Search Results

Search found 59931 results on 2398 pages for 'time zone'.

Page 2/2398 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Removing forward lookup zone broke our site - why?

    - by user102469
    I'm fairly new to the job and trying to get to grips with the infrastructure here. We've moved a site from being locally hosted on our own network to an external host (1&1). I've transferred the DNS hosting from the previous DNS host to 1&1 to keep things simple. Once everything had gone through, visitors that were external to our network were being directed to the new site on 1&1 but requests from within our network were still going to our own server. I noticed in the DNS server that there was a forward lookup zone for the site pointing to our own server still. My (admittedly simplistic) understanding was that pausing that zone would then cause the DNS server to get the address for the site from our external DNS servers and our users would start landing on our new site. However, what happened instead was that they were being met with "page not found" type errors. I've resolved it my modifying the forward lookup zone A record to point to the external web server but would like to get an understanding as to why pausing the zone didn't work. Would deleting the zone work? I am reluctant to try that as creating it again will not be as easy as simply pressing "start". Many thanks.

    Read the article

  • How do NTP Servers Manage to Stay so Accurate?

    - by Akemi Iwaya
    Many of us have had the occasional problem with our computers and other devices retaining accurate time settings, but a quick sync with an NTP server makes all well again. But if our own devices can lose accuracy, how do NTP servers manage to stay so accurate? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. Photo courtesy of LEOL30 (Flickr). The Question SuperUser reader Frank Thornton wants to know how NTP servers are able to remain so accurate: I have noticed that on my servers and other machines, the clocks always drift so that they have to sync up to remain accurate. How do the NTP server clocks keep from drifting and always remain so accurate? How do the NTP servers manage to remain so accurate? The Answer SuperUser contributor Michael Kjorling has the answer for us: NTP servers rely on highly accurate clocks for precision timekeeping. A common time source for central NTP servers are atomic clocks, or GPS receivers (remember that GPS satellites have atomic clocks onboard). These clocks are defined as accurate since they provide a highly exact time reference. There is nothing magical about GPS or atomic clocks that make them tell you exactly what time it is. Because of how atomic clocks work, they are simply very good at, having once been told what time it is, keeping accurate time (since the second is defined in terms of atomic effects). In fact, it is worth noting that GPS time is distinct from the UTC that we are more used to seeing. These atomic clocks are in turn synchronized against International Atomic Time or TAI in order to not only accurately tell the passage of time, but also the time. Once you have an exact time on one system connected to a network like the Internet, it is a matter of protocol engineering enabling transfer of precise times between hosts over an unreliable network. In this regard a Stratum 2 (or farther from the actual time source) NTP server is no different from your desktop system syncing against a set of NTP servers. By the time you have a few accurate times (as obtained from NTP servers or elsewhere) and know the rate of advancement of your local clock (which is easy to determine), you can calculate your local clock’s drift rate relative to the “believed accurate” passage of time. Once locked in, this value can then be used to continuously adjust the local clock to make it report values very close to the accurate passage of time, even if the local real-time clock itself is highly inaccurate. As long as your local clock is not highly erratic, this should allow keeping accurate time for some time even if your upstream time source becomes unavailable for any reason. Some NTP client implementations (probably most ntpd daemon or system service implementations) do this, and others (like ntpd’s companion ntpdate which simply sets the clock once) do not. This is commonly referred to as a drift file because it persistently stores a measure of clock drift, but strictly speaking it does not have to be stored as a specific file on disk. In NTP, Stratum 0 is by definition an accurate time source. Stratum 1 is a system that uses a Stratum 0 time source as its time source (and is thus slightly less accurate than the Stratum 0 time source). Stratum 2 again is slightly less accurate than Stratum 1 because it is syncing its time against the Stratum 1 source and so on. In practice, this loss of accuracy is so small that it is completely negligible in all but the most extreme of cases. Have something to add to the explanation? Sound off in the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.

    Read the article

  • Automating custom software installation in a zone

    - by mgerdts
    In Solaris 11, the internals of zone installation are quite different than they were in Solaris 10.  This difference allows the administrator far greater control of what software is installed in a zone.  The rules in Solaris 10 are simple and inflexible: if it is installed in the global zone and is not specifically excluded by package metadata from being installed in a zone, it is installed in the zone.  In Solaris 11, the rules are still simple, but are much more flexible:  the packages you tell it to install and the packages on which they depend will be installed. So, where does the default list of packages come from?  From the AI (auto installer) manifest, of course.  The default AI manifest is /usr/share/auto_install/manifest/zone_default.xml.  Within that file you will find:             <software_data action="install">                 <name>pkg:/group/system/solaris-small-server</name>             </software_data> So, the default installation will install pkg:/group/system/solaris-small-server.  Cool.  What is that?  You can figure out what is in the package by looking for it in the repository with your web browser (click the manifest link), or use pkg(1).  In this case, it is a group package (pkg:/group/), so we know that it just has a bunch of dependencies to name the packages that really wants installed. $ pkg contents -t depend -o fmri -s fmri -r solaris-small-server FMRI compress/bzip2 compress/gzip compress/p7zip ... terminal/luit terminal/resize text/doctools text/doctools/ja text/less text/spelling-utilities web/wget If you would like to see the entire manifest from the command line, use pkg contents -r -m solaris-small-server. Let's suppose that you want to install a zone that also has mercurial and a full-fledged installation of vim rather than just the minimal vim-core that is part of solaris-small-server.  That's pretty easy. First, copy the default AI manifest somewhere where you will edit it and make it writable. # cp /usr/share/auto_install/manifest/zone_default.xml ~/myzone-ai.xml # chmod 644 ~/myzone-ai.xml Next, edit the file, changing the software_data section as follows:             <software_data action="install">                 <name>pkg:/group/system/solaris-small-server</name>                 <name>pkg:/developer/versioning/mercurial</name>                <name>pkg:/editor/vim</name>             </software_data> To figure out  the names of the packages, either search the repository using your browser, or use a command like pkg search hg. Now we are all ready to install the zone.  If it has not yet been configured, that must be done as well. # zonecfg -z myzone 'create; set zonepath=/zones/myzone' # zoneadm -z myzone install -m ~/myzone-ai.xml A ZFS file system has been created for this zone. Progress being logged to /var/log/zones/zoneadm.20111113T004303Z.myzone.install Image: Preparing at /zones/myzone/root. Install Log: /system/volatile/install.15496/install_log AI Manifest: /tmp/manifest.xml.XfaWpE SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml Zonename: myzone Installation: Starting ... Creating IPS image Installing packages from: solaris origin: http://localhost:1008/solaris/54453f3545de891d4daa841ddb3c844fe8804f55/ DOWNLOAD PKGS FILES XFER (MB) Completed 169/169 34047/34047 185.6/185.6 PHASE ACTIONS Install Phase 46498/46498 PHASE ITEMS Package State Update Phase 169/169 Image State Update Phase 2/2 Installation: Succeeded Note: Man pages can be obtained by installing pkg:/system/manual done. Done: Installation completed in 531.813 seconds. Next Steps: Boot the zone, then log into the zone console (zlogin -C) to complete the configuration process. Log saved in non-global zone as /zones/myzone/root/var/log/zones/zoneadm.20111113T004303Z.myzone.install Now, for a few things that I've seen people trip over: Ignore that bit about man pages - it's wrong.  Man pages are already installed so long as the right facet is set properly.  And that's a topic for another blog entry. If you boot the zone then just use zlogin myzone, you will see that services you care about haven't started and that svc:/milestone/config:default is starting.  That is because you have not yet logged into the console with zlogin -C myzone. If the zone has been booted for more than a very short while when you first connect to the zone console, it will seem like the console is hung.  That's not really the case - hit ^L (control-L) to refresh the sysconfig(1M) screen that is prompting you for information.

    Read the article

  • Windows 7 loses correct time zone upon reboot

    - by Android Eve
    I have a standard PC running Windows 7 Ultimate (64-bit). For some reason, it refuses to keep the correct time zone (the BIOS battery is OK) when restarted. Note (1): The Time zone is correct. The "Internet Time" tab also shows "this computer is set to automatically synchronize with 'time.windows.com'. When I click the 'Change settings...' button, the 'Synchronize with an Internet time server' checkbox is checked. Still, upon reboot, the time is skewed by 6 hours... and doesn't correct itself even after waiting hours for this "automatically synchronize" to occur. Note (2): The BIOS time is set to local (i.e. not UTC). When I restart Windows 7 without booting to the other OS installed in dual-boot config (Ubuntu Linux), it seems to correctly remember the time. This may explain immediate time upon reboot, but it doesn't explain why Windows 7 won't automatically 'Synchronize with an Internet time server' even after an hour. Why is this happening and how do I correct this?

    Read the article

  • JVM system time runs faster than HP UNIX OS system time

    - by winston
    Hello I have the following output from a simple debug jsp: Weblogic Startup Since: Friday, October 19, 2012, 08:36:12 AM Database Current Time: Wednesday, December 12, 2012, 11:43:44 AM Weblogic JVM Current Time: Wednesday, December 12, 2012, 11:45:38 AM Line 1 was a recorded variable during WebLogic webapp startup. Line 2 was output from database query select sysdate from dual; Line 3 was output from java code new Date() I have checked from shell date command that line 2 output conforms with OS time. The output of line 3 was mysterious. I don't know how it comes from Java VM. On another machine with same setting, the same jsp output like this: Weblogic Startup Since: Tuesday, December 11, 2012, 02:29:06 PM Database Current Time: Wednesday, December 12, 2012, 11:51:48 AM Weblogic JVM Current Time: Wednesday, December 12, 2012, 11:51:50 AM Another machine: Weblogic Startup Since: Monday, December 10, 2012, 05:00:34 PM Database Current Time: Wednesday, December 12, 2012, 11:52:03 AM Weblogic JVM Current Time: Wednesday, December 12, 2012, 11:52:07 AM Findings: the pattern shows that the longer Weblogic startup, the larger the discrepancy of OS time with JVM time. Anybody could help on HP JVM? On HP UNIX, NTP was done daily. Anyway here comes the server versions: HP-UX machinex B.11.31 U ia64 2426956366 unlimited-user license java version "1.6.0.04" Java(TM) SE Runtime Environment (build 1.6.0.04-jinteg_28_apr_2009_04_46-b00) Java HotSpot(TM) Server VM (build 11.3-b02-jre1.6.0.04-rc2, mixed mode) WebLogic Server Version: 10.3.2.0 Java properties java.runtime.name=Java(TM) SE Runtime Environment java.runtime.version=1.6.0.04-jinteg_28_apr_2009_04_46-b00 java.vendor=Hewlett-Packard Co. java.vendor.url=http\://www.hp.com/go/Java java.version=1.6.0.04 java.vm.name=Java HotSpot(TM) 64-Bit Server VM java.vm.info=mixed mode java.vm.specification.vendor=Sun Microsystems Inc. java.vm.vendor="Hewlett-Packard Company" sun.arch.data.model=64 sun.cpu.endian=big sun.cpu.isalist=ia64r0 sun.io.unicode.encoding=UnicodeBig sun.java.launcher=SUN_STANDARD sun.jnu.encoding=8859_1 sun.management.compiler=HotSpot 64-Bit Server Compiler sun.os.patch.level=unknown os.name=HP-UX os.version=B.11.31

    Read the article

  • Apple: Time capsule, 2 questions

    - by Patrick
    1) Can I use time capsule as server ? Can I run operating systems on it ? 2) I'm using time machine with my mac with time capsule. Let's say my mac crashes, and I cannot use it anymore. Can i restore my mac disk on another laptop from time capsule ? In other words, can I have a perfect copy of my mac hard disk on another mac ? thanks

    Read the article

  • Windows Media Player - always show Current Time/Total Time

    - by Siim K
    I'm using Windows Media Player 12 on Windows 7. When I open a video file then it by default only shows the current position (time). If I click on it once then it changes to format Current Time / Total Time Is there any way to make this format permanent (registry hack/some setting I have not noticed)? Right now every time I close WMP and open another file it's back to the default (only current time) setting.

    Read the article

  • How to Zone Forward to a List of Alternative Name Servers in pfSense 2.0.1

    - by Bob B.
    I'm not sure if dnsmasq is involved in this process on pfSense or not. Before pfsense, we'd do this in BIND thusly: zone "firstpartner.com" { type forward; forwarders { 1.2.3.4; 5.6.7.8; w.x.y.z; }; I'm intentionally over-explaining this in the interests of specificity: We currently use dnsmasq to direct local queries for our primarydomain.com. Anything that doesn't match a host override entry in pfSense gets passed off to our external name servers, as defined elsewhere in pfSense. There are certain other zones which are not publicly accessible, let's call them firstpartner.com and secondpartner.com that each have various subdomains that their own name servers handle. I need a way to define a list of name server IPs for each domain zone (see BIND example above). Thanks in advance for any help you can provide.

    Read the article

  • How should I log time spent on multiple tasks?

    - by xenoterracide
    In Joel's blog on evidence based scheduling he suggests making estimates based on the smallest unit of work and logging extra work back to the original task. The problem I'm now experiencing is that I'll have create object A with subtask method A which creates object B and test all of the above. I create tasks for each of these that seems to be resulting in ok-ish estimates (need practice), but when I go to log work I find that I worked on 4 tasks at once because I tweak method A and find a bug in the test and refactor object B all while coding it. How should I go about logging this work? should I say I spent, for example, 2 hours on each of the 4 tasks I worked on in the 8 hour day?

    Read the article

  • Help to calculate hours and minutes between two time periods in Excel 2007

    - by Mestika
    Hi, I’m working on a very simple timesheet for my work in Excel 2007 but have ran into trouble about calculate the hours and minutes between two time periods. I have a field: timestart which could be for example: 08:30 Then I have a field timestop which could be for example: 12:30 I can easy calculate the result myself which is 4 hours but how do I create a “total” table all the way down the cell that calculate the hours spend on each entry? I’ve tried to play around with the time settings but it just give me wrong numbers each time. Sincerely Mestika

    Read the article

  • Time tracking tool for monitoring application usage

    - by wizlog
    I want to know how I'm really using my computer, and where the time goes (eg. I have an English paper due, and I intend on getting it done, its 2:30 PM... no wait, its 8:30 PM...). What software can tell me- a. what programs I use, and when b. within programs like Google Chrome or Firefox, which tabs do I spend the most time on. (So I know if I'm spending the time playing a game, or watching a movie on Hulu...)

    Read the article

  • How to change time (Advanced Eastern Time) on Slackware 8.1

    - by r0ca
    Hi all, I have a linux (Slackware) machine and the time/date is like, June 23rd 2003, 10:00am (It's 11 here) and I am not able to set the time to have it correct. I change the timezome to Montreal but the time is still wrong. Is there a way to force it to sync with my domain controler or even another online NTP server? Thanks, David.

    Read the article

  • Amazon EC2 instances changes server time/date on reboots and other time weirdness

    - by puffpio
    I have a windows instance up in EC2. I manually set the timezone to Pacific. 1) For some reason using window's built in time sync doesn't work in the instance...but whatever. I turn off automatic time syncing... but 2) On reboot the time on the server changes! For example, if i reboot it at 4PM on Wednesday, when the server comes back up it will read 12 noon on Thursday! As a result any access to Amazon's other services like SImpleDB fail because the timestamps generated are too far off the current time. Has anyone seen this or figured this out?

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • Setting up vncserver on OpenSolaris zone

    - by k.park
    I am running OpenSolaris 5.10 and set up a sparse zone(inherits most of bin directories from global zone). I ended up copying many etc and var files from global zone, eventually most of the stuff(firefox,gvim, etc.) working through ssh via X11. However, I am having problems setting up vncserver on the zone. This is what I get if I tried to start the vncserver. vncext: VNC extension running! vncext: Listening for VNC connections on port 5911 vncext: created VNC server for screen 0 Fatal server error: could not open default font 'fixed' _X11TransNAMEDOpenClient: Cannot open /tmp/.X11-pipe/X11 for NAMED connection _X11TransOpen: transport open failed for local/%zone%:11 xsetroot: unable to open display '%zone%:11' _X11TransNAMEDOpenClient: Cannot open /tmp/.X11-pipe/X11 for NAMED connection _X11TransOpen: transport open failed for local/%zone%:11 _X11TransNAMEDOpenClient: Cannot open /tmp/.X11-pipe/X11 for NAMED connection _X11TransOpen: transport open failed for local/%zone%:11 _X11TransNAMEDOpenClient: Cannot open /tmp/.X11-pipe/X11 for NAMED connection _X11TransOpen: transport open failed for local/%zone%:11 vncconfig: unable to open display "%zone%:11" twm: unable to open display "%zone%:11" xterm Xt error: Can't open display: %zone%:11 I already chmoded /tmp/.X11-pipe with 777, and there is no pipe in /tmp/.X11-pipe or /tmp/.X11-unix directory. Here is my cat /etc/release: OpenSolaris 2009.06 snv_111b X86 Copyright 2009 Sun Microsystems, Inc. All Rights Reserved. Use is subject to license terms. Assembled 07 May 2009 BRAND: ipkg

    Read the article

  • Internet Time tab has disappeared from the Date and Time applet of the Control Panel

    - by Robert Thornton
    Previously, there was an Internet Time tab on the Date and Time applet of the Control Panel, wherein one could force a query of an internet time server and also type in a different server from the ones supplied. However, this tab has now disappeared, and I need to have it back. I should mention that this machine has never been part of a domain, since it seems that machines that are such do not have such a tab. I should be obliged to anyone who can help me restore the missing tab. Windows 7 Home Premium Service Pack 1

    Read the article

  • How to convincing Programmers that 'being in the zone' [coding] isn't always beneficial for the project?

    - by hawkeye
    In this book review: http://books.slashdot.org/story/11/06/13/1251216/Book-Review-The-Clean-Coder?utm_source=slashdot&utm_medium=twitter Chapter 4 talks about the coding process itself. One of the hardest statements the book makes here is to stay out of "the zone" when coding. Bob asserts that you lose parts of the big picture when you go down to that level. While I may struggle with that assertion, I do agree with his next statement that debugging time is expensive, so you should avoid having to do debugger-driven development whenever possible. He finishes the chapter with examples of pacing yourself (walking away, taking a shower) and how to deal with being late on your projects (remembering that hope is not a plan, and being clear about the impact of overtime) along with a reminder that it is good to both give and receive help, whether it be small questions or mentoring others. they talk about how 'being in the zone' - can actually be detrimental to the project. How do you convince your team members that this is the case?

    Read the article

  • Work Time Start / Stop Tracking Software

    - by Shaharyar
    Is there a software that allows you to keep track of someones working time digitally? We are growing to an extent where we work remotely and we would like to have fixed working times. All it should do is kind of register when someone starts working (i.e. someone needs to login somewhere or set a flag.. really it could be anything) Do you have any ideas?

    Read the article

  • Time management and self improvement

    - by Filip
    I hope I can open a discussion on this topic as this is not a specific problem. It's a topic I hope to get some ideas on how people in similar situation as mine manage their time. OK, I'm a single developer on a software project for the last 6-8 months. The project I'm working on uses several technologies, mainly .net stuff: WPF, WF, NHibernate, WCF, MySql and other third party SDKs relevant for the project nature. My experience and knowledge vary, for example I have a lot of experience in WPF but much less in WCF. I work full time on the project and im curios on how other programmers which need to multi task in many areas manage their time. I'm a very applied type of person and prefer to code instead of doing research. I feel that doing research "might" slow down the progress of the project while I recognize that research and learning more in areas which I'm not so strong will ultimately make me more productive. How would you split up your daily time in productive coding time and time to and experiment, read blogs, go through tutorials etc. I would say that Im coding about 90%+ of my day and devoting some but very little time in research and acquiring new knowledge. Thanks for your replies. I think I will adopt a gradual transition to Dominics block parts. I kinda knew that coding was taking up way to much of my time but it feels good having a first version of the project completed and ready. With a few months of focused hard work behind me I hope to get more time to experiment and expand my knowlegde. Now I only hope my boss will cut me some slack and stop pressuring me for features...

    Read the article

  • Daylight Saving Time Visualized

    - by Jason Fitzpatrick
    When you map out the Daylight Saving Time adjusted sunrise and sunset times over the course of the year, an interesting pattern emerges. Chart designer Germanium writes: I tried to come up with the reason for the daylight saving time change by just looking at the data for sunset and sunrise times. The figure represents sunset and sunrise times thought the year. It shows that the daylight saving time change marked by the lines (DLS) is keeping the sunrise time pretty much constant throughout the whole year, while making the sunset time change a lot. The spread of sunrise times as measured by the standard deviation is 42 minutes, which means that the sunrise time changes within that range the whole year, while the standard deviation for the sunset times is 1:30 hours. Whatever the argument for doing this is, it’s pretty clear that reason is to keep the sunrise time constant. You can read more about the controversial history of Daylight Saving Time here. Daylight Saving Time Explained [via Cool Infographics] 6 Ways Windows 8 Is More Secure Than Windows 7 HTG Explains: Why It’s Good That Your Computer’s RAM Is Full 10 Awesome Improvements For Desktop Users in Windows 8

    Read the article

  • Time Tracking on an Agile Team

    - by Stephen.Walther
    What’s the best way to handle time-tracking on an Agile team? Your gut reaction to this question might be to resist any type of time-tracking at all. After all, one of the principles of the Agile Manifesto is “Individuals and interactions over processes and tools”.  Forcing the developers on your team to track the amount of time that they devote to completing stories or tasks might seem like useless bureaucratic red tape: an impediment to getting real work done. I completely understand this reaction. I’ve been required to use time-tracking software in the past to account for each hour of my workday. It made me feel like Fred Flintstone punching in at the quarry mine and not like a professional. Why You Really Do Need Time-Tracking There are, however, legitimate reasons to track time spent on stories even when you are a member of an Agile team.  First, if you are working with an outside client, you might need to track the number of hours spent on different stories for the purposes of billing. There might be no way to avoid time-tracking if you want to get paid. Second, the Product Owner needs to know when the work on a story has gone over the original time estimated for the story. The Product Owner is concerned with Return On Investment. If the team has gone massively overtime on a story, then the Product Owner has a legitimate reason to halt work on the story and reconsider the story’s business value. Finally, you might want to track how much time your team spends on different types of stories or tasks. For example, if your team is spending 75% of their time doing testing then you might need to bring in more testers. Or, if 10% of your team’s time is expended performing a software build at the end of each iteration then it is time to consider better ways of automating the build process. Time-Tracking in SonicAgile For these reasons, we added time-tracking as a feature to SonicAgile which is our free Agile Project Management tool. We were heavily influenced by Jeff Sutherland (one of the founders of Scrum) in the way that we implemented time-tracking (see his article http://scrum.jeffsutherland.com/2007/03/time-tracking-is-anti-scrum-what-do-you.html). In SonicAgile, time-tracking is disabled by default. If you want to use this feature then the project owner must enable time-tracking in Project Settings. You can choose to estimate using either days or hours. If you are estimating at the level of stories then it makes more sense to choose days. Otherwise, if you are estimating at the level of tasks then it makes more sense to use hours. After you enable time-tracking then you can assign three estimates to a story: Original Estimate – This is the estimate that you enter when you first create a story. You don’t change this estimate. Time Spent – This is the amount of time that you have already devoted to the story. You update the time spent on each story during your daily standup meeting. Time Left – This is the amount of time remaining to complete the story. Again, you update the time left during your daily standup meeting. So when you first create a story, you enter an original estimate that becomes the time left. During each daily standup meeting, you update the time spent and time left for each story on the Kanban. If you had perfect predicative power, then the original estimate would always be the same as the sum of the time spent and the time left. For example, if you predict that a story will take 5 days to complete then on day 3, the story should have 3 days spent and 2 days left. Unfortunately, never in the history of mankind has anyone accurately predicted the exact amount of time that it takes to complete a story. For this reason, SonicAgile does not update the time spent and time left automatically. Each day, during the daily standup, your team should update the time spent and time left for each story. For example, the following table shows the history of the time estimates for a story that was originally estimated to take 3 days but, eventually, takes 5 days to complete: Day Original Estimate Time Spent Time Left Day 1 3 days 0 days 3 days Day 2 3 days 1 day 2 days Day 3 3 days 2 days 2 days Day 4 3 days 3 days 2 days Day 5 3 days 4 days 0 days In the table above, everything goes as predicted until you reach day 3. On day 3, the team realizes that the work will require an additional two days. The situation does not improve on day 4. All of the sudden, on day 5, all of the remaining work gets done. Real work often follows this pattern. There are long periods when nothing gets done punctuated by occasional and unpredictable bursts of progress. We designed SonicAgile to make it as easy as possible to track the time spent and time left on a story. Detecting when a Story Goes Over the Original Estimate Sometimes, stories take much longer than originally estimated. There’s a surprise. For example, you discover that a new software component is incompatible with existing software components. Or, you discover that you have to go through a month-long certification process to finish a story. In those cases, the Product Owner has a legitimate reason to halt work on a story and re-evaluate the business value of the story. For example, the Product Owner discovers that a story will require weeks to implement instead of days, then the story might not be worth the expense. SonicAgile displays a warning on both the Backlog and the Kanban when the time spent on a story goes over the original estimate. An icon of a clock is displayed. Time-Tracking and Tasks Another optional feature of SonicAgile is tasks. If you enable Tasks in Project Settings then you can break stories into one or more tasks. You can perform time-tracking at the level of a story or at the level of a task. If you don’t break a story into tasks then you can enter the time left and time spent for the story. As soon as you break a story into tasks, then you can no longer enter the time left and time spent at the level of the story. Instead, the time left and time spent for a story is rolled up from its tasks. On the Kanban, you can see how the time left and time spent for each task gets rolled up into each story. The progress bar for the story is rolled up from the progress bars for each task. The original estimate is never rolled up – even when you break a story into tasks. A story’s original estimate is entered separately from the original estimates of each of the story’s tasks. Summary Not every Agile team can avoid time-tracking. You might be forced to track time to get paid, to detect when you are spending too much time on a particular story, or to track the amount of time that you are devoting to different types of tasks. We designed time-tracking in SonicAgile to require the least amount of work to track the information that you need. Time-tracking is an optional feature. If you enable time-tracking then you can track the original estimate, time left, and time spent for each story and task. You can use time-tracking with SonicAgile for free. Register at http://SonicAgile.com.

    Read the article

  • get the current time in C

    - by Antrromet
    I want to get the current time of my system. For that i'm using the following code in C. time_t now; struct tm *mytime = localtime(&now); if ( strftime(buffer, sizeof buffer, "%X", mytime) ) { printf("time1 = \"%s\"\n", buffer); } But the problem of this code is that its giving some random time.Also the random time is different all the time.I want the current time of my system. Can anyone please tell me how to solve this issue?

    Read the article

  • time(NULL) returning different time

    - by cornerback84
    I am trying to get current time in C using time_t current_time = time(NULL). As I understand, it would return me the current time of system. I am later trying to convert it into GMT time using struct tm* gmt = gmtime(&current_time). I print both times using ctime() and asctime() functions. The current time on my system is GMT + 1. But gmtime() returns me the same time as current_time is. I could not understand why gmtime() is returning me same time. Any help will be appreciated.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >