Search Results

Search found 24072 results on 963 pages for 'tips for mobile design'.

Page 2/963 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • eBay Leads Mobile Commerce

    - by David Dorf
    For the first time, more smartphones where shipped than PCs. This important milestone helps reinforce that retailers need a strong mobile commerce strategy. IDC reported that for the 4th quarter of 2010, manufacturers shipped 100.9 million devices versus 92.1 million PCs shipped. One early adopter for the retail industry is eBay, the popular online auction and shopping site. In July 2008 they released their first mobile app and have increased investments ever since. In 2002 they bought PayPal for use with its online channel, but its becoming a force in the mobile world as well. In June 2010 they acquired RedLaser, the popular barcode scanning mobile app. Both pieces of technology enhance the mobile experience, and are available to other retailers as well. More recently, in December 2010 they acquired Critical Path Software, the developer of their eBay, StubHub, and Shopping.com mobile applications. Taking their mobile development in-house was a clear signal that mobile commerce is important to their strategy. Pop on over the eBay Inc's mobile commerce stats page to see just how well they are doing. You can use the animated map to see where people are using the app on any given day, and you can compare sales of the different categories. eBay's hottest category is Cars & Trucks, garnering 16.5% of the total $2B (yes, billion) in mobile sales in 2010. To understand why that category is so large, let's look at the top 10 most expensive cars sold on eBay mobile in 2010: $240,001 Mercedes-Benz: SLR McLaren $209,888 Lamborghini: Gallardo $208,500 Ferrari: 430 $199,900 Lamborghini: Gallardo $189,000 Lamborghini: Murcielago $185,000 Ferrari: 430 $175,000 Porsche: 911 $170,000 Ferrari: 550 $160,000 Bentley: Continental, GT $159,900 Lamborghini: Gallardo eBay claims they sell 3-4 Ferraris on their mobile app each month. Yes, mobile commerce is not limited to small items. While I would wait to get home and fire up the PC, the current generation that has grown up with mobile phones has no issue satisfying their impulses. Dave Sikora of Digby told me he's seen people buy furniture sets, mattresses, and diamonds via their mobile phones. I guess mobile commerce is rapidly becoming the norm.

    Read the article

  • MSDN article on jQuery Mobile

    - by Wallym
    My article on jQuery Mobile has been published.  Please check it out.There’s no doubt about it. Wherever developers look and whoever they talk to, mobile is at the top of the list. Talk to a C-level executive, and the conversation turns to mobile, and the question “How do I get me some of that?” comes up. Talk to other developers, and they tell you they’re targeting mobile devices. Mobile has become a big deal as smartphones have taken hold in the consumer marketplace.In the years leading up to the current focus on mobile applications and devices, Web developers have been adding more and more client-side functionality to their applications. You can see this in the use of client-side JavaScript libraries like jQuery.With the growth of the market for mobile devices, the ability to create applications that run across platforms is very important for developers and for businesses that are trying to keep their expenses in check. There are a set of applications, mostly in the area of content consumption (think Amazon.com), that run well in a mobile Web browser. Unfortunately, there are differences between Web browsers on various mobile devices. The goal of the recently introduced jQuery Mobile (jQM) library is to provide cross-browser support to allow developers to build applications that can run across the various mobile Web browsers and provide the same—or at least a very similar—user interface.The jQuery Mobile library was introduced in an alpha release in the fall of 2010 and released to manufacturing in November 2011. At the time of this writing, the current version of jQuery Mobile is 1.1.1. By the time you read this, jQuery Mobile will almost certainly have reached version 1.2.0. The library has been embraced by Microsoft, Adobe and other companies for mobile Web development. In August 2011, jQM had 32 percent market share compared with other mobile JavaScript frameworks such as iWebKit and jQTouch. This market share is impressive given that it started from zero little more than 12 months ago, and the 1.0 release is the first officially supported release.

    Read the article

  • Does a mobile app need more access than the public API of a site?

    - by Iain
    I have a site with a public API, and some mobile app developers have been brought in to produce an iPhone app for the site. They insist they need to see the database schema, but as I understand it, they should only need access to the documented public API. Am I right? Is there something I've missed? I've told them that if there's a feature missing or data they require I can extend the API so that they can access it. I thought a web service API held to much the same principles as OOP object API's, in that the implementation details should be hidden as much as possible. I'm not a mobile app developer so if there is something I don't quite see then please let me know. Any insight or help will be much appreciated.

    Read the article

  • Global User Experience Research: Mobile

    - by ultan o'broin
    A shout out to the usableapps.oracle.com blog article Going Native to Understand Mobile Workers. Oracle is a global company and with all that revenue coming from outside the US, international usability research is essential. So read up about how the Applications User Experience team went about this important user-centered ethnographic research. Personalization is king in the mobile space. Going native is a great way to uncover exactly what users want as they work and use their mobile devices, but you need to do it worldwide!

    Read the article

  • Design patterns and multiple programming language

    - by Eduard Florinescu
    I am referring here to the design patterns found in the GOF book. First how I see it, there are a few peculiarities to design pattern and knowing multiple language knowledge, for example in Java you really need a singleton but in Python you can do without it you write a module, I saw somewhere a wiki trying to write all GOF patterns for JavaScript and the entries where empty, I guess because it might be a daunting task. If there is someone who is using design patterns and is programming in multiple programming languages supporting the OOP paradigm and can give me a hint on how should I approach design patterns that might help me in all languages I use(Java, JavaScript, Python, Ruby): Can I write good application without knowing exactly the GOF design patterns or I might need some of them which might be crucial and if yes which one, are they alternatives to GOF for specific languages, and should a programmer or a team make its own design patterns set?

    Read the article

  • JQuery Mobile: Fire Mobileinit Event

    - by Yousef_Jadallah
     Many people asked that the Mobileinit event didn't work. Simplicity just you need to follow this sequence: <link rel="stylesheet" href="http://code.jquery.com/mobile/1.0b1/jquery.mobile-1.0b1.min.css" />     <script src="http://code.jquery.com/jquery-1.6.1.min.js"></script>     <script>         $(document).bind("mobileinit", function () {             alert('mobileinit is fired');         });     </script>     <script src="http://code.jquery.com/mobile/1.0b1/jquery.mobile-1.0b1.min.js"></script> Hope that helps.  

    Read the article

  • Design patterns and multiple programming languages

    - by Eduard Florinescu
    I am referring here to the design patterns found in the GOF book. First, how I see it, there are a few peculiarities to design pattern and knowing multiple languages, for example in Java you really need a singleton but in Python you can do without it you write a module, I saw somewhere a wiki trying to write all GOF patterns for JavaScript and all the entries were empty, I guess because it might be a daunting task to do that adaptation. If there is someone who is using design patterns and is programming multiple languages supporting the OOP paradigm and can give me a hint on how should I approach design patterns. An approach that might help me in all languages I use(Java, JavaScript, Python, Ruby): Can I write good application without knowing exactly the GOF design patterns or I might need just some of them which might be crucial and if yes which one, are there alternatives to GOF for specific languages, and should a programmer or a team make their own design patterns set?

    Read the article

  • Free Java Workshops at Mobile World Congress

    - by Jacob Lehrbaum
    Are you attending Mobile World Congress in Barcelona next week? If so, you might want to register for Oracle's free workshop series taking place in the App Planet. We will be hosting a series of 25 workshops in our booth covering a range of topics that include: Benefits of Deploying Phones with Oracle Java Wireless Client Oracle's Embedded Java solutions for Machine-to-Machine applications Building better User Interfaces with the Lightweight User Interface Toolkit Resources to help you leverage Operator Network APIs in your Applications The Java Verified Program: new trusted status and other recent initiatives Building better mobile enterprise applications with Oracle's ADF Mobile technology How to build a profitable mobile applications business with Java ME Guest speakers from Orange, Telefonica and from leading ISVs REGISTER NOW for one or more workshops in the Oracle Java Booth 7C18 located in the App Planet. Oh, and did we mention there might be giveaways? Note: you may need to "sign out" if you have an account on Oracle.com in order to see the registration page

    Read the article

  • How to conciliate OOAD and Database Design?

    - by user1620696
    Recently I've studied about object oriented analysis and design and I liked a lot about it. In every place I've read people say that the idea is to start with the minimum set of requirements and go improving along the way, revisiting this each iteration and making it better as we contiuously develop and contact the customer interested in the software. In particular, one course from Lynda.com said a lot of that: we don't want to spend a lot of time planing everything upfront, we just want to have the minimum to get started and then improve this each iteration. Now, I've also seem a course from the same guy about database design, and there he says differently. He says that although when working with object orientation he likes the agile iterative approach, for database design we should really spend a lot of time planing things upfront instead of just going along the way with the minimum. But this confuses me a little. Indeed, the database will persist important data from our domain model and perhaps configurations of the software and so on. Now, if I'm going to continuously revist the analysis and design of the model, it seems the database design should change also. In the same way, if we plan all the database upfront it seems we are also planing all the model upfront, so the two ideas seems to be incompatible. I really like agile iterative approach, but I'm also looking at getting better design for the database also, so when working with agile iterative approach, how should we deal with the database design?

    Read the article

  • Get phone number of (via mobile networks) browsing mobile device

    - by TrialUser
    I recently figured out, that the web site of my phone provider (mobile) mysteriously identifies me and automatically logs me into my account when I'm accessing with my android phone, as if it knew my phone number. (I used several browsers. When I'm using the phone as WLAN hotspot and access the same site from another device that doesn't happen.) How does my phone provider do that? On the one hand, as a programmer, I'd like to be able to do that too, but on the other hand, as a user, I'm kind of scared. What information do they have, such that they (believe they) are able to identify me just by my device? I hope this question isn't completely inappropriate for this site; feel free to add better tags — it's hard to find the right ones without knowing the Webmasters site at all.

    Read the article

  • JQuery Mobile Code Snippets 1

    - by Yousef_Jadallah
     I want to share with you some important codes that you may need during JQuery Mobile development.These codes are tested on Alpha 4 version. Beta 1 has been released before two days, Therefore I will test them in my current project and let you know if there is any changes : Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;}    Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Show and hide back button in your Application    $(document).bind("mobileinit", function () {           $.mobile.page.prototype.options.addBackBtn = true;        });     Customizing the back button text $(document).bind("mobileinit", function () {$.mobile.page.prototype.options.backBtnText = "previous";});       Hide "Close button" for dialog programatically:   $('[data-role=dialog]div[id="YourDiaogdivID"]').live('pagecreate', function (event) {     $("a[data-icon='delete']").hide();          });  Change Select option element index:      var myselect = $("select#foo");       myselect[0].selectedIndex = 0; //The new index        myselect.selectmenu("refresh"); //uset this line of code after any updating on the select element      Change Select optoin elemetn text value:    $("select#foo").parent().contents().children('.ui-btn-text').text('Your Text Here');    Refreshing a checkbox    $("select#foo").parent().contents().children('.ui-btn-text').text('Your Text Here');     Hide select option element  $('#foo').parent().hide();     Hide and Show Page Loading Message :  $.mobile.pageLoading(); //Show $.mobile.pageLoading(true); //hide            overriding $.mobile.loadingMessage  $(document).bind("mobileinit", function () {    $.mobile.loadingMessage = 'My Loading Message';    });    Hide and Show jQuery-Mobile-Themed-DatePicker    $(".ui-datepicker").hide();  $(".ui-datepicker").show();       Build your Custom Loading Message :           $('#CustomeLoadingMessage').hide();//Hide the div               $('# CustomeLoadingMessage').ajaxStart(function () {                $(this).show();            });             $('# CustomeLoadingMessage').ajaxStop(function () {                $(this).hide();            });   I wil publish other important codes soon.Hope that helps.

    Read the article

  • Is the design notion of layers contrived?

    - by Bruce
    Hi all I'm reading through Eric Evans' awesome work, Domain-Driven Design. However, I can't help feeling that the 'layers' model is contrived. To expand on that statement, it seems as if it tries to shoe-horn various concepts into a specific, neat model, that of layers talking to each other. It seems to me that the layers model is too simplified to actually capture the way that (good) software works. To expand further: Evans says: "Partition a complex program into layers. Develop a design within each layer that is cohesive and that depends only on the layers below. Follow standard architectural patterns to provide loose coupling to the layers above." Maybe I'm misunderstanding what 'depends' means, but as far as I can see, it can either mean a) Class X (in the UI for example) has a reference to a concrete class Y (in the main application) or b) Class X has a reference to a class Y-ish object providing class Y-ish services (ie a reference held as an interface). If it means (a), then this is clearly a bad thing, since it defeats re-using the UI as a front-end to some other application that provides Y-ish functionality. But if it means (b), then how is the UI any more dependent on the application, than the application is dependent on the UI? Both are decoupled from each other as much as they can be while still talking to each other. Evans' layer model of dependencies going one way seems too neat. First, isn't it more accurate to say that each area of the design provides a module that is pretty much an island to itself, and that ideally all communication is through interfaces, in a contract-driven/responsibility-driven paradigm? (ie, the 'dependency only on lower layers' is contrived). Likewise with the domain layer talking to the database - the domain layer is as decoupled (through DAO etc) from the database as the database is from the domain layer. Neither is dependent on the other, both can be swapped out. Second, the idea of a conceptual straight line (as in from one layer to the next) is artificial - isn't there more a network of intercommunicating but separate modules, including external services, utility services and so on, branching off at different angles? Thanks all - hoping that your responses can clarify my understanding on this..

    Read the article

  • Tips To Manage An Effectively Come Back To Work After A Long Vacation

    - by Gopinath
    Vacations are very relaxing – no need to reply to endless mails, no marathon meeting or conference calls. It’s all about fun during the vacation. The troubles begin as you near the end of vacation and plans to think about getting back to work. Once we are back to work after a long vacation there will be many things to worry – a pile of snail mails, hundreds of unread emails,  a flood of phone calls to answer and a stream of scheduled meetings. How to handle all the backlog and catch up quickly with the inflow of work? Here is a management tip from Harvard Business Review blog to get back to work the right way after a long vacation Block off your morning. Make sure you don’t have any meetings scheduled or big projects due. Then before you open your inbox, pause and think about your work priorities. As you make your way through emails and voicemails, focus on returning the messages that are connected to what matters most. Defer or delegate things that aren’t top priority. And remember it will probably take more than one day to get caught up, so be easy on yourself. Hope these tips lets you plan a right comeback to work after your vacation. cc Image credit: flickr/dfwcre8tive This article titled,Tips To Manage An Effectively Come Back To Work After A Long Vacation, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Approach for developing software that will need to be ported to multiple mobile platforms in the future

    - by Jonathan Henson
    I am currently doing the preliminary design for a new product my company will be pushing out soon. We will start on Android, but then we will need to quickly develop the IPhone, IPad.... and then the Windows 8 ports of the application. Basically the only code that wouldn't be reusable is the view specific code and the multimedia functions. This will be an SIP client (of course the user of the app will not know this) with several bells and whistles for our own business specific purposes. My initial thought is to develop all of the engine in C and provide a nice API for the C library since JAVA and .NET will allow native invoking, and I should just be able to directly link to the C lib in objective-C. Is there a better approach for vast code reuse which also remains close to the native platform? I.e. I don't want dependencies such as Mono-droid and the like or complicated interpreter/translator schemes. I don't mind re-coding the view(s) for each platform, but I do not want to have multiple versions of the main engine. Also, if I want to have some good abstraction mechanisms (like I would in say, C++) is this possible? I have read that C++ is not allowed for the IPad and Iphone devices. I would love to handle the media decoding in the C library, but I assume that this will be platform dependent so that probably will not be an option either. Any ideas here?

    Read the article

  • GTD on Windows Mobile

    - by A. Scagnelli
    Does anyone know of a good Windows Mobile application that follows the Getting Things Done method? Since I'm on a family plan without data access, and since I'm stuck with the beyond awful Mobile IE, webapps aren't an acceptable solution. For further reference the phone is a Motorola Q9M, a slightly upgraded version of the Motorola Q.

    Read the article

  • Websites or tools similar to Ginwiz (mobile website creator)

    - by t3st
    I have a website which i want to make more mobile friendly(currently its not). While searching about this i found this awesome website Ginwiz; my website can be modified into an mobile friendly site without any additional coding. But i find two disadvantages with this website (free version) 1)We cant add our domain to it with out upgrading (i dont have enough money to pay for it) 2)We can only "Advanced edit" one page Do you know any website which is similar to Ginwiz but can use our domain address instead of theirs (in free version). Do you have any idea about any tools which can be also used to convert my website to mobile website by trimming my current website easily.

    Read the article

  • XDIME for Mobile Applications

    - by Carlos Gavidia
    I'm involved in a project that requires to mobile-enable some previously developed Portlets. The Portlets are deployed in WebSphere Portal, and the container offers a technology called IBM Mobile Portal Accelerator that uses XDIME to render mobile pages according to the device. I'm trying to document myself in the technology and I'm having a bad time: Google only shows some outdated sites from IBM and even older posts from Volantis, another company involved in the technology (Amazon shows no related books). So... what's the current status of that technology actually? Is has some decent level of adoption?

    Read the article

  • software architecture (OO design) refresher course

    - by PeterT
    I am lead developer and team lead in a small RAD team. Deadlines are tight and we have to release often, which we do, and this is what keep the business happy. While we (the development team) are trying to maintain the quality of the code (clean and short methods), I can't help but notice that the overall quality of the OO design&architecture is getting worse over the time - the library we are working on is gradually reducing itself to a "bag of functions". Well, we try to use the design patterns, but since we don't really have much time for a design as such we are mostly using the creational ones. I have read Code Complete / Design Patterns (GOF & enterprise) / Progmatic Programmer / and many books from Effective XXX series. Should I re-read them again as I have read them a long time ago and forgotten quite a lot, or there are other / better OO design / software architeture books been published since then which I should definitely read? Any ideas, recommendations on how can I get the situation under control and start improving the architecture. The way I see it - I will start improving the architectural / design quality of software components I am working on and then will start helping other team members once I find what is working for me.

    Read the article

  • Who benefits from the use of Design Patterns?

    Who benefits from the use of design patterns is like asking who benefits from clean air or a good education. All of the stakeholders of a project benefit from the use of design patterns. Project Sponsor Project sponsors benefit from the use of design patterns because they promote reduced development time which translates in to shorter project timelines and greater return on investment compared to other projects that do not make use of design patterns. Project Manager Project managers benefit from the use of design patterns because they reduce the amount of time needed to design a system, and typically the sub components of the system already have a proven track record. System Architect/Engineer System architects/engineers benefit from the use of design patterns because reduce the amount of time needed to design the core a system. The additional time is used to alter the design pattern through the use of innovative design and common design principles to adhere to the project’s requirements. Programmer Programmers benefit from the use of design patterns because they can reuse existing code already established by the design pattern and only have to integrate the changes outlined by the system architects/engineers. Tester Testers benefit from the use of design patterns because they can alter the existing test established for the design pattern to take in to account the changes made by the system architects/engineers. User Users benefit from the use of design patterns because the software is typically delivered sooner than projects that do not incorporate the use of design patterns, and they are assumed that the system will work as designed because it was based on a system that was already proven to work properly.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • From the Tips Box: Halting Autorun, Android’s Power Strip, and Secure DVD Wiping

    - by Jason Fitzpatrick
    This week we’re kicking off a new series here at How-To Geek focused on awesome reader tips. This week we’re exploring Windows shortcuts, Android widgets, and sparktacular ways to erase digital media. Latest Features How-To Geek ETC Learn To Adjust Contrast Like a Pro in Photoshop, GIMP, and Paint.NET Have You Ever Wondered How Your Operating System Got Its Name? Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions Access and Manage Your Ubuntu One Account in Chrome and Iron Mouse Over YouTube Previews YouTube Videos in Chrome Watch a Machine Get Upgraded from MS-DOS to Windows 7 [Video] Bring the Whole Ubuntu Gang Home to Your Desktop with this Mascots Wallpaper Hack Apart a Highlighter to Create UV-Reactive Flowers [Science] Add a “Textmate Style” Lightweight Text Editor with Dropbox Syncing to Chrome and Iron

    Read the article

  • From the Tips Box: Pin Any File to the Windows 7 Taskbar

    - by Jason Fitzpatrick
    Every week we dip into the tip box and share the tips you send in. This week we’re highlighting a great tip and the accompanying tutorial video that shows you how to pin any file to the Windows 7 taskbar. Robert Jasinski writes in with a clever way to pin any file you want to the task bar. By default if you drag a text document to the taskbar it will pin it to the Notepad executable—the same thing happens with any other file that has an association with an executable. What if you want to pin that specific text file to the taskbar and not to the executable (or any other file for that matter)? Robert shares his method:  What is a Histogram, and How Can I Use it to Improve My Photos?How To Easily Access Your Home Network From Anywhere With DDNSHow To Recover After Your Email Password Is Compromised

    Read the article

  • Welcome to the Weblog on Oracle ADF Mobile!

    - by joe.huang
    Welcome to ADF Mobile team's weblog.  My name is Joe Huang - I am the product manager for ADF Mobile.  Oracle ADF Mobile is a part of Oracle's Application Development Framework (ADF) that support the development of enterprise/business applications that run on mobile devices.  The development tool for this framework is of course Oracle JDeveloper.  As some of you may know, we currently support the development of mobile browser-based application - this part of product is called ADF Mobile Browser.  Additionally, we are close to release a technology preview of ADF Mobile Client, which supports development of on-device, disconnect capable mobile applications.  What's truly unique about ADF Mobile development process is that it's a very visual and declarative experience, while still allow power Java developers to completely extend the framework to their liking.  The framework also provides a rich set of services needed by an enterprise-grade mobile application - these services would literally take years to implement if they are to be built from the ground up.  However, by using JDeveloper and ADF Mobile, you get the entire framework at your service!In the coming entries, the ADF Mobile product development team will publish any news, best practices, our observation on mobile technology trends, or just our experiences in playing with "gadgets".  Be sure to check back on this page!Sincerely,Joe HuangOracle

    Read the article

  • Web workflow solution - how should I approach the design?

    - by Tom Pickles
    We've been tasked with creating a web based workflow tool to track change management. It has a single workflow with multiple synchronous tasks for the most part, but branch out at a point to tasks running in parallel which meet up later on. There will be all sorts of people using the application, and all of them will need to see their outstanding tasks for each change, but only theirs, not others. There will also be a high level group of people who oversee all changes, so need to see everything. They will need to see tasks which have not been done in the specified time, who's responsible etc. The data will be persisted to a SQL database. It'll all be put together using .Net. I've been trying to learn and implement OOP into my designs of late, but I'm wondering if this is moot in this instance as it may be better to have the business logic for this in stored procedures in the DB. I could use POCO's, a front end layer and a data access layer for the web application and just use it as a mechanism for CRUD actions on the DB, then use SP's fired in the DB to apply the business rules. On the other hand, I could use an object oriented design within the web app, but as the data in the app is state-less, is this a bad idea? I could try and model out the whole application into a class structure, implementing interfaces, base classes and all that good stuff. So I would create a change class, which contained a list of task classes/types, which defined each task, and implement an ITask interface etc. Put end-user types into the tasks to identify who should be doing what task. Then apply all the business logic in the respective class methods etc. What approach do you guys think I should be using for this solution?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >