Search Results

Search found 207 results on 9 pages for 'simulated annealing'.

Page 2/9 | < Previous Page | 1 2 3 4 5 6 7 8 9  | Next Page >

  • UINavigationBar height

    - by kpower
    In my app I work with an UINavigationController. I've added it to the window (MainWindow.xib, with IB) and simulated on my main view (in IB: Simulated User Elements / Top Bar / Navigation Bar). Navigation bar is displayed, but its height isn't standard. At least in IB it is bigger than in launched app. What's wrong? And how can I restore height to the initial state (as in IB)? P.S.: I know that I can set it directly from code. But this way looks like a "crutch".

    Read the article

  • Shipping Java code with data baked into the .jar

    - by Andrew
    I need to ship some Java code that has an associated set of data. It's a simulator for a device, and I want to be able to include all of the data used for the simulated records in the one .JAR file. In this case, each simulated record contains four fields (calling party, called party, start of call, call duration). What's the best way to do that? I've gone down the path of generating the data as Java statements, but IntelliJ doesn't seem particularly happy dealing with a 100,000 line Java source file! Is there a smarter way to do this? In the C#/.NET world I'd create the data as a separate file, embed it in the assembly as a resource, and then use reflection to pull that out at runtime and access it. I'm unsure of what the appropriate analogy is in the Java world. FWIW, Java 1.6, shipping for Solaris.

    Read the article

  • How to determine what the Seemingly Unrelated Regression error means in R

    - by user2154571
    I'm using the systemfit() function to conduct a seemingly unrelated regression and am getting the following error: Error in solve(sigma, tol = solvetol) : Lapack routine dsptrf returned error code 1 Yet, I'm unable to find the meaningful interpretation of what the error suggests is going on. Below is some simulated code that works to show what functions I'm using (the simulated code does not produce an error). Thanks for thoughts on this error. y <- sample(seq(1:4), 100, replace = TRUE) x1 <- sample(seq(0:1), 100, replace = TRUE) -1 x2 <- sample(seq(0:1), 100, replace = TRUE) - 1 x3 <- sample(seq(1:4), 100, replace = TRUE) frame <- as.data.frame(cbind(y,x1,x2, x3)) mod_1 <- y ~ x1 + x3 + x1:x3 mod_2 <- y ~ x2 + x3 + x2:x3 output <- systemfit(list(mod_1, mod_2), data = frame, method = "SUR")

    Read the article

  • Error using `loess.smooth` but not `loess` or `lowess`

    - by Sandy
    I need to smooth some simulated data, but occasionally run into problems when the simulated ordinates to be smoothed are mostly the same value. Here is a small reproducible example of the simplest case. > x <- 0:50 > y <- rep(0,51) > loess.smooth(x,y) Error in simpleLoess(y, x, w, span, degree, FALSE, FALSE, normalize = FALSE, : NA/NaN/Inf in foreign function call (arg 1) loess(y~x), lowess(x,y), and their analogue in MATLAB produce the expected results without error on this example. I am using loess.smooth here because I need the estimates evaluated at a set number of points. According to the documentation, I believe loess.smooth and loess are using the same estimation functions, but the former is an "auxiliary function" to handle the evaluation points. The error seems to come from a C function: > traceback() 3: .C(R_loess_raw, as.double(pseudovalues), as.double(x), as.double(weights), as.double(weights), as.integer(D), as.integer(N), as.double(span), as.integer(degree), as.integer(nonparametric), as.integer(order.drop.sqr), as.integer(sum.drop.sqr), as.double(span * cell), as.character(surf.stat), temp = double(N), parameter = integer(7), a = integer(max.kd), xi = double(max.kd), vert = double(2 * D), vval = double((D + 1) * max.kd), diagonal = double(N), trL = double(1), delta1 = double(1), delta2 = double(1), as.integer(0L)) 2: simpleLoess(y, x, w, span, degree, FALSE, FALSE, normalize = FALSE, "none", "interpolate", control$cell, iterations, control$trace.hat) 1: loess.smooth(x, y) loess also calls simpleLoess, but with what appears to be different arguments. Of course, if you vary enough of the y values to be nonzero, loess.smooth runs without error, but I need the program to run in even the most extreme case. Hopefully, someone can help me with one and/or all of the following: Understand why only loess.smooth, and not the other functions, produces this error and find a solution for this problem. Find a work-around using loess but still evaluating the estimate at a specified number of points that can differ from the vector x. For example, I might want to use only x <- seq(0,50,10) in the smoothing, but evaluate the estimate at x <- 0:50. As far as I know, using predict with a new data frame will not properly handle this situation, but please let me know if I am missing something there. Handle the error in a way that doesn't stop the program from moving onto the next simulated data set. Thanks in advance for any help on this problem.

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Optimization of time-varying parameters

    - by brama
    I need to find an optimal set of "n" parameter values that minimize an objective function (a 2-hr simulation of a system). I have looked at genetic algorithm and simulated annealing methods, but was wondering if there are any better algorithms and guidance on their merits and limitations. With the above optimization methods I can find the optimal parameter values that hold true for the entire simulation duration. Incase, I want to find the optimal "time varying" parameter values (parameter values change with time during the 2-hr simulation), are there any methods/ideas other than making each time varying parameter value a variable to optimize? Any thoughts?

    Read the article

  • Collision detection when pathfinding with pathnodes, UDK

    - by Dave Voyles
    I'm trying to create a class that allows my AIController to path find using pathnodes (NOT NavMeshes). It's doing a swell job of going from point to point in a set order (although I would like for it to be a random patrol at some point), but it gets caught up on collision from time to time. I.E. He'll walk the same set path, and when he runs into the blocks in the middle of the map he continues to rub against them until they finish, and continues on his merry way to the next path node. How can I prevent this from happening, or at least have him move from the wall if he does a trace and detects that it is there? It looks like I need to use MoveToward() instead of MoveTo(), as MoveToward allows the pawn to adjust its course during movement. I'm just not sure of how to use those paramters. Mougli has a decent tutorial on it[/URL], but I can't seem to get it to work correctly with my pathnode array. class PathfindingAIController extends UDKBot; var array Waypoints; var int _PathNode; //declare it at the start so you can use it throughout the script var int CloseEnough; simulated function PostBeginPlay() { local PathNode Current; super.PostBeginPlay(); //add the pathnodes to the array foreach WorldInfo.AllActors(class'Pathnode',Current) { Waypoints.AddItem( Current ); } } simulated function Tick(float DeltaTime) { local int Distance; local Rotator DesiredRotation; super.Tick(DeltaTime); if (Pawn != None) { // Smoothly rotate the pawn towards the focal point DesiredRotation = Rotator(GetFocalPoint() - Pawn.Location); Pawn.FaceRotation(RLerp(Pawn.Rotation, DesiredRotation, 3.125f * DeltaTime, true), DeltaTime); } Distance = VSize2D(Pawn.Location - Waypoints[_PathNode].Location); if (Distance <= CloseEnough) { _PathNode++; } if (_PathNode >= Waypoints.Length) { _PathNode = 0; } GoToState('Pathfinding'); } auto state Pathfinding { Begin: if (Waypoints[_PathNode] != None) // make sure there is a pathnode to move to { MoveTo(Waypoints[_PathNode].Location); //move to it `log("STATE: Pathfinding"); } } DefaultProperties { CloseEnough=400 bIsplayer = True }

    Read the article

  • How is this lighting effect done?

    - by Mike
    This is the most beautiful 2d lighting I have ever seen. Does anyone know how he went about doing it? http://www.youtube.com/watch?v=BIQRhOFkvQY http://www.youtube.com/watch?v=tnTYXPuecMs http://www.youtube.com/watch?v=rhC_jVM8IYU http://www.youtube.com/watch?v=_Aw5BdjWqqU Or download it here: http://grantkot.com/PollutedPlanet/publish.htm edit: I am not asking how the particles are simulated; I don't care about the physics.

    Read the article

  • Ideas for student parallel programming project

    - by chi42
    I'm looking to do a parallel programming project in C (probably using pthreads or maybe OpenMP) for a class. It will done by a group of about four students, and should take about 4 weeks. I was thinking it would be interesting to attack some NP-complete problem with a more complex algorithm like a genetic algo with simulated annealing, but I'm not sure if it would be a big enough project. Anyone knew of any cool problems that could benefit from a parallel approach?

    Read the article

  • Comparison of algorithmic approaches to the N queens problem

    - by iceman
    I wanted to evaluate performance comparisons for various approaches to solving the N queens problem. Mainly AI metaheuristics based algorithms like simulated annealing, tabu search and genetic algorithm etc compared to exact methods(like backtracking). Is there any code available for study? A lot of real-world optimization problems like it consider cooperative schemes between exact methods and metaheuristics.

    Read the article

  • Genetic/Evolutionary algorithms and local minima/maxima problem

    - by el.gringogrande
    I have run across several posts and articles that suggests using things like simulated annealing to avoid the local minima/maxima problem. I don't understand why this would be necessary if you started out with a sufficiently large random population. Is it just another check to insure that the initial population was, in fact, sufficiently large and random? Or are those techniques just an alternative to producing a "good" initial population?

    Read the article

  • World Record Siebel PSPP Benchmark on SPARC T4 Servers

    - by Brian
    Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers. The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users. This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour. The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers. Performance Landscape Systems Txn/hr Users Call Center Order Management Response Times (sec) 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web 3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB 239,748 29,000 0.165 0.925 Oracle: Call Center + Order Management Transactions: 197,128 + 42,620 Users: 20300 + 8700 Configuration Summary Web Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 10 8/11 iPlanet Web Server 7 Application Server Configuration: 3 x SPARC T4-2 servers, each with 2 x SPARC T4 processor, 2.85 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 10 8/11 Siebel CRM 8.1.1.5 SIA Database Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.2) Storage Configuration: 1 x Sun Storage F5100 Flash Array 80 x 24 GB flash modules Benchmark Description Siebel 8.1 PSPP benchmark includes Call Center and Order Management: Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling. High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively. Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process. High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively. Key Points and Best Practices No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects. See Also Siebel White Papers SPARC T4-1 Server oracle.com OTN SPARC T4-2 Server oracle.com OTN Siebel CRM oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • And now for a complete change of direction from C++ function pointers

    - by David
    I am building a part of a simulator. We are building off of a legacy simulator, but going in different direction, incorporating live bits along side of the simulated bits. The piece I am working on has to, effectively route commands from the central controller to the various bits. In the legacy code, there is a const array populated with an enumerated type. A command comes in, it is looked up in the table, then shipped off to a switch statement keyed by the enumerated type. The type enumeration has a choice VALID_BUT_NOT_SIMULATED, which is effectively a no-op from the point of the sim. I need to turn those no-ops into commands to actual other things [new simulated bits| live bits]. The new stuff and the live stuff have different interfaces than the old stuff [which makes me laugh about the shill job that it took to make it all happen, but that is a topic for a different discussion]. I like the array because it is a very apt description of the live thing this chunk is simulating [latching circuits by row and column]. I thought that I would try to replace the enumerated types in the array with pointers to functions and call them directly. This would be in lieu of the lookup+switch.

    Read the article

  • Find points whose pairwise distances approximate a given distance matrix

    - by Stephan Kolassa
    Problem. I have a symmetric distance matrix with entries between zero and one, like this one: D = ( 0.0 0.4 0.0 0.5 ) ( 0.4 0.0 0.2 1.0 ) ( 0.0 0.2 0.0 0.7 ) ( 0.5 1.0 0.7 0.0 ) I would like to find points in the plane that have (approximately) the pairwise distances given in D. I understand that this will usually not be possible with strictly correct distances, so I would be happy with a "good" approximation. My matrices are smallish, no more than 10x10, so performance is not an issue. Question. Does anyone know of an algorithm to do this? Background. I have sets of probability densities between which I calculate Hellinger distances, which I would like to visualize as above. Each set contains no more than 10 densities (see above), but I have a couple of hundred sets. What I did so far. I did consider posting at math.SE, but looking at what gets tagged as "geometry" there, it seems like this kind of computational geometry question would be more on-topic here. If the community thinks this should be migrated, please go ahead. This looks like a straightforward problem in computational geometry, and I would assume that anyone involved in clustering might be interested in such a visualization, but I haven't been able to google anything. One simple approach would be to randomly plonk down points and perturb them until the distance matrix is close to D, e.g., using Simulated Annealing, or run a Genetic Algorithm. I have to admit that I haven't tried that yet, hoping for a smarter way. One specific operationalization of a "good" approximation in the sense above is Problem 4 in the Open Problems section here, with k=2. Now, while finding an algorithm that is guaranteed to find the minimum l1-distance between D and the resulting distance matrix may be an open question, it still seems possible that there at least is some approximation to this optimal solution. If I don't get an answer here, I'll mail the gentleman who posed that problem and ask whether he knows of any approximation algorithm (and post any answer I get to that here).

    Read the article

  • Error while creating a VM using KVM

    - by Karan Gurnani
    I am trying to set up a VM on my Ubuntu 13.04 Desktop and it's giving me error when I try to start the VM. The error states: virsh # start vm1 error: Failed to start domain vm1 error: internal error process exited while connecting to monitor: W: kvm binary is deprecated, please use qemu-system-x86_64 instead char device redirected to /dev/pts/2 (label charserial0) qemu: at most 2047 MB RAM can be simulated What is the workaround for this, if any?

    Read the article

  • Why is GPU used for mining bitcoins?

    - by starcorn
    Something that I have not really grasped is the idea of bitcoins. Especially since everybody can mine for it using a powerful GPU. I wonder why is GPU used for this purpose? Is the work done by GPU used by some huge organization or is it just wasted resource that goes into simulated mining? I mean for example SETI uses your GPU for the purpose of finding aliens, but what I can see of bitmining it seems for no actual purpose than wasted resource.

    Read the article

  • Single machine domain with Windows 7 OS

    - by Robert Koritnik
    Is it possible to setup one single machine with Windows 7 x64 OS and somehow make it work as if it's part of a certain domain? So domain controller would be simulated in some way? I would like to avoid VMs and make it actually work on one machine with non server OS. Is there even a simpler way of doing it? Why: I have to setup development environment for Sharepoint 2010 and it will make my life much easier if my machine would be part of a domain.

    Read the article

  • What is the best way/tool to analyze raw data(network stats) from Simulation?

    - by user90500
    After running a simulation(using a simulator(QualNet)) of a simulated network I end up with ip stats stored in a database, I then extract the data to a csv file So now I have 750mb of raw network stats(time stamp, packet id, source ip, source port, protocol, etc). What are the common ways of analyzing large amounts of data like above, if you want to know things like packet loss, throughput, delay, congestion, etc.

    Read the article

  • Hadron Collider – Can it unveil the hidden secrets of universe?

    - by samsudeen
    Scientist at  European Centre for Nuclear Research (CERN) today successfully simulated the Big Bang experiment finally by producing  the world’s first high-energy particle collision.This is achieved through the collision of two protons with a total energy of  around seven trillion electron volts sending sub-particles spread through in every direction.   The experiment is conducted successfully around the  European Centre for Nuclear Research (CERN) which is under 100 metres below the Franco-Swiss border. This is said to be the biggest experiment in terms on the investment (around $7 billion) and the scientific importance. This will lead to a new era of science and could change the theories about the origin of universe. You can find  more videos about the experiment at the LHC Videos Join us on Facebook to read all our stories right inside your Facebook news feed.

    Read the article

  • PHP OCI8 and Oracle 11g DRCP Connection Pooling in Pictures

    - by christopher.jones
    Here is a screen shot from a PHP OCI8 connection pooling demo that I like to run. It graphically shows how little database host memory is needed when using DRCP connection pooling with Oracle Database 11g. Migrating to DRCP can be as simple as starting the pool and changing the connection string in your PHP application. The script that generated the data for this graph was a simple "Parts" query application being run under various simulated user loads. I was running the database on a small Oracle Linux server with just 2G of memory. I used PHP OCI8 1.4. Apache is in pre-fork mode, as needed for PHP. Each graph has time on the horizontal access in arbitrary 'tick' time units. Click the image to see it full sized. Pooled connections Beginning with the top left graph, At tick time 65 I used Apache's 'ab' tool to start 100 concurrent 'users' running the application. These users connected to the database using DRCP: $c = oci_pconnect('phpdemo', 'welcome', 'myhost/orcl:pooled'); A second hundred DRCP users were added to the system at tick 80 and a final hundred users added at tick 100. At about tick 110 I stopped the test and restarted Apache. This closed all the connections. The bottom left graph shows the number of statements being executed by the database per second, with some spikes for background database activity and some variability for this small test. Each extra batch of users adds another 'step' of load to the system. Looking at the top right Server Process graph shows the database server processes doing the query work for each web user. As user load is added, the DRCP server pool increases (in green). The pool is initially at its default size 4 and quickly ramps up to about (I'm guessing) 35. At tick time 100 the pool increases to my configured maximum of 40 processes. Those 40 processes are doing the query work for all 300 web users. When I stopped the test at tick 110, the pooled processes remained open waiting for more users to connect. If I had left the test quiet for the DRCP 'inactivity_timeout' period (300 seconds by default), the pool would have shrunk back to 4 processes. Looking at the bottom right, you can see the amount of memory being consumed by the database. During the initial quiet period about 500M of memory was in use. The absolute number is just an indication of my particular DB configuration. As the number of pooled processes increases, each process needs more memory. You can see the shape of the memory graph echoes the Server Process graph above it. Each of the 300 web users will also need a few kilobytes but this is almost too small to see on the graph. Non-pooled connections Compare the DRCP case with using 'dedicated server' processes. At tick 140 I started 100 web users who did not use pooled connections: $c = oci_pconnect('phpdemo', 'welcome', 'myhost/orcl'); This connection string change is the only difference between the two tests. At ticks 155 and 165 I started two more batches of 100 simulated users each. At about tick 195 I stopped the user load but left Apache running. Apache then gradually returned to its quiescent state, killing idle httpd processes and producing the downward slope at the right of the graphs as the persistent database connection in each Apache process was closed. The Executions per Second graph on the bottom left shows the same step increases as for the earlier DRCP case. The database is handling this load. But look at the number of Server processes on the top right graph. There is now a one-to-one correspondence between Apache/PHP processes and DB server processes. Each PHP processes has one DB server processes dedicated to it. Hence the term 'dedicated server'. The memory required on the database is proportional to all those database server processes started. Almost all my system's memory was consumed. I doubt it would have coped with any more user load. Summary Oracle Database 11g DRCP connection pooling significantly reduces database host memory requirements allow more system memory to be allocated for the SGA and allowing the system to scale to handled thousands of concurrent PHP users. Even for small systems, using DRCP allows more web users to be active. More information about PHP and DRCP can be found in the PHP Scalability and High Availability chapter of The Underground PHP and Oracle Manual.

    Read the article

  • SQL SERVER – Running Multiple Batch Files Together in Parallel

    - by pinaldave
    Recently I was preparing a demo for my next technical session, I had to do run a SQL code in parallel. I decided to use Batch File to run the code. I am not the best guy to with command shell so I did it with following setup. Code of tsql.sql SELECT 1 ColumnName Code of command.bat sqlcmd -S . -i tsql.sql timeout 100 Code of  AllBatch.bat start cmd.exe /C “command.bat” start cmd.exe /C “command.bat” start cmd.exe /C “command.bat” Now I ran AllBatch.bat and it run all the three files in parallel and simulated my needed scenario. I believe there should be simpler way using power-shell. Anybody want to come up with equivalent code which is improvement to this code? Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Homemaking a 2d soft body physics engine

    - by Griffin
    hey so I've decided to Code my own 2D soft-body physics engine in C++ since apparently none exist and I'm starting only with a general idea/understanding on how physics work and could be simulated: by giving points and connections between points properties such as elasticity, density, mass, shape retention, friction, stickiness, etc. What I want is a starting point: resources and helpful examples/sites that could give me the specifics needed to actually make this such as equations and required physics knowledge. It would be great if anyone out there also would give me their attempts or ideas. finally I was wondering if it was possible to... use the source code of an existing 3D engine such as Bullet and transform it to be 2D based? use the source code of a 2D Rigid body physics engine such as box2d as a starting point?

    Read the article

  • Homemaking a 2d soft body physics engine

    - by Griffin
    hey so I've decided to Code my own 2D soft-body physics engine in C++ since apparently none exist and I'm starting only with a general idea/understanding on how physics work and could be simulated: by giving points and connections between points properties such as elasticity, density, mass, shape retention, friction, stickiness, etc. What I want is a starting point: resources and helpful examples/sites that could give me the specifics needed to actually make this such as equations and required physics knowledge. It would be great if anyone out there also would give me their attempts or ideas. finally I was wondering if it was possible to... use the source code of an existing 3D engine such as Bullet and transform it to be 2D based? use the source code of a 2D Rigid body physics engine such as box2d as a starting point?

    Read the article

  • Car Modelling for race game

    - by Mert Toka
    I am taking Computer Graphics course this semester and we have a video game competition. I am making racing game with simulated dynamics. Our professor told us that we don't have to do much of a modelling but since we haven't started the gaming part and since I have free time I want to model the car. My question is firstly which software do you recommend to design game components? I know Maya right now. Secondly, if I design the car or any other part, what should its polygon count in order to run game smoothly? I can design pretty much everything but I assume that it is hard to design low-poly models.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9  | Next Page >