Search Results

Search found 35 results on 2 pages for 'quadtree'.

Page 2/2 | < Previous Page | 1 2 

  • Searching temporal data

    - by user321299
    I developing an application (in C#) where objects are active under a period of time, they have from and to properties of DateTime-type. Now I want to speed up my search routine for queries like: Are there other active objects in this timeperiod/at this time. Is there any existing temporal index I can use or can I use QuadTree/other tree-structures to search in an efficient way.

    Read the article

  • 2D Side Scrolling game and "walk over ground" collision detection

    - by Fire-Dragon-DoL
    The question is not hard, I'm writing a game engine for 2D side scrolling games, however I'm thinking to my 2D side scrolling game and I always come up with the problem of "how should I do collision with the ground". I think I couldn't handle the collision with ground (ground for me is "where the player walk", so something heavily used) in a per-pixel way, and I can't even do it with simple shape comparison (because the ground can be tilted), so what's the correct way? I'know what tiles are and i've read about it, but how much should be big each tile to not appear like a stairs?Are there any other approach? I watched this game and is very nice how he walks on ground: http://www.youtube.com/watch?v=DmSAQwbbig8&feature=player_embedded If there are "platforms" in mid air, how should I handle them?I can walk over them but I can't pass "inside". Imagine a platform in mid air, it allows you to walk over it but limit you because you can't jump in the area she fits Sorry for my english, it's not my native language and this topic has a lot of keywords I don't know so I have to use workarounds Thanks for any answer Additional informations and suggestions: I'm doing a game course in this period and I asked them how to do this, they suggested me this approach (a QuadTree): -All map is divided into "big nodes" -Each bigger node has sub nodes, to find where the player is -You can find player's node with a ray on player position -When you find the node where the player is, you can do collision check through all pixels (which can be 100-200px nothing more) Here is an example, however i didn't show very well the bigger nodes because i'm not very good with photoshop :P How is this approach?

    Read the article

  • Making a perfect map (not tile-based)

    - by Sri Harsha Chilakapati
    I would like to make a map system as in the GameMaker and the latest code is here. I've searched a lot in google and all of them resulted in tutorials about tile-maps. As tile maps do not fit for every type of game and GameMaker uses tiles for a different purpose, I want to make a "Sprite Based" map. The major problem I had experienced was collision detection being slow for large maps. So I wrote a QuadTree class here and the collision detection is fine upto 50000 objects in the map without PixelPerfect collision detection and 30000 objects with PixelPerferct collisions enabled. Now I need to implement the method "isObjectCollisionFree(float x, float y, boolean solid, GObject obj)". The existing implementation is becoming slow in Platformer games and I need suggestions on improvement. The current Implementation: /** * Checks if a specific position is collision free in the map. * * @param x The x-position of the object * @param y The y-position of the object * @param solid Whether to check only for solid object * @param object The object ( used for width and height ) * @return True if no-collision and false if it collides. */ public static boolean isObjectCollisionFree(float x, float y, boolean solid, GObject object){ boolean bool = true; Rectangle bounds = new Rectangle(Math.round(x), Math.round(y), object.getWidth(), object.getHeight()); ArrayList<GObject> collidables = quad.retrieve(bounds); for (int i=0; i<collidables.size(); i++){ GObject obj = collidables.get(i); if (obj.isSolid()==solid && obj != object){ if (obj.isAlive()){ if (bounds.intersects(obj.getBounds())){ bool = false; if (Global.USE_PIXELPERFECT_COLLISION){ bool = !GUtil.isPixelPerfectCollision(x, y, object.getAnimation().getBufferedImage(), obj.getX(), obj.getY(), obj.getAnimation().getBufferedImage()); } break; } } } } return bool; } Thanks.

    Read the article

  • Collision Detection for a 2D RPG

    - by PHMitrious
    First of all, I have done some research on this topic before asking, and I'm asking this question as a mean to get some opinions on this topic, so I don't make a decision only on my own, but taking into account other people's experience as well. I'm starting a 2D online RPG project. I am using SFML for graphics and input and I'm creating a basic game structure and all for the game, creating modules for each part of the game. Well, let me get to the point I just wanted to give you guys some context. I want to decide on how I'm going to work with collision detection. Well I'm kinda going to work on maps with a tile map divided in layers (as usual) and add an extra 2 layers - not exactly in the map - for objects. So I'll have collisions between objects and agents (players - npcs - monsters - spells etc) and agents and tiles. The seconds one can be easily solved the first one need a little bit of work. I considered both creating a basic collision test engine using polygons and a quadtree to diminish tests since I'm going to be working with big maps with lots of objects - creating both a physical and graphical world representation. And I also considered using a physics engine like Box2D for collision tests. I think the first approach would take more work on my part but the second one would have the overhead of using a whole physics engine for just collision detection and no physics. What do you guys think ?

    Read the article

  • Data Structure for Small Number of Agents in a Relatively Big 2D World

    - by Seçkin Savasçi
    I'm working on a project where we will implement a kind of world simulation where there is a square 2D world. Agents live on this world and make decisions like moving or replicating themselves based on their neighbor cells(world=grid) and some extra parameters(which are not based on the state of the world). I'm looking for a data structure to implement such a project. My concerns are : I will implement this 3 times: sequential, using OpenMP, using MPI. So if I can use the same structure that will be quite good. The first thing comes up is keeping a 2D array for the world and storing agent references in it. And simulate the world for each time slice by checking every cell in each iteration and further processing if an agents is found in the cell. The downside is what if I have 1000x1000 world and only 5 agents in it. It will be an overkill for both sequential and parallel versions to check each cell and look for possible agents in them. I can use quadtree and store agents in it, but then how can I get the information about neighbor cells then? Please let me know if I should elaborate more.

    Read the article

  • Sampling Heightmap Edges for Normal map

    - by pl12
    I use a Sobel filter to generate normal maps from procedural height maps. The heightmaps are 258x258 pixels. I scale my texture coordinates like so: texCoord = (texCoord * (256/258)) + (1/258) Yet even with this I am left with the following problem: As you can see the edges of the normal map still proves to be problematic. Putting the texture wrap mode to "clamp" also proved no help. EDIT: The Sobel Filter function by sampling the 8 surrounding pixels around a given pixel so that a derivative can be calculated in order to find the "normal" of the given pixel. The texture coordinates are instanced once per quad (for the quadtree that makes up the world) and are created as follows (it is quite possible that the problem results from the way I scale and offset the texCoords as seen above): Java: for(int i = 0; i<vertices.length; i++){ Vector2f coord = new Vector2f((vertices[i].x)/(worldSize), (vertices[i].z)/( worldSize)); texCoords[i] = coord; } the quad used for input here rests on the X0Z plane. 'worldSize' is the diameter of the planet. No negative texCoords are seen as the quad used for input for this method is not centered around the origin. Is there something I am missing here? Thanks.

    Read the article

  • Which techniques to study?

    - by Djentleman
    Just to give you some background info, I'm studying a programming major at a tertiary level and am in my third year, so I'm not a newbie off the street. However, I am still quite new to game programming as a subset of programming. One of my personal projects for next semester is to design and create a 2D platformer game with emphasis on procedural generation and "neato" effects (think metroidvania). I've written up a list of some techniques to help me improve my personal skills (using XNA for the time being). The list is as follows: QuadTrees: Build a basic program in XNA that moves basic 2D sprites (circles and squares) around a set path and speed and changes their colour when they collide. Add functionality to add and delete objects of different sizes (select a direction and speed when adding and just drag and drop them in). Particles: Build a basic program in XNA in which you can select different colours and create particle effects of those colours on screen by clicking and dragging the mouse around (simple particles emerging from where the mouse is clicked). Add functionality where you can change the amount of particles to be drawn and the speed at which they travel and when they expire. Possibly implement gravity and wind after part 3 is complete. Physics: Build a basic program in XNA where you have a ball in a set 2D environment, a wind slider, and a gravity slider (can go to negative for reverse gravity). You can click to drag the ball around and release to throw it and, depending on what you do, the ball interacts with the environment. Implement other shapes afterwards. Random 2D terrain generation: Build a basic program in XNA that randomly generates terrain (including hills, caves, etc) created from 2D tiles. Add functionality that draws the tiles from a tileset and places different tiles depending on where they lie on the y-axis (dirt on top, then rock, then lava, etc). Randomised objects: Build a basic program in XNA that, when a button is clicked, displays a randomised item sprite based on parameters (type, colour, etc) with the images pulled from tilesets. Add the ability to save the item as an object, which stores it in a side-pane where it can be selected for viewing. Movement: Build a basic program in XNA where you can move an object around in an environment (tile-based) with a camera that pans with it. No gravity. Implement gravity and wind, allow the character to jump and fall with some basic platforms. So my question is this: Are there any other commonly used techniques that I should research, and can I get some suggestions as to the effectiveness of the techniques I've chosen to work on (e.g., don't do QuadTree stuff because [insert reason here], or, do [insert technique here] before you start working on particles because [insert reason here])? I hope this is clear enough and please let me know if I can further clarify anything!

    Read the article

  • SceneManagers as systems in entity system or as a core class used by a system?

    - by Hatoru Hansou
    It seems entity systems are really popular here. Links posted by other users convinced me of the power of such system and I decided to try it. (Well, that and my original code getting messy) In my project, I originally had a SceneManager class that maintained needed logic and structures to organize the scene (QuadTree, 2D game). Before rendering I call selectRect() and pass the x,y of the camera and the width and height of the screen and then obtain a minimized list containing only visible entities ordered from back to front. Now with Systems, originally in my first attempt my Render system required to get added all entities it should handle. This may sound like the correct approach but I realized this was not efficient. Trying to optimize It I reused the SceneManager class internally in the Renderer system, but then I realized I needed methods such as selectRect() in others systems too (AI principally) and make the SceneManager accessible globally again. Currently I converted SceneManager to a system, and ended up with the following interface (only relevant methods): /// Base system interface class System { public: virtual void tick (double delta_time) = 0; // (methods to add and remove entities) }; typedef std::vector<Entity*> EntitiesVector; /// Specialized system interface to allow query the scene class SceneManager: public System { public: virtual EntitiesVector& cull () = 0; /// Sets the entity to be used as the camera and replaces previous ones. virtual void setCamera (Entity* entity) = 0; }; class SceneRenderer // Not a system { vitual void render (EntitiesVector& entities) = 0; }; Also I could not guess how to convert renderers to systems. My game separates logic updates from screen updates, my main class have a tick() method and a render() method that may not be called the same times. In my first attempt renderers were systems but they was saved in a separated manager, updated only in render() and not in tick() like all other systems. I realized that was silly and simply created a SceneRenderer interface and give up about converting them to systems, but that may be for another question. Then... something does not feel right, isn't it? If I understood correctly a system should not depend on another or even count with another system exposing an specific interface. Each system should care only about its entities, or nodes (as optimization, so they have direct references to relevant components without having to constantly call the component() or getComponent() method of the entity).

    Read the article

  • Clever memory usage through the years

    - by Ben Emmett
    A friend and I were recently talking about the really clever tricks people have used to get the most out of memory. I thought I’d share my favorites, and would love to hear yours too! Interleaving on drum memory Back in the ye olde days before I’d been born (we’re talking the 50s / 60s here), working memory commonly took the form of rotating magnetic drums. These would spin at a constant speed, and a fixed head would read from memory when the correct part of the drum passed it by, a bit like a primitive platter disk. Because each revolution took a few milliseconds, programmers took to manually arranging information non-sequentially on the drum, timing when an instruction or memory address would need to be accessed, then spacing information accordingly around the edge of the drum, thus reducing the access delay. Similar techniques were still used on hard disks and floppy disks into the 90s, but have become irrelevant with modern disk technologies. The Hashlife algorithm Conway’s Game of Life has attracted numerous implementations over the years, but Bill Gosper’s Hashlife algorithm is particularly impressive. Taking advantage of the repetitive nature of many cellular automata, it uses a quadtree structure to store the hashes of pieces of the overall grid. Over time there are fewer and fewer new structures which need to be evaluated, so it starts to run faster with larger grids, drastically outperforming other algorithms both in terms of speed and the size of grid which can be simulated. The actual amount of memory used is huge, but it’s used in a clever way, so makes the list . Elite’s procedural generation Ok, so this isn’t exactly a memory optimization – more a storage optimization – but it gets an honorable mention anyway. When writing Elite, David Braben and Ian Bell wanted to build a rich world which gamers could explore, but their 22K memory was something of a limitation (for comparison that’s about the size of my avatar picture at the top of this page). They procedurally generated all the characteristics of the 2048 planets in their virtual universe, including the names, which were stitched together using a lookup table of parts of names. In fact the original plans were for 2^52 planets, but it was decided that that was probably too many. Oh, and they did that all in assembly language. Other games of the time used similar techniques too – The Sentinel’s landscape generation algorithm being another example. Modern Garbage Collectors Garbage collection in managed languages like Java and .NET ensures that most of the time, developers stop needing to care about how they use and clean up memory as the garbage collector handles it automatically. Achieving this without killing performance is a near-miraculous feet of software engineering. Much like when learning chemistry, you find that every time you think you understand how the garbage collector works, it turns out to be a mere simplification; that there are yet more complexities and heuristics to help it run efficiently. Of course introducing memory problems is still possible (and there are tools like our memory profiler to help if that happens to you) but they’re much, much rarer. A cautionary note In the examples above, there were good and well understood reasons for the optimizations, but cunningly optimized code has usually had to trade away readability and maintainability to achieve its gains. Trying to optimize memory usage without being pretty confident that there’s actually a problem is doing it wrong. So what have I missed? Tell me about the ingenious (or stupid) tricks you’ve seen people use. Ben

    Read the article

  • Algorithm to determine which points should be visible on a map based on zoom

    - by lgratian
    Hi! I'm making a Google Maps-like application for a course at my Uni (not something complex, it should load the map of a city for example, not the whole world). The map can have many layers, including markers (restaurants, hospitals, etc.) The problem is that when you have many points and you zoom out the map it doesn't look right. At this zoom level only some points need to be visible (and at the maximum map size, all points). The question is: how can you determine which points should be visible for a specified zoom level? Because I have implemented a PR Quadtree to speed up rendering I thought that I could define some "high-priority" markers (that are always visible, defined in the map editor) and put them in a queue. At each step a marker is removed from the queue and all it's neighbors that are at least D units away (D depends on the zoom levels) are chosen and inserted in the queue, and so on. Is there any better way than the algorithm I thought of? Thanks in advance!

    Read the article

< Previous Page | 1 2