Search Results

Search found 10245 results on 410 pages for 'quick guide to irm'.

Page 2/410 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • IRM and Consumerization

    - by martin.abrahams
    As the season of rampant consumerism draws to its official close on 12th Night, it seems a fitting time to discuss consumerization - whereby technologies from the consumer market, such as the Android and iPad, are adopted by business organizations. I expect many of you will have received a shiny new mobile gadget for Christmas - and will be expecting to use it for work as well as leisure in 2011. In my case, I'm just getting to grips with my first Android phone. This trend developed so much during 2010 that a number of my customers have officially changed their stance on consumer devices - accepting consumerization as something to embrace rather than resist. Clearly, consumerization has significant implications for information control, as corporate data is distributed to consumer devices whether the organization is aware of it or not. I daresay that some DLP solutions can limit distribution to some extent, but this creates a conflict between accepting consumerization and frustrating it. So what does Oracle IRM have to offer the consumerized enterprise? First and foremost, consumerization does not automatically represent great additional risk - if an enterprise seals its sensitive information. Sealed files are encrypted, and that fundamental protection is not affected by copying files to consumer devices. A device might be lost or stolen, and the user might not think to report the loss of a personally owned device, but the data and the enterprise that owns it are protected. Indeed, the consumerization trend is another strong reason for enterprises to deploy IRM - to protect against this expansion of channels by which data might be accidentally exposed. It also enables encryption requirements to be met even though the enterprise does not own the device and cannot enforce device encryption. Moving on to the usage of sealed content on such devices, some of our customers are using virtual desktop solutions such that, in truth, the sealed content is being opened and used on a PC in the normal way, and the user is simply using their device for display purposes. This has several advantages: The sensitive documents are not actually on the devices, so device loss and theft are even less of a worry The enterprise has another layer of control over how and where content is used, as access to the virtual solution involves another layer of authentication and authorization - defence in depth It is a generic solution that means the enterprise does not need to actively support the ever expanding variety of consumer devices - the enterprise just manages some virtual access to traditional systems using something like Citrix or Remote Desktop services. It is a tried and tested way of accessing sealed documents. People have being using Oracle IRM in conjunction with Citrix and Remote Desktop for several years. For some scenarios, we also have the "IRM wrapper" option that provides a simple app for sealing and unsealing content on a range of operating systems. We are busy working on other ways to support the explosion of consumer devices, but this blog is not a proper forum for talking about them at this time. If you are an Oracle IRM customer, we will be pleased to discuss our plans and your requirements with you directly on request. You can be sure that the blog will cover the new capabilities as soon as possible.

    Read the article

  • Oracle IRM Desktop update

    - by martin.abrahams
    Just in time for Christmas, we have made a fresh IRM Desktop build available with a number of valuable enhancements: Office 2010 support Adobe Reader X support Enhanced compatibility with SharePoint Ability to enable the Sealed Email for Lotus Notes integration during IRM Desktop installation The kit is currently available as a patch that you can access by logging in to My Oracle Support and looking for patch 9165540. The patch enables you to download a package containing all 27 language variants of the IRM Desktop. We will be making the kit available from OTN as soon as possible, at which time you will be able to pick a particular language if preferred.

    Read the article

  • quick look at: dm_db_index_physical_stats

    - by fatherjack
    A quick look at the key data from this dmv that can help a DBA keep databases performing well and systems online as the users need them. When the dynamic management views relating to index statistics became available in SQL Server 2005 there was much hype about how they can help a DBA keep their servers running in better health than ever before. This particular view gives an insight into the physical health of the indexes present in a database. Whether they are use or unused, complete or missing some columns is irrelevant, this is simply the physical stats of all indexes; disabled indexes are ignored however. In it’s simplest form this dmv can be executed as:   The results from executing this contain a record for every index in every database but some of the columns will be NULL. The first parameter is there so that you can specify which database you want to gather index details on, rather than scan every database. Simply specifying DB_ID() in place of the first NULL achieves this. In order to avoid the NULLS, or more accurately, in order to choose when to have the NULLS you need to specify a value for the last parameter. It takes one of 4 values – DEFAULT, ‘SAMPLED’, ‘LIMITED’ or ‘DETAILED’. If you execute the dmv with each of these values you can see some interesting details in the times taken to complete each step. DECLARE @Start DATETIME DECLARE @First DATETIME DECLARE @Second DATETIME DECLARE @Third DATETIME DECLARE @Finish DATETIME SET @Start = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, DEFAULT) AS ddips SET @First = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'SAMPLED') AS ddips SET @Second = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'LIMITED') AS ddips SET @Third = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'DETAILED') AS ddips SET @Finish = GETDATE() SELECT DATEDIFF(ms, @Start, @First) AS [DEFAULT] , DATEDIFF(ms, @First, @Second) AS [SAMPLED] , DATEDIFF(ms, @Second, @Third) AS [LIMITED] , DATEDIFF(ms, @Third, @Finish) AS [DETAILED] Running this code will give you 4 result sets; DEFAULT will have 12 columns full of data and then NULLS in the remainder. SAMPLED will have 21 columns full of data. LIMITED will have 12 columns of data and the NULLS in the remainder. DETAILED will have 21 columns full of data. So, from this we can deduce that the DEFAULT value (the same one that is also applied when you query the view using a NULL parameter) is the same as using LIMITED. Viewing the final result set has some details that are worth noting: Running queries against this view takes significantly longer when using the SAMPLED and DETAILED values in the last parameter. The duration of the query is directly related to the size of the database you are working in so be careful running this on big databases unless you have tried it on a test server first. Let’s look at the data we get back with the DEFAULT value first of all and then progress to the extra information later. We know that the first parameter that we supply has to be a database id and for the purposes of this blog we will be providing that value with the DB_ID function. We could just as easily put a fixed value in there or a function such as DB_ID (‘AnyDatabaseName’). The first columns we get back are database_id and object_id. These are pretty explanatory and we can wrap those in some code to make things a little easier to read: SELECT DB_NAME([ddips].[database_id]) AS [DatabaseName] , OBJECT_NAME([ddips].[object_id]) AS [TableName] … FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, NULL) AS ddips  gives us   SELECT DB_NAME([ddips].[database_id]) AS [DatabaseName] , OBJECT_NAME([ddips].[object_id]) AS [TableName], [i].[name] AS [IndexName] , ….. FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, NULL) AS ddips INNER JOIN [sys].[indexes] AS i ON [ddips].[index_id] = [i].[index_id] AND [ddips].[object_id] = [i].[object_id]     These handily tie in with the next parameters in the query on the dmv. If you specify an object_id and an index_id in these then you get results limited to either the table or the specific index. Once again we can place a  function in here to make it easier to work with a specific table. eg. SELECT * FROM [sys].[dm_db_index_physical_stats] (DB_ID(), OBJECT_ID(‘AdventureWorks2008.Person.Address’) , 1, NULL, NULL) AS ddips   Note: Despite me showing that functions can be placed directly in the parameters for this dmv, best practice recommends that functions are not used directly in the function as it is possible that they will fail to return a valid object ID. To be certain of not passing invalid values to this function, and therefore setting an automated process off on the wrong path, declare variables for the OBJECT_IDs and once they have been validated, use them in the function: DECLARE @db_id SMALLINT; DECLARE @object_id INT; SET @db_id = DB_ID(N’AdventureWorks_2008′); SET @object_id = OBJECT_ID(N’AdventureWorks_2008.Person.Address’); IF @db_id IS NULL BEGINPRINT N’Invalid database’; ENDELSE IF @object_id IS NULL BEGINPRINT N’Invalid object’; ENDELSE BEGINSELECT * FROM sys.dm_db_index_physical_stats (@db_id, @object_id, NULL, NULL , ‘LIMITED’); END; GO In cases where the results of querying this dmv don’t have any effect on other processes (i.e. simply viewing the results in the SSMS results area)  then it will be noticed when the results are not consistent with the expected results and in the case of this blog this is the method I have used. So, now we can relate the values in these columns to something that we recognise in the database lets see what those other values in the dmv are all about. The next columns are: We’ll skip partition_number, index_type_desc, alloc_unit_type_desc, index_depth and index_level  as this is a quick look at the dmv and they are pretty self explanatory. The final columns revealed by querying this view in the DEFAULT mode are avg_fragmentation_in_percent. This is the amount that the index is logically fragmented. It will show NULL when the dmv is queried in SAMPLED mode. fragment_count. The number of pieces that the index is broken into. It will show NULL when the dmv is queried in SAMPLED mode. avg_fragment_size_in_pages. The average size, in pages, of a single fragment in the leaf level of the IN_ROW_DATA allocation unit. It will show NULL when the dmv is queried in SAMPLED mode. page_count. Total number of index or data pages in use. OK, so what does this give us? Well, there is an obvious correlation between fragment_count, page_count and avg_fragment_size-in_pages. We see that an index that takes up 27 pages and is in 3 fragments has an average fragment size of 9 pages (27/3=9). This means that for this index there are 3 separate places on the hard disk that SQL Server needs to locate and access to gather the data when it is requested by a DML query. If this index was bigger than 72KB then having it’s data in 3 pieces might not be too big an issue as each piece would have a significant piece of data to read and the speed of access would not be too poor. If the number of fragments increases then obviously the amount of data in each piece decreases and that means the amount of work for the disks to do in order to retrieve the data to satisfy the query increases and this would start to decrease performance. This information can be useful to keep in mind when considering the value in the avg_fragmentation_in_percent column. This is arrived at by an internal algorithm that gives a value to the logical fragmentation of the index taking into account the multiple files, type of allocation unit and the previously mentioned characteristics if index size (page_count) and fragment_count. Seeing an index with a high avg_fragmentation_in_percent value will be a call to action for a DBA that is investigating performance issues. It is possible that tables will have indexes that suffer from rapid increases in fragmentation as part of normal daily business and that regular defragmentation work will be needed to keep it in good order. In other cases indexes will rarely become fragmented and therefore not need rebuilding from one end of the year to another. Keeping this in mind DBAs need to use an ‘intelligent’ process that assesses key characteristics of an index and decides on the best, if any, defragmentation method to apply should be used. There is a simple example of this in the sample code found in the Books OnLine content for this dmv, in example D. There are also a couple of very popular solutions created by SQL Server MVPs Michelle Ufford and Ola Hallengren which I would wholly recommend that you review for much further detail on how to care for your SQL Server indexes. Right, let’s get back on track then. Querying the dmv with the fifth parameter value as ‘DETAILED’ takes longer because it goes through the index and refreshes all data from every level of the index. As this blog is only a quick look a we are going to skate right past ghost_record_count and version_ghost_record_count and discuss avg_page_space_used_in_percent, record_count, min_record_size_in_bytes, max_record_size_in_bytes and avg_record_size_in_bytes. We can see from the details below that there is a correlation between the columns marked. Column 1 (Page_Count) is the number of 8KB pages used by the index, column 2 is how full each page is (how much of the 8KB has actual data written on it), column 3 is how many records are recorded in the index and column 4 is the average size of each record. This approximates to: ((Col1*8) * 1024*(Col2/100))/Col3 = Col4*. avg_page_space_used_in_percent is an important column to review as this indicates how much of the disk that has been given over to the storage of the index actually has data on it. This value is affected by the value given for the FILL_FACTOR parameter when creating an index. avg_record_size_in_bytes is important as you can use it to get an idea of how many records are in each page and therefore in each fragment, thus reinforcing how important it is to keep fragmentation under control. min_record_size_in_bytes and max_record_size_in_bytes are exactly as their names set them out to be. A detail of the smallest and largest records in the index. Purely offered as a guide to the DBA to better understand the storage practices taking place. So, keeping an eye on avg_fragmentation_in_percent will ensure that your indexes are helping data access processes take place as efficiently as possible. Where fragmentation recurs frequently then potentially the DBA should consider; the fill_factor of the index in order to leave space at the leaf level so that new records can be inserted without causing fragmentation so rapidly. the columns used in the index should be analysed to avoid new records needing to be inserted in the middle of the index but rather always be added to the end. * – it’s approximate as there are many factors associated with things like the type of data and other database settings that affect this slightly.  Another great resource for working with SQL Server DMVs is Performance Tuning with SQL Server Dynamic Management Views by Louis Davidson and Tim Ford – a free ebook or paperback from Simple Talk. Disclaimer – Jonathan is a Friend of Red Gate and as such, whenever they are discussed, will have a generally positive disposition towards Red Gate tools. Other tools are often available and you should always try others before you come back and buy the Red Gate ones. All code in this blog is provided “as is” and no guarantee, warranty or accuracy is applicable or inferred, run the code on a test server and be sure to understand it before you run it on a server that means a lot to you or your manager.

    Read the article

  • Rights Expiry Options in IRM 11g

    - by martin.abrahams
    Among the many enhancements in IRM 11g, we have introduced a couple of new rights expiry options that may be applied to any role. These options were supported in previous versions, but fell into the "advanced configuration" category. In 11g, the options can be applied simply by selecting a check-box in the properties of a role, as shown by the rather extreme example below, where the role allows access for just two minutes after they are sealed. The new options are: To define a role that expires automatically some period after it is assigned To define a role that evaluates expiry relative to the time that each document is sealed These options supplement the familiar options to allow open-ended access (limited by offline access and the ever-present option to revoke rights at any time) and the option to define time windows with specific start dates and end dates. The value of these options is easiest to illustrate with some publishing examples: You might define a role with a one year expiry to be assigned to users who purchase a one year subscription. For each individual user, the year would be calculated from the time that the role was assigned to them. You might define a role that allows documents to be accessed only for 24 hours from the time that they are published - perhaps as a preview mechanism designed to tempt users to sign up for a full subscription. Upon payment of a full fee, users can simply be reassigned a role that gives them greater access to exactly the same documents. In a corporate environment, you might use such roles for fixed term contractors or for workflows that involve information with a short lifespan, or perhaps as part of a compliance process that requires rights to be formally re-approved at intervals. Being role-based, the time constraints apply to any number of documents - including documents that have not yet been created. For example, a user with a one year subscription would have access to all documents published in the relevant classification during the year without any further configuration. Crucially, unlike other solutions, it is not the documents that expire, but the rights of particular users. Whereas some solutions make documents completely inaccessible for all users after expiry, Oracle IRM can allow some users to continue using documents while other users lose access. Equally crucially, a user whose rights have expired can always be granted fresh rights at any time - for example, because they renew their subscription or because a manager confirms that they still need the rights as part of a corporate compliance process. By applying expiry to rights rather than to documents, Oracle IRM avoids the risk of locking an organization out of its own information.

    Read the article

  • New Oracle Information Rights Management release (11.1.1.3)

    - by Simon Thorpe
    Just released is the latest version of the market leading document security technology from Oracle. Oracle IRM 11g is the result of over 12 years of development and innovation to allow customers to provide persistent security to their most confidential documents and emails. This latest release continues our refinement of the technology and features the following; Continued improvements to the web based Oracle IRM Management Website New features in the out of the box classification model New Java APIs improving application integration support Support for DB2 as the IRM database. Over the coming months we will see more releases from this technology as we improve format support, platform support and continue the strategy to for Oracle IRM as the most secure, scalable and usable document security solution in the market. Want to learn more about Oracle IRM? View our video presentation and demonstration or try using it for your self via our simple online self service demo. Keep up to date on Oracle via this blog or on our Twitter, YouTube and Facebook pages.

    Read the article

  • Merge sort versus quick sort performance

    - by Giorgio
    I have implemented merge sort and quick sort using C (GCC 4.4.3 on Ubuntu 10.04 running on a 4 GB RAM laptop with an Intel DUO CPU at 2GHz) and I wanted to compare the performance of the two algorithms. The prototypes of the sorting functions are: void merge_sort(const char **lines, int start, int end); void quick_sort(const char **lines, int start, int end); i.e. both take an array of pointers to strings and sort the elements with index i : start <= i <= end. I have produced some files containing random strings with length on average 4.5 characters. The test files range from 100 lines to 10000000 lines. I was a bit surprised by the results because, even though I know that merge sort has complexity O(n log(n)) while quick sort is O(n^2), I have often read that on average quick sort should be as fast as merge sort. However, my results are the following. Up to 10000 strings, both algorithms perform equally well. For 10000 strings, both require about 0.007 seconds. For 100000 strings, merge sort is slightly faster with 0.095 s against 0.121 s. For 1000000 strings merge sort takes 1.287 s against 5.233 s of quick sort. For 5000000 strings merge sort takes 7.582 s against 118.240 s of quick sort. For 10000000 strings merge sort takes 16.305 s against 1202.918 s of quick sort. So my question is: are my results as expected, meaning that quick sort is comparable in speed to merge sort for small inputs but, as the size of the input data grows, the fact that its complexity is quadratic will become evident? Here is a sketch of what I did. In the merge sort implementation, the partitioning consists in calling merge sort recursively, i.e. merge_sort(lines, start, (start + end) / 2); merge_sort(lines, 1 + (start + end) / 2, end); Merging of the two sorted sub-array is performed by reading the data from the array lines and writing it to a global temporary array of pointers (this global array is allocate only once). After each merge the pointers are copied back to the original array. So the strings are stored once but I need twice as much memory for the pointers. For quick sort, the partition function chooses the last element of the array to sort as the pivot and scans the previous elements in one loop. After it has produced a partition of the type start ... {elements <= pivot} ... pivotIndex ... {elements > pivot} ... end it calls itself recursively: quick_sort(lines, start, pivotIndex - 1); quick_sort(lines, pivotIndex + 1, end); Note that this quick sort implementation sorts the array in-place and does not require additional memory, therefore it is more memory efficient than the merge sort implementation. So my question is: is there a better way to implement quick sort that is worthwhile trying out? If I improve the quick sort implementation and perform more tests on different data sets (computing the average of the running times on different data sets) can I expect a better performance of quick sort wrt merge sort? EDIT Thank you for your answers. My implementation is in-place and is based on the pseudo-code I have found on wikipedia in Section In-place version: function partition(array, 'left', 'right', 'pivotIndex') where I choose the last element in the range to be sorted as a pivot, i.e. pivotIndex := right. I have checked the code over and over again and it seems correct to me. In order to rule out the case that I am using the wrong implementation I have uploaded the source code on github (in case you would like to take a look at it). Your answers seem to suggest that I am using the wrong test data. I will look into it and try out different test data sets. I will report as soon as I have some results.

    Read the article

  • Beginners Guide to Visual Studio LightSwitch makes it easy to take a closer look

    - by Jim Duffy
    Following up on my most recent post about LightSwitch I thought I’d keep you in the loop on a valuable LightSwitch resource. The Beginners Guide to Visual Studio LightSwitch provides a jump start to get you and the department-level-typical-Access-application-developing-power-user rolling with LightSwitch in no time. The guide is broken down into 4 easy to follow parts. Beginners Guide to Visual Studio LightSwitch (Part – 1) – Working with New Data Entry Screen Beginners Guide to Visual Studio LightSwitch (Part – 2) – Working with Search Screen Beginners Guide to Visual Studio LightSwitch (Part – 3) – Working with Editable DataGrid Screen Beginners Guide to Visual Studio LightSwitch (Part – 4) – Working with List and Details Screen I mentioned it in my prior post but don’t forget to check out Beth Massi’s blog for additional information on Visual Studio LightSwitch. Have a day.

    Read the article

  • User Experience Tablet Guide Released on UX Direct Site

    - by Madhuri Kolhatkar
    Tablet Guide available on UX Direct NOW Responding to a popular demand from our customers, Oracle Application's user experience team is happy to externalize its new design guide for creating tablet based solutions for Enterprise applications on the UX Direct website. Download and use this guide to create great and successful customer experience for your users. UX Tablet Guide for Oracle Applications This guide provides basic help for designers, developers, and project managers trying to approach tablet design and testing from an enterprise point of view. If you are embarking on a tablet application design project, start here first. In the spirit of tablet design, it is delivered in the form of an iPad interactive iBook .Use this guide and tell us what you think. We would love to see examples of your creations. Watch this space for more updates and new and innovative design tools.

    Read the article

  • How to Use Quick Toggles on Your Android Phone

    - by Chris Hoffman
    One of the big new features in Apple’s iOS 7 is Control Center, which allows you to quickly access and toggle common setting from anywhere. However, Android phones have had quick toggles for a long time. Android now has its own built-in quick toggles, while popular manufacturer-customized interfaces like Samsung’s TouchWiz have their own quick toggles, which work differently. You can also add custom quick toggles in different places.    

    Read the article

  • Renault under threat from industrial espionage, intellectual property the target

    - by Simon Thorpe
    Last year we saw news of both General Motors and Ford losing a significant amount of valuable information to competitors overseas. Within weeks of the turn of 2011 we see the European car manufacturer, Renault, also suffering. In a recent news report, French Industry Minister Eric Besson warned the country was facing "economic war" and referenced a serious case of espionage which concerns information pertaining to the development of electric cars. Renault senior vice president Christian Husson told the AFP news agency that the people concerned were in a "particularly strategic position" in the company. An investigation had uncovered a "body of evidence which shows that the actions of these three colleagues were contrary to the ethics of Renault and knowingly and deliberately placed at risk the company's assets", Mr Husson said. A source told Reuters on Wednesday the company is worried its flagship electric vehicle program, in which Renault with its partner Nissan is investing 4 billion euros ($5.3 billion), might be threatened. This casts a shadow over the estimated losses of Ford ($50 million) and General Motors ($40 million). One executive in the corporate intelligence-gathering industry, who spoke on condition of anonymity, said: "It's really difficult to say it's a case of corporate espionage ... It can be carelessness." He cited a hypothetical example of an enthusiastic employee giving away too much information about his job on an online forum. While information has always been passed and leaked, inadvertently or on purpose, the rise of the Internet and social media means corporate spies or careless employees are now more likely to be found out, he added. We are seeing more and more examples of where companies like these need to invest in technologies such as Oracle IRM to ensure such important information can be kept under control. It isn't just the recent release of information into the public domain via the Wikileaks website that is of concern, but also the increasing threats of industrial espionage in cases such as these. Information rights management doesn't totally remove the threat, but abilities to control documents no matter where they exist certainly increases the capabilities significantly. Every single time someone opens a sealed document the IRM system audits the activity. This makes identifying a potential source for a leak much easier when you have an absolute record of every person who's had access to the documents. Oracle IRM can also help with accidental or careless loss. Often people use very sensitive information all the time and forget the importance of handling it correctly. With the ability to protect the information from screen shots and prevent people copy and pasting document information into social networks and other, unsecured documents, Oracle IRM brings a totally new level of information security that would have a significant impact on reducing the risk these organizations face of losing their most valuable information.

    Read the article

  • The Beginner’s Guide to Managing Users and Groups in Linux

    - by Zainul Franciscus
    Ubuntu Linux uses groups to help you manage users, set permissions on those users, and even monitor how much time they are spending in front of the PC. Here’s a beginner’s guide to how it all works Latest Features How-To Geek ETC The How-To Geek Holiday Gift Guide (Geeky Stuff We Like) LCD? LED? Plasma? The How-To Geek Guide to HDTV Technology The How-To Geek Guide to Learning Photoshop, Part 8: Filters Improve Digital Photography by Calibrating Your Monitor Our Favorite Tech: What We’re Thankful For at How-To Geek The How-To Geek Guide to Learning Photoshop, Part 7: Design and Typography Happy Snow Bears Theme for Chrome and Iron [Holiday] Download Full Command and Conquer: Tiberian Sun Game for Free Scorched Cometary Planet Wallpaper Quick Fix: Add the RSS Button Back to the Firefox Awesome Bar Dropbox Desktop Client 1.0.0 RC for Windows, Linux, and Mac Released Hang in There Scrat! – Ice Age Wallpaper

    Read the article

  • Upcoming Customer WebCast: SOA 11g Database: Guide for Administrators

    - by MariaSalzberger
    The SOA infrastructure database is used by SOA Suite products like BPEL PM, BAM, BPM, Human Worklow, B2B and Mediator. A SOA administrator is involved in many different tasks like installation, upgrade, performance tuning and other administrative topics. Another important one is purging - see the posting for this: SOA Suite 11g Purging Guide. We have implemented a guide to help with thess tasks: SOA 11g Infrastructure Database: Installation, Maintenance and Administration Guide. An upcoming advisor webcast planned for Wednesday, April 11 2012 at 15:00 UK / 16:00 CET / 07:00 am Pacific / 8:00 am Mountain / 10:00 am Eastern will walk you through the guide and show some of the highligts. Registration for this webcast is available in SOA 11g Database: Guide for Administrators [ID 1422913.1]. The presentation recording can by found here after the webcast. (https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=ANNOUNCEMENT&id=740964.1) The schedule for future webcasts can be found here (https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=ANNOUNCEMENT&id=740966.1)

    Read the article

  • SQLAuthority News – Download Whitepaper – SQL Server 2008 R2 Analysis Services Operations Guide

    - by pinaldave
    SQL Server Analysis Service (SSAS) has been always interesting subject for research. Analysis Services cubes are a very powerful tool in the hands of the business intelligence (BI) developer. They provide an easy way to expose even large data models directly to business users. Microsoft has published very informative white paper on Analysis Services Operations Guide. This white paper is authored by Thomas Kejser, John Sirmon, and Denny Lee. In this guide you will find information on how to test and run Microsoft SQL Server Analysis Services in SQL Server 2005, SQL Server 2008, and SQL Server 2008 R2 in a production environment. The focus of this guide is how you can test, monitor, diagnose, and remove production issues on even the largest scaled cubes. This paper also provides guidance on how to configure the server for best possible performance. It is the goal of this guide to make your operations processes as painless as possible, and to have you run with the best possible performance without any additional development effort to your deployed cubes. In this guide, you will learn how to get the best out of your existing data model by making changes transparent to the data model and by making configuration changes that improve the user experience of the cube. Download SQL Server 2008 R2 Analysis Services Operations Guide Note: Abstract taken white paper. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • How to Add the Windows Calculator to the Quick Access Toolbar in Microsoft Excel 2013

    - by Lori Kaufman
    Do you use the Windows Calculator to perform quick calculations while building spreadsheets in Excel? You can save time by adding the Calculator to the Quick Access Toolbar in Excel so you don’t have to leave the program to access the Calculator. To do this, click the down arrow on the right side of the Quick Access Toolbar and select More Commands from the drop-down menu. On the Quick Access Toolbar screen on the Excel Options dialog box, select Commands Not in the Ribbon from the Choose commands from drop-down list. Scroll down in the long list and select Calculator. Click Add to add the Calculator to the Quick Access Toolbar. Click OK to accept the change and close the Excel Options dialog box. You’ll see a Calculator icon on the Quick Access Toolbar. When you move your mouse over the icon, a hint displays saying “Custom.” Despite the label, when you click the icon, the Windows Calculator opens. The same procedure works for adding the Windows Calculator to Excel 2010, as well.     

    Read the article

  • Tip: Keeping the ADF Mobile PDF Guide up to date

    - by Chris Muir
    This is a little tip for customers using Oracle's ADF Mobile. If you're like me, it's possible you don't rely on the online HTML version of the Mobile Developer's Guide for ADF, but rather download a PDF version of the file to use locally (look to the "PDF" link to the top right of the guide).  For me the convenience of the PDF is it's faster, I can search the whole document easily, I can split read the document across two pages on my home monitor, if I lose my internet connection the document is still available, and it's easy to read on my iPad (especially on long haul flights to the US across the Pacific where there is no internet connection!). The trigger point for me to download the Oracle PDF documentation has always been on a new point release of JDeveloper.  However in the case of ADF Mobile, as an extension to JDeveloper it is releasing at a much faster and independent schedule to JDeveloper and this includes updates to the documentation. As such the 11.1.2.4.0 ADF Mobile PDF guide you have locally might be out of date and you should take the opportunity to download the latest version.  This is also particularly important for ADF Mobile as not only are many new features being added for each release and included in the new documentation, but the guide is under rapid improvement to clarify much of what has been written to date.  Our documentation teams are super responsive to suggestions on how to improve the guides and this often shows per point release. How do you tell you've the latest guide? Look to the document part number which right now is "E24475-03".  This is a unique ID per release for the document, the first part being the document number, and the part after the dash the revision number.  If the website document number has a higher revision number, time to download a new up to date PDF. One last thing to share, you can follow the ADF Mobile guide document manager Brian Duffield on Twitter to keep abreast of updates. Image courtesy of Stuart Miles / FreeDigitalPhotos.net

    Read the article

  • Google C++ style guide

    - by user231536
    I am curious as to what people think of the google C++ style guide. http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml I see references to it scattered across stackoverflow and would like to collect your opinions as to what you think about it.

    Read the article

  • a good Java guide

    - by Lo'oris
    Do you know a good guide for Java, such as "dive into python" for python? If I searched google I expect I would find tons of random guides, but trying them all until I found a good one could take ages... that's why I am asking: do you already know one in particular? one you KNOW is good? I already know C, PHP and a bit of Python, if that matters.

    Read the article

  • sharepoint online quick launch

    - by Brian
    Hello, we are converting from sharepoint 2003 to sharepoint on line. I am having trouble reproducing a specific behavior in the online version. If a choose a list, I get a "select a view" navigation on the left hand side of the page showing the available views. When a new view is created, it automatically appears on this navigation list. In the online sharepoint, instead there is a view dropdown. I know I can manually setup links on the quick launch but I'm looking for an automatic way to do this. Can the online sharepoint be set up so that when views are added they automatically appear as left-hand links? Or can the "views" dropdown be moved to the left side which would be an acceptable work around? Please note I am unfamiliar with SP designer and I do work with .NET but I dont want to go that route just for this issue - thanks.

    Read the article

  • IRM Item Codes &ndash; what are they for?

    - by martin.abrahams
    A number of colleagues have been asking about IRM item codes recently – what are they for, when are they useful, how can you control them to meet some customer requirements? This is quite a big topic, but this article provides a few answers. An item code is part of the metadata of every sealed document – unless you define a custom metadata model. The item code is defined when a file is sealed, and usually defaults to a timestamp/filename combination. This time/name combo tends to make item codes unique for each new document, but actually item codes are not necessarily unique, as will become clear shortly. In most scenarios, item codes are not relevant to the evaluation of a user’s rights - the context name is the critical piece of metadata, as a user typically has a role that grants access to an entire classification of information regardless of item code. This is key to the simplicity and manageability of the Oracle IRM solution. Item codes are occasionally exposed to users in the UI, but most users probably never notice and never care. Nevertheless, here is one example of where you can see an item code – when you hover the mouse pointer over a sealed file. As you see, the item code for this freshly created file combines a timestamp with the file name. But what are item codes for? The first benefit of item codes is that they enable you to manage exceptions to the policy defined for a context. Thus, I might have access to all oracle – internal files - except for 2011_03_11 13:33:29 Board Minutes.sdocx. This simple mechanism enables Oracle IRM to provide file-by-file control where appropriate, whilst offering the scalability and manageability of classification-based control for the majority of users and content. You really don’t want to be managing each file individually, but never say never. Item codes can also be used for the opposite effect – to include a file in a user’s rights when their role would ordinarily deny access. So, you can assign a role that allows access only to specified item codes. For example, my role might say that I have access to precisely one file – the one shown above. So how are item codes set? In the vast majority of scenarios, item codes are set automatically as part of the sealing process. The sealing API uses the timestamp and filename as shown, and the user need not even realise that this has happened. This automatically creates item codes that are for all practical purposes unique - and that are also intelligible to users who might want to refer to them when viewing or assigning rights in the management UI. It is also possible for suitably authorised users and applications to set the item code manually or programmatically if required. Setting the item code manually using the IRM Desktop The manual process is a simple extension of the sealing task. An authorised user can select the Advanced… sealing option, and will see a dialog that offers the option to specify the item code. To see this option, the user’s role needs the Set Item Code right – you don’t want most users to give any thought at all to item codes, so by default the option is hidden. Setting the item code programmatically A more common scenario is that an application controls the item code programmatically. For example, a document management system that seals documents as part of a workflow might set the item code to match the document’s unique identifier in its repository. This offers the option to tie IRM rights evaluation directly to the security model defined in the document management system. Again, the sealing application needs to be authorised to Set Item Code. The Payslip Scenario To give a concrete example of how item codes might be used in a real world scenario, consider a Human Resources workflow such as a payslips. The goal might be to allow the HR team to have access to all payslips, but each employee to have access only to their own payslips. To enable this, you might have an IRM classification called Payslips. The HR team have a role in the normal way that allows access to all payslips. However, each employee would have an Item Reader role that only allows them to access files that have a particular item code – and that item code might match the employee’s payroll number. So, employee number 123123123 would have access to items with that code. This shows why item codes are not necessarily unique – you can deliberately set the same code on many files for ease of administration. The employees might have the right to unseal or print their payslip, so the solution acts as a secure delivery mechanism that allows payslips to be distributed via corporate email without any fear that they might be accessed by IT administrators, or forwarded accidentally to anyone other than the intended recipient. All that remains is to ensure that as each user’s payslip is sealed, it is assigned the correct item code – something that is easily managed by a simple IRM sealing application. Each month, an employee’s payslip is sealed with the same item code, so you do not need to keep amending the list of items that the user has access to – they have access to all documents that carry their employee code.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >