates pager links as plain href links. Here’s what the output looks like: <div id="ItemPager" class="pagercontainer"> <div class="pager"> <span class="pagertext">Pages: </span><a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=1" class="pagerbutton" />1</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=2" class="pagerbutton" />2</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton" />3</a> <span class="pagerbutton-selected">4</span> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton" />5</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=6" class="pagerbutton" />6</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=20" class="pagerbutton pagerbutton-last" />20</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton pagerbutton-prev" />Prev</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton pagerbutton-next" />Next</a></div> <br clear="all" /> </div> </div> The links point back to the current page and simply append a Page= page link into the page. When the page gets reloaded with the new page number the pager automatically detects the page number and automatically assigns the ActivePage property which results in the appropriate page to be displayed. The code shown in the previous section is all that’s needed to handle paging. Note that HTTP GET based paging is different than the Postback paging ASP.NET uses by default. Postback paging preserves modified page content when clicking on pager buttons, but this control will simply load a new page – no page preservation at this time. The advantage of not using Postback paging is that the URLs generated are plain HTML links that a search engine can follow where __doPostback() links are not. Pager with a Grid The pager also works in combination with grid controls so it’s easy to bypass the grid control’s paging features if desired. In the following example I use a gridView control and binds it to a DataTable result which is also filterable by the Pager control. The very basic plain vanilla ASP.NET grid markup looks like this: <div style="width: 600px; margin: 0 auto;padding: 20px; "> <asp:DataGrid runat="server" AutoGenerateColumns="True" ID="gdItems" CssClass="blackborder" style="width: 600px;"> <AlternatingItemStyle CssClass="gridalternate" /> <HeaderStyle CssClass="gridheader" /> </asp:DataGrid> <ww:Pager runat="server" ID="Pager" CssClass="gridpager" ContainerDivCssClass="gridpagercontainer" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PageSize="8" RenderContainerDiv="true" MaxPagesToDisplay="6" /> </div> and looks like this when rendered: using custom set of CSS styles. The code behind for this code is also very simple: protected void Page_Load(object sender, EventArgs e) { string category = Request.Params["category"] ?? ""; busItem itemRep = WebStoreFactory.GetItem(); var items = itemRep.GetItemsByCategory(category) .Select(itm => new {Sku = itm.Sku, Description = itm.Description}); // run query into a DataTable for demonstration DataTable dt = itemRep.Converter.ToDataTable(items,"TItems"); // Remove all items not on the current page dt = Pager.FilterDataTable(dt,0); // bind and display gdItems.DataSource = dt; gdItems.DataBind(); } A little contrived I suppose since the list could already be bound from the list of elements, but this is to demonstrate that you can also bind against a DataTable if your business layer returns those. Unfortunately there’s no way to filter a DataReader as it’s a one way forward only reader and the reader is required by the DataSource to perform the bindings.  However, you can still use a DataReader as long as your business logic filters the data prior to rendering and provides a total item count (most likely as a second query). Control Creation The control itself is a pretty brute force ASP.NET control. Nothing clever about this other than some basic rendering logic and some simple calculations and update routines to determine which buttons need to be shown. You can take a look at the full code from the West Wind Web Toolkit’s Repository (note there are a few dependencies). To give you an idea how the control works here is the Render() method: /// <summary> /// overridden to handle custom pager rendering for runtime and design time /// </summary> /// <param name="writer"></param> protected override void Render(HtmlTextWriter writer) { base.Render(writer); if (TotalPages == 0 && TotalItems > 0) TotalPages = CalculateTotalPagesFromTotalItems(); if (DesignMode) TotalPages = 10; // don't render pager if there's only one page if (TotalPages < 2) return; if (RenderContainerDiv) { if (!string.IsNullOrEmpty(ContainerDivCssClass)) writer.AddAttribute("class", ContainerDivCssClass); writer.RenderBeginTag("div"); } // main pager wrapper writer.WriteBeginTag("div"); writer.AddAttribute("id", this.ClientID); if (!string.IsNullOrEmpty(CssClass)) writer.WriteAttribute("class", this.CssClass); writer.Write(HtmlTextWriter.TagRightChar + "\r\n"); // Pages Text writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(PagesTextCssClass)) writer.WriteAttribute("class", PagesTextCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(this.PagesText); writer.WriteEndTag("span"); // if the base url is empty use the current URL FixupBaseUrl(); // set _startPage and _endPage ConfigurePagesToRender(); // write out first page link if (ShowFirstAndLastPageLinks && _startPage != 1) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-first"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write("1"); writer.WriteEndTag("a"); writer.Write("&nbsp;"); } // write out all the page links for (int i = _startPage; i < _endPage + 1; i++) { if (i == ActivePage) { writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(SelectedPageCssClass)) writer.WriteAttribute("class", SelectedPageCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(i.ToString()); writer.WriteEndTag("span"); } else { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, i.ToString()).TrimEnd('&'); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(i.ToString()); writer.WriteEndTag("a"); } writer.Write("\r\n"); } // write out last page link if (ShowFirstAndLastPageLinks && _endPage < TotalPages) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, TotalPages.ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-last"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(TotalPages.ToString()); writer.WriteEndTag("a"); } // Previous link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(PreviousText) && ActivePage > 1) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage - 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-prev"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(PreviousText); writer.WriteEndTag("a"); } // Next link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(NextText) && ActivePage < TotalPages) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage + 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-next"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(NextText); writer.WriteEndTag("a"); } writer.WriteEndTag("div"); if (RenderContainerDiv) { if (RenderContainerDivBreak) writer.Write("<br clear=\"all\" />\r\n"); writer.WriteEndTag("div"); } } As I said pretty much brute force rendering based on the control’s property settings of which there are quite a few: You can also see the pager in the designer above. unfortunately the VS designer (both 2010 and 2008) fails to render the float: left CSS styles properly and starts wrapping after margins are applied in the special buttons. Not a big deal since VS does at least respect the spacing (the floated elements overlay). Then again I’m not using the designer anyway :-}. Filtering Data What makes the Pager easy to use is the filter methods built into the control. While this functionality is clearly not the most politically correct design choice as it violates separation of concerns, it’s very useful for typical pager operation. While I actually have filter methods that do something similar in my business layer, having it exposed on the control makes the control a lot more useful for typical databinding scenarios. Of course these methods are optional – if you have a business layer that can provide filtered page queries for you can use that instead and assign the TotalItems property manually. There are three filter method types available for IQueryable, IEnumerable and for DataTable which tend to be the most common use cases in my apps old and new. The IQueryable version is pretty simple as it can simply rely on on .Skip() and .Take() with LINQ: /// <summary> /// <summary> /// Queries the database for the ActivePage applied manually /// or from the Request["page"] variable. This routine /// figures out and sets TotalPages, ActivePage and /// returns a filtered subset IQueryable that contains /// only the items from the ActivePage. /// </summary> /// <param name="query"></param> /// <param name="activePage"> /// The page you want to display. Sets the ActivePage property when passed. /// Pass 0 or smaller to use ActivePage setting. /// </param> /// <returns></returns> public IQueryable<T> FilterIQueryable<T>(IQueryable<T> query, int activePage) where T : class, new() { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = query.Count(); if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return query; } int skip = ActivePage - 1; if (skip > 0) query = query.Skip(skip * PageSize); _TotalPages = CalculateTotalPagesFromTotalItems(); return query.Take(PageSize); } The IEnumerable<T> version simply  converts the IEnumerable to an IQuerable and calls back into this method for filtering. The DataTable version requires a little more work to manually parse and filter records (I didn’t want to add the Linq DataSetExtensions assembly just for this): /// <summary> /// Filters a data table for an ActivePage. /// /// Note: Modifies the data set permanently by remove DataRows /// </summary> /// <param name="dt">Full result DataTable</param> /// <param name="activePage">Page to display. 0 to use ActivePage property </param> /// <returns></returns> public DataTable FilterDataTable(DataTable dt, int activePage) { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = dt.Rows.Count; if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return dt; } int skip = ActivePage - 1; if (skip > 0) { for (int i = 0; i < skip * PageSize; i++ ) dt.Rows.RemoveAt(0); } while(dt.Rows.Count > PageSize) dt.Rows.RemoveAt(PageSize); return dt; } Using the Pager Control The pager as it is is a first cut I built a couple of weeks ago and since then have been tweaking a little as part of an internal project I’m working on. I’ve replaced a bunch of pagers on various older pages with this pager without any issues and have what now feels like a more consistent user interface where paging looks and feels the same across different controls. As a bonus I’m only loading the data from the database that I need to display a single page. With the preset class tags applied too adding a pager is now as easy as dropping the control and adding the style sheet for styling to be consistent – no fuss, no muss. Schweet. Hopefully some of you may find this as useful as I have or at least as a baseline to build ontop of… Resources The Pager is part of the West Wind Web & Ajax Toolkit Pager.cs Source Code (some toolkit dependencies) Westwind.css base stylesheet with .pager and .gridpager styles Pager Example Page © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Automatically kill a process if it exceeds a given amount of RAM

    - by chrisamiller
    I work on large-scale datasets. When testing new software, a script will sometimes sneak up on me, quickly grab all available RAM, and render my desktop unusable. I'd like a way to set a RAM limit for a process so that if it exceeds that amount, it will be killed automatically. A language-specific solution probably won't work, as I use all sorts of different tools (R, Perl, Python, Bash, etc). So is there some sort of process-monitor that will let me set a threshold amount of RAM and automatically kill a process if it uses more?

    Read the article

  • Ajax Control Toolkit December 2013 Release

    - by Stephen.Walther
    Today, we released a new version of the Ajax Control Toolkit that contains several important bug fixes and new features. The new release contains a new Tabs control that has been entirely rewritten in jQuery. You can download the December 2013 release of the Ajax Control Toolkit at http://Ajax.CodePlex.com. Alternatively, you can install the latest version directly from NuGet: The Ajax Control Toolkit and jQuery The Ajax Control Toolkit now contains two controls written with jQuery: the ToggleButton control and the Tabs control.  The goal is to rewrite the Ajax Control Toolkit to use jQuery instead of the Microsoft Ajax Library gradually over time. The motivation for rewriting the controls in the Ajax Control Toolkit to use jQuery is to modernize the toolkit. We want to continue to accept new controls written for the Ajax Control Toolkit contributed by the community. The community wants to use jQuery. We want to make it easy for the community to submit bug fixes. The community understands jQuery. Using the Ajax Control Toolkit with a Website that Already uses jQuery But what if you are already using jQuery in your website?  Will adding the Ajax Control Toolkit to your website break your existing website?  No, and here is why. The Ajax Control Toolkit uses jQuery.noConflict() to avoid conflicting with an existing version of jQuery in a page.  The version of jQuery that the Ajax Control Toolkit uses is represented by a variable named actJQuery.  You can use actJQuery side-by-side with an existing version of jQuery in a page without conflict.Imagine, for example, that you add jQuery to an ASP.NET page using a <script> tag like this: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm1.aspx.cs" Inherits="TestACTDec2013.WebForm1" %> <!DOCTYPE html> <html > <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div> <script src="Scripts/jquery-2.0.3.min.js"></script> <ajaxToolkit:ToolkitScriptManager runat="server" /> <ajaxToolkit:TabContainer runat="server"> <ajaxToolkit:TabPanel runat="server"> <HeaderTemplate> Tab 1 </HeaderTemplate> <ContentTemplate> <h1>First Tab</h1> </ContentTemplate> </ajaxToolkit:TabPanel> <ajaxToolkit:TabPanel runat="server"> <HeaderTemplate> Tab 2 </HeaderTemplate> <ContentTemplate> <h1>Second Tab</h1> </ContentTemplate> </ajaxToolkit:TabPanel> </ajaxToolkit:TabContainer> </div> </form> </body> </html> The page above uses the Ajax Control Toolkit Tabs control (TabContainer and TabPanel controls).  The Tabs control uses the version of jQuery that is currently bundled with the Ajax Control Toolkit (jQuery version 1.9.1). The page above also includes a <script> tag that references jQuery version 2.0.3.  You might need that particular version of jQuery, for example, to use a particular jQuery plugin. The two versions of jQuery in the page do not create a conflict. This fact can be demonstrated by entering the following two commands in the JavaScript console window: actJQuery.fn.jquery $.fn.jquery Typing actJQuery.fn.jquery will display the version of jQuery used by the Ajax Control Toolkit and typing $.fn.jquery (or jQuery.fn.jquery) will show the version of jQuery used by other jQuery plugins in the page.      Preventing jQuery from Loading Twice So by default, the Ajax Control Toolkit will not conflict with any existing version of jQuery used in your application. However, this does mean that if you are already using jQuery in your application then jQuery will be loaded twice. For performance reasons, you might want to avoid loading the jQuery library twice. By taking advantage of the <remove> element in the AjaxControlToolkit.config file, you can prevent the Ajax Control Toolkit from loading its version of jQuery. <ajaxControlToolkit> <scripts> <remove name="jQuery.jQuery.js" /> </scripts> <controlBundles> <controlBundle> <control name="TabContainer" /> <control name="TabPanel" /> </controlBundle> </controlBundles> </ajaxControlToolkit> Be careful here:  the name of the script being removed – jQuery.jQuery.js – is case-sensitive. If you remove jQuery then it is your responsibility to add the exact same version of jQuery back into your application.  You can add jQuery back using a <script> tag like this: <script src="Scripts/jquery-1.9.1.min.js"></script>     Make sure that you add the <script> tag before the server-side <form> tag or the Ajax Control Toolkit won’t detect the presence of jQuery. Alternatively, you can use the ToolkitScriptManager like this: <ajaxToolkit:ToolkitScriptManager runat="server"> <Scripts> <asp:ScriptReference Name="jQuery.jQuery.js" /> </Scripts> </ajaxToolkit:ToolkitScriptManager> The Ajax Control Toolkit is tested against the particular version of jQuery that is bundled with the Ajax Control Toolkit. Currently, the Ajax Control Toolkit uses jQuery version 1.9.1. If you attempt to use a different version of jQuery with the Ajax Control Toolkit then you will get the exception jQuery 1.9.1 is required in your JavaScript console window: If you need to use a different version of jQuery in the same page as the Ajax Control Toolkit then you should not use the <remove> element. Instead, allow the Ajax Control Toolkit to load its version of jQuery side-by-side with the other version of jQuery. Lots of Bug Fixes As usual, we implemented several important bug fixes with this release. The bug fixes concerned the following three controls: Tabs control – In the course of rewriting the Tabs control to use jQuery, we fixed several bugs related to the Tabs control. AjaxFileUpload control – We resolved an issue concerning the AjaxFileUpload and the TMP directory. HTMLEditor control – We updated the HTMLEditor control to use the new Ajax Control Toolkit bundling and minification framework. Summary I would like to thank the Superexpert team for their hard work on this release. Many long hours of coding and testing went into making this release possible.

    Read the article

  • Control to Control Binding in WPF/Silverlight

    - by psheriff
    In the past if you had two controls that you needed to work together, you would have to write code. For example, if you want a label control to display any text a user typed into a text box you would write code to do that. If you want turn off a set of controls when a user checks a check box, you would also have to write code. However, with XAML, these operations become very easy to do. Bind Text Box to Text Block As a basic example of this functionality, let’s bind a TextBlock control to a TextBox. When the user types into a TextBox the value typed in will show up in the TextBlock control as well. To try this out, create a new Silverlight or WPF application in Visual Studio. On the main window or user control type in the following XAML. <StackPanel>  <TextBox Margin="10" x:Name="txtData" />  <TextBlock Margin="10"              Text="{Binding ElementName=txtData,                             Path=Text}" /></StackPanel> Now run the application and type into the TextBox control. As you type you will see the data you type also appear in the TextBlock control. The {Binding} markup extension is responsible for this behavior. You set the ElementName attribute of the Binding markup to the name of the control that you wish to bind to. You then set the Path attribute to the name of the property of that control you wish to bind to. That’s all there is to it! Bind the IsEnabled Property Now let’s apply this concept to something that you might use in a business application. Consider the following two screen shots. The idea is that if the Add Benefits check box is un-checked, then the IsEnabled property of the three “Benefits” check boxes will be set to false (Figure 1). If the Add Benefits check box is checked, then the IsEnabled property of the “Benefits” check boxes will be set to true (Figure 2). Figure 1: Uncheck Add Benefits and the Benefits will be disabled. Figure 2: Check Add Benefits and the Benefits will be enabled. To accomplish this, you would write XAML to bind to each of the check boxes in the “Benefits To Add” section to the check box named chkBenefits. Below is a fragment of the XAML code that would be used. <CheckBox x:Name="chkBenefits" /> <CheckBox Content="401k"           IsEnabled="{Binding ElementName=chkBenefits,                               Path=IsChecked}" /> Since the IsEnabled property is a boolean type and the IsChecked property is also a boolean type, you can bind these two together. If they were different types, or if you needed them to set the IsEnabled property to the inverse of the IsChecked property then you would need to use a ValueConverter class. SummaryOnce you understand the basics of data binding in XAML, you can eliminate a lot code. Connecting controls together is as easy as just setting the ElementName and Path properties of the Binding markup extension. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "SL – Basic Control Binding" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".

    Read the article

  • First-Global-Teach for the Oracle Imaging and Process Management 11g: Administration: San Francisco

    - by stephen.schleifer
    First-Global-Teach for the Oracle Imaging and Process Management 11g: Administration: San Francisco | June 23-25 This course enables participants to use Oracle Imaging and Process Management (I/PM) 11g to access, track, and annotate documents. In addition, they also get an overview of the product architecture of Oracle I/PM running on Oracle WebLogic Server.The course also delves into administration tasks such as security permissions, configuration such as creating BPEL connections, and procedures for creating applications, searches, and input mappings. Customer and partners can register by looking up the course (#D61575GC10) on http://education.oracle.com

    Read the article

  • Take Control Of Web Control ClientID Values in ASP.NET 4.0

    Each server-side Web control in an ASP.NET Web Forms application has an <code>ID</code> property that identifies the Web control and is name by which the Web control is accessed in the code-behind class. When rendered into HTML, the Web control turns its server-side <code>ID</code> value into a client-side <code>id</code> attribute. Ideally, there would be a one-to-one correspondence between the value of the server-side <code>ID</code> property and the generated client-side <code>id</code>, but in reality things aren't so simple. By default, the rendered client-side <code>id</code> is formed by taking the Web control's <code>ID</code> property and prefixed it with the <code>ID</code>

    Read the article

  • Ajax Control Toolkit and Superexpert

    - by Stephen Walther
    Microsoft has asked my company, Superexpert Consulting, to take ownership of the development and maintenance of the Ajax Control Toolkit moving forward. In this blog entry, I discuss our strategy for improving the Ajax Control Toolkit. Why the Ajax Control Toolkit? The Ajax Control Toolkit is one of the most popular projects on CodePlex. In fact, some have argued that it is among the most successful open-source projects of all time. It consistently receives over 3,500 downloads a day (not weekends -- workdays). A mind-boggling number of developers use the Ajax Control Toolkit in their ASP.NET Web Forms applications. Why does the Ajax Control Toolkit continue to be such a popular project? The Ajax Control Toolkit fills a strong need in the ASP.NET Web Forms world. The Toolkit enables Web Forms developers to build richly interactive JavaScript applications without writing any JavaScript. For example, by taking advantage of the Ajax Control Toolkit, a Web Forms developer can add modal dialogs, popup calendars, and client tabs to a web application simply by dragging web controls onto a page. The Ajax Control Toolkit is not for everyone. If you are comfortable writing JavaScript then I recommend that you investigate using jQuery plugins instead of the Ajax Control Toolkit. However, if you are a Web Forms developer and you don’t want to get your hands dirty writing JavaScript, then the Ajax Control Toolkit is a great solution. The Ajax Control Toolkit is Vast The Ajax Control Toolkit consists of 40 controls. That’s a lot of controls (For the sake of comparison, jQuery UI consists of only 8 controls – those slackers J). Furthermore, developers expect the Ajax Control Toolkit to work on browsers both old and new. For example, people expect the Ajax Control Toolkit to work with Internet Explorer 6 and Internet Explorer 9 and every version of Internet Explorer in between. People also expect the Ajax Control Toolkit to work on the latest versions of Mozilla Firefox, Apple Safari, and Google Chrome. And, people expect the Ajax Control Toolkit to work with different operating systems. Yikes, that is a lot of combinations. The biggest challenge which my company faces in supporting the Ajax Control Toolkit is ensuring that the Ajax Control Toolkit works across all of these different browsers and operating systems. Testing, Testing, Testing Because we wanted to ensure that we could easily test the Ajax Control Toolkit with different browsers, the very first thing that we did was to set up a dedicated testing server. The dedicated server -- named Schizo -- hosts 4 virtual machines so that we can run Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, and Internet Explorer 9 at the same time (We also use the virtual machines to host the latest versions of Firefox, Chrome, Opera, and Safari). The five developers on our team (plus me) can each publish to a separate FTP website on the testing server. That way, we can quickly test how changes to the Ajax Control Toolkit affect different browsers. QUnit Tests for the Ajax Control Toolkit Introducing regressions – introducing new bugs when trying to fix existing bugs – is the concern which prevents me from sleeping well at night. There are so many people using the Ajax Control Toolkit in so many unique scenarios, that it is difficult to make improvements to the Ajax Control Toolkit without introducing regressions. In order to avoid regressions, we decided early on that it was extremely important to build good test coverage for the 40 controls in the Ajax Control Toolkit. We’ve been focusing a lot of energy on building automated JavaScript unit tests which we can use to help us discover regressions. We decided to write the unit tests with the QUnit test framework. We picked QUnit because it is quickly becoming the standard unit testing framework in the JavaScript world. For example, it is the unit testing framework used by the jQuery team, the jQuery UI team, and many jQuery UI plugin developers. We had to make several enhancements to the QUnit framework in order to test the Ajax Control Toolkit. For example, QUnit does not support tests which include postbacks. We modified the QUnit framework so that it works with IFrames so we could perform postbacks in our automated tests. At this point, we have written hundreds of QUnit tests. For example, we have written 135 QUnit tests for the Accordion control. The QUnit tests are included with the Ajax Control Toolkit source code in a project named AjaxControlToolkit.Tests. You can run all of the QUnit tests contained in the project by opening the Default.aspx page. Automating the QUnit Tests across Multiple Browsers Automated tests are useless if no one ever runs them. In order for the QUnit tests to be useful, we needed an easy way to run the tests automatically against a matrix of browsers. We wanted to run the unit tests against Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, Internet Explorer 9, Firefox, Chrome, and Safari automatically. Expecting a developer to run QUnit tests against every browser after every check-in is just too much to expect. It takes 20 seconds to run the Accordion QUnit tests. We are testing against 8 browsers. That would require the developer to open 8 browsers and wait for the results after each change in code. Too much work. Therefore, we built a JavaScript Test Server. Our JavaScript Test Server project was inspired by John Resig’s TestSwarm project. The JavaScript Test Server runs our QUnit tests in a swarm of browsers (running on different operating systems) automatically. Here’s how the JavaScript Test Server works: 1. We created an ASP.NET page named RunTest.aspx that constantly polls the JavaScript Test Server for a new set of QUnit tests to run. After the RunTest.aspx page runs the QUnit tests, the RunTest.aspx records the test results back to the JavaScript Test Server. 2. We opened the RunTest.aspx page on instances of Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, Internet Explorer 9, FireFox, Chrome, Opera, Google, and Safari. Now that we have the JavaScript Test Server setup, we can run all of our QUnit tests against all of the browsers which we need to support with a single click of a button. A New Release of the Ajax Control Toolkit Each Month The Ajax Control Toolkit Issue Tracker contains over one thousand five hundred open issues and feature requests. So we have plenty of work on our plates J At CodePlex, anyone can vote for an issue to be fixed. Originally, we planned to fix issues in order of their votes. However, we quickly discovered that this approach was inefficient. Constantly switching back and forth between different controls was too time-consuming. It takes time to re-familiarize yourself with a control. Instead, we decided to focus on two or three controls each month and really focus on fixing the issues with those controls. This way, we can fix sets of related issues and avoid the randomization caused by context switching. Our team works in monthly sprints. We plan to do another release of the Ajax Control Toolkit each and every month. So far, we have competed one release of the Ajax Control Toolkit which was released on April 1, 2011. We plan to release a new version in early May. Conclusion Fortunately, I work with a team of smart developers. We currently have 5 developers working on the Ajax Control Toolkit (not full-time, they are also building two very cool ASP.NET MVC applications). All the developers who work on our team are required to have strong JavaScript, jQuery, and ASP.NET MVC skills. In the interest of being as transparent as possible about our work on the Ajax Control Toolkit, I plan to blog frequently about our team’s ongoing work. In my next blog entry, I plan to write about the two Ajax Control Toolkit controls which are the focus of our work for next release.

    Read the article

  • How to Install vaio-control-center from source?

    - by KasiyA
    I have a problem about turning off keyboard backlight that I asked here with no useful answers. After searching on internet I find a package for vaio control center and downloaded it from here, I don't know how to install it. This is the output of trying one solution: USER@XXXXpc:~/vaio-control-center-0.1$ ls compile Makefile run vaio-control-center vcc COPYING moc_main_window.cpp ui_main_window.h vaio-control-center.pro USER@XXXXpc:~/vaio-control-center-0.1$ ./compile make: *** No rule to make target `/usr/share/qt/mkspecs/linux-g++-64/qmake.conf', needed by `Makefile'. Stop. USER@XXXXpc:~/vaio-control-center-0.1$ ./run ./run: 3: ./run: ./vaio-control-center: not found USER@XXXXpc:~/vaio-control-center-0.1$ Updated I tried also with @pandya's suggestion from here. and the output is as follows: root@user-pc:/# cd /home/user/vaio-f11-linux.control-center root@user-pc:/home/user/vaio-f11-linux.control-center# ls compile COPYING resource.qrc run sony-acpid vaio-control-center.pro vcc root@user-pc:/home/user/vaio-f11-linux.control-center# ./compile -su: ./compile: Permission denied root@user-pc:/home/user/vaio-f11-linux.control-center# sudo ./compile sudo: ./compile: command not found root@user-pc:/home/user/vaio-f11-linux.control-center# gksudo ./compile root@user-pc:/home/user/vaio-f11-linux.control-center# <----- nothing happened here root@user-pc:/home/user/vaio-f11-linux.control-center# ./run -su: ./run: Permission denied root@user-pc:/home/user/vaio-f11-linux.control-center# sudo ./run sudo: ./run: command not found root@user-pc:/home/user/vaio-f11-linux.control-center# gksudo ./run root@user-pc:/home/user/vaio-f11-linux.control-center# <----- nothing happened here root@user-pc:/home/user/vaio-f11-linux.control-center# and after running that I didn't see any affect on keyboard backlight.

    Read the article

  • How to setup Secure SemiPublic Revision Control System

    - by user24912
    I have a windows server with a project configured with a revision control system. Suppose it's GIT or SVN or .... Suppose there are 10 people around the globe working on this project. The first thing that comes in to mind is to secure the connection between these programmer and the server with SSH. but my problem is that the a hacker can destroy the server if he gets the SSH username and password user account (tell me if i'm wrong). So I need a secure way to let thoes programmers push their revision to the server. Any ideas would be lovely

    Read the article

  • get a process id from process name

    - by AJINKYA
    Hi i am trying to do a project using windows API in C language. The small part in my project is to get process ID of lsass.exe. i have tried the program below but it wont work. i have read about the CreateToolhelp32Snapshot, Process32First, Process32Next functions can anyone help me explaining how to use them in the code. So please help me. i am a beginner to windows API so i will appreciate it if anyone can suggest me an good ebook to refer.

    Read the article

  • How to access a named element in a control that inherits from a templated control

    - by Mrt
    Hello this is similar to http://stackoverflow.com/questions/2620165/how-to-access-a-named-element-of-a-derived-user-control-in-silverlight with the difference is inheriting from a templated control, not a user control. I have a templated control called MyBaseControl <Style TargetType="Problemo:MyBaseControl"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="Problemo:MyBaseControl"> <Grid x:Name="LayoutRoot" Background="White"> <Border Name="HeaderControl" Background="Red" /> </Grid> </ControlTemplate> </Setter.Value> </Setter> </Style> public class MyBaseControl : Control { public UIElement Header { get; set; } public MyBaseControl() { DefaultStyleKey = typeof(MyBaseControl); } public override void OnApplyTemplate() { base.OnApplyTemplate(); var headerControl = GetTemplateChild("HeaderControl") as ContentPresenter; if (headerControl != null) headerControl.Content = Header; } } I have another control called myControl which inherits from MyBaseControl Control <me:MyBaseControl x:Class="Problemo.MyControl" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" xmlns:me="clr-namespace:Problemo" d:DesignHeight="300" d:DesignWidth="400"> <me:MyBaseControl.Header> <TextBlock Name="xxx" /> </me:MyBaseControl.Header> </me:MyBaseControl> public partial class MyControl : MyBaseControl { public string Text { get; set; } public MyControl(string text) { InitializeComponent(); Text = text; Loaded += MyControl_Loaded; } void MyControl_Loaded(object sender, RoutedEventArgs e) { base.ApplyTemplate(); xxx.Text = Text; } } The issue is xxx is null. How do I access the xxx control in the code behind ?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >