Search Results

Search found 21597 results on 864 pages for 'timer service'.

Page 2/864 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Tellago && Tellago Studios 2010

    - by gsusx
    With 2011 around the corner we, at Tellago and Tellago Studios , we have been spending a lot of times evaluating our successes and failures (yes those too ;)) of 2010 and delineating some of our goals and strategies for 2011. When I look at 2010 here are some of the things that quickly jump off the page: Growing Tellago by 300% Launching a brand new company: Tellago Studios Expanding our customer base Establishing our business intelligence practice http://tellago.com/what-we-say/events/business-intelligence...(read more)

    Read the article

  • Timer application for Windows?

    - by Ashwin
    Can you suggest a good timer application for Windows? It is surprising how useful a timer is for cooking, meditation, and for even giving oneself a timeout while working. I am not interested in any unwanted frills, just a simple light GUI timer that counts down and sounds when done.

    Read the article

  • AJAX - ASP.NET - Timer delay problem

    - by Julian
    Hi, I'm trying to make an webapplication where you see an Ajax countdown timer. Whenever I push a button the countdown should go back to 30 and keep counting down. Now the problem is whenever I push the button the timer keeps counting down for a second or 2 and most of the time after that the timer keeps standing on 30 for to long. WebForm code: <asp:UpdatePanel ID="UpdatePanel1" runat="server"> <ContentTemplate> <asp:Label ID="Label1" runat="server" Text="geen verbinding"></asp:Label> <br /> <asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Button" /> <br /> </ContentTemplate> <Triggers> <asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" /> </Triggers> </asp:UpdatePanel> <asp:Timer ID="Timer1" runat="server" Interval="1000" ontick="Timer1_Tick"> </asp:Timer> </form> Code Behind: static int timer = 30; protected void Page_Load(object sender, EventArgs e) { Label1.Text = timer.ToString(); } protected void Timer1_Tick(object sender, EventArgs e) { timer--; } protected void Button1_Click(object sender, EventArgs e) { timer = 30; } Hope somebody knows what the problem is and if there is anyway to fix this. Thanks in advance!

    Read the article

  • Adding time to a timer/counter

    - by BoneStarr
    I've looked all over the web and everyone can teach you how to make a timer for your game or a countdown, but I can't seem to find out how to add time to an already counting timer. So here is my counter class: package { import flash.display.MovieClip; import flash.display.Stage; import flash.text.TextField; import flash.events.Event; import flash.utils.Timer; import flash.events.TimerEvent; public class Score extends MovieClip { public var second:Number = 0; public var timer:Timer = new Timer(100); private var stageRef:Stage; public function Score(stageRef:Stage) { x = 560.95; y = 31.35; this.stageRef = stageRef; timer.addEventListener(TimerEvent.TIMER, scoreTimer); timer.start(); } public function scoreTimer(evt:TimerEvent):void { second += 1; scoreDisplay.text = String("Score: " +second); } That works without any issues or problems and just keeps counting upwards at a speed of 100ms, what I want to know is how to add say 30 seconds if something happens in my game, say you kill an enemy for example. Please help!

    Read the article

  • Accessing running task scheduled with java.util.Timer

    - by jbatista
    I'm working on a Java project where I have created a class that looks like this (abridged version): public class Daemon { private static Timer[] timerarray=null; private static Daemon instance=null; protected Daemon() { ArrayList<Timer> timers = new ArrayList<Timer>(); Timer t = new Timer("My application"); t.schedule(new Worker(), 10000,30000); timers.add(t); //... timerarray = timers.toArray(new Timer[]{}); } public static Daemon getInstance() { if(instance==null) instance=new Daemon(); return instance; } public SomeClass getSomeValueFromWorker() { return theValue; } ///////////////////////////////////////////// private class Worker extends TimerTask { public Worker() {} public void run() { // do some work } public SomeReturnClass someMethod(SomeType someParameter) { // return something; } } ///////////////////////////////////////////// } I start this class, e.g. by invoking daemon.getInstance();. However, I'd like to have some way to access the running task objects' methods (for example, for monitoring the objects' state). The Java class java.util.Timer does not seem to provide the means to access the running object, it just schedules the object instance extending TimerTask. Are there ways to access the "running" object instanciated within a Timer? Do I have to subclass the Timer class with the appropriate methods to somehow access the instance (this "feels" strange, somehow)? I suppose someone might have done this before ... where can I find examples of this "procedure"? Thank you in advance for your feedback.

    Read the article

  • ASP.NET/AJAX - Timer delay

    - by Julian
    I've got a problem with the timer in asp.net ajax. The timer needs to trigger every second so I put the delay of the timer (don't know the real name atm) at 1000. Now when I put this timer inside an UpdatePanel it doesn't really trigger every second because the timer also gets updated in the UpdatePanel. But when I put the timer outside the update panel it keeps kinda refreshing the page, so whenever I put a button on the same page I need to press and release this button within 1 second else it gets refreshed. Also I saw that even outside of the UpdatePanel the timer isn't a real second. Any solutions?

    Read the article

  • Add a Sleep Timer to Windows 7 Media Center

    - by DigitalGeekery
    Do you make it a habit of falling asleep at night while watching Windows Media Center? Today we are going to take a look at the MC7 Sleep Timer for Windows 7 Media Center. This simple little plugin allows you to schedule an automatic shutdown time in Media Center. Note: At this point MC7 Sleep Timer doesn’t work with extenders. If you’re using ClamAV or Panda it may detect this plugin as a virus, we’ve tested it and this is a false positive for these two antivirus apps. Installation and Usage Download and install MC7 Sleep Timer. (See download below) After the installation is finished, you will find MC7 Sleep Timer located in the Media Center Extras Library. Click on the tile to open the timer and configure your settings. The MC7 Sleep Timer will open in full screen mode. You can choose to shutdown the PC after 30 or 60 minutes, create a custom length shutdown timer at any 5 minute interval, or select the exact time you want the PC to shutdown.  After setting your PC to shutdown, you’ll get an audio confirmation. To set a custom timer length, scroll to the “Custom timer” option and click right or left on your Media Center remote or, the right or left arrow keys, to choose how many minutes before shutdown. To schedule a shutdown for a certain time, browse to the “Shutdown at time” button, and scroll right or left with the arrow keys on the keyboard or remote. When you’ve chosen your time, hit “Enter” on the keyboard or “OK” on the remote.   Clicking the “Monitor Off” button will turn off only the monitor and “Cancel Timer” will cancel your shutdown request. Conclusion If you often find yourself falling asleep every night watching Media Center and then fumbling and stumbling in the middle of the night to shutdown your computer, MC7 Sleep timer might just be a perfect addition to your Media Center setup. Download MC7 Sleep Timer Similar Articles Productive Geek Tips Using Netflix Watchnow in Windows Vista Media Center (Gmedia)Re-Enable Sleep Mode in Windows VistaSchedule Updates for Windows Media CenterIntegrate Hulu Desktop and Windows Media Center in Windows 7Add Color Coding to Windows 7 Media Center Program Guide TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Use My TextTools to Edit and Organize Text Discovery Channel LIFE Theme (Win7) Increase the size of Taskbar Previews (Win 7) Scan your PC for nasties with Panda ActiveScan CleanMem – Memory Cleaner AceStock – The Personal Stock Monitor

    Read the article

  • Oracle Java Cloud Service - Platform as a Service for Your Java Applications

    - by GeneEun
    Oracle Java Cloud Service is an enterprise grade Platform as a Service for developing, testing, and deploying business applications. For Java developers, Java Cloud Service provides the power, flexibility, and performance of a true Java EE container in the cloud. Java Cloud Service delivers one of the key advantages of the Java platform, the ability to “write once, run anywhere”. Because of the standards-based approach, there's no need to worry that applications you build and deploy are forever locked into the Oracle Cloud.  In fact, you can use Java Cloud Service just as you would an on-premise Java EE environment and deploy your Java applications on a Java Cloud Service instance as-is. Provisioning of Java Cloud Service instances is self-service and takes only minutes, making access to Java environments both quick and easy. Java Cloud Service instances are also automatically associated with Oracle Database Cloud Service instances, so there's no complex setup involved in order to get a complete application environment up and running.If you're attending Oracle OpenWorld in San Francisco this week, I'm sure you've seen that there are many sessions covering Oracle Cloud services, including Java Cloud Service. Each session will provide a wealth of information, so I highly recommend you consult your conference schedule and try to check them out. In the meantime, here's a short video about Java Cloud Service. Enjoy!

    Read the article

  • Pause and Resume and get the value of a countdown timer by savedInstanceState [closed]

    - by Catherine grace Balauro
    I have developed a countdown timer and I am not sure how to pause and resume the timer as the TextView for the timer is being clicked. Click to start then click again to pause and to resume, click again the timer's text view. This is my code: Timer = (TextView)this.findViewById(R.id.time); //TIMER Timer.setOnClickListener(TimerClickListener); counter = new MyCount(600000, 1000); }//end of create private OnClickListener TimerClickListener = new OnClickListener() { public void onClick(View v) { updateTimeTask(); } private void updateTimeTask() { if (decision==0){ counter.start(); decision=1;} else if(decision==2){ counter.onResume1(); decision=1; } else{ counter.onPause1(); decision=2; }//end if }; }; class MyCount extends CountDownTimer { public MyCount(long millisInFuture, long countDownInterval) { super(millisInFuture, countDownInterval); }//MyCount public void onResume1(){ onResume(); } public void onPause1() { onPause();} public void onFinish() { Timer.setText("00:00"); p1++; if (p1<=4){ TextView PScore = (TextView) findViewById(R.id.pscore); PScore.setText(p1 + ""); }//end if }//finish public void onTick(long millisUntilFinished) { Integer milisec = new Integer(new Double(millisUntilFinished).intValue()); Integer cd_secs = milisec / 1000; Integer minutes = (cd_secs % 3600) / 60; Integer seconds = (cd_secs % 3600) % 60; Timer.setText(String.format("%02d", minutes) + ":" + String.format("%02d", seconds)); //long timeLeft = millisUntilFinished / 1000; }//on tick }//class MyCount protected void onResume() { super.onResume(); //handler.removeCallbacks(updateTimeTask); //handler.postDelayed(updateTimeTask, 1000); }//onResume @Override protected void onPause() { super.onPause(); //do stuff }//onPause I am only beginner in android programming and I don't know how to get the value of the countdown timer using savedInstanceState. How do I do this?

    Read the article

  • ASP.NET Timer Event

    - by K Ratnajyothi
    protected void SubmitButtonClicked(object sender, EventArgs e) { System.Timers.Timer timer = new System.Timers.Timer(); --- --- //line 1 get_datasource(); String message = "submitted."; ScriptManager.RegisterStartupScript(this.Page, this.GetType(), "popupAlert", "popupAlert(' " + message + " ');", true); timer.Interval = 30000; timer.Elapsed += new ElapsedEventHandler(timer_tick); // Only raise the event the first time Interval elapses. timer.AutoReset = false; timer.Enabled = true; } } protected void timer_tick(object sender, EventArgs e) { //line 2 get_datasource(); GridView2.DataBind(); } The problem is with the data in the grid view that is being displayed... since when get_datasource which is after line 1 is called the updated data is displayed in the grid view since it is a postback event but when the timer event handler is calling the timer_tick event the get_datasource function is called but after that the updated data is not visible in the grid view. It is nnot getting updated since the timer_tick is not a post back event

    Read the article

  • Java Cloud Service Integration using Web Service Data Control

    - by Jani Rautiainen
    Java Cloud Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance.This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance.In this article a custom application integrating with Fusion Application using Web Service Data Control will be implemented. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration. Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source. The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the “Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud” link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guide. For details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Create Application In this example the “JcsWsDemo” application created in the “Java Cloud Service Integration using Web Service Proxy” article is used as the base. Create Web Service Data Control In this example we will use a Web Service Data Control to integrate with Credit Rule Service in Fusion Applications. The data control will be used to query data from Fusion Applications using a web service call and present the data in a table. To generate the data control choose the “Model” project and navigate to "New -> All Technologies -> Business Tier -> Data Controls -> Web Service Data Control" and enter following: Name: CreditRuleServiceDC URL: https://ic-[POD].oracleoutsourcing.com/icCnSetupCreditRulesPublicService/CreditRuleService?WSDL Service: {{http://xmlns.oracle.com/apps/incentiveCompensation/cn/creditSetup/creditRule/creditRuleService/}CreditRuleService On step 2 select the “findRule” operation: Skip step 3 and on step 4 define the credentials to access the service. Do note that in this example these credentials are only used if testing locally, for JCS deployment credentials need to be manually updated on the EAR file: Click “Finish” and the proxy generation is done. Creating UI In order to use the data control we will need to populate complex objects FindCriteria and FindControl. For simplicity in this example we will create logic in a managed bean that populates the objects. Open “JcsWsDemoBean.java” and add the following logic: Map findCriteria; Map findControl; public void setFindCriteria(Map findCriteria) { this.findCriteria = findCriteria; } public Map getFindCriteria() { findCriteria = new HashMap(); findCriteria.put("fetchSize",10); findCriteria.put("fetchStart",0); return findCriteria; } public void setFindControl(Map findControl) { this.findControl = findControl; } public Map getFindControl() { findControl = new HashMap(); return findControl; } Open “JcsWsDemo.jspx”, navigate to “Data Controls -> CreditRuleServiceDC -> findRule(Object, Object) -> result” and drag and drop the “result” node into the “af:form” element in the page: On the “Edit Table Columns” remove all columns except “RuleId” and “Name”: On the “Edit Action Binding” window displayed enter reference to the java class created above by selecting “#{JcsWsDemoBean.findCriteria}”: Also define the value for the “findControl” by selecting “#{JcsWsDemoBean.findControl}”. Deploy to JCS For WS DC the authentication details need to be updated on the connection details before deploying. Open “connections.xml” by navigating “Application Resources -> Descriptors -> ADF META-INF -> connections.xml”: Change the user name and password entry from: <soap username="transportUserName" password="transportPassword" To match the access details for the target environment. Follow the same steps as documented in previous article ”Java Cloud Service ADF Web Application”. Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsWsDemo-ViewController-context-root/faces/JcsWsDemo.jspx When accessed the first 10 rules in the system are displayed: Summary In this article we learned how to integrate with Fusion Applications using a Web Service Data Control in JCS. In future articles various other integration techniques will be covered. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}

    Read the article

  • Running ODI 11gR1 Standalone Agent as a Windows Service

    - by fx.nicolas
    ODI 11gR1 introduces the capability to use OPMN to start and protect agent processes as services. Setting up the OPMN agent is covered in the following post and extensively in the ODI Installation Guide. Unfortunately, OPMN is not installed along with ODI, and ODI 10g users who are really at ease with the old Java Wrapper are a little bit puzzled by OPMN, and ask: "How can I simply set up the agent as a service?". Well... although the Tanuki Service Wrapper is no longer available for free, and the agentservice.bat script lost, you can switch to another service wrapper for the same result. For example, Yet Another Java Service Wrapper (YAJSW) is a good candidate. To configure a standalone agent with YAJSW: download YAJSW Uncompress the zip to a folder (called %YAJSW% in this example) Configure, start and test your standalone agent. Make sure that this agent is loaded with all the required libraries and drivers, as the service will not load dynamically the drivers added subsequently in the /drivers directory. Retrieve the PID of the agent process: Open Task Manager. Select View Select Columns Select the PID (Process Identifier) column, then click OK In the list of processes, find the java.exe process corresponding to your agent, and note its PID. Open a command line prompt in %YAJSW%/bat and run: genConfig.bat <your_pid> This command generates a wrapper configuration file for the agent. This file is called %YAJSW%/conf/wrapper.conf. Stop your agent. Edit the wrapper.conf file and modify the configuration of your service. For example, modify the display name and description of the service as shown in the example below. Important: Make sure to escape the commas in the ODI encoded passwords with a backslash! In the example below, the ODI_SUPERVISOR_ENCODED_PASS contained a comma character which had to be prefixed with a backslash. # Title to use when running as a console wrapper.console.title=\"AGENT\" #******************************************************************** # Wrapper Windows Service and Posix Daemon Properties #******************************************************************** # Name of the service wrapper.ntservice.name=AGENT_113 # Display name of the service wrapper.ntservice.displayname=ODI Agent # Description of the service wrapper.ntservice.description=Oracle Data Integrator Agent 11gR3 (11.1.1.3.0) ... # Escape the comma in the password with a backslash. wrapper.app.parameter.7 = -ODI_SUPERVISOR_ENCODED_PASS=fJya.vR5kvNcu9TtV\,jVZEt Execute your wrapped agent as console by calling in the command line prompt: runConsole.bat Check that your agent is running, and test it again.This command starts the agent with the configuration but does not install it yet as a service. To Install the agent as service call installService.bat From that point, you can view, start and stop the agent via the windows services. Et voilà ! Two final notes: - To modify the agent configuration, you must uninstall/reinstall the service. For this purpose, run the uninstallService.bat to uninstall it and play again the process above. - To be able to uninstall the agent service, you should keep a backup of the wrapper.conf file. This is particularly important when starting several services with the wrapper.

    Read the article

  • Correct way to do timer function in Python

    - by bwawok
    Hi. I have a GUI application that needs to do something simple in the background (update a wx python progress bar, but that doesn't really matter). I see that there is a threading.timer class.. but there seems to be no way to make it repeat. So if I use the timer, I end up having to make a new thread on every single execution... like : import threading import time def DoTheDew(): print "I did it" t = threading.Timer(1, function=DoTheDew) t.daemon = True t.start() if __name__ == '__main__': t = threading.Timer(1, function=DoTheDew) t.daemon = True t.start() time.sleep(10) This seems like I am making a bunch of threads that do 1 silly thing and die.. why not write it as : import threading import time def DoTheDew(): while True: print "I did it" time.sleep(1) if __name__ == '__main__': t = threading.Thread(target=DoTheDew) t.daemon = True t.start() time.sleep(10) Am I missing some way to make a timer keep doing something? Either of these options seems silly... I am looking for a timer more like a java.util.Timer that can schedule the thread to happen every second... If there isn't a way in Python, which of my above methods is better and why?

    Read the article

  • C# Timer -- measuring time slower

    - by Fassenkugel
    I'm writing a code where: I.) The user adds "events" during run-time. (To a flowlayoutpanel) These events are turning some LEDs on/off, after "x" time has elapsed and the LED-turning functions are written in a Led-function.cs class. i.e: 1) Turn left led on After 3500ms 2) Turn right led on After 4000ms II.) When the user hits start a timer starts. // Create timer. System.Timers.Timer _timer; _timer = new System.Timers.Timer(); _timer.Interval = (1); _timer.Elapsed += (sender, e) => { HandleTimerElapsed(LedObject, device, _timer); }; _timer.Start(); III.) The timer's tick event is raised every millisecond and checks if the user definied time has ellapsed. Im measuring the elapsed time with adding +1 to an integer at every tick event. (NumberOfTicks++;) //Timer Handle private void HandleTimerElapsed(Led_Functions LedObject, string device, System.Timers.Timer _timer) { NumberOfTicks++; if (NumberOfTicks >= Start_time[0]) { LedObject.LeftLED_ONnobutton(device); } } IV.) What I noticed was that when the tick was set to 1. (So the tick event is raised every millisecond) Even if I set 3000ms to the evet the LED actually flashed around 6 seconds. When the tick was set to 100. (So every 0,1s) then the flash was more accurate (3,5sec or so). Any Ideas why im having this delay in time? Or do you have any ideas how could I implement it better? Thank you!

    Read the article

  • SQLAuthority News – Microsoft SQL Server 2005 Service Pack 4 RTM

    - by pinaldave
    Service Pack 4 (SP4) for Microsoft SQL Server 2005 is now available for download. SQL Server 2005 service packs are cumulative, and this service pack upgrades all service levels of SQL Server 2005 to SP4 . Download Microsoft SQL Server 2005 Service Pack 4 RTM Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Service Pack, SQL Tips and Tricks, SQLAuthority News, T SQL, Technology

    Read the article

  • Start/Stop Window Service from ASP.NET page

    - by kaushalparik27
    Last week, I needed to complete one task on which I am going to blog about in this entry. The task is "Create a control panel like webpage to control (Start/Stop) Window Services which are part of my solution installed on computer where the main application is hosted". Here are the important points to accomplish:[1] You need to add System.ServiceProcess reference in your application. This namespace holds ServiceController Class to access the window service.[2] You need to check the status of the window services before you explicitly start or stop it.[3] By default, IIS application runs under ASP.NET account which doesn't have access rights permission to window service. So, Very Important part of the solution is: Impersonation. You need to impersonate the application/part of the code with the User Credentials which is having proper rights and permission to access the window service. If you try to access window service it will generate "access denied" error.The alternatives are: You can either impersonate whole application by adding Identity tag in web.cofig as:        <identity impersonate="true" userName="" password=""/>This tag will be under System.Web section. the "userName" and "password" will be the credentials of the user which is having rights to access the window service. But, this would not be a wise and good solution; because you may not impersonate whole website like this just to have access window service (which is going to be a small part of code).Second alternative is: Only impersonate part of code where you need to access the window service to start or stop it. I opted this one. But, to be fair; I am really unaware of the code part for impersonation. So, I just googled it and injected the code in my solution in a separate class file named as "Impersonate" with required static methods. In Impersonate class; impersonateValidUser() is the method to impersonate a part of code and undoImpersonation() is the method to undo the impersonation. Below is one example:  You need to provide domain name (which is "." if you are working on your home computer), username and password of appropriate user to impersonate.[4] Here, it is very important to note that: You need to have to store the Access Credentials (username and password) which you are going to user for impersonation; to some secured and encrypted format. I have used Machinekey Encryption to store the value encrypted value inside database.[5] So now; The real part is to start or stop a window service. You are almost done; because ServiceController class has simple Start() and Stop() methods to start or stop a window service. A ServiceController class has parametrized constructor that takes name of the service as parameter.Code to Start the window service: Code to Stop the window service: Isn't that too easy! ServiceController made it easy :) I have attached a working example with this post here to start/stop "SQLBrowser" service where you need to provide proper credentials who have permission to access to window service.  hope it would helps./.

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 3: Anonymous partial-trust consumer

    - by Elton Stoneman
    This is the third in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer As the patterns get further from the simple .NET full-trust consumer, all that changes is the communication protocol and the authentication mechanism. In Part 3 the scenario is that we still have a secure .NET environment consuming our service, so we can store shared keys securely, but the runtime environment is locked down so we can't use Microsoft.ServiceBus to get the nice WCF relay bindings. To support this we will expose a RESTful endpoint through the Azure Service Bus, and require the consumer to send a security token with each HTTP service request. Pattern applicability This is a good fit for scenarios where: the runtime environment is secure enough to keep shared secrets the consumer can execute custom code, including building HTTP requests with custom headers the consumer cannot use the Azure SDK assemblies the service may need to know who is consuming it the service does not need to know who the end-user is Note there isn't actually a .NET requirement here. By exposing the service in a REST endpoint, anything that can talk HTTP can be a consumer. We'll authenticate through ACS which also gives us REST endpoints, so the service is still accessed securely. Our real-world example would be a hosted cloud app, where we we have enough room in the app's customisation to keep the shared secret somewhere safe and to hook in some HTTP calls. We will be flowing an identity through to the on-premise service now, but it will be the service identity given to the consuming app - the end user's identity isn't flown through yet. In this post, we’ll consume the service from Part 1 in ASP.NET using the WebHttpRelayBinding. The code for Part 3 (+ Part 1) is on GitHub here: IPASBR Part 3. Authenticating and authorizing with ACS We'll follow the previous examples and add a new service identity for the namespace in ACS, so we can separate permissions for different consumers (see walkthrough in Part 1). I've named the identity partialTrustConsumer. We’ll be authenticating against ACS with an explicit HTTP call, so we need a password credential rather than a symmetric key – for a nice secure option, generate a symmetric key, copy to the clipboard, then change type to password and paste in the key: We then need to do the same as in Part 2 , add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus: Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: partialTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send As with Part 2, this sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. RESTfully exposing the on-premise service through Azure Service Bus Relay The part 3 sample code is ready to go, just put your Azure details into Solution Items\AzureConnectionDetails.xml and “Run Custom Tool” on the .tt files.  But to do it yourself is very simple. We already have a WebGet attribute in the service for locally making REST calls, so we are just going to add a new endpoint which uses the WebHttpRelayBinding to relay that service through Azure. It's as easy as adding this endpoint to Web.config for the service:         <endpoint address="https://sixeyed-ipasbr.servicebus.windows.net/rest"                   binding="webHttpRelayBinding"                    contract="Sixeyed.Ipasbr.Services.IFormatService"                   behaviorConfiguration="SharedSecret">         </endpoint> - and adding the webHttp attribute in your endpoint behavior:           <behavior name="SharedSecret">             <webHttp/>             <transportClientEndpointBehavior credentialType="SharedSecret">               <clientCredentials>                 <sharedSecret issuerName="serviceProvider"                               issuerSecret="gl0xaVmlebKKJUAnpripKhr8YnLf9Neaf6LR53N8uGs="/>               </clientCredentials>             </transportClientEndpointBehavior>           </behavior> Where's my WSDL? The metadata story for REST is a bit less automated. In our local webHttp endpoint we've enabled WCF's built-in help, so if you navigate to: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/help - you'll see the uri format for making a GET request to the service. The format is the same over Azure, so this is where you'll be connecting: https://[your-namespace].servicebus.windows.net/rest/reverse?string=abc123 Build the service with the new endpoint, open that in a browser and you'll get an XML version of an HTTP status code - a 401 with an error message stating that you haven’t provided an authorization header: <?xml version="1.0"?><Error><Code>401</Code><Detail>MissingToken: The request contains no authorization header..TrackingId:4cb53408-646b-4163-87b9-bc2b20cdfb75_5,TimeStamp:10/3/2012 8:34:07 PM</Detail></Error> By default, the setup of your Service Bus endpoint as a relying party in ACS expects a Simple Web Token to be presented with each service request, and in the browser we're not passing one, so we can't access the service. Note that this request doesn't get anywhere near your on-premise service, Service Bus only relays requests once they've got the necessary approval from ACS. Why didn't the consumer need to get ACS authorization in Part 2? It did, but it was all done behind the scenes in the NetTcpRelayBinding. By specifying our Shared Secret credentials in the consumer, the service call is preceded by a check on ACS to see that the identity provided is a) valid, and b) allowed access to our Service Bus endpoint. By making manual HTTP requests, we need to take care of that ACS check ourselves now. We do that with a simple WebClient call to the ACS endpoint of our service; passing the shared secret credentials, we will get back an SWT: var values = new System.Collections.Specialized.NameValueCollection(); values.Add("wrap_name", "partialTrustConsumer"); //service identity name values.Add("wrap_password", "suCei7AzdXY9toVH+S47C4TVyXO/UUFzu0zZiSCp64Y="); //service identity password values.Add("wrap_scope", "http://sixeyed-ipasbr.servicebus.windows.net/"); //this is the realm of the RP in ACS var acsClient = new WebClient(); var responseBytes = acsClient.UploadValues("https://sixeyed-ipasbr-sb.accesscontrol.windows.net/WRAPv0.9/", "POST", values); rawToken = System.Text.Encoding.UTF8.GetString(responseBytes); With a little manipulation, we then attach the SWT to subsequent REST calls in the authorization header; the token contains the Send claim returned from ACS, so we will be authorized to send messages into Service Bus. Running the sample Navigate to http://localhost:2028/Sixeyed.Ipasbr.WebHttpClient/Default.cshtml, enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • C# how to use timer ?

    - by Meko
    Hi. I made a student check_list program thats using bluetooth adapter searches students cell phones bluetooth and checks that are they present or not and saves students informtion with date in table on data base.all them works gereat.But I want to make it automatic that I will put my program on some computer like works as an server and program will make search every lessons start time like 08.30 , 10.25 ... My question is how to use timer? I know how to use timer but How can I use it on every lessons start time?I have table that includes start time of lessons. Also am I have to stop timer after search ends?And If I stop timer could I re-run timer againg? And one additional question that how can I track that new students come or some body left class room?

    Read the article

  • Change timer intervall in windows service

    - by AyKarsi
    I have timer job inside a windows service, for which the intervall should be incremented when errors occur. My problem is that I can't get the timer.Change Method to actually change the intervall. The "DoSomething" is always called after the inital interval.. This is probably something simple .. Code follows: protected override void OnStart(string[] args) { //job = new CronJob(); timerDelegate = new TimerCallback(DoSomething); seconds = secondsDefault; stateTimer = new Timer(timerDelegate, null, 0, seconds * 1000); } public void DoSomething(object stateObject) { AutoResetEvent autoEvent = (AutoResetEvent)stateObject; if(!Busker.BitCoinData.Helpers.BitCoinHelper.BitCoinsServiceIsUp()) { secondsDefault += secondsIncrementError; if (seconds >= secondesMaximum) seconds = secondesMaximum; Loggy.AddError("BitcoinService not available. Incrementing timer to " + secondsDefault + " s",null); stateTimer.Change(seconds * 100, seconds * 100); return; } else if (seconds > secondsDefault) { // reset the timer interval if the bitcoin service is back up... seconds = secondsDefault; Loggy.Add ("BitcoinService timer increment has been reset to " + secondsDefault + " s"); } // do the the actual processing here }

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer

    - by Elton Stoneman
    This is the second in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Part 2 is nice and easy. From Part 1 we exposed our service over the Azure Service Bus Relay using the netTcpRelayBinding and verified we could set up our network to listen for relayed messages. Assuming we want to consume that service in .NET from an environment which is fairly unrestricted for us, but quite restricted for attackers, we can use netTcpRelay and shared secret authentication. Pattern applicability This is a good fit for scenarios where: the consumer can run .NET in full trust the environment does not restrict use of external DLLs the runtime environment is secure enough to keep shared secrets the service does not need to know who is consuming it the service does not need to know who the end-user is So for example, the consumer is an ASP.NET website sitting in a cloud VM or Azure worker role, where we can keep the shared secret in web.config and we don't need to flow any identity through to the on-premise service. The service doesn't care who the consumer or end-user is - say it's a reference data service that provides a list of vehicle manufacturers. Provided you can authenticate with ACS and have access to Service Bus endpoint, you can use the service and it doesn't care who you are. In this post, we’ll consume the service from Part 1 in ASP.NET using netTcpRelay. The code for Part 2 (+ Part 1) is on GitHub here: IPASBR Part 2 Authenticating and authorizing with ACS In this scenario the consumer is a server in a controlled environment, so we can use a shared secret to authenticate with ACS, assuming that there is governance around the environment and the codebase which will prevent the identity being compromised. From the provider's side, we will create a dedicated service identity for this consumer, so we can lock down their permissions. The provider controls the identity, so the consumer's rights can be revoked. We'll add a new service identity for the namespace in ACS , just as we did for the serviceProvider identity in Part 1. I've named the identity fullTrustConsumer. We then need to add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus (see Part 1 for a walkthrough creating Service Idenitities): Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: fullTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send This sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. Adding a Service Reference The Part 2 sample client code is ready to go, but if you want to replicate the steps, you’re going to add a WSDL reference, add a reference to Microsoft.ServiceBus and sort out the ServiceModel config. In Part 1 we exposed metadata for our service, so we can browse to the WSDL locally at: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc?wsdl If you add a Service Reference to that in a new project you'll get a confused config section with a customBinding, and a set of unrecognized policy assertions in the namespace http://schemas.microsoft.com/netservices/2009/05/servicebus/connect. If you NuGet the ASB package (“windowsazure.servicebus”) first and add the service reference - you'll get the same messy config. Either way, the WSDL should have downloaded and you should have the proxy code generated. You can delete the customBinding entries and copy your config from the service's web.config (this is already done in the sample project in Sixeyed.Ipasbr.NetTcpClient), specifying details for the client:     <client>       <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                 behaviorConfiguration="SharedSecret"                 binding="netTcpRelayBinding"                 contract="FormatService.IFormatService" />     </client>     <behaviors>       <endpointBehaviors>         <behavior name="SharedSecret">           <transportClientEndpointBehavior credentialType="SharedSecret">             <clientCredentials>               <sharedSecret issuerName="fullTrustConsumer"                             issuerSecret="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/>             </clientCredentials>           </transportClientEndpointBehavior>         </behavior>       </endpointBehaviors>     </behaviors>   The proxy is straight WCF territory, and the same client can run against Azure Service Bus through any relay binding, or directly to the local network service using any WCF binding - the contract is exactly the same. The code is simple, standard WCF stuff: using (var client = new FormatService.FormatServiceClient()) { outputString = client.ReverseString(inputString); } Running the sample First, update Solution Items\AzureConnectionDetails.xml with your service bus namespace, and your service identity credentials for the netTcpClient and the provider:   <!-- ACS credentials for the full trust consumer (Part2): -->   <netTcpClient identityName="fullTrustConsumer"                 symmetricKey="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/> Then rebuild the solution and verify the unit tests work. If they’re green, your service is listening through Azure. Check out the client by navigating to http://localhost:53835/Sixeyed.Ipasbr.NetTcpClient. Enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • java timer on current instance

    - by hspim
    import java.util.Scanner; import java.util.Timer; import java.util.TimerTask; public class Boggle { Board board; Player player; Timer timer; boolean active; static Scanner in = new Scanner(System.in); public Boggle() { board = new Board(4); timer = new Timer(); } public void newGame() { System.out.println("Please enter your name: "); String line = in.nextLine(); player = new Player(line); active = true; board.shuffle(); System.out.println(board); timer.schedule(new timesUP(), 20000); while(active) { String temp = in.nextLine(); player.addGuess(temp); } } public void endGame() { active = false; int score = Scoring.calculate(player, board); System.out.println(score); } class timesUP extends TimerTask { public void run() { endGame(); } } public static void main(String[] args) { Boggle boggle = new Boggle(); boggle.newGame(); } } I have the above class which should perform a loop for a given length of time and afterwards invoke an instance method. Essentially I need the loop in newGame() to run for a minute or so before endGame() is invoked on the current instance. However, using the Timer class I'm not sure how I would invoke the method I need on the current instance since I can't pass any parameters to the timertasks run method? Is there an easy way to do this or am I going about this the wrong way? (note: this is a console project only, no GUI) ========== code edited I've changed the code to the above following the recommendations, and it works almost as I expect however the thread still doesnt seem to end properly. I was the while loop would die and control would eventually come back to the main method. Any ideas?

    Read the article

  • .NET Windows Service with timer stops responding

    - by Biri
    I have a windows service written in c#. It has a timer inside, which fires some functions on a regular basis. So the skeleton of my service: public partial class ArchiveService : ServiceBase { Timer tickTack; int interval = 10; ... protected override void OnStart(string[] args) { tickTack = new Timer(1000 * interval); tickTack.Elapsed += new ElapsedEventHandler(tickTack_Elapsed); tickTack.Start(); } protected override void OnStop() { tickTack.Stop(); } private void tickTack_Elapsed(object sender, ElapsedEventArgs e) { ... } } It works for some time (like 10-15 days) then it stops. I mean the service shows as running, but it does not do anything. I make some logging and the problem can be the timer, because after the interval it does not call the tickTack_Elapsed function. I was thinking about rewrite it without a timer, using an endless loop, which stops the processing for the amount of time I set up. This is also not an elegant solution and I think it can have some side effects regarding memory. The Timer is used from the System.Timers namespace, the environment is Windows 2003. I used this approach in two different services on different servers, but both is producing this behavior (this is why I thought that it is somehow connected to my code or the framework itself). Does somebody experienced this behavior? What can be wrong? Edit: I edited both services. One got a nice try-catch everywhere and more logging. The second got a timer-recreation on a regular basis. None of them stopped since them, so if this situation remains for another week, I will close this question. Thank you for everyone so far. Edit: I close this question because nothing happened. I mean I made some changes, but those changes are not really relevant in this matter and both services are running without any problem since then. Please mark it as "Closed for not relevant anymore".

    Read the article

  • Service Broker, not ETL

    - by jamiet
    I have been very quiet on this blog of late and one reason for that is I have been very busy on a client project that I would like to talk about a little here. The client that I have been working for has a website that runs on a distributed architecture utilising a messaging infrastructure for communication between different endpoints. My brief was to build a system that could consume these messages and produce analytical information in near-real-time. More specifically I basically had to deliver a data warehouse however it was the real-time aspect of the project that really intrigued me. This real-time requirement meant that using an Extract transformation, Load (ETL) tool was out of the question and so I had no choice but to write T-SQL code (i.e. stored-procedures) to process the incoming messages and load the data into the data warehouse. This concerned me though – I had no way to control the rate at which data would arrive into the system yet we were going to have end-users querying the system at the same time that those messages were arriving; the potential for contention in such a scenario was pretty high and and was something I wanted to minimise as much as possible. Moreover I did not want the processing of data inside the data warehouse to have any impact on the customer-facing website. As you have probably guessed from the title of this blog post this is where Service Broker stepped in! For those that have not heard of it Service Broker is a queuing technology that has been built into SQL Server since SQL Server 2005. It provides a number of features however the one that was of interest to me was the fact that it facilitates asynchronous data processing which, in layman’s terms, means the ability to process some data without requiring the system that supplied the data having to wait for the response. That was a crucial feature because on this project the customer-facing website (in effect an OLTP system) would be calling one of our stored procedures with each message – we did not want to cause the OLTP system to wait on us every time we processed one of those messages. This asynchronous nature also helps to alleviate the contention problem because the asynchronous processing activity is handled just like any other task in the database engine and hence can wait on another task (such as an end-user query). Service Broker it was then! The stored procedure called by the OLTP system would simply put the message onto a queue and we would use a feature called activation to pick each message off the queue in turn and process it into the warehouse. At the time of writing the system is not yet up to full capacity but so far everything seems to be working OK (touch wood) and crucially our users are seeing data in near-real-time. By near-real-time I am talking about latencies of a few minutes at most and to someone like me who is used to building systems that have overnight latencies that is a huge step forward! So then, am I advocating that you all go out and dump your ETL tools? Of course not, no! What this project has taught me though is that in certain scenarios there may be better ways to implement a data warehouse system then the traditional “load data in overnight” approach that we are all used to. Moreover I have really enjoyed getting to grips with a new technology and even if you don’t want to use Service Broker you might want to consider asynchronous messaging architectures for your BI/data warehousing solutions in the future. This has been a very high level overview of my use of Service Broker and I have deliberately left out much of the minutiae of what has been a very challenging implementation. Nonetheless I hope I have caused you to reflect upon your own approaches to BI and question whether other approaches may be more tenable. All comments and questions gratefully received! Lastly, if you have never used Service Broker before and want to kick the tyres I have provided below a very simple “Service Broker Hello World” script that will create all of the objects required to facilitate Service Broker communications and then send the message “Hello World” from one place to anther! This doesn’t represent a “proper” implementation per se because it doesn’t close down down conversation objects (which you should always do in a real-world scenario) but its enough to demonstrate the capabilities! @Jamiet ----------------------------------------------------------------------------------------------- /*This is a basic Service Broker Hello World app. Have fun! -Jamie */ USE MASTER GO CREATE DATABASE SBTest GO --Turn Service Broker on! ALTER DATABASE SBTest SET ENABLE_BROKER GO USE SBTest GO -- 1) we need to create a message type. Note that our message type is -- very simple and allowed any type of content CREATE MESSAGE TYPE HelloMessage VALIDATION = NONE GO -- 2) Once the message type has been created, we need to create a contract -- that specifies who can send what types of messages CREATE CONTRACT HelloContract (HelloMessage SENT BY INITIATOR) GO --We can query the metadata of the objects we just created SELECT * FROM   sys.service_message_types WHERE name = 'HelloMessage'; SELECT * FROM   sys.service_contracts WHERE name = 'HelloContract'; SELECT * FROM   sys.service_contract_message_usages WHERE  service_contract_id IN (SELECT service_contract_id FROM sys.service_contracts WHERE name = 'HelloContract') AND        message_type_id IN (SELECT message_type_id FROM sys.service_message_types WHERE name = 'HelloMessage'); -- 3) The communication is between two endpoints. Thus, we need two queues to -- hold messages CREATE QUEUE SenderQueue CREATE QUEUE ReceiverQueue GO --more querying metatda SELECT * FROM sys.service_queues WHERE name IN ('SenderQueue','ReceiverQueue'); --we can also select from the queues as if they were tables SELECT * FROM SenderQueue   SELECT * FROM ReceiverQueue   -- 4) Create the required services and bind them to be above created queues CREATE SERVICE Sender   ON QUEUE SenderQueue CREATE SERVICE Receiver   ON QUEUE ReceiverQueue (HelloContract) GO --more querying metadata SELECT * FROM sys.services WHERE name IN ('Receiver','Sender'); -- 5) At this point, we can begin the conversation between the two services by -- sending messages DECLARE @conversationHandle UNIQUEIDENTIFIER DECLARE @message NVARCHAR(100) BEGIN   BEGIN TRANSACTION;   BEGIN DIALOG @conversationHandle         FROM SERVICE Sender         TO SERVICE 'Receiver'         ON CONTRACT HelloContract WITH ENCRYPTION=OFF   -- Send a message on the conversation   SET @message = N'Hello, World';   SEND  ON CONVERSATION @conversationHandle         MESSAGE TYPE HelloMessage (@message)   COMMIT TRANSACTION END GO --check contents of queues SELECT * FROM SenderQueue   SELECT * FROM ReceiverQueue   GO -- Receive a message from the queue RECEIVE CONVERT(NVARCHAR(MAX), message_body) AS MESSAGE FROM ReceiverQueue GO --If no messages were received and/or you can't see anything on the queues you may wish to check the following for clues: SELECT * FROM sys.transmission_queue -- Cleanup DROP SERVICE Sender DROP SERVICE Receiver DROP QUEUE SenderQueue DROP QUEUE ReceiverQueue DROP CONTRACT HelloContract DROP MESSAGE TYPE HelloMessage GO USE MASTER GO DROP DATABASE SBTest GO

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >