Search Results

Search found 6029 results on 242 pages for 'short circuit'.

Page 2/242 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • TDD - what are the short term gains/benefits?

    - by ratkok
    Quite often benefits of using TDD are considered as 'long term' gains - the overall code will be better structured, more testable, overall less bugs reported by customers, etc. However, where are the short terms benefits of using TDD? Are there any which are actually tengible and easily measureable? Is it important to have an obvious (or even not obvious by quantifiable) short term benefit at all, if the long term gains are measurable?

    Read the article

  • TDD - what are the short term gains/benefits?

    - by ratkok
    Quite often benefits of using TDD are considered as 'long term' gains - the overall code will be better structured, more testable, overall less bugs reported by customers, etc. However, where are the short terms benefits of using TDD? Are there any which are actually tengible and easily measureable? Is it important to have an obvious (or even not obvious by quantifiable) short term benefit at all, if the long term gains are measurable?

    Read the article

  • Java - short and casting

    - by chr1s
    Hi all, I have the following code snippet. public static void main(String[] args) { short a = 4; short b = 5; short c = 5 + 4; short d = a; short e = a + b; // does not compile (expression treated as int) short z = 32767; short z_ = 32768; // does not compile (out of range) test(a); test(7); // does not compile (not applicable for arg int) } public static void test(short x) { } Is the following summary correct (with regard to only the example above using short)? direct initializations without casting is only possible using literals or single variables (as long as the value is in the range of the declared type) if the rhs of an assignment deals with expressions using variables, casting is necessary But why exactly do I need to cast the argument of the second method call taking into account the previous summary?

    Read the article

  • Short USB cables not charging?

    - by tropolite
    I find this a strange problem but I can't find anything online about it. Recently I purchased a few short USB cables (20-30cm), to use in my car's USB connector to charge my phone. Strangely an older longer USB cable (1.2m), charges the phone fine (and the icon changes to show charging). With any of the short cables in the same USB slot no charging happens. Both the long and the short cables are USB2 compatible. I naturally assumed the short cables were faulty but connecting them to a PC or connecting to a high capacity external battery charging is successful using all the short cables and longer cables. Hopefully someone here is able to give me an explanation of the problem and how I can overcome this and use a short cable where it is most appropriate. Thanks

    Read the article

  • Can I repair a short circuiting problem in a Dell Inspiron 6000 that occurs when it is picked up?

    - by jim.e.clark
    I have a couple of Dell Inspiron 6000 notebooks that work perfectly fine unless you pick them up by one corner (as most people would). When you lift the notebook it flexes slightly and the notebook shorts out. Sometimes even a gentle bump will cause this to happen. So far the notebook always starts back up without issue, but this behavior is...inconvenient. It occurred to me that someone familiar with the innards might be able to suggest a little MacGyver fix for this. A little electrical tape in the right spot or something like that. Or perhaps this is a common problem and the answer is here, waiting for me to stumble on the correct keywords. I would appreciate any suggestions Note: It is probably worth mentioning that I have disassembled a Dell notebook before to replace a bluetooth card so I comfortable opening up the systems.

    Read the article

  • RUIN: A Post-Apocalyptic Short Animation [Video]

    - by Jason Fitzpatrick
    If your coffee has failed to perk you up this morning, this action-packed post-apocalyptic animation–a trailer for a work-in-progress CGI movie–most certainly will. Courtesy of Oddball Animation, RUIN is a polished bit of animation that could easily stand alone as a short film.  The studio is in the process of shopping it around to extend it into a full length movie which, if it looks as good as it does in the short form, will be worth the price of admission. RUIN [via Neatorama] The HTG Guide to Hiding Your Data in a TrueCrypt Hidden Volume Make Your Own Windows 8 Start Button with Zero Memory Usage Reader Request: How To Repair Blurry Photos

    Read the article

  • Webmaster tools, Duplicate Meta Descriptions, and Short Meta Descriptions [closed]

    - by Watsy91
    Possible Duplicate: Do meta keywords have any impact on ranking algorithms? I am fairly new to the whole Webmaster Tools concept. I have been looking at all the different options, such as crawl errors, HTML improvements etc... I have been looking at the Duplicate Meta Descriptions and Short Meta Descriptions, was wondering if anyone could suggest ideas on how to go about improving this. It seems that all the Duplicates are from the URL Title and the short description. It would seem to me that most people would have information regarding the page with the same keywords as their titles. Heres an example of one: These are the ultimate hampers in taste, quality and value. Amongst this range of luxury hampers ar /food-hampers/food-hampers-over-100.html /thank-you-gifts/large-gifts-over-100.html To get to the point I just want to know do these things really matter? Would they have a real consequence on my sites rankings? My sites have been falling down the rankings since early this year and I have really started to look at Google Analytics and Webmaster tools to try and indicate certain problems. I have researched the Internet and it seems that some people don't bother and others do!! I know that Stackoverflow has 100s+ people who have went through the above and I would really appricate if they could give me some tips etc. Or in the END does it really matter?? :D

    Read the article

  • How should I implement an email circuit test?

    - by lukecyca
    I want a high-level test that ensures that both incoming and outgoing email services are operating normally. I've achieved this by writing a python script which does this: Send a message with a unique hash through my mail server to [email protected] The gmail account is configured to auto-reply back to the same address and then delete the message. My script polls IMAP until it finds an email with the correct hash sitting in its inbox, or times out. It reports the elapsed time to my monitoring software (Zabbix) My question: Is gmail the best third-party to use? Should I add a couple others as well such as hotmail and yahoo? Is there anyone more official that will auto-reply to these sorts of "mail pings"? Any other recommendations for this type of test?

    Read the article

  • Why should main() be short?

    - by Stargazer712
    I've been programming for over 9 years, and according to the advice of my first programming teacher, I always keep my main() function extremely short. At first I had no idea why. I just obeyed without understanding, much to the delight of my professors. After gaining experience, I realized that if I designed my code correctly, having a short main() function just sortof happened. Writing modularized code and following the single responsibility principle allowed my code to be designed in "bunches", and main() served as nothing more than a catalyst to get the program running. Fast forward to a few weeks ago, I was looking at Python's souce code, and I found the main() function: /* Minimal main program -- everything is loaded from the library */ ... int main(int argc, char **argv) { ... return Py_Main(argc, argv); } Yay Python. Short main() function == Good code. Programming teachers were right. Wanting to look deeper, I took a look at Py_Main. In its entirety, it is defined as follows: /* Main program */ int Py_Main(int argc, char **argv) { int c; int sts; char *command = NULL; char *filename = NULL; char *module = NULL; FILE *fp = stdin; char *p; int unbuffered = 0; int skipfirstline = 0; int stdin_is_interactive = 0; int help = 0; int version = 0; int saw_unbuffered_flag = 0; PyCompilerFlags cf; cf.cf_flags = 0; orig_argc = argc; /* For Py_GetArgcArgv() */ orig_argv = argv; #ifdef RISCOS Py_RISCOSWimpFlag = 0; #endif PySys_ResetWarnOptions(); while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) { if (c == 'c') { /* -c is the last option; following arguments that look like options are left for the command to interpret. */ command = (char *)malloc(strlen(_PyOS_optarg) + 2); if (command == NULL) Py_FatalError( "not enough memory to copy -c argument"); strcpy(command, _PyOS_optarg); strcat(command, "\n"); break; } if (c == 'm') { /* -m is the last option; following arguments that look like options are left for the module to interpret. */ module = (char *)malloc(strlen(_PyOS_optarg) + 2); if (module == NULL) Py_FatalError( "not enough memory to copy -m argument"); strcpy(module, _PyOS_optarg); break; } switch (c) { case 'b': Py_BytesWarningFlag++; break; case 'd': Py_DebugFlag++; break; case '3': Py_Py3kWarningFlag++; if (!Py_DivisionWarningFlag) Py_DivisionWarningFlag = 1; break; case 'Q': if (strcmp(_PyOS_optarg, "old") == 0) { Py_DivisionWarningFlag = 0; break; } if (strcmp(_PyOS_optarg, "warn") == 0) { Py_DivisionWarningFlag = 1; break; } if (strcmp(_PyOS_optarg, "warnall") == 0) { Py_DivisionWarningFlag = 2; break; } if (strcmp(_PyOS_optarg, "new") == 0) { /* This only affects __main__ */ cf.cf_flags |= CO_FUTURE_DIVISION; /* And this tells the eval loop to treat BINARY_DIVIDE as BINARY_TRUE_DIVIDE */ _Py_QnewFlag = 1; break; } fprintf(stderr, "-Q option should be `-Qold', " "`-Qwarn', `-Qwarnall', or `-Qnew' only\n"); return usage(2, argv[0]); /* NOTREACHED */ case 'i': Py_InspectFlag++; Py_InteractiveFlag++; break; /* case 'J': reserved for Jython */ case 'O': Py_OptimizeFlag++; break; case 'B': Py_DontWriteBytecodeFlag++; break; case 's': Py_NoUserSiteDirectory++; break; case 'S': Py_NoSiteFlag++; break; case 'E': Py_IgnoreEnvironmentFlag++; break; case 't': Py_TabcheckFlag++; break; case 'u': unbuffered++; saw_unbuffered_flag = 1; break; case 'v': Py_VerboseFlag++; break; #ifdef RISCOS case 'w': Py_RISCOSWimpFlag = 1; break; #endif case 'x': skipfirstline = 1; break; /* case 'X': reserved for implementation-specific arguments */ case 'U': Py_UnicodeFlag++; break; case 'h': case '?': help++; break; case 'V': version++; break; case 'W': PySys_AddWarnOption(_PyOS_optarg); break; /* This space reserved for other options */ default: return usage(2, argv[0]); /*NOTREACHED*/ } } if (help) return usage(0, argv[0]); if (version) { fprintf(stderr, "Python %s\n", PY_VERSION); return 0; } if (Py_Py3kWarningFlag && !Py_TabcheckFlag) /* -3 implies -t (but not -tt) */ Py_TabcheckFlag = 1; if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') Py_InspectFlag = 1; if (!saw_unbuffered_flag && (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '\0') unbuffered = 1; if (!Py_NoUserSiteDirectory && (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '\0') Py_NoUserSiteDirectory = 1; if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '\0') { char *buf, *warning; buf = (char *)malloc(strlen(p) + 1); if (buf == NULL) Py_FatalError( "not enough memory to copy PYTHONWARNINGS"); strcpy(buf, p); for (warning = strtok(buf, ","); warning != NULL; warning = strtok(NULL, ",")) PySys_AddWarnOption(warning); free(buf); } if (command == NULL && module == NULL && _PyOS_optind < argc && strcmp(argv[_PyOS_optind], "-") != 0) { #ifdef __VMS filename = decc$translate_vms(argv[_PyOS_optind]); if (filename == (char *)0 || filename == (char *)-1) filename = argv[_PyOS_optind]; #else filename = argv[_PyOS_optind]; #endif } stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0); if (unbuffered) { #if defined(MS_WINDOWS) || defined(__CYGWIN__) _setmode(fileno(stdin), O_BINARY); _setmode(fileno(stdout), O_BINARY); #endif #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ); #else /* !HAVE_SETVBUF */ setbuf(stdin, (char *)NULL); setbuf(stdout, (char *)NULL); setbuf(stderr, (char *)NULL); #endif /* !HAVE_SETVBUF */ } else if (Py_InteractiveFlag) { #ifdef MS_WINDOWS /* Doesn't have to have line-buffered -- use unbuffered */ /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */ setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); #else /* !MS_WINDOWS */ #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IOLBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif /* HAVE_SETVBUF */ #endif /* !MS_WINDOWS */ /* Leave stderr alone - it should be unbuffered anyway. */ } #ifdef __VMS else { setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ); } #endif /* __VMS */ #ifdef __APPLE__ /* On MacOS X, when the Python interpreter is embedded in an application bundle, it gets executed by a bootstrapping script that does os.execve() with an argv[0] that's different from the actual Python executable. This is needed to keep the Finder happy, or rather, to work around Apple's overly strict requirements of the process name. However, we still need a usable sys.executable, so the actual executable path is passed in an environment variable. See Lib/plat-mac/bundlebuiler.py for details about the bootstrap script. */ if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '\0') Py_SetProgramName(p); else Py_SetProgramName(argv[0]); #else Py_SetProgramName(argv[0]); #endif Py_Initialize(); if (Py_VerboseFlag || (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) { fprintf(stderr, "Python %s on %s\n", Py_GetVersion(), Py_GetPlatform()); if (!Py_NoSiteFlag) fprintf(stderr, "%s\n", COPYRIGHT); } if (command != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } if (module != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' so that PySys_SetArgv correctly sets sys.path[0] to '' rather than looking for a file called "-m". See tracker issue #8202 for details. */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind); if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) && isatty(fileno(stdin))) { PyObject *v; v = PyImport_ImportModule("readline"); if (v == NULL) PyErr_Clear(); else Py_DECREF(v); } if (command) { sts = PyRun_SimpleStringFlags(command, &cf) != 0; free(command); } else if (module) { sts = RunModule(module, 1); free(module); } else { if (filename == NULL && stdin_is_interactive) { Py_InspectFlag = 0; /* do exit on SystemExit */ RunStartupFile(&cf); } /* XXX */ sts = -1; /* keep track of whether we've already run __main__ */ if (filename != NULL) { sts = RunMainFromImporter(filename); } if (sts==-1 && filename!=NULL) { if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n", argv[0], filename, errno, strerror(errno)); return 2; } else if (skipfirstline) { int ch; /* Push back first newline so line numbers remain the same */ while ((ch = getc(fp)) != EOF) { if (ch == '\n') { (void)ungetc(ch, fp); break; } } } { /* XXX: does this work on Win/Win64? (see posix_fstat) */ struct stat sb; if (fstat(fileno(fp), &sb) == 0 && S_ISDIR(sb.st_mode)) { fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename); fclose(fp); return 1; } } } if (sts==-1) { /* call pending calls like signal handlers (SIGINT) */ if (Py_MakePendingCalls() == -1) { PyErr_Print(); sts = 1; } else { sts = PyRun_AnyFileExFlags( fp, filename == NULL ? "<stdin>" : filename, filename != NULL, &cf) != 0; } } } /* Check this environment variable at the end, to give programs the * opportunity to set it from Python. */ if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') { Py_InspectFlag = 1; } if (Py_InspectFlag && stdin_is_interactive && (filename != NULL || command != NULL || module != NULL)) { Py_InspectFlag = 0; /* XXX */ sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0; } Py_Finalize(); #ifdef RISCOS if (Py_RISCOSWimpFlag) fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */ #endif #ifdef __INSURE__ /* Insure++ is a memory analysis tool that aids in discovering * memory leaks and other memory problems. On Python exit, the * interned string dictionary is flagged as being in use at exit * (which it is). Under normal circumstances, this is fine because * the memory will be automatically reclaimed by the system. Under * memory debugging, it's a huge source of useless noise, so we * trade off slower shutdown for less distraction in the memory * reports. -baw */ _Py_ReleaseInternedStrings(); #endif /* __INSURE__ */ return sts; } Good God Almighty...it is big enough to sink the Titanic. It seems as though Python did the "Intro to Programming 101" trick and just moved all of main()'s code to a different function called it something very similar to "main". Here's my question: Is this code terribly written, or are there other reasons reasons to have a short main function? As it stands right now, I see absolutely no difference between doing this and just moving the code in Py_Main() back into main(). Am I wrong in thinking this?

    Read the article

  • Why should main() be short?

    - by Stargazer712
    I've been programming for over 9 years, and according to the advice of my first programming teacher, I always keep my main() function extremely short. At first I had no idea why. I just obeyed without understanding, much to the delight of my professors. After gaining experience, I realized that if I designed my code correctly, having a short main() function just sortof happened. Writing modularized code and following the single responsibility principle allowed my code to be designed in "bunches", and main() served as nothing more than a catalyst to get the program running. Fast forward to a few weeks ago, I was looking at Python's souce code, and I found the main() function: /* Minimal main program -- everything is loaded from the library */ ... int main(int argc, char **argv) { ... return Py_Main(argc, argv); } Yay python. Short main() function == Good code. Programming teachers were right. Wanting to look deeper, I took a look at Py_Main. In its entirety, it is defined as follows: /* Main program */ int Py_Main(int argc, char **argv) { int c; int sts; char *command = NULL; char *filename = NULL; char *module = NULL; FILE *fp = stdin; char *p; int unbuffered = 0; int skipfirstline = 0; int stdin_is_interactive = 0; int help = 0; int version = 0; int saw_unbuffered_flag = 0; PyCompilerFlags cf; cf.cf_flags = 0; orig_argc = argc; /* For Py_GetArgcArgv() */ orig_argv = argv; #ifdef RISCOS Py_RISCOSWimpFlag = 0; #endif PySys_ResetWarnOptions(); while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) { if (c == 'c') { /* -c is the last option; following arguments that look like options are left for the command to interpret. */ command = (char *)malloc(strlen(_PyOS_optarg) + 2); if (command == NULL) Py_FatalError( "not enough memory to copy -c argument"); strcpy(command, _PyOS_optarg); strcat(command, "\n"); break; } if (c == 'm') { /* -m is the last option; following arguments that look like options are left for the module to interpret. */ module = (char *)malloc(strlen(_PyOS_optarg) + 2); if (module == NULL) Py_FatalError( "not enough memory to copy -m argument"); strcpy(module, _PyOS_optarg); break; } switch (c) { case 'b': Py_BytesWarningFlag++; break; case 'd': Py_DebugFlag++; break; case '3': Py_Py3kWarningFlag++; if (!Py_DivisionWarningFlag) Py_DivisionWarningFlag = 1; break; case 'Q': if (strcmp(_PyOS_optarg, "old") == 0) { Py_DivisionWarningFlag = 0; break; } if (strcmp(_PyOS_optarg, "warn") == 0) { Py_DivisionWarningFlag = 1; break; } if (strcmp(_PyOS_optarg, "warnall") == 0) { Py_DivisionWarningFlag = 2; break; } if (strcmp(_PyOS_optarg, "new") == 0) { /* This only affects __main__ */ cf.cf_flags |= CO_FUTURE_DIVISION; /* And this tells the eval loop to treat BINARY_DIVIDE as BINARY_TRUE_DIVIDE */ _Py_QnewFlag = 1; break; } fprintf(stderr, "-Q option should be `-Qold', " "`-Qwarn', `-Qwarnall', or `-Qnew' only\n"); return usage(2, argv[0]); /* NOTREACHED */ case 'i': Py_InspectFlag++; Py_InteractiveFlag++; break; /* case 'J': reserved for Jython */ case 'O': Py_OptimizeFlag++; break; case 'B': Py_DontWriteBytecodeFlag++; break; case 's': Py_NoUserSiteDirectory++; break; case 'S': Py_NoSiteFlag++; break; case 'E': Py_IgnoreEnvironmentFlag++; break; case 't': Py_TabcheckFlag++; break; case 'u': unbuffered++; saw_unbuffered_flag = 1; break; case 'v': Py_VerboseFlag++; break; #ifdef RISCOS case 'w': Py_RISCOSWimpFlag = 1; break; #endif case 'x': skipfirstline = 1; break; /* case 'X': reserved for implementation-specific arguments */ case 'U': Py_UnicodeFlag++; break; case 'h': case '?': help++; break; case 'V': version++; break; case 'W': PySys_AddWarnOption(_PyOS_optarg); break; /* This space reserved for other options */ default: return usage(2, argv[0]); /*NOTREACHED*/ } } if (help) return usage(0, argv[0]); if (version) { fprintf(stderr, "Python %s\n", PY_VERSION); return 0; } if (Py_Py3kWarningFlag && !Py_TabcheckFlag) /* -3 implies -t (but not -tt) */ Py_TabcheckFlag = 1; if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') Py_InspectFlag = 1; if (!saw_unbuffered_flag && (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '\0') unbuffered = 1; if (!Py_NoUserSiteDirectory && (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '\0') Py_NoUserSiteDirectory = 1; if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '\0') { char *buf, *warning; buf = (char *)malloc(strlen(p) + 1); if (buf == NULL) Py_FatalError( "not enough memory to copy PYTHONWARNINGS"); strcpy(buf, p); for (warning = strtok(buf, ","); warning != NULL; warning = strtok(NULL, ",")) PySys_AddWarnOption(warning); free(buf); } if (command == NULL && module == NULL && _PyOS_optind < argc && strcmp(argv[_PyOS_optind], "-") != 0) { #ifdef __VMS filename = decc$translate_vms(argv[_PyOS_optind]); if (filename == (char *)0 || filename == (char *)-1) filename = argv[_PyOS_optind]; #else filename = argv[_PyOS_optind]; #endif } stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0); if (unbuffered) { #if defined(MS_WINDOWS) || defined(__CYGWIN__) _setmode(fileno(stdin), O_BINARY); _setmode(fileno(stdout), O_BINARY); #endif #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ); #else /* !HAVE_SETVBUF */ setbuf(stdin, (char *)NULL); setbuf(stdout, (char *)NULL); setbuf(stderr, (char *)NULL); #endif /* !HAVE_SETVBUF */ } else if (Py_InteractiveFlag) { #ifdef MS_WINDOWS /* Doesn't have to have line-buffered -- use unbuffered */ /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */ setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); #else /* !MS_WINDOWS */ #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IOLBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif /* HAVE_SETVBUF */ #endif /* !MS_WINDOWS */ /* Leave stderr alone - it should be unbuffered anyway. */ } #ifdef __VMS else { setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ); } #endif /* __VMS */ #ifdef __APPLE__ /* On MacOS X, when the Python interpreter is embedded in an application bundle, it gets executed by a bootstrapping script that does os.execve() with an argv[0] that's different from the actual Python executable. This is needed to keep the Finder happy, or rather, to work around Apple's overly strict requirements of the process name. However, we still need a usable sys.executable, so the actual executable path is passed in an environment variable. See Lib/plat-mac/bundlebuiler.py for details about the bootstrap script. */ if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '\0') Py_SetProgramName(p); else Py_SetProgramName(argv[0]); #else Py_SetProgramName(argv[0]); #endif Py_Initialize(); if (Py_VerboseFlag || (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) { fprintf(stderr, "Python %s on %s\n", Py_GetVersion(), Py_GetPlatform()); if (!Py_NoSiteFlag) fprintf(stderr, "%s\n", COPYRIGHT); } if (command != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } if (module != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' so that PySys_SetArgv correctly sets sys.path[0] to '' rather than looking for a file called "-m". See tracker issue #8202 for details. */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind); if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) && isatty(fileno(stdin))) { PyObject *v; v = PyImport_ImportModule("readline"); if (v == NULL) PyErr_Clear(); else Py_DECREF(v); } if (command) { sts = PyRun_SimpleStringFlags(command, &cf) != 0; free(command); } else if (module) { sts = RunModule(module, 1); free(module); } else { if (filename == NULL && stdin_is_interactive) { Py_InspectFlag = 0; /* do exit on SystemExit */ RunStartupFile(&cf); } /* XXX */ sts = -1; /* keep track of whether we've already run __main__ */ if (filename != NULL) { sts = RunMainFromImporter(filename); } if (sts==-1 && filename!=NULL) { if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n", argv[0], filename, errno, strerror(errno)); return 2; } else if (skipfirstline) { int ch; /* Push back first newline so line numbers remain the same */ while ((ch = getc(fp)) != EOF) { if (ch == '\n') { (void)ungetc(ch, fp); break; } } } { /* XXX: does this work on Win/Win64? (see posix_fstat) */ struct stat sb; if (fstat(fileno(fp), &sb) == 0 && S_ISDIR(sb.st_mode)) { fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename); fclose(fp); return 1; } } } if (sts==-1) { /* call pending calls like signal handlers (SIGINT) */ if (Py_MakePendingCalls() == -1) { PyErr_Print(); sts = 1; } else { sts = PyRun_AnyFileExFlags( fp, filename == NULL ? "<stdin>" : filename, filename != NULL, &cf) != 0; } } } /* Check this environment variable at the end, to give programs the * opportunity to set it from Python. */ if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') { Py_InspectFlag = 1; } if (Py_InspectFlag && stdin_is_interactive && (filename != NULL || command != NULL || module != NULL)) { Py_InspectFlag = 0; /* XXX */ sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0; } Py_Finalize(); #ifdef RISCOS if (Py_RISCOSWimpFlag) fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */ #endif #ifdef __INSURE__ /* Insure++ is a memory analysis tool that aids in discovering * memory leaks and other memory problems. On Python exit, the * interned string dictionary is flagged as being in use at exit * (which it is). Under normal circumstances, this is fine because * the memory will be automatically reclaimed by the system. Under * memory debugging, it's a huge source of useless noise, so we * trade off slower shutdown for less distraction in the memory * reports. -baw */ _Py_ReleaseInternedStrings(); #endif /* __INSURE__ */ return sts; } Good God Almighty...it is big enough to sink the Titanic. It seems as though Python did the "Intro to Programming 101" trick and just moved all of main()'s code to a different function called it something very similar to "main". Here's my question: Is this code terribly written, or are there other reasons to have a short main function? As it stands right now, I see absolutely no difference between doing this and just moving the code in Py_Main() back into main(). Am I wrong in thinking this?

    Read the article

  • error while loading shared libraries, file too short

    - by tommyk
    From one of my customers I got an application. When I try to run it I got following error error while loading shared libraries: ./libvtkWidgets.so.5.4: file too short In my project structure I see following: -rwxrwxrwx 1 tomasz tomasz 20 2011-02-01 10:44 libvtkWidgets.so -rwxrwxrwx 1 tomasz tomasz 22 2011-02-01 10:44 libvtkWidgets.so.5.4 -rwxrwxrwx 1 tomasz tomasz 2147103 2011-02-01 10:44 libvtkWidgets.so.5.4.2 Is my shared library libvtkWidgets corrupted ? How to solve that error ?

    Read the article

  • Are short identifiers bad?

    - by Daniel C. Sobral
    Are short identifiers bad? How does identifier length correlate with code comprehension? What other factors (besides code comprehension) might be of consideration when it comes to naming identifiers? Just to try to keep the quality of the answers up, please note that there is some research on the subject already! Edit Curious that everyone either doesn't think length is relevant or tend to prefer larger identifiers, when both links I provided indicate large identifiers are harmful!

    Read the article

  • Titanium SDK gives a "file too short" error

    - by Dananjaya
    I'm using Ubuntu 11.04 and recently installed Appcelerator Titanium Studio version 1.7 When I load up a demo project to run, I get an error like this, Couldn't load file:/home/dananjaya/.titanium/runtime/linux/1.1.0/libkhost.so, error: /home/dananjaya/.titanium/runtime/linux/1.1.0/libwebkittitanium-1.0.so.2: file too short Am I missing some dependencies here or is it a bug in the application? Thanks in advance.

    Read the article

  • Notes from a short presentation on NodeJs

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2014/05/30/notes-from-a-short-presentation-on-nodejs.aspxI volunteered myself to give a short 30 minute presentation at a work lunch and learn on NodeJs. With my limited experience I see using Node as a great tool for build process improvement, scaffolding with yeoman, and running tests with Karma. I haven’t looked into using as a full server or development stack. I guess I’m too stuck on IIS and Visual Studio :-). Here are my notes, that aren’t very well formatted, but I wanted to share it anyways. What is it? "Node.js is a platform built on Chrome's JavaScript runtime for easily building fast, scalable network applications. Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-time applications that run across distributed devices." Why should you be interested? another popular tool that can help you get the job done you can use the command prompt! can be run at build or release time to automate tasks What are some uses? https://www.npmjs.org/ - NuGet for Node packages http://bower.io/ - NuGet for UI JavaScript libraries (jQuery, Bootstrap, Angular, etc) http://yeoman.io/ "Our workflow is comprised of three tools for improving your productivity and satisfaction when building a web app: yo (the scaffolding tool), grunt (the build tool) and bower (for package management)." -> yeoman asks which components you want alternative - http://joakimbeng.eu01.aws.af.cm/slush-replacing-yeoman-with-gulp/ https://www.npmjs.org/package/generator-cg-angular - phantom js, less, // git is needed for bower http://git-scm.com/ run installer in Windows before you can use bower // select Run Git from the Windows Command Prompt in the installer // requires a reboot http://stackoverflow.com/questions/20069297/bower-git-not-in-the-path-error npm install -g git npm install -g yo npm install -g generator-cg-angular mkdir myapp cd myapp yo cg-angular npm install -g bower npm install -g grunt-cli yo bower grunt serve grunt test grunt build // there are many generators (generator-angular) is another one // I like the Nuget HotTowel-Angular from John Papa myself // needed IIS Node for Express -> prompt from WebMatrix Karma bat to startup Karma - see below image compression - https://www.npmjs.org/search?q=optimize+images, https://github.com/heldr/node-smushit - do it from the command line LESS compiling js and css combine and minification at build with Gulp for requireJS apps quick lightweight HTTP server - "Express" Build pipeline with Grunt or Gulp http://www.johnpapa.net/gulp-and-grunt-at-anglebrackets/ Gulp is the newer and improved over Grunt. Supposed to be easier to use, but Grunt is more established. https://github.com/johnpapa/ng-demos/tree/master/grunt-gulp https://github.com/assetgraph/assetgraph-builder Does a lot of the minimizing, combining, image optimization etc using Node. Looks interesting.... http://nodejs.org http://nodeschool.io/ http://sub.watchmecode.net/getting-started-with-nodejs-installing-and-writing-your-first-code/ https://stormpath.com/blog/build-a-killer-node-dot-js-client-for-your-rest-plus-json-api/ https://codio.com/ http://www.hanselman.com/blog/ItsJustASoftwareIssueEdgejsBringsNodeAndNETTogetherOnThreePlatforms.aspx run unit tests - Karma in msBuild karma-start.bat @echo off cd %~dp0\.. REM 604800 is to make sure we only update once every 7 days call npm install --cache-min 604800 -g grunt-cli call npm install --cache-min 604800 call npm install --cache-min 604800 -g karma-cli karma start UnitTests\karma.conf.js REM karma start UnitTests\karma.conf.js --single-run REM see karma-start.bat and karam.config.js REM jsHint comes from Nuget

    Read the article

  • Visual Studio 2010 Short Cut Links!

    - by Dave Noderer
    This week Scott Cate came to South Florida and gave a great talk on his Visual Studio shortcuts and how he uses them. You can find a collection of short video’s he has done at: http://scottcate.com/tricks/ Also you might want to check out Sara Ford’s blog: http://blogs.msdn.com/saraford/default.aspx, she started doing a tip a day but has many more now. Scott covers many of these in the videos. And.. as with past releases, the languages team has provided PDF’s with a lot of keyboard shortcuts, this time for VB, C#, F# and C++. You can find downloads for all of these at the top of the FlaDotNet.com page and are included below: VB: http://www.fladotnet.com/downloads/VS2010VB.pdf C#: http://www.fladotnet.com/downloads/VS2010CSharp.pdf F#: http://www.fladotnet.com/downloads/VS2010FSharp.pdf C++: http://www.fladotnet.com/downloads/VS2010CPP.pdf Happy Keyboarding!!

    Read the article

  • Short Season, Long Models - Dealing with Seasonality

    - by Michel Adar
    Accounting for seasonality presents a challenge for the accurate prediction of events. Examples of seasonality include: ·         Boxed cosmetics sets are more popular during Christmas. They sell at other times of the year, but they rise higher than other products during the holiday season. ·         Interest in a promotion rises around the time advertising on TV airs ·         Interest in the Sports section of a newspaper rises when there is a big football match There are several ways of dealing with seasonality in predictions. Time Windows If the length of the model time windows is short enough relative to the seasonality effect, then the models will see only seasonal data, and therefore will be accurate in their predictions. For example, a model with a weekly time window may be quick enough to adapt during the holiday season. In order for time windows to be useful in dealing with seasonality it is necessary that: The time window is significantly shorter than the season changes There is enough volume of data in the short time windows to produce an accurate model An additional issue to consider is that sometimes the season may have an abrupt end, for example the day after Christmas. Input Data If available, it is possible to include the seasonality effect in the input data for the model. For example the customer record may include a list of all the promotions advertised in the area of residence. A model with these inputs will have to learn the effect of the input. It is possible to learn it specific to the promotion – and by the way learn about inter-promotion cross feeding – by leaving the list of ads as it is; or it is possible to learn the general effect by having a flag that indicates if the promotion is being advertised. For inputs to properly represent the effect in the model it is necessary that: The model sees enough events with the input present. For example, by virtue of the model lifetime (or time window) being long enough to see several “seasons” or by having enough volume for the model to learn seasonality quickly. Proportional Frequency If we create a model that ignores seasonality it is possible to use that model to predict how the specific person likelihood differs from average. If we have a divergence from average then we can transfer that divergence proportionally to the observed frequency at the time of the prediction. Definitions: Ft = trailing average frequency of the event at time “t”. The average is done over a suitable period of to achieve a statistical significant estimate. F = average frequency as seen by the model. L = likelihood predicted by the model for a specific person Lt = predicted likelihood proportionally scaled for time “t”. If the model is good at predicting deviation from average, and this holds over the interesting range of seasons, then we can estimate Lt as: Lt = L * (Ft / F) Considering that: L = (L – F) + F Substituting we get: Lt = [(L – F) + F] * (Ft / F) Which simplifies to: (i)                  Lt = (L – F) * (Ft / F)  +  Ft This latest expression can be understood as “The adjusted likelihood at time t is the average likelihood at time t plus the effect from the model, which is calculated as the difference from average time the proportion of frequencies”. The formula above assumes a linear translation of the proportion. It is possible to generalize the formula using a factor which we will call “a” as follows: (ii)                Lt = (L – F) * (Ft / F) * a  +  Ft It is also possible to use a formula that does not scale the difference, like: (iii)               Lt = (L – F) * a  +  Ft While these formulas seem reasonable, they should be taken as hypothesis to be proven with empirical data. A theoretical analysis provides the following insights: The Cumulative Gains Chart (lift) should stay the same, as at any given time the order of the likelihood for different customers is preserved If F is equal to Ft then the formula reverts to “L” If (Ft = 0) then Lt in (i) and (ii) is 0 It is possible for Lt to be above 1. If it is desired to avoid going over 1, for relatively high base frequencies it is possible to use a relative interpretation of the multiplicative factor. For example, if we say that Y is twice as likely as X, then we can interpret this sentence as: If X is 3%, then Y is 6% If X is 11%, then Y is 22% If X is 70%, then Y is 85% - in this case we interpret “twice as likely” as “half as likely to not happen” Applying this reasoning to (i) for example we would get: If (L < F) or (Ft < (1 / ((L/F) + 1)) Then  Lt = L * (Ft / F) Else Lt = 1 – (F / L) + (Ft * F / L)  

    Read the article

  • Cloud availability of short-term "virgin" Windows instances?

    - by Thorbjørn Ravn Andersen
    I have a situation where we on a regular basis need a freshly installed "virgin" Windows installation to do various work in isolation on, and building one from scratch every time in a vmware instance is getting tedious. Perhaps there are cloud offerings providing a service allowing to request one or more Windows instances and after a very short while they were available for logging in through Remote Desktop? After usage they were just recycled without having to pay for a full Windows license every time. Do this exist for a reasonable price? What is your personal experiences with this?

    Read the article

  • So Pretty [Halloween Horror Short Film]

    - by Asian Angel
    A young woman riding the train at night becomes involved in an interesting conversation with a young man about vampires. She thinks vampires are mysterious and misunderstood, but will she still feel the same way by the time the train ride is over? The Continuum: Halloween Short Film – “So Pretty” [via Neatorama] 6 Start Menu Replacements for Windows 8 What Is the Purpose of the “Do Not Cover This Hole” Hole on Hard Drives? How To Log Into The Desktop, Add a Start Menu, and Disable Hot Corners in Windows 8

    Read the article

  • circuit/block-diagram drawing

    - by JCLL
    I'm looking for either algorithms or visualization tool for (nice) circuit/block-diagram drawing. I am also interested in a general formulation of the problem. By "circuit drawing", I mean the capability of exploring place & route for block-diagrams (rectangles) with I/O ports and their connections (wires). These block-diagrams can be hierarchical i.e some blocks may have some nested internal sub-structure etc. This topic is strongly related to classical graph-drawing, with the supplemental constraint of the need to take ports location into account, and possibly the shape of the blocks (rectangle of various sizes). Graphviz tools do not respond to the problem (at least my previous experiments have not been satisfactory). Force-directed algorithms retain my attention, but I have just found papers on classical directed graphs. Any hints ?

    Read the article

  • "Circuit breaker" for net.msmq?

    - by Alex
    Hi, The Circuit Breaker pattern, from the book Release It!, protects a service from requests while it is failing (or recovering). The net.msmq binding used with transactions give us nice retry and poison message capabilities. But I am missing the implementation of such a "Circuit breaker" pattern. A service is put under even heavier load by retries while it is already in a failure condition (like DB connectivity issues causing loads of blocked threads etc.). Anyone knows about a behavior extension or similar that explicitly closes the service host when defined failure thresholds have been exceeded? Cheers, Alex

    Read the article

  • Is there an excuse for short variable names?

    - by KChaloux
    This has become a large frustration with the codebase I'm currently working in; many of our variable names are short and undescriptive. I'm the only developer left on the project, and there isn't documentation as to what most of them do, so I have to spend extra time tracking down what they represent. For example, I was reading over some code that updates the definition of an optical surface. The variables set at the start were as follows: double dR, dCV, dK, dDin, dDout, dRin, dRout dR = Convert.ToDouble(_tblAsphere.Rows[0].ItemArray.GetValue(1)); dCV = convert.ToDouble(_tblAsphere.Rows[1].ItemArray.GetValue(1)); ... and so on Maybe it's just me, but it told me essentially nothing about what they represented, which made understanding the code further down difficult. All I knew was that it was a variable parsed out specific row from a specific table, somewhere. After some searching, I found out what they meant: dR = radius dCV = curvature dK = conic constant dDin = inner aperture dDout = outer aperture dRin = inner radius dRout = outer radius I renamed them to essentially what I have up there. It lengthens some lines, but I feel like that's a fair trade off. This kind of naming scheme is used throughout a lot of the code however. I'm not sure if it's an artifact from developers who learned by working with older systems, or if there's a deeper reason behind it. Is there a good reason to name variables this way, or am I justified in updating them to more descriptive names as I come across them?

    Read the article

  • A short but intense GCC Gathering in London

    - by user817571
    About one week ago I joined in London many long time GCC friends and acquaintances for a gathering organized by Google (in particular I guess should be thanked Diego and Ian). Only a weekend, and I wasn't able to attend on Sunday morning, but a very good occasion to raise some issues in a very relaxed way, in particular those at the border between areas of competence, which are the most difficult to discuss during the normal work days. If you are interested in a general overview and some notes this is a good link: http://gcc.gnu.org/wiki/GCCGathering2011 As you may easily guess, the third topic is mine, which I managed to have up quite early on Friday morning thanks to the votes of some good friends like Dodji (the ordering of the topics resulted from democratic voting on Friday evening!). I learned a lot from the discussion: for example that certainly the new C++11 'final' should be exploited largely in the c++ front-end; the various reasons why devirtualization can be quite trick (but I'm really confident that Martin and Honza are going to make a good progress also basing on a set of short testcases which I promised to collect); that, as explained by Ian, the gold linker already implements the nice --icf (Identical Code Folding) facility, which some friends of mine are definitely going to like (however, see: http://sourceware.org/bugzilla/show_bug.cgi?id=12919). I also enjoyed the observations made by Lawrence, where he remarked that in C+11 we are going to see more pointer iterations implicitly produced by the new range-based for-loop and we really want to make sure the loop optimizers are able to deal with those as well as loops explicitly using a counter. All in all, I really hope we are going to do it again!

    Read the article

  • How to determine 2D unsigned short pointers array length in c++

    - by tuman
    Hello, I am finding it difficult to determine the length of the columns in a 2D unsigned short pointer array. I have done memory allocation correctly as far as I know. and can print them correctly. plz see the following code segment: int number_of_array_index_required_for_pointer_abc=3; char A[3][16]; strcpy(A[0],"Hello"); strcpy(A[1],"World"); strcpy(A[2],"Tumanicko"); cout<<number_of_array_index_required_for_pointer_abc*sizeof(unsigned short)<<endl; unsigned short ** pqr=(unsigned short **)malloc(number_of_array_index_required_for_pointer_abc*sizeof(unsigned short)); for(int i=0;i<number_of_array_index_required_for_pointer_abc;i++) { int ajira = strlen(A[i])*sizeof(unsigned short); cout<<i<<" = "<<ajira<<endl; pqr[i]=(unsigned short *)malloc(ajira); cout<<"alocated pqr[i]= "<<sizeof pqr<<endl; int j=0; for(j=0;j<strlen(A[i]);j++) { pqr[i][j]=(unsigned short)A[i][j]; } pqr[i][j]='\0'; } for(int i=0;i<number_of_array_index_required_for_pointer_abc;i++) { //ln= (sizeof pqr[i])/(sizeof pqr[0]); //cout<<"Size of pqr["<<i<<"]= "<<ln<<endl; // I want to know the size of the columns i.e. pqr[i]'s length instead of finding '\0' for(int k=0;(char)pqr[i][k]!='\0';k++) cout<<(char)pqr[i][k]; cout<<endl; }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >