Search Results

Search found 4504 results on 181 pages for 'tree grammar'.

Page 2/181 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Algorithm for parsing a flat tree into a non-flat tree

    - by Chad Johnson
    I have the following flat tree: id name parent_id is_directory =========================================================== 50 app 0 1 31 controllers 50 1 11 application_controller.rb 31 0 46 models 50 1 12 test_controller.rb 31 0 31 test.rb 46 0 and I am trying to figure out an algorithm for getting this into the following tree structuree: [{ id: 50, name: app, is_directory: true children: [{ id: 31, name: controllers, is_directory: true, children: [{ id: 11, name: application_controller.rb is_directory: false },{ id: 12, name: test_controller.rb, is_directory: false }], },{ id: 46, name: models, is_directory: true, children: [{ id: 31, name: test.rb, is_directory: false }] }] }] Can someone point me in the right direction? I'm looking for steps (eg. build an associative array; loop through the array looking for x; etc.).

    Read the article

  • Implementation of Race Game Tree

    - by Mert Toka
    I build a racing game right in OpenGL using Glut, and I'm a bit lost in all the details. First of all, any suggestions as a road map would be more than great. So far what I thought is this: Tree implementation for transformations. Simulated dynamics.(*) Octree implementation for collusion detection. Actual collusion detection.(*) Modelling in Maya and export them as .OBJs. Polishing the game with GLSL or something like that for graphics quality. (*): I am not sure the order of these two. So I started with the simulated dynamics without tree, and it turned out to be a huge chaos for me. Is there any way you can think of such that could help me to build such tree to use in racing game? I thought something like this but I have no idea how to implement it. Reds are static, yellows are dynamic nodes

    Read the article

  • Convert The Context Free Grammar to LL1 Grammar

    - by kamiar3001
    hi I want to write a program to gives grammar as input and change it to LL1. my problem is converting to LL1 I don't have any algorithm to convert. I earn grammar from some input text by a simple text analyzer but how I can change it to LL1 ? is there any algorithm that is clear to implement.

    Read the article

  • Programmatically disclosing a node in af:tree and af:treeTable

    - by Frank Nimphius
    A common developer requirement when working with af:tree or af:treeTable components is to programmatically disclose (expand) a specific node in the tree. If the node to disclose is not a top level node, like a location in a LocationsView -> DepartmentsView -> EmployeesView hierarchy, you need to also disclose the node's parent node hierarchy for application users to see the fully expanded tree node structure. Working on ADF Code Corner sample #101, I wrote the following code lines that show a generic option for disclosing a tree node starting from a handle to the node to disclose. The use case in ADF Coder Corner sample #101 is a drag and drop operation from a table component to a tree to relocate employees to a new department. The tree node that receives the drop is a department node contained in a location. In theory the location could be part of a country and so on to indicate the depth the tree may have. Based on this structure, the code below provides a generic solution to parse the current node parent nodes and its child nodes. The drop event provided a rowKey for the tree node that received the drop. Like in af:table, the tree row key is not of type oracle.jbo.domain.Key but an implementation of java.util.List that contains the row keys. The JUCtrlHierBinding class in the ADF Binding layer that represents the ADF tree binding at runtime provides a method named findNodeByKeyPath that allows you to get a handle to the JUCtrlHierNodeBinding instance that represents a tree node in the binding layer. CollectionModel model = (CollectionModel) your_af_tree_reference.getValue(); JUCtrlHierBinding treeBinding = (JUCtrlHierBinding ) model.getWrappedData(); JUCtrlHierNodeBinding treeDropNode = treeBinding.findNodeByKeyPath(dropRowKey); To disclose the tree node, you need to create a RowKeySet, which you do using the RowKeySetImpl class. Because the RowKeySet replaces any existing row key set in the tree, all other nodes are automatically closed. RowKeySetImpl rksImpl = new RowKeySetImpl(); //the first key to add is the node that received the drop //operation (departments).            rksImpl.add(dropRowKey);    Similar, from the tree binding, the root node can be obtained. The root node is the end of all parent node iteration and therefore important. JUCtrlHierNodeBinding rootNode = treeBinding.getRootNodeBinding(); The following code obtains a reference to the hierarchy of parent nodes until the root node is found. JUCtrlHierNodeBinding dropNodeParent = treeDropNode.getParent(); //walk up the tree to expand all parent nodes while(dropNodeParent != null && dropNodeParent != rootNode){    //add the node's keyPath (remember its a List) to the row key set    rksImpl.add(dropNodeParent.getKeyPath());      dropNodeParent = dropNodeParent.getParent(); } Next, you disclose the drop node immediate child nodes as otherwise all you see is the department node. Its not quite exactly "dinner for one", but the procedure is very similar to the one handling the parent node keys ArrayList<JUCtrlHierNodeBinding> childList = (ArrayList<JUCtrlHierNodeBinding>) treeDropNode.getChildren();                     for(JUCtrlHierNodeBinding nb : childList){   rksImpl.add(nb.getKeyPath()); } Next, the row key set is defined as the disclosed row keys on the tree so when you refresh (PPR) the tree, the new disclosed state shows tree.setDisclosedRowKeys(rksImpl); AdfFacesContext.getCurrentInstance().addPartialTarget(tree.getParent()); The refresh in my use case is on the tree parent component (a layout container), which usually shows the best effect for refreshing the tree component. 

    Read the article

  • Find the minimum gap between two numbers in an AVL tree

    - by user1656647
    I have a data structures homework, that in addition to the regular AVL tree functions, I have to add a function that returns the minimum gap between any two numbers in the AVL tree (the nodes in the AVL actually represent numbers.) Lets say we have the numbers (as nodes) 1 5 12 20 23 21 in the AVL tree, the function should return the minimum gap between any two numbers. In this situation it should return "1" which is |20-21| or |21-20|. It should be done in O(1). Tried to think alot about it, and I know there is a trick but just couldn't find it, I have spent hours on this. There was another task which is to find the maximum gap, which is easy, it is the difference between the minimal and maximal number.

    Read the article

  • Can a binary tree or tree be always represented in a Database as 1 table and self-referencing?

    - by Jian Lin
    I didn't feel this rule before, but it seems that a binary tree or any tree (each node can have many children but children cannot point back to any parent), then this data structure can be represented as 1 table in a database, with each row having an ID for itself and a parentID that points back to the parent node. That is in fact the classical Employee - Manager diagram: one boss can have many people under him... and each person can have n people under him, etc. This is a tree structure and is represented in database books as a common example as a single table Employee.

    Read the article

  • Can a binary tree or tree be always represented in a Database table as 1 table and self-referencing?

    - by Jian Lin
    I didn't feel this rule before, but it seems that a binary tree or any tree (each node can have many children but children cannot point back to any parent), then this data structure can be represented as 1 table in a database, with each row having an ID for itself and a parentID that points back to the parent node. That is in fact the classical Employee - Manager diagram: one boss can have many people under him... and each person under him can have n people under him, etc. This is a tree structure and is represented in database books as a common example as a single table Employee.

    Read the article

  • Inorder tree traversal in binary tree in C

    - by srk
    In the below code, I'am creating a binary tree using insert function and trying to display the inserted elements using inorder function which follows the logic of In-order traversal.When I run it, numbers are getting inserted but when I try the inorder function( input 3), the program continues for next input without displaying anything. I guess there might be a logical error.Please help me clear it. Thanks in advance... #include<stdio.h> #include<stdlib.h> int i; typedef struct ll { int data; struct ll *left; struct ll *right; } node; node *root1=NULL; // the root node void insert(node *root,int n) { if(root==NULL) //for the first(root) node { root=(node *)malloc(sizeof(node)); root->data=n; root->right=NULL; root->left=NULL; } else { if(n<(root->data)) { root->left=(node *)malloc(sizeof(node)); insert(root->left,n); } else if(n>(root->data)) { root->right=(node *)malloc(sizeof(node)); insert(root->right,n); } else { root->data=n; } } } void inorder(node *root) { if(root!=NULL) { inorder(root->left); printf("%d ",root->data); inorder(root->right); } } main() { int n,choice=1; while(choice!=0) { printf("Enter choice--- 1 for insert, 3 for inorder and 0 for exit\n"); scanf("%d",&choice); switch(choice) { case 1: printf("Enter number to be inserted\n"); scanf("%d",&n); insert(root1,n); break; case 3: inorder(root1); break; default: break; } } }

    Read the article

  • Parse tree and grammars information

    - by fuzzylogikk
    Do anyone know where to find good online resources with examples how to make grammars and parsetrees? Preferebly introductary materials. Info that is n00b friendly, haven't found anything good with google myself. edit: I'm thinking about theory, not a specific parser software.

    Read the article

  • AVL tree in C language

    - by I_S_W
    Hey all; i am currently doing a project that requires the use of AVL trees , the insert function i wrote for the avl does not seem to be working , it works for 3 or 4 nodes at maximum ; i would really appreciate your help The attempt is below enter code here Tree insert(Tree t,char name[80],int num) { if(t==NULL) { t=(Tree)malloc(sizeof(struct node)); if(t!=NULL) { strcpy(t->name,name); t->num=num; t->left=NULL; t->right=NULL; t->height=0; } } else if(strcmp(name,t->name)<0) { t->left=insert(t->left,name,num); if((height(t->left)-height(t->right))==2) if(strcmp(name,t->left->name)<0) { t=s_rotate_left(t);} else{ t=d_rotate_left(t);} } else if(strcmp(name,t-name)0) { t-right=insert(t-right,name,num); if((height(t-right)-height(t-left))==2) if(strcmp(name,t-right-name)0){ t=s_rotate_right(t); } else{ t=d_rotate_right(t);} } t-height=max(height(t-left),height(t-right))+1; return t; }

    Read the article

  • ANTLR grammar from bison

    - by Iulian Serbanoiu
    Hello, I'm trying to translate a grammar from bison to ANTLR. The grammar itself is pretty simple in bison but I cannot find a simple way for doing this. Grammar in bison: expr = expr or expr | expr and expr | (expr) Any hints/links/pointers are welcome. Thanks, Iulian

    Read the article

  • Voicexml grammar

    - by Tyzak
    Hello, I try to use grammar in my voicexml file. At first i tried an In-line grammar. I used an example from a website, but it doesn't work. here is the code: <?xml version="1.0" encoding="UTF-8"?> <vxml [...] version="2.0"> <form id="test"> <field name="var"> <prompt>choose</prompt> <!-- ABNF --> <grammar> one | two | three| four </grammar> <filled> you chose <value expr="var"/> </filled> </field> </form> </vxml> thanks

    Read the article

  • New to AVL tree implementation.

    - by nn
    I am writing a sliding window compression algorithm (LZ77) that searches for phrases in a "moving" dictionary. So far I have written a BST where each node is stored in an array and it's index in the array is also the value of the starting position in the window itself. I am now looking at transforming the BST to an AVL tree. I am a little confused at the sample implementations I have seen. Some only appear to store the balance factors whereas others store the height of each tree. Are there any performance advantage/disadvantages of storing the height and/or balance factor for each node? Apologies if this is a very simple question, but I'm still not visualizing how I want to restructure my BST to implement height balancing. Thanks.

    Read the article

  • Convert a binary tree to linked list, breadth first, constant storage/destructive

    - by Merlyn Morgan-Graham
    This is not homework, and I don't need to answer it, but now I have become obsessed :) The problem is: Design an algorithm to destructively flatten a binary tree to a linked list, breadth-first. Okay, easy enough. Just build a queue, and do what you have to. That was the warm-up. Now, implement it with constant storage (recursion, if you can figure out an answer using it, is logarithmic storage, not constant). I found a solution to this problem on the Internet about a year back, but now I've forgotten it, and I want to know :) The trick, as far as I remember, involved using the tree to implement the queue, taking advantage of the destructive nature of the algorithm. When you are linking the list, you are also pushing an item into the queue. Each time I try to solve this, I lose nodes (such as each time I link the next node/add to the queue), I require extra storage, or I can't figure out the convoluted method I need to get back to a node that has the pointer I need. Even the link to that original article/post would be useful to me :) Google is giving me no joy. Edit: Jérémie pointed out that there is a fairly simple (and well known answer) if you have a parent pointer. While I now think he is correct about the original solution containing a parent pointer, I really wanted to solve the problem without it :) The refined requirements use this definition for the node: struct tree_node { int value; tree_node* left; tree_node* right; };

    Read the article

  • How to functionally generate a tree breadth-first. (With Haskell)

    - by Dennetik
    Say I have the following Haskell tree type, where "State" is a simple wrapper: data Tree a = Branch (State a) [Tree a] | Leaf (State a) deriving (Eq, Show) I also have a function "expand :: Tree a - Tree a" which takes a leaf node, and expands it into a branch, or takes a branch and returns it unaltered. This tree type represents an N-ary search-tree. Searching depth-first is a waste, as the search-space is obviously infinite, as I can easily keep on expanding the search-space with the use of expand on all the tree's leaf nodes, and the chances of accidentally missing the goal-state is huge... thus the only solution is a breadth-first search, implemented pretty decent over here, which will find the solution if it's there. What I want to generate, though, is the tree traversed up to finding the solution. This is a problem because I only know how to do this depth-first, which could be done by simply called the "expand" function again and again upon the first child node... until a goal-state is found. (This would really not generate anything other then a really uncomfortable list.) Could anyone give me any hints on how to do this (or an entire algorithm), or a verdict on whether or not it's possible with a decent complexity? (Or any sources on this, because I found rather few.)

    Read the article

  • Spanning-tree setup with incompatible switches

    - by wfaulk
    I have a set of eight HP ProCurve 2910al-48G Ethernet switches at my datacenter that are set up in a star topology with no physical loops. I want to partially mesh the switches for redundancy and manage the loops with a spanning-tree protocol. However, our connection to the datacenter is provided by two uplinks, each to a Cisco 3750. The datacenter's switches are handling the redundant connection using PVST spanning-tree, which is a Cisco-proprietary spanning-tree implementation that my HP switches do not support. It appears that my switches are not participating in the datacenter's spanning-tree domain, but are blindly passing the BPDUs between the two switchports on my side, which enables the datacenter's switches to recognize the loop and put one of the uplinks into the Blocking state. This is somewhat supposition, but I can confirm that, while my switches say that both of the uplink ports are forwarding, only one is passing any real quantity of data. (I am assuming that I cannot get the datacenter to move away from PVST. I don't know that I'd want them to make that significant of a change anyway.) The datacenter has also sent me this output from their switches (which I have expurgated of any identifiable info): 3750G-1#sh spanning-tree vlan nnn VLAN0nnn Spanning tree enabled protocol ieee Root ID Priority 10 Address 00d0.0114.xxxx Cost 4 Port 5 (GigabitEthernet1/0/5) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32mmm (priority 32768 sys-id-ext nnn) Address 0018.73d3.yyyy Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Gi1/0/5 Root FWD 4 128.5 P2p Gi1/0/6 Altn BLK 4 128.6 P2p Gi1/0/8 Altn BLK 4 128.8 P2p and: 3750G-2#sh spanning-tree vlan nnn VLAN0nnn Spanning tree enabled protocol ieee Root ID Priority 10 Address 00d0.0114.xxxx Cost 4 Port 6 (GigabitEthernet1/0/6) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32mmm (priority 32768 sys-id-ext nnn) Address 000f.f71e.zzzz Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Gi1/0/1 Desg FWD 4 128.1 P2p Gi1/0/5 Altn BLK 4 128.5 P2p Gi1/0/6 Root FWD 4 128.6 P2p Gi1/0/8 Desg FWD 4 128.8 P2p The uplinks to my switches are on Gi1/0/8 on both of their switches. The uplink ports are configured with a single tagged VLAN. I am also using a number of other tagged VLANs in my switch infrastructure. And, to be clear, I am passing the tagged VLAN I'm receiving from the datacenter to other ports on other switches in my infrastructure. My question is: how do I configure my switches so that I can use a spanning tree protocol inside my switch infrastructure without breaking the datacenter's spanning tree that I cannot participate in?

    Read the article

  • Help with Boost Grammar

    - by Decmanc04
    I have been using the following win32 console code to try to parse a B Machine Grammar embedded within C++ using Boost Spirit grammar template. I am a relatively new Boost user. The code compiles, but when I run the .exe file produced by VC++2008, the program partially parses the input file. I believe the problem is with my grammar definition or the functions attached as semantic atctions. The code is given below: // BIFAnalyser.cpp : Defines the entry point for the console application. // // /*============================================================================= Copyright (c) Temitope Jos Onunkun 2010 http://www.dcs.kcl.ac.uk/pg/onun/ Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) =============================================================================*/ //////////////////////////////////////////////////////////////////////////// // // // B Machine parser using the Boost "Grammar" and "Semantic Actions". // // // //////////////////////////////////////////////////////////////////////////// #include <boost/spirit/core.hpp> #include <boost/tokenizer.hpp> #include <iostream> #include <string> #include <fstream> #include <vector> #include <utility> /////////////////////////////////////////////////////////////////////////////////////////// using namespace std; using namespace boost::spirit; /////////////////////////////////////////////////////////////////////////////////////////// // // Semantic actions // //////////////////////////////////////////////////////////////////////////// vector<string> strVect; namespace { //semantic action function on individual lexeme void do_noint(char const* str, char const* end) { string s(str, end); if(atoi(str)) { ; } else { strVect.push_back(s); cout << "PUSH(" << s << ')' << endl; } } //semantic action function on addition of lexemes void do_add(char const*, char const*) { cout << "ADD" << endl; for(vector<string>::iterator vi = strVect.begin(); vi < strVect.end(); ++vi) cout << *vi << " "; } //semantic action function on subtraction of lexemes void do_subt(char const*, char const*) { cout << "SUBTRACT" << endl; for(vector<string>::iterator vi = strVect.begin(); vi < strVect.end(); ++vi) cout << *vi << " "; } //semantic action function on multiplication of lexemes void do_mult(char const*, char const*) { cout << "\nMULTIPLY" << endl; for(vector<string>::iterator vi = strVect.begin(); vi < strVect.end(); ++vi) cout << *vi << " "; cout << "\n"; } //semantic action function on division of lexemes void do_div(char const*, char const*) { cout << "\nDIVIDE" << endl; for(vector<string>::iterator vi = strVect.begin(); vi < strVect.end(); ++vi) cout << *vi << " "; } //semantic action function on simple substitution void do_sSubst(char const* str, char const* end) { string s(str, end); //use boost tokenizer to break down tokens typedef boost::tokenizer<boost::char_separator<char> > Tokenizer; boost::char_separator<char> sep("-+/*:=()"); // default char separator Tokenizer tok(s, sep); Tokenizer::iterator tok_iter = tok.begin(); pair<string, string > dependency; //create a pair object for dependencies //save first variable token in simple substitution dependency.first = *tok.begin(); //create a vector object to store all tokens vector<string> dx; // for( ; tok_iter != tok.end(); ++tok_iter) //save all tokens in vector { dx.push_back(*tok_iter ); } vector<string> d_hat; //stores set of dependency pairs string dep; //pairs variables as string object for(int unsigned i=1; i < dx.size()-1; i++) { dependency.second = dx.at(i); dep = dependency.first + "|->" + dependency.second + " "; d_hat.push_back(dep); } cout << "PUSH(" << s << ')' << endl; for(int unsigned i=0; i < d_hat.size(); i++) cout <<"\n...\n" << d_hat.at(i) << " "; cout << "\nSIMPLE SUBSTITUTION\n"; } //semantic action function on multiple substitution void do_mSubst(char const* str, char const* end) { string s(str, end); //use boost tokenizer to break down tokens typedef boost::tokenizer<boost::char_separator<char> > Tok; boost::char_separator<char> sep("-+/*:=()"); // default char separator Tok tok(s, sep); Tok::iterator tok_iter = tok.begin(); // string start = *tok.begin(); vector<string> mx; for( ; tok_iter != tok.end(); ++tok_iter) //save all tokens in vector { mx.push_back(*tok_iter ); } mx.push_back("END\n"); //add a marker "end" for(unsigned int i=0; i<mx.size(); i++) { // if(mx.at(i) == "END" || mx.at(i) == "||" ) // break; // else if( mx.at(i) == "||") // do_sSubst(str, end); // else // { // do_sSubst(str, end); // } cout << "\nTokens ... " << mx.at(i) << " "; } cout << "PUSH(" << s << ')' << endl; cout << "MULTIPLE SUBSTITUTION\n"; } } //////////////////////////////////////////////////////////////////////////// // // Simple Substitution Grammar // //////////////////////////////////////////////////////////////////////////// // Simple substitution grammar parser with integer values removed struct Substitution : public grammar<Substitution> { template <typename ScannerT> struct definition { definition(Substitution const& ) { multi_subst = (simple_subst [&do_mSubst] >> +( str_p("||") >> simple_subst [&do_mSubst]) ) ; simple_subst = (Identifier >> str_p(":=") >> expression)[&do_sSubst] ; Identifier = alpha_p >> +alnum_p//[do_noint] ; expression = term >> *( ('+' >> term)[&do_add] | ('-' >> term)[&do_subt] ) ; term = factor >> *( ('*' >> factor)[&do_mult] | ('/' >> factor)[&do_div] ) ; factor = lexeme_d[( (alpha_p >> +alnum_p) | +digit_p)[&do_noint]] | '(' >> expression >> ')' | ('+' >> factor) ; } rule<ScannerT> expression, term, factor, Identifier, simple_subst, multi_subst ; rule<ScannerT> const& start() const { return multi_subst; } }; }; //////////////////////////////////////////////////////////////////////////// // // Main program // //////////////////////////////////////////////////////////////////////////// int main() { cout << "************************************************************\n\n"; cout << "\t\t...Machine Parser...\n\n"; cout << "************************************************************\n\n"; // cout << "Type an expression...or [q or Q] to quit\n\n"; //prompt for file name to be input cout << "Please enter a filename...or [q or Q] to quit:\n\n "; char strFilename[256]; //file name store as a string object cin >> strFilename; ifstream inFile(strFilename); // opens file object for reading //output file for truncated machine (operations only) Substitution elementary_subst; // Simple substitution parser object string str, next; // inFile.open(strFilename); while (inFile >> str) { getline(cin, next); str += next; if (str.empty() || str[0] == 'q' || str[0] == 'Q') break; parse_info<> info = parse(str.c_str(), elementary_subst, space_p); if (info.full) { cout << "\n-------------------------\n"; cout << "Parsing succeeded\n"; cout << "\n-------------------------\n"; } else { cout << "\n-------------------------\n"; cout << "Parsing failed\n"; cout << "stopped at: \": " << info.stop << "\"\n"; cout << "\n-------------------------\n"; } } cout << "Please enter a filename...or [q or Q] to quit\n"; cin >> strFilename; return 0; } The contents of the file I tried to parse, which I named "mf7.txt" is given below: debt:=(LoanRequest+outstandingLoan1)*20 || newDebt := loanammount-paidammount The output when I execute the program is: ************************************************************ ...Machine Parser... ************************************************************ Please enter a filename...or [q or Q] to quit: c:\tplat\mf7.txt PUSH(LoanRequest) PUSH(outstandingLoan1) ADD LoanRequest outstandingLoan1 MULTIPLY LoanRequest outstandingLoan1 PUSH(debt:=(LoanRequest+outstandingLoan1)*20) ... debt|->LoanRequest ... debt|->outstandingLoan1 SIMPLE SUBSTITUTION Tokens ... debt Tokens ... LoanRequest Tokens ... outstandingLoan1 Tokens ... 20 Tokens ... END PUSH(debt:=(LoanRequest+outstandingLoan1)*20) MULTIPLE SUBSTITUTION ------------------------- Parsing failedstopped at: ": " ------------------------- My intention is to capture only the variables in the file, which I managed to do up to the "||" string. Clearly, the program is not parsing beyond the "||" string in the input file. I will appreciate assistance to fix the grammar. SOS, please.

    Read the article

  • Specifying Language for a grammar

    - by darkie15
    Hi All, Is there any specific methodology followed to specify a language for given grammar ?? i.e. Is it necessary to run all the production rules given in a grammar to determine the language it represents? I don't have an example as such since the one I am working on is a homework question. Regards, darkie15

    Read the article

  • Re: Help with Boost Grammar

    - by Decmac04
    I have redesigned and extended the grammar I asked about earlier as shown below: // BIFAnalyser.cpp : Defines the entry point for the console application. // // /*============================================================================= Copyright (c) Temitope Jos Onunkun 2010 http://www.dcs.kcl.ac.uk/pg/onun/ Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) =============================================================================*/ //////////////////////////////////////////////////////////////////////////// // // // B Machine parser using the Boost "Grammar" and "Semantic Actions". // // // //////////////////////////////////////////////////////////////////////////// include include include include include include //////////////////////////////////////////////////////////////////////////// using namespace std; using namespace boost::spirit; //////////////////////////////////////////////////////////////////////////// // // Semantic Actions // //////////////////////////////////////////////////////////////////////////// // // namespace { //semantic action function on individual lexeme void do_noint(char const* start, char const* end) { string str(start, end); if (str != "NAT1") cout << "PUSH(" << str << ')' << endl; } //semantic action function on addition of lexemes void do_add(char const*, char const*) { cout << "ADD" << endl; // for(vector::iterator vi = strVect.begin(); vi < strVect.end(); ++vi) // cout << *vi << " "; } //semantic action function on subtraction of lexemes void do_subt(char const*, char const*) { cout << "SUBTRACT" << endl; } //semantic action function on multiplication of lexemes void do_mult(char const*, char const*) { cout << "\nMULTIPLY" << endl; } //semantic action function on division of lexemes void do_div(char const*, char const*) { cout << "\nDIVIDE" << endl; } // // vector flowTable; //semantic action function on simple substitution void do_sSubst(char const* start, char const* end) { string str(start, end); //use boost tokenizer to break down tokens typedef boost::tokenizer Tokenizer; boost::char_separator sep(" -+/*:=()",0,boost::drop_empty_tokens); // char separator definition Tokenizer tok(str, sep); Tokenizer::iterator tok_iter = tok.begin(); pair dependency; //create a pair object for dependencies //create a vector object to store all tokens vector dx; // int counter = 0; // tracks token position for(tok.begin(); tok_iter != tok.end(); ++tok_iter) //save all tokens in vector { dx.push_back(*tok_iter ); } counter = dx.size(); // vector d_hat; //stores set of dependency pairs string dep; //pairs variables as string object // dependency.first = *tok.begin(); vector FV; for(int unsigned i=1; i < dx.size(); i++) { // if(!atoi(dx.at(i).c_str()) && (dx.at(i) !=" ")) { dependency.second = dx.at(i); dep = dependency.first + "|-" + dependency.second + " "; d_hat.push_back(dep); vector<string> row; row.push_back(dependency.first); //push x_hat into first column of each row for(unsigned int j=0; j<2; j++) { row.push_back(dependency.second);//push an element (column) into the row } flowTable.push_back(row); //Add the row to the main vector } } //displays internal representation of information flow table cout << "\n****************\nDependency Table\n****************\n"; cout << "X_Hat\tDx\tG_Hat\n"; cout << "-----------------------------\n"; for(unsigned int i=0; i < flowTable.size(); i++) { for(unsigned int j=0; j<2; j++) { cout << flowTable[i][j] << "\t "; } if (*tok.begin() != "WHILE" ) //if there are no global flows, cout << "\t{}"; //display empty set cout << "\n"; } cout << "***************\n\n"; for(int unsigned j=0; j < FV.size(); j++) { if(FV.at(j) != dependency.second) dep = dependency.first + "|-" + dependency.second + " "; d_hat.push_back(dep); } cout << "PUSH(" << str << ')' << endl; cout << "\n*******\nDependency pairs\n*******\n"; for(int unsigned i=0; i < d_hat.size(); i++) cout << d_hat.at(i) << "\n...\n"; cout << "\nSIMPLE SUBSTITUTION\n\n"; } //semantic action function on multiple substitution void do_mSubst(char const* start, char const* end) { string str(start, end); cout << "PUSH(" << str << ')' << endl; //cout << "\nMULTIPLE SUBSTITUTION\n\n"; } //semantic action function on unbounded choice substitution void do_mChoice(char const* start, char const* end) { string str(start, end); cout << "PUSH(" << str << ')' << endl; cout << "\nUNBOUNDED CHOICE SUBSTITUTION\n\n"; } void do_logicExpr(char const* start, char const* end) { string str(start, end); //use boost tokenizer to break down tokens typedef boost::tokenizer Tokenizer; boost::char_separator sep(" -+/*=:()<",0,boost::drop_empty_tokens); // char separator definition Tokenizer tok(str, sep); Tokenizer::iterator tok_iter = tok.begin(); //pair dependency; //create a pair object for dependencies //create a vector object to store all tokens vector dx; for(tok.begin(); tok_iter != tok.end(); ++tok_iter) //save all tokens in vector { dx.push_back(*tok_iter ); } for(unsigned int i=0; i cout << "PUSH(" << str << ')' << endl; cout << "\nPREDICATE\n\n"; } void do_predicate(char const* start, char const* end) { string str(start, end); cout << "PUSH(" << str << ')' << endl; cout << "\nMULTIPLE PREDICATE\n\n"; } void do_ifSelectPre(char const* start, char const* end) { string str(start, end); //if cout << "PUSH(" << str << ')' << endl; cout << "\nPROTECTED SUBSTITUTION\n\n"; } //semantic action function on machine substitution void do_machSubst(char const* start, char const* end) { string str(start, end); cout << "PUSH(" << str << ')' << endl; cout << "\nMACHINE SUBSTITUTION\n\n"; } } //////////////////////////////////////////////////////////////////////////// // // Machine Substitution Grammar // //////////////////////////////////////////////////////////////////////////// // Simple substitution grammar parser with integer values removed struct Substitution : public grammar { template struct definition { definition(Substitution const& ) { machine_subst = ( (simple_subst) | (multi_subst) | (if_select_pre_subst) | (unbounded_choice) )[&do_machSubst] ; unbounded_choice = str_p("ANY") ide_list str_p("WHERE") predicate str_p("THEN") machine_subst str_p("END") ; if_select_pre_subst = ( ( str_p("IF") predicate str_p("THEN") machine_subst *( str_p("ELSIF") predicate machine_subst ) !( str_p("ELSE") machine_subst) str_p("END") ) | ( str_p("SELECT") predicate str_p("THEN") machine_subst *( str_p("WHEN") predicate machine_subst ) !( str_p("ELSE") machine_subst) str_p("END")) | ( str_p("PRE") predicate str_p("THEN") machine_subst str_p("END") ) )[&do_ifSelectPre] ; multi_subst = ( (machine_subst) *( ( str_p("||") (machine_subst) ) | ( str_p("[]") (machine_subst) ) ) ) [&do_mSubst] ; simple_subst = (identifier str_p(":=") arith_expr) [&do_sSubst] ; expression = predicate | arith_expr ; predicate = ( (logic_expr) *( ( ch_p('&') (logic_expr) ) | ( str_p("OR") (logic_expr) ) ) )[&do_predicate] ; logic_expr = ( identifier (str_p("<") arith_expr) | (str_p("<") arith_expr) | (str_p("/:") arith_expr) | (str_p("<:") arith_expr) | (str_p("/<:") arith_expr) | (str_p("<<:") arith_expr) | (str_p("/<<:") arith_expr) | (str_p("<=") arith_expr) | (str_p("=") arith_expr) | (str_p("=") arith_expr) | (str_p("=") arith_expr) ) [&do_logicExpr] ; arith_expr = term *( ('+' term)[&do_add] | ('-' term)[&do_subt] ) ; term = factor ( ('' factor)[&do_mult] | ('/' factor)[&do_div] ) ; factor = lexeme_d[( identifier | +digit_p)[&do_noint]] | '(' expression ')' | ('+' factor) ; ide_list = identifier *( ch_p(',') identifier ) ; identifier = alpha_p +( alnum_p | ch_p('_') ) ; } rule machine_subst, unbounded_choice, if_select_pre_subst, multi_subst, simple_subst, expression, predicate, logic_expr, arith_expr, term, factor, ide_list, identifier; rule<ScannerT> const& start() const { return predicate; //return multi_subst; //return machine_subst; } }; }; //////////////////////////////////////////////////////////////////////////// // // Main program // //////////////////////////////////////////////////////////////////////////// int main() { cout << "*********************************\n\n"; cout << "\t\t...Machine Parser...\n\n"; cout << "*********************************\n\n"; // cout << "Type an expression...or [q or Q] to quit\n\n"; string str; int machineCount = 0; char strFilename[256]; //file name store as a string object do { cout << "Please enter a filename...or [q or Q] to quit:\n\n "; //prompt for file name to be input //char strFilename[256]; //file name store as a string object cin strFilename; if(*strFilename == 'q' || *strFilename == 'Q') //termination condition return 0; ifstream inFile(strFilename); // opens file object for reading //output file for truncated machine (operations only) if (inFile.fail()) cerr << "\nUnable to open file for reading.\n" << endl; inFile.unsetf(std::ios::skipws); Substitution elementary_subst; // Simple substitution parser object string next; while (inFile str) { getline(inFile, next); str += next; if (str.empty() || str[0] == 'q' || str[0] == 'Q') break; parse_info< info = parse(str.c_str(), elementary_subst !end_p, space_p); if (info.full) { cout << "\n-------------------------\n"; cout << "Parsing succeeded\n"; cout << "\n-------------------------\n"; } else { cout << "\n-------------------------\n"; cout << "Parsing failed\n"; cout << "stopped at: " << info.stop << "\"\n"; cout << "\n-------------------------\n"; } } } while ( (*strFilename != 'q' || *strFilename !='Q')); return 0; } However, I am experiencing the following unexpected behaviours on testing: The text files I used are: f1.txt, ... containing ...: debt:=(LoanRequest+outstandingLoan1)*20 . f2.txt, ... containing ...: debt:=(LoanRequest+outstandingLoan1)*20 || newDebt := loanammount-paidammount || price := purchasePrice + overhead + bb . f3.txt, ... containing ...: yy < (xx+7+ww) . f4.txt, ... containing ...: yy < (xx+7+ww) & yy : NAT . When I use multi_subst as start rule both files (f1 and f2) are parsed correctly; When I use machine_subst as start rule file f1 parse correctly, while file f2 fails, producing the error: “Parsing failed stopped at: || newDebt := loanammount-paidammount || price := purchasePrice + overhead + bb” When I use predicate as start symbol, file f3 parse correctly, but file f4 yields the error: “ “Parsing failed stopped at: & yy : NAT” Can anyone help with the grammar, please? It appears there are problems with the grammar that I have so far been unable to spot.

    Read the article

  • What is the difference between an Abstract Syntax Tree and a Concrete Syntax Tree?

    - by Jason Baker
    I've been reading a bit about how interpreters/compilers work, and one area where I'm getting confused is the difference between an AST and a CST. My understanding is that the parser makes a CST, hands it to the semantic analyzer which turns it into an AST. However, my understanding is that the semantic analyzer simply ensures that rules are followed. I don't really understand why it would actually make any changes to make it abstract rather than concrete. Is there something that I'm missing about the semantic analyzer, or is the difference between an AST and CST somewhat artificial?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >