Search Results

Search found 59959 results on 2399 pages for 'time complexity'.

Page 2/2399 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Adding complexity by generalising: how far should you go?

    - by marcog
    Reference question: http://stackoverflow.com/questions/4303813/help-with-interview-question The above question asked to solve a problem for an NxN matrix. While there was an easy solution, I gave a more general solution to solve the more general problem for an NxM matrix. A handful of people commented that this generalisation was bad because it made the solution more complex. One such comment is voted +8. Putting aside the hard-to-explain voting effects on SO, there are two types of complexity to be considered here: Runtime complexity, i.e. how fast does the code run Code complexity, i.e. how difficult is the code to read and understand The question of runtime complexity is something that requires a better understanding of the input data today and what it might look like in the future, taking the various growth factors into account where necessary. The question of code complexity is the one I'm interested in here. By generalising the solution, we avoid having to rewrite it in the event that the constraints change. However, at the same time it can often result in complicating the code. In the reference question, the code for NxN is easy to understand for any competent programmer, but the NxM case (unless documented well) could easily confuse someone coming across the code for the first time. So, my question is this: Where should you draw the line between generalising and keeping the code easy to understand?

    Read the article

  • Adding complexity by generalising: how far should you go?

    - by marcog
    Reference question: http://stackoverflow.com/questions/4303813/help-with-interview-question The above question asked to solve a problem for an NxN matrix. While there was an easy solution, I gave a more general solution to solve the more general problem for an NxM matrix. A handful of people commented that this generalisation was bad because it made the solution more complex. One such comment is voted +8. Putting aside the hard-to-explain voting effects on SO, there are two types of complexity to be considered here: Runtime complexity, i.e. how fast does the code run Code complexity, i.e. how difficult is the code to read and understand The question of runtime complexity is something that requires a better understanding of the input data today and what it might look like in the future, taking the various growth factors into account where necessary. The question of code complexity is the one I'm interested in here. By generalising the solution, we avoid having to rewrite it in the event that the constraints change. However, at the same time it can often result in complicating the code. In the reference question, the code for NxN is easy to understand for any competent programmer, but the NxM case (unless documented well) could easily confuse someone coming across the code for the first time. So, my question is this: Where should you draw the line between generalising and keeping the code easy to understand?

    Read the article

  • How do NTP Servers Manage to Stay so Accurate?

    - by Akemi Iwaya
    Many of us have had the occasional problem with our computers and other devices retaining accurate time settings, but a quick sync with an NTP server makes all well again. But if our own devices can lose accuracy, how do NTP servers manage to stay so accurate? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. Photo courtesy of LEOL30 (Flickr). The Question SuperUser reader Frank Thornton wants to know how NTP servers are able to remain so accurate: I have noticed that on my servers and other machines, the clocks always drift so that they have to sync up to remain accurate. How do the NTP server clocks keep from drifting and always remain so accurate? How do the NTP servers manage to remain so accurate? The Answer SuperUser contributor Michael Kjorling has the answer for us: NTP servers rely on highly accurate clocks for precision timekeeping. A common time source for central NTP servers are atomic clocks, or GPS receivers (remember that GPS satellites have atomic clocks onboard). These clocks are defined as accurate since they provide a highly exact time reference. There is nothing magical about GPS or atomic clocks that make them tell you exactly what time it is. Because of how atomic clocks work, they are simply very good at, having once been told what time it is, keeping accurate time (since the second is defined in terms of atomic effects). In fact, it is worth noting that GPS time is distinct from the UTC that we are more used to seeing. These atomic clocks are in turn synchronized against International Atomic Time or TAI in order to not only accurately tell the passage of time, but also the time. Once you have an exact time on one system connected to a network like the Internet, it is a matter of protocol engineering enabling transfer of precise times between hosts over an unreliable network. In this regard a Stratum 2 (or farther from the actual time source) NTP server is no different from your desktop system syncing against a set of NTP servers. By the time you have a few accurate times (as obtained from NTP servers or elsewhere) and know the rate of advancement of your local clock (which is easy to determine), you can calculate your local clock’s drift rate relative to the “believed accurate” passage of time. Once locked in, this value can then be used to continuously adjust the local clock to make it report values very close to the accurate passage of time, even if the local real-time clock itself is highly inaccurate. As long as your local clock is not highly erratic, this should allow keeping accurate time for some time even if your upstream time source becomes unavailable for any reason. Some NTP client implementations (probably most ntpd daemon or system service implementations) do this, and others (like ntpd’s companion ntpdate which simply sets the clock once) do not. This is commonly referred to as a drift file because it persistently stores a measure of clock drift, but strictly speaking it does not have to be stored as a specific file on disk. In NTP, Stratum 0 is by definition an accurate time source. Stratum 1 is a system that uses a Stratum 0 time source as its time source (and is thus slightly less accurate than the Stratum 0 time source). Stratum 2 again is slightly less accurate than Stratum 1 because it is syncing its time against the Stratum 1 source and so on. In practice, this loss of accuracy is so small that it is completely negligible in all but the most extreme of cases. Have something to add to the explanation? Sound off in the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.

    Read the article

  • heroku time zone problem, logging local server time

    - by Ole Morten Amundsen
    UPDATE: Ok, I didn't formulate a good Q to be answered. I still struggle with heroku being on -07:00 UTC and I at +02:200 UTC. Q: How do I get the log written in the correct Time.zone ? The 9 hours difference, heroku (us west) - norway, is distracting to work with. I get this in my production.log (using heroku logs): Processing ProductionController#create to xml (for 81.26.51.35 at 2010-04-28 23:00:12) [POST] How do I get it to write 2010-04-29 08:00:12 +02:00 GMT ? Note that I'm running at heroku and cannot set the server time myself, as one could do at your amazon EC2 servers. Below is my previous question, I'll leave it be as it holds some interesting information about time and zones. Why does Time.now yield the server local time when I have set the another time zone in my environment.rb config.time_zone = 'Copenhagen' I've put this in a view <p> Time.zone <%= Time.zone %> </p> <p> Time.now <%= Time.now %> </p> <p> Time.now.utc <%= Time.now.utc %> </p> <p> Time.zone.now <%= Time.zone.now %> </p> <p> Time.zone.today <%= Time.zone.today %> </p> rendering this result on my app at heroku Time.zone (GMT+01:00) Copenhagen Time.now Mon Apr 26 08:28:21 -0700 2010 Time.now.utc Mon Apr 26 15:28:21 UTC 2010 Time.zone.now 2010-04-26 17:28:21 +0200 Time.zone.today 2010-04-26 Time.zone.now yields the correct result. Do I have to switch from Time.now to Time.zone.now, everywhere? Seems cumbersome. I truly don't care what the local time of the server is, it's giving me loads of trouble due to extensive use of Time.now. Am I misunderstanding anything fundamental here?

    Read the article

  • JVM system time runs faster than HP UNIX OS system time

    - by winston
    Hello I have the following output from a simple debug jsp: Weblogic Startup Since: Friday, October 19, 2012, 08:36:12 AM Database Current Time: Wednesday, December 12, 2012, 11:43:44 AM Weblogic JVM Current Time: Wednesday, December 12, 2012, 11:45:38 AM Line 1 was a recorded variable during WebLogic webapp startup. Line 2 was output from database query select sysdate from dual; Line 3 was output from java code new Date() I have checked from shell date command that line 2 output conforms with OS time. The output of line 3 was mysterious. I don't know how it comes from Java VM. On another machine with same setting, the same jsp output like this: Weblogic Startup Since: Tuesday, December 11, 2012, 02:29:06 PM Database Current Time: Wednesday, December 12, 2012, 11:51:48 AM Weblogic JVM Current Time: Wednesday, December 12, 2012, 11:51:50 AM Another machine: Weblogic Startup Since: Monday, December 10, 2012, 05:00:34 PM Database Current Time: Wednesday, December 12, 2012, 11:52:03 AM Weblogic JVM Current Time: Wednesday, December 12, 2012, 11:52:07 AM Findings: the pattern shows that the longer Weblogic startup, the larger the discrepancy of OS time with JVM time. Anybody could help on HP JVM? On HP UNIX, NTP was done daily. Anyway here comes the server versions: HP-UX machinex B.11.31 U ia64 2426956366 unlimited-user license java version "1.6.0.04" Java(TM) SE Runtime Environment (build 1.6.0.04-jinteg_28_apr_2009_04_46-b00) Java HotSpot(TM) Server VM (build 11.3-b02-jre1.6.0.04-rc2, mixed mode) WebLogic Server Version: 10.3.2.0 Java properties java.runtime.name=Java(TM) SE Runtime Environment java.runtime.version=1.6.0.04-jinteg_28_apr_2009_04_46-b00 java.vendor=Hewlett-Packard Co. java.vendor.url=http\://www.hp.com/go/Java java.version=1.6.0.04 java.vm.name=Java HotSpot(TM) 64-Bit Server VM java.vm.info=mixed mode java.vm.specification.vendor=Sun Microsystems Inc. java.vm.vendor="Hewlett-Packard Company" sun.arch.data.model=64 sun.cpu.endian=big sun.cpu.isalist=ia64r0 sun.io.unicode.encoding=UnicodeBig sun.java.launcher=SUN_STANDARD sun.jnu.encoding=8859_1 sun.management.compiler=HotSpot 64-Bit Server Compiler sun.os.patch.level=unknown os.name=HP-UX os.version=B.11.31

    Read the article

  • Windows Web Server 2008 R2 Server Core local password complexity

    - by Dennis Allen
    How can I disable the local user account password complexity settings on Windows 2008 R2 "Server Core"? I am trying to migrate our windows 2003 web server to windows 2008 R2. I am trying to see if I can use the "Server Core" install, and it has been a very internet search intensive experience. What I can't find out how to do is to find out how to disable password complexity for local user accounts. While our user account generator currently creates nice strong passwords, there was a time when this was not the case and unfortunately forcing the users to change their password is not an option at this time. Any help greatly appreciated. Dennis

    Read the article

  • Apple: Time capsule, 2 questions

    - by Patrick
    1) Can I use time capsule as server ? Can I run operating systems on it ? 2) I'm using time machine with my mac with time capsule. Let's say my mac crashes, and I cannot use it anymore. Can i restore my mac disk on another laptop from time capsule ? In other words, can I have a perfect copy of my mac hard disk on another mac ? thanks

    Read the article

  • Windows Media Player - always show Current Time/Total Time

    - by Siim K
    I'm using Windows Media Player 12 on Windows 7. When I open a video file then it by default only shows the current position (time). If I click on it once then it changes to format Current Time / Total Time Is there any way to make this format permanent (registry hack/some setting I have not noticed)? Right now every time I close WMP and open another file it's back to the default (only current time) setting.

    Read the article

  • How should I log time spent on multiple tasks?

    - by xenoterracide
    In Joel's blog on evidence based scheduling he suggests making estimates based on the smallest unit of work and logging extra work back to the original task. The problem I'm now experiencing is that I'll have create object A with subtask method A which creates object B and test all of the above. I create tasks for each of these that seems to be resulting in ok-ish estimates (need practice), but when I go to log work I find that I worked on 4 tasks at once because I tweak method A and find a bug in the test and refactor object B all while coding it. How should I go about logging this work? should I say I spent, for example, 2 hours on each of the 4 tasks I worked on in the 8 hour day?

    Read the article

  • Help to calculate hours and minutes between two time periods in Excel 2007

    - by Mestika
    Hi, I’m working on a very simple timesheet for my work in Excel 2007 but have ran into trouble about calculate the hours and minutes between two time periods. I have a field: timestart which could be for example: 08:30 Then I have a field timestop which could be for example: 12:30 I can easy calculate the result myself which is 4 hours but how do I create a “total” table all the way down the cell that calculate the hours spend on each entry? I’ve tried to play around with the time settings but it just give me wrong numbers each time. Sincerely Mestika

    Read the article

  • Time tracking tool for monitoring application usage

    - by wizlog
    I want to know how I'm really using my computer, and where the time goes (eg. I have an English paper due, and I intend on getting it done, its 2:30 PM... no wait, its 8:30 PM...). What software can tell me- a. what programs I use, and when b. within programs like Google Chrome or Firefox, which tabs do I spend the most time on. (So I know if I'm spending the time playing a game, or watching a movie on Hulu...)

    Read the article

  • How to change time (Advanced Eastern Time) on Slackware 8.1

    - by r0ca
    Hi all, I have a linux (Slackware) machine and the time/date is like, June 23rd 2003, 10:00am (It's 11 here) and I am not able to set the time to have it correct. I change the timezome to Montreal but the time is still wrong. Is there a way to force it to sync with my domain controler or even another online NTP server? Thanks, David.

    Read the article

  • Amazon EC2 instances changes server time/date on reboots and other time weirdness

    - by puffpio
    I have a windows instance up in EC2. I manually set the timezone to Pacific. 1) For some reason using window's built in time sync doesn't work in the instance...but whatever. I turn off automatic time syncing... but 2) On reboot the time on the server changes! For example, if i reboot it at 4PM on Wednesday, when the server comes back up it will read 12 noon on Thursday! As a result any access to Amazon's other services like SImpleDB fail because the timestamps generated are too far off the current time. Has anyone seen this or figured this out?

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • Big-O complexity of c^n + n*(logn)^2 + (10*n)^c

    - by zebraman
    I need to derive the Big-O complexity of this expression: c^n + n*(log(n))^2 + (10*n)^c where c is a constant and n is a variable. I'm pretty sure I understand how to derive the Big-O complexity of each term individually, I just don't know how the Big-O complexity changes when the terms are combined like this. Ideas? Any help would be great, thanks.

    Read the article

  • Internet Time tab has disappeared from the Date and Time applet of the Control Panel

    - by Robert Thornton
    Previously, there was an Internet Time tab on the Date and Time applet of the Control Panel, wherein one could force a query of an internet time server and also type in a different server from the ones supplied. However, this tab has now disappeared, and I need to have it back. I should mention that this machine has never been part of a domain, since it seems that machines that are such do not have such a tab. I should be obliged to anyone who can help me restore the missing tab. Windows 7 Home Premium Service Pack 1

    Read the article

  • Work Time Start / Stop Tracking Software

    - by Shaharyar
    Is there a software that allows you to keep track of someones working time digitally? We are growing to an extent where we work remotely and we would like to have fixed working times. All it should do is kind of register when someone starts working (i.e. someone needs to login somewhere or set a flag.. really it could be anything) Do you have any ideas?

    Read the article

  • Using Completed User Stories to Estimate Future User Stories

    - by David Kaczynski
    In Scrum/Agile, the complexity of a user story can be estimated in story points. After completing some user stories, a programmer or team of programmers can use those experiences to better estimate how much time it might take to complete a future user story. Is there a methodology for breaking down the complexity of user stories into quantifiable or quantifiable attributes? For example, User Story X requires a rich, new view in the GUI, but User Story X can perform most of its functionality using existing business logic on the server. On a scale of 1 to 10, User Story X has a complexity of 7 on the client and a complexity of 2 on the server. After User Story X is completed, someone asks how long would it take to complete User Story Y, which has a complexity of 3 on the client and 6 on the server. Looking at how long it took to complete User Story X, we can make an educated estimate on how long it might take to complete User Story Y. I can imagine some other details: The complexity of one attribute (such as complexity of client) could have sub-attributes, such as number of steps in a sequence, function points, etc. Several other attributes that could be considered as well, such as the programmer's familiarity with the system or the number of components/interfaces involved These attributes could be accumulated into some sort of user story checklist. To reiterate: is there an existing methodology for decomposing the complexity of a user story into complexity of attributes/sub-attributes, or is using completed user stories as indicators in estimating future user stories more of an informal process?

    Read the article

  • How to make a system time-zone sensitive?

    - by Jerry Dodge
    I need to implement time zones in a very large and old Delphi system, where there's a central SQL Server database and possibly hundreds of client installations around the world in different time zones. The application already interacts with the database by only using the date/time of the database server. So, all the time stamps saved in both the database and on the client machines are the date/time of the database server when it happened, never the time of the client machine. So, when a client is about to display the date/time of something (such as a transaction) which is coming from this database, it needs to show the date/time converted to the local time zone. This is where I get lost. I would naturally assume there should be something in SQL to recognize the time zone and convert a DateTime field dynamically. I'm not sure if such a thing exists though. If so, that would be perfect, but if not, I need to figure out another way. This Delphi system (multiple projects) utilizes the SQL Server database using ADO components, VCL data-aware controls, and QuickReports (using data sources). So, there's many places where the data goes directly from the database query to rendering on the screen, without any code to actually put this data on the screen. In the end, I need to know when and how should I get the properly converted time? There must be a standard method for this, and I'm hoping SQL Server 2008 R2 has this covered...

    Read the article

  • Asymptotic complexity of a compiler

    - by Meinersbur
    What is the maximal acceptable asymptotic runtime of a general-purpose compiler? For clarification: The complexity of compilation process itself, not of the compiled program. Depending on the program size, for instance, the number of source code characters, statements, variables, procedures, basic blocks, intermediate language instructions, assembler instructions, or whatever. This is highly depending on your point of view, so this is a community wiki. See this from the view of someone who writes a compiler. Will the optimisation level -O4 ever be used for larger programs when one of its optimisations takes O(n^6)? Related questions: When is superoptimisation (exponential complexity or even incomputable) acceptable? What is acceptable for JITs? Does it have to be linear? What is the complexity of established compilers? GCC? VC? Intel? Java? C#? Turbo Pascal? LCC? LLVM? (Reference?) If you do not know what asymptotic complexity is: How long are you willing to wait until the compiler compiled your project? (scripting languages excluded)

    Read the article

  • Time complexity of a certain program

    - by HokageSama
    In a discussion with my friend i am not able to predict correct and tight time complexity of a program. Program is as below. /* This Function reads input array "input" and update array "output" in such a way that B[i] = index value of nearest greater value from A[i], A[i+1] ... A[n], for all i belongs to [1, n] Time Complexity: ?? **/ void createNearestRightSidedLargestArr(int* input, int size, int* output){ if(!input || size < 1) return; //last element of output will always be zero, since no element is present on its right. output[size-1] = -1; int curr = size - 2; int trav; while(curr >= 0){ if(input[curr] < input[curr + 1]){ output[curr] = curr + 1; curr--; continue; } trav = curr + 1; while( input[ output [trav] ] < input[curr] && output [trav] != -1) trav = output[trav]; output[curr--] = output[trav]; } } I said time complexity is O(n^2) but my friend insists that this is not correct. What is the actual time complexity?

    Read the article

  • Time complexity with bit cost

    - by Keyser
    I think I might have completely misunderstood bit cost analysis. I'm trying to wrap my head around the concept of studying an algorithm's time complexity with respect to bit cost (instead of unit cost) and it seems to be impossible to find anything on the subject. Is this considered to be so trivial that no one ever needs to have it explained to them? Well I do. (Also, there doesn't even seem to be anything on wikipedia which is very unusual). Here's what I have so far: The bit cost of multiplication and division of two numbers with n bits is O(n^2) (in general?) So, for example: int number = 2; for(int i = 0; i < n; i++ ){ number = i*i; } has a time complexity with respect to bit cost of O(n^3), because it does n multiplications (right?) But in a regular scenario we want the time complexity with respect to the input. So, how does that scenario work? The number of bits in i could be considered a constant. Which would make the time complexity the same as with unit cost except with a bigger constant (and both would be linear). Also, I'm guessing addition and subtraction can be done in constant time, O(1). Couldn't find any info on it but it seems reasonable since it's one assembler operation.

    Read the article

  • What is the complexity of this specialized sort

    - by ADB
    I would like to know the complexity (as in O(...) ) of the following sorting algorithm: there are B barrels that contains a total of N elements, spread unevenly across the barrels. the elements in each barrel are already sorted The sort takes combines all the elements from each barrel in a single sorted list: using an array of size B to store the last sorted element of each barrel (starting at 0) check each barrel (at the last stored index) and find the smallest element copy the element in the final sorted array, increment array counter increment the last sorted element for the barrel we picked from perform those steps N times or in pseudo: for i from 0 to N smallest = MAX_ELEMENT foreach b in B if bIndex[b] < b.length && b[bIndex[b]] < smallest smallest_barrel = b smallest = b[bIndex[b]] result[i] = smallest bIndex[smallest_barrel] += 1 I thought that the complexity would be O(n), but the problem I have with finding the complexity is that if B grows, it has a larger impact than if N grows because it adds another round in the B loop. But maybe that has no effect on the complexity?

    Read the article

  • Time complexity of Sieve of Eratosthenes algorithm

    - by eSKay
    From Wikipedia: The complexity of the algorithm is O(n(logn)(loglogn)) bit operations. How do you arrive at that? That the complexity includes the loglogn term tells me that there is a sqrt(n) somewhere. Suppose I am running the sieve on the first 100 numbers (n = 100), assuming that marking the numbers as composite takes constant time (array implementation), the number of times we use mark_composite() would be something like n/2 + n/3 + n/5 + n/7 + ... + n/97 = O(n) And to find the next prime number (for example to jump to 7 after crossing out all the numbers that are multiples of 5), the number of operations would be O(n). So, the complexity would be O(n^2). Do you agree?

    Read the article

  • Time complexity of a sorting algorithm

    - by Passonate Learner
    The two programs below get n integers from file and calculates the sum of ath to bth integers q(number of question) times. I think the upper program has worse time complexity than the lower, but I'm having problems calculating the time complexity of these two algorithms. [input sample] 5 3 5 4 3 2 1 2 3 3 4 2 4 [output sample] 7 5 9 Program 1: #include <stdio.h> FILE *in=fopen("input.txt","r"); FILE *out=fopen("output.txt","w"); int n,q,a,b,sum; int data[1000]; int main() int i,j; fscanf(in,"%d%d",&n,&q); for(i=1;i<=n;i++) fscanf(in,"%d",&data[i]); for i=0;i<q;i++) { fscanf(in,"%d%d",&a,&b); sum=0; for(j=a;j<=b;j++) sum+=data[j]; fprintf(out,"%d\n",sum); } return 0; } Program 2: #include <stdio.h> FILE *in=fopen("input.txt","r"); FILE *out=fopen("output.txt","w"); int n,q,a,b; int data[1000]; int sum[1000]; int main() { int i,j; fscanf(in,"%d%d",&n,&q); for(i=1;i<=n;i++) fscanf(in,"%d",&data[i]); for(i=1;i<=n;i++) sum[i]=sum[i-1]+data[i]; for(i=0;i<q;i++) { fscanf(in,"%d%d",&a,&b); fprintf(out,"%d\n",sum[b]-sum[a-1]); } return 0; } The programs below gets n integers from 1 to m and sorts them. Again, I cannot calculate the time complexity. [input sample] 5 5 2 1 3 4 5 [output sample] 1 2 3 4 5 Program: #include <stdio.h> FILE *in=fopen("input.txt","r") FILE *out=fopen("output.txt","w") int n,m; int data[1000]; int count[1000]; int main() { int i,j; fscanf(in,"%d%d",&n,&m); for(i=0;i<n;i++) { fscanf(in,"%d",&data[i]); count[data[i]]++ } for(i=1;i<=m;i++) { for(j=0;j<count[i];j++) fprintf(out,"%d ",i); } return 0; } It's ironic(or not) that I cannot calculate the time complexity of my own algorithms, but I have passions to learn, so please programming gurus, help me!

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >