Search Results

Search found 44 results on 2 pages for 'raii'.

Page 2/2 | < Previous Page | 1 2 

  • Is `catch(...) { throw; }` a bad practice?

    - by ereOn
    While I agree that catching ... without rethrowing is indeed wrong, I however believe that using constructs like this: try { // Stuff } catch (...) { // Some cleanup throw; } Is acceptable in cases where RAII is not applicable. (Please, don't ask... not everybody in my company likes object-oriented programming and RAII is often seen as "useless school stuff"...) My coworkers says that you should always know what exceptions are to be thrown and that you can always use constructs like: try { // Stuff } catch (exception_type1&) { // Some cleanup throw; } catch (exception_type2&) { // Some cleanup throw; } catch (exception_type3&) { // Some cleanup throw; } Is there a well admited good practice regarding these situations?

    Read the article

  • C++ and system exceptions

    - by Abyx
    Why standard C++ doesn't respect system (foreign or hardware) exceptions? E.g. when null pointer dereference occurs, stack isn't unwound, destructors aren't called, and RAII doesn't work. The common advice is "to use system API". But on certain systems, specifically Win32, this doesn't work. To enable stack unwinding for this C++ code // class Foo; // void bar(const Foo&); bar(Foo(1, 2)); one should generate something like this C code Foo tempFoo; Foo_ctor(&tempFoo); __try { bar(&tempFoo); } __finally { Foo_dtor(&tempFoo); } Foo_dtor(&tempFoo); and it's impossible to implement this as C++ library. Upd: Standard doesn't forbid handling system exceptions. But it seems that popular compilers like g++ doesn't respect system exceptions on any platforms just because standard doesn't require this. The only thing that I want - is to use RAII to make code readable and program reliable. I don't want to put hand-crafted try\finally around every call to unknown code. For example in this reusable code, AbstractA::foo is such unknown code: void func(AbstractA* a, AbstractB* b) { TempFile file; a->foo(b, file); } Maybe one will pass to func such implementation of AbstractA, which every Friday will not check if b is NULL, so access violation will happen, application will terminate and temporary file will not be deleted. How many months uses will suffer because of this issue, until either author of func or author of AbstractA will do something with it? Related: Is `catch(...) { throw; }` a bad practice?

    Read the article

  • How to approach copying objects with smart pointers as class attributes?

    - by tomislav-maric
    From the boost library documentation I read this: Conceptually, smart pointers are seen as owning the object pointed to, and thus responsible for deletion of the object when it is no longer needed. I have a very simple problem: I want to use RAII for pointer attributes of a class that is Copyable and Assignable. The copy and assignment operations should be deep: every object should have its own copy of the actual data. Also, RTTI needs to be available for the attributes (their type may also be determined at runtime). Should I be searching for an implementation of a Copyable smart pointer (the data are small, so I don't need Copy on Write pointers), or do I delegate the copy operation to the copy constructors of my objects as shown in this answer? Which smart pointer do I choose for simple RAII of a class that is copyable and assignable? (I'm thinking that the unique_ptr with delegated copy/assignment operations to the class copy constructor and assignment operator would make a proper choice, but I am not sure) Here's a pseudocode for the problem using raw pointers, it's just a problem description, not a running C++ code: // Operation interface class ModelOperation { public: virtual void operate = (); }; // Implementation of an operation called Special class SpecialModelOperation : public ModelOperation { private: // Private attributes are present here in a real implementation. public: // Implement operation void operate () {}; }; // All operations conform to ModelOperation interface // These are possible operation names: // class MoreSpecialOperation; // class DifferentOperation; // Concrete model with different operations class MyModel { private: ModelOperation* firstOperation_; ModelOperation* secondOperation_; public: MyModel() : firstOperation_(0), secondOperation_(0) { // Forgetting about run-time type definition from input files here. firstOperation_ = new MoreSpecialOperation(); secondOperation_ = new DifferentOperation(); } void operate() { firstOperation_->operate(); secondOperation_->operate(); } ~MyModel() { delete firstOperation_; firstOperation_ = 0; delete secondOperation_; secondOperation_ = 0; } }; int main() { MyModel modelOne; // Some internal scope { // I want modelTwo to have its own set of copied, not referenced // operations, and at the same time I need RAII to work for it, // as soon as it goes out of scope. MyModel modelTwo (modelOne); } return 0; }

    Read the article

  • Subtle C++ mistake, can you spot it?

    - by aaa
    I ran into a subtle C++ gotcha, took me while to resolve it. Can you spot it? class synchronized_container { boost::mutex mutex_; std::vector <T> container_; void push_back(const T &value) { boost::scoped_lock(mutex_); // raii mutex lock container_.push_back(value); } ... }; scoped lock is a raii mutex lock, obtains lock on constructor, release lock in destructor. The program will work as expected in serial, but will may occasionally produce weird stuff with more than one thread.

    Read the article

  • Did Bjarne Stroustrup create the terms constructor/destructor when talking about objects?

    - by user104971
    I was watching this keynote and Bjarne Stroustrup (Creator of C++) claims that he hadn't yet invented the words constructor and destructor yet when he was giving an example of RAII. http://www.youtube.com/watch?v=IYBLXBJr0HU I know the concept of construction and destruction has been around a lot longer (even in C, a function that allocates and returns a struct and then a function that frees it etc.), but was Bjarne really the first to invent the terms?

    Read the article

  • Modelling boost::Lockable with semaphore rather than mutex (previously titled: Unlocking a mutex fr

    - by dan
    I'm using the C++ boost::thread library, which in my case means I'm using pthreads. Officially, a mutex must be unlocked from the same thread which locks it, and I want the effect of being able to lock in one thread and then unlock in another. There are many ways to accomplish this. One possibility would be to write a new mutex class which allows this behavior. For example: class inter_thread_mutex{ bool locked; boost::mutex mx; boost::condition_variable cv; public: void lock(){ boost::unique_lock<boost::mutex> lck(mx); while(locked) cv.wait(lck); locked=true; } void unlock(){ { boost::lock_guard<boost::mutex> lck(mx); if(!locked) error(); locked=false; } cv.notify_one(); } // bool try_lock(); void error(); etc. } I should point out that the above code doesn't guarantee FIFO access, since if one thread calls lock() while another calls unlock(), this first thread may acquire the lock ahead of other threads which are waiting. (Come to think of it, the boost::thread documentation doesn't appear to make any explicit scheduling guarantees for either mutexes or condition variables). But let's just ignore that (and any other bugs) for now. My question is, if I decide to go this route, would I be able to use such a mutex as a model for the boost Lockable concept. For example, would anything go wrong if I use a boost::unique_lock< inter_thread_mutex for RAII-style access, and then pass this lock to boost::condition_variable_any.wait(), etc. On one hand I don't see why not. On the other hand, "I don't see why not" is usually a very bad way of determining whether something will work. The reason I ask is that if it turns out that I have to write wrapper classes for RAII locks and condition variables and whatever else, then I'd rather just find some other way to achieve the same effect. EDIT: The kind of behavior I want is basically as follows. I have an object, and it needs to be locked whenever it is modified. I want to lock the object from one thread, and do some work on it. Then I want to keep the object locked while I tell another worker thread to complete the work. So the first thread can go on and do something else while the worker thread finishes up. When the worker thread gets done, it unlocks the mutex. And I want the transition to be seemless so nobody else can get the mutex lock in between when thread 1 starts the work and thread 2 completes it. Something like inter_thread_mutex seems like it would work, and it would also allow the program to interact with it as if it were an ordinary mutex. So it seems like a clean solution. If there's a better solution, I'd be happy to hear that also. EDIT AGAIN: The reason I need locks to begin with is that there are multiple master threads, and the locks are there to prevent them from accessing shared objects concurrently in invalid ways. So the code already uses loop-level lock-free sequencing of operations at the master thread level. Also, in the original implementation, there were no worker threads, and the mutexes were ordinary kosher mutexes. The inter_thread_thingy came up as an optimization, primarily to improve response time. In many cases, it was sufficient to guarantee that the "first part" of operation A, occurs before the "first part" of operation B. As a dumb example, say I punch object 1 and give it a black eye. Then I tell object 1 to change it's internal structure to reflect all the tissue damage. I don't want to wait around for the tissue damage before I move on to punch object 2. However, I do want the tissue damage to occur as part of the same operation; for example, in the interim, I don't want any other thread to reconfigure the object in such a way that would make tissue damage an invalid operation. (yes, this example is imperfect in many ways, and no I'm not working on a game) So we made the change to a model where ownership of an object can be passed to a worker thread to complete an operation, and it actually works quite nicely; each master thread is able to get a lot more operations done because it doesn't need to wait for them all to complete. And, since the event sequencing at the master thread level is still loop-based, it is easy to write high-level master-thread operations, as they can be based on the assumption that an operation is complete when the corresponding function call returns. Finally, I thought it would be nice to use inter_thread mutex/semaphore thingies using RAII with boost locks to encapsulate the necessary synchronization that is required to make the whole thing work.

    Read the article

  • Should I use C style in C++?

    - by c.hughes
    As I've been developing my position on how software should be developed at the company I work for, I've come to a certain conclusion that I'm not entirely sure of. It seems to me that if you are programming in C++, you should not use C style anything if it can be helped and you don't absolutely need the performance improvement. This way people are kept from doing things like pointer arithmetic or creating resources with new without any RAII, etc. If this idea was enforced, seeing a char* would possibly be a thing of the past. I'm wondering if this is a conclusion others have made? Or am I being too puritanical about this?

    Read the article

  • Garbage collection in Perl

    - by srikfreak
    Unlike Java, Perl uses reference count for garbage collection. I have tried searching some previous questions which speak about C++ RAII and smart pointers and Java GC but have not understood how Perl deals with the circular referencing problem. Can anyone explain how Perl's garbage collector deals with circular references? Is there any way to reclaim circular referenced memory which are no longer used by the program or does Perl just ignores this problem altogether?

    Read the article

  • Unlocking a mutex from a different thread (C++)

    - by dan
    I'm using the C++ boost::thread library, which in my case means I'm using pthreads. Officially, a mutex must be unlocked from the same thread which locks it, and I want the effect of being able to lock in one thread and then unlock in another. There are many ways to accomplish this. One possibility would be to write a new mutex class which allows this behavior. For example: class inter_thread_mutex{ bool locked; boost::mutex mx; boost::condition_variable cv; public: void lock(){ boost::unique_lock<boost::mutex> lck(mx); while(locked) cv.wait(lck); locked=true; } void unlock(){ { boost::lock_guard<boost::mutex> lck(mx); if(!locked) error(); locked=false; } cv.notify_one(); } // bool try_lock(); void error(); etc. } I should point out that the above code doesn't guarantee FIFO access, since if one thread calls lock() while another calls unlock(), this first thread may acquire the lock ahead of other threads which are waiting. (Come to think of it, the boost::thread documentation doesn't appear to make any explicit scheduling guarantees for either mutexes or condition variables). But let's just ignore that (and any other bugs) for now. My question is, if I decide to go this route, would I be able to use such a mutex as a model for the boost Lockable concept. For example, would anything go wrong if I use a boost::unique_lock< inter_thread_mutex for RAII-style access, and then pass this lock to boost::condition_variable_any.wait(), etc. On one hand I don't see why not. On the other hand, "I don't see why not" is usually a very bad way of determining whether something will work. The reason I ask is that if it turns out that I have to write wrapper classes for RAII locks and condition variables and whatever else, then I'd rather just find some other way to achieve the same effect.

    Read the article

  • Good style for handling constructor failure of critical object

    - by mtlphil
    I'm trying to decide between two ways of instantiating an object & handling any constructor exceptions for an object that is critical to my program, i.e. if construction fails the program can't continue. I have a class SimpleMIDIOut that wraps basic Win32 MIDI functions. It will open a MIDI device in the constructor and close it in the destructor. It will throw an exception inherited from std::exception in the constructor if the MIDI device cannot be opened. Which of the following ways of catching constructor exceptions for this object would be more in line with C++ best practices Method 1 - Stack allocated object, only in scope inside try block #include <iostream> #include "simplemidiout.h" int main() { try { SimpleMIDIOut myOut; //constructor will throw if MIDI device cannot be opened myOut.PlayNote(60,100); //..... //myOut goes out of scope outside this block //so basically the whole program has to be inside //this block. //On the plus side, it's on the stack so //destructor that handles object cleanup //is called automatically, more inline with RAII idiom? } catch(const std::exception& e) { std::cout << e.what() << std::endl; std::cin.ignore(); return 1; } std::cin.ignore(); return 0; } Method 2 - Pointer to object, heap allocated, nicer structured code? #include <iostream> #include "simplemidiout.h" int main() { SimpleMIDIOut *myOut; try { myOut = new SimpleMIDIOut(); } catch(const std::exception& e) { std::cout << e.what() << std::endl; delete myOut; return 1; } myOut->PlayNote(60,100); std::cin.ignore(); delete myOut; return 0; } I like the look of the code in Method 2 better, don't have to jam my whole program into a try block, but Method 1 creates the object on the stack so C++ manages the object's life time, which is more in tune with RAII philosophy isn't it? I'm still a novice at this so any feedback on the above is much appreciated. If there's an even better way to check for/handle constructor failure in a siatuation like this please let me know.

    Read the article

  • What's the best software development conventions document you have seen?

    - by Pavel Radzivilovsky
    Google C++ development conventions outlaw exceptions, RAII, RTTI and bans the default parameter in parseInt(number, radix=10). Qt API style guide is brilliant, but only covers interfaces. The Robert C. Martin series Clean Code has M104 galaxy on the cover, but it is 462 pages long and based on Java, with no simple "do this" digest. Assuming that it is important to synchronize style and best practices across the organization, what is the smartest, most pleasant and useful conventions document you have worked with?

    Read the article

  • What's so bad about pointers in C++?

    - by Martin Beckett
    To continue the discussion in Why are pointers not recommended when coding with C++ Suppose you have a class that encapsulates objects which need some initialisation to be valid - like a network socket. // Blah manages some data and transmits it over a socket class socket; // forward declaration, so nice weak linkage. class blah { ... stuff TcpSocket *socket; } ~blah { // TcpSocket dtor handles disconnect delete socket; // or better, wrap it in a smart pointer } The ctor ensures that socket is marked NULL, then later in the code when I have the information to initialise the object. // initialising blah if ( !socket ) { // I know socket hasn't been created/connected // create it in a known initialised state and handle any errors // RAII is a good thing ! socket = new TcpSocket(ip,port); } // and when i actually need to use it if (socket) { // if socket exists then it must be connected and valid } This seems better than having the socket on the stack, having it created in some 'pending' state at program start and then having to continually check some isOK() or isConnected() function before every use. Additionally if TcpSocket ctor throws an exception it's a lot easier to handle at the point a Tcp connection is made rather than at program start. Obviously the socket is just an example, but I'm having a hard time thinking of when an encapsulated object with any sort of internal state shouldn't be created and initialised with new.

    Read the article

  • thread destructors in C++0x vs boost

    - by Abruzzo Forte e Gentile
    Hi All These days I am reading the pdf Designing MT programs . It explains that the user MUST explicitly call detach() on an object of class std::thread in C++0x before that object gets out of scope. If you don't call it std::terminate() will be called and the application will die. I usually use boost::thread for threading in C++. Correct me if I am wrong but a boost::thread object detaches automatically when it get out of scope. Is seems to me that the boost approach follow a RAII principle and the std doesn't. Do you know if there is some particular reason for this? Kind Regards AFG

    Read the article

  • c++ classes & lua

    - by anon
    I want to have C++ objects that I can read/write in both C++ & Lua. I have looked at: http://www.lua.org/pil/28.html However, I do not like that solution, since my objects have constructors & destructors (and they are important as I use RAII and these take care of reference counts). What I don't like in the PIL solution is that the object is allocated in Lua's heap. What i want instead, is to create hte C++ object on my own, and just have lua have a way to do get/set on them. Does anyone have a good tutorial/link on this? Tanks!

    Read the article

  • Questions about game states

    - by MrPlow
    I'm trying to make a framework for a game I've wanted to do for quite a while. The first thing that I decided to implement was a state system for game states. When my "original" idea of having a doubly linked list of game states failed I found This blog and liked the idea of a stack based game state manager. However there were a few things I found weird: Instead of RAII two class methods are used to initialize and destroy the state Every game state class is a singleton(and singletons are bad aren't they?) Every GameState object is static So I took the idea and altered a few things and got this: GameState.h class GameState { private: bool m_paused; protected: StateManager& m_manager; public: GameState(StateManager& manager) : m_manager(manager), m_paused(false){} virtual ~GameState() {} virtual void update() = 0; virtual void draw() = 0; virtual void handleEvents() = 0; void pause() { m_paused = true; } void resume() { m_paused = false; } void changeState(std::unique_ptr<GameState> state) { m_manager.changeState(std::move(state)); } }; StateManager.h class GameState; class StateManager { private: std::vector< std::unique_ptr<GameState> > m_gameStates; public: StateManager(); void changeState(std::unique_ptr<GameState> state); void StateManager::pushState(std::unique_ptr<GameState> state); void popState(); void update(); void draw(); void handleEvents(); }; StateManager.cpp StateManager::StateManager() {} void StateManager::changeState( std::unique_ptr<GameState> state ) { if(!m_gameStates.empty()) { m_gameStates.pop_back(); } m_gameStates.push_back( std::move(state) ); } void StateManager::pushState(std::unique_ptr<GameState> state) { if(!m_gameStates.empty()) { m_gameStates.back()->pause(); } m_gameStates.push_back( std::move(state) ); } void StateManager::popState() { if(!m_gameStates.empty()) m_gameStates.pop_back(); } void StateManager::update() { if(!m_gameStates.empty()) m_gameStates.back()->update(); } void StateManager::draw() { if(!m_gameStates.empty()) m_gameStates.back()->draw(); } void StateManager::handleEvents() { if(!m_gameStates.empty()) m_gameStates.back()->handleEvents(); } And it's used like this: main.cpp StateManager states; states.changeState( std::unique_ptr<GameState>(new GameStateIntro(states)) ); while(gamewindow::gameWindow.isOpen()) { states.handleEvents(); states.update(); states.draw(); } Constructors/Destructors are used to create/destroy states instead of specialized class methods, state objects are no longer static but

    Read the article

  • Returning pointers in a thread-safe way.

    - by Roddy
    Assume I have a thread-safe collection of Things (call it a ThingList), and I want to add the following function. Thing * ThingList::findByName(string name) { return &item[name]; // or something similar.. } But by doing this, I've delegated the responsibility for thread safety to the calling code, which would have to do something like this: try { list.lock(); // NEEDED FOR THREAD SAFETY Thing *foo = list.findByName("wibble"); foo->Bar = 123; list.unlock(); } catch (...) { list.unlock(); throw; } Obviously a RAII lock/unlock object would simplify/remove the try/catch/unlocks, but it's still easy for the caller to forget. There are a few alternatives I've looked at: Return Thing by value, instead of a pointer - fine unless you need to modify the Thing Add function ThingList::setItemBar(string name, int value) - fine, but these tend to proliferate Return a pointerlike object which locks the list on creation and unlocks it again on destruction. Not sure if this is good/bad practice... What's the right approach to dealing with this?

    Read the article

  • Help C++ifying this C style code.

    - by Flamewires
    Hey I'm used to developing in C and I would like to use C++ in a project. Can anyone give me an example of how I would translate this C-style code into C++ code. I know it should compile in a c++ complier but I'm talking using c++ techniques(I.e. classes, RAII) typedef struct Solution Solution; struct Solution { double x[30]; int itt_found; double value; }; Solution *NewSolution() { Solution *S = (Solution *)malloc(sizeof(Solution)); for (int i=0;<=30;i++) { S-x[i] = 0; } S-itt_found = -1; return S; } void FreeSolution(Solution *S) { if (S != NULL) free(S); } int main() { Solution *S = NewSolution(); S-value = eval(S-x);// evals is another function that returns a double S-itt_found = 0; FreeSolution(S); return EXIT_SUCCESS; } Ideally I would like to be able to so something like this in main, but I'm not sure exactly how to create the class, i've read a lot of stuff but incorporating it all together correctly seems a little hard atm. Solution S(30);//constructor that takes as an argument the size of the double array S.eval();//a method that would run eval on S.x[] and store result in S.value cout << S.value << endl; Ask if you need more info, thanks.

    Read the article

  • Complex error handling

    - by Caspin
    I've got a particularly ornery piece of network code. I'm using asio but that really doesn't matter for this question. I assume there is no way to unbind a socket other than closing it. The problem is that open(), bind(), and listen() can all throw a system_error. So I handled the code with a simple try/catch. The code as written in broken. using namespace boost::asio; class Thing { public: ip::tcp::endpoint m_address; ip::tcp::acceptor m_acceptor; /// connect should handle all of its exceptions internally. bool connect() { try { m_acceptor.open( m_address.protocol() ); m_acceptor.set_option( tcp::acceptor::reuse_address(true) ); m_acceptor.bind( m_address ); m_acceptor.listen(); m_acceptor.async_accept( /*stuff*/ ); } catch( const boost::system::system_error& error ) { assert(acceptor.is_open()); m_acceptor.close(); return false; } return true; } /// don't call disconnect unless connect previously succeeded. void disconnect() { // other stuff needed to disconnect is ommited m_acceptor.close(); } }; The error is if the socket fails to connect it will try to close it in the catch block and throw another system_error about closing an acceptor that has never been opened. One solution is to add an if( acceptor.is_open() ) in the catch block but that tastes wrong. Kinda like mixing C-style error checking with c++ exceptions. If I where to go that route, I may as well use the non-throwing version of open(). boost::system::error_code error; acceptor.open( address.protocol, error ); if( ! error ) { try { acceptor.set_option( tcp::acceptor::reuse_address(true) ); acceptor.bind( address ); acceptor.listen(); acceptor.async_accept( /*stuff*/ ); } catch( const boost::system::system_error& error ) { assert(acceptor.is_open()); acceptor.close(); return false; } } return !error; Is there an elegant way to handle these possible exceptions using RAII and try/catch blocks? Am I just wrong headed in trying to avoid if( error condition ) style error handling when using exceptions?

    Read the article

  • How to learn proper C++?

    - by Chris
    While reading a long series of really, really interesting threads, I've come to a realization: I don't think I really know C++. I know C, I know classes, I know inheritance, I know templates (& the STL) and I know exceptions. Not C++. To clarify, I've been writing "C++" for more than 5 years now. I know C, and I know that C and C++ share a common subset. What I've begun to realize, though, is that more times than not, I wind up treating C++ something vaguely like "C with classes," although I do practice RAII. I've never used Boost, and have only read up on TR1 and C++0x - I haven't used any of these features in practice. I don't use namespaces. I see a list of #defines, and I think - "Gracious, that's horrible! Very un-C++-like," only to go and mindlessly write class wrappers for the sake of it, and I wind up with large numbers (maybe a few per class) of static methods, and for some reason, that just doesn't seem right lately. The professional in me yells "just get the job done," the academic yells "you should write proper C++ when writing C++" and I feel like the point of balance is somewhere in between. I'd like to note that I don't want to program "pure" C++ just for the sake of it. I know several languages. I have a good feel for what "Pythonic" is. I know what clean and clear PHP is. Good C code I can read and write better than English. The issue is that I learned C by example, and picked up C++ as a "series of modifications" to C. And a lot of my early C++ work was creating class wrappers for C libraries. I feel like my own personal C-heavy background while learning C++ has sort of... clouded my acceptance of C++ in it's own right, as it's own language. Do the weathered C++ lags here have any advice for me? Good examples of clean, sharp C++ to learn from? What habits of C does my inner-C++ really need to break from? My goal here is not to go forth and trumpet "good" C++ paradigm from rooftops for the sake of it. C and C++ are two different languages, and I want to start treating them that way. How? Where to start? Thanks in advance! Cheers, -Chris

    Read the article

< Previous Page | 1 2