Search Results

Search found 58 results on 3 pages for 'treemap'.

Page 2/3 | < Previous Page | 1 2 3  | Next Page >

  • Beginnerquestion: How to count amount of each number drawn in a Lottery and output it in a list?

    - by elementz
    I am writing this little Lottery application. Now the plan is, to count how often each number has been drawn during each iteration of the Lottery, and store this somewhere. My guess is that I would need to use a HashMap, that has 6 keys and increments the value by one everytime the respective keys number is drawn. But how would I accomplish this? My code so far: public void numberCreator() { // creating and initializing a Random generator Random rand = new Random(); // A HashMap to store the numbers picked. HashMap hashMap = new HashMap(); // A TreeMap to sort the numbers picked. TreeMap treeMap = new TreeMap(); // creating an ArrayList which will store the pool of availbale Numbers List<Integer>numPool = new ArrayList<Integer>(); for (int i=1; i<50; i++){ // add the available Numbers to the pool numPool.add(i); hashMap.put(nums[i], 0); } // array to store the lotto numbers int [] nums = new int [6]; for (int i =0; i < nums.length; i++){ int numPoolIndex = rand.nextInt(numPool.size()); nums[i] = numPool.get(numPoolIndex); // check how often a number has been called and store the new amount in the Map int counter = hashMap.get numPool.remove(numPoolIndex); } System.out.println(Arrays.toString(nums)); } Maybe someone can tell me if I have the right idea, or even how I would implement the map properly?

    Read the article

  • Java - Count words in two documents

    - by user552961
    Good Morning - it is school assignment, I am not asking for any source code (if you can provide any pesudo code it would be awesome). Here is the problem :( I have to create a term frequency table. It is not pure TF, I just need to count the words and write down. I know basic steps to do it 1 - extract all terms (I can do it with file reader) 2 - remove repeating terms (I can do it with TreeMap) The output of 2nd step would be Niga, ponga, dinga, bitlo, etc. 3 - Now I have to see if there is any word in current file from above terms or not, if yes then I will count. Now this is my problem, I stucked on step 3 :( I have some idea how to count words with TreeMap (treemap.containskey etc.) but it would be global count not local count for each file :( Any pseudo code?

    Read the article

  • Live Messenger SimilarityTable2 file

    - by adrianbanks
    I am trying to free up some space on my laptop's hard disk and am using a tool (SpaceMonger) that will show me a treemap of the whole disk. The problem I have comes from Live Messenger's SimilarityTable2 file. I have no idea what it is for, but I know that it is a sparse file, meaning that it shows as taking up 8GB of disk space, but actually only takes up 132KB of space on disk. The problem is that because SpaceMonger thinks this file is 8GB, it swamps the other files and takes up most of the treemap, making it hard to see the other files that really are large. Is this file safe to delete? If not, how do I make its actual size on disk match its reserved size? If that's not possible, how can I make SpaceMonger (or another treemap tool) use the real size of the file and not the reserved size? EDIT: I've just realised that I have some NTFS junctions set up, meaning that the same set of directories appear twice. Is there any way to stop this happening as well?

    Read the article

  • Cluster Graph Visualization using python

    - by AlgoMan
    I am assembling different visualization tools that are available in python language. I found the Treemap. (http://pypi.python.org/pypi/treemap/1.05) Can you suggest some other tools that are available. I am exploring different ways of visualization of web data.

    Read the article

  • parallel computation for an Iterator of elements in Java

    - by Brian Harris
    I've had the same need a few times now and wanted to get other thoughts on the right way to structure a solution. The need is to perform some operation on many elements on many threads without needing to have all elements in memory at once, just the ones under computation. As in, Iterables.partition is insufficient because it brings all elements into memory up front. Expressing it in code, I want to write a BulkCalc2 that does the same thing as BulkCalc1, just in parallel. Below is sample code that illustrates my best attempt. I'm not satisfied because it's big and ugly, but it does seem to accomplish my goals of keeping threads highly utilized until the work is done, propagating any exceptions during computation, and not having more than numThreads instances of BigThing necessarily in memory at once. I'll accept the answer which meets the stated goals in the most concise way, whether it's a way to improve my BulkCalc2 or a completely different solution. interface BigThing { int getId(); String getString(); } class Calc { // somewhat expensive computation double calc(BigThing bigThing) { Random r = new Random(bigThing.getString().hashCode()); double d = 0; for (int i = 0; i < 100000; i++) { d += r.nextDouble(); } return d; } } class BulkCalc1 { final Calc calc; public BulkCalc1(Calc calc) { this.calc = calc; } public TreeMap<Integer, Double> calc(Iterator<BigThing> in) { TreeMap<Integer, Double> results = Maps.newTreeMap(); while (in.hasNext()) { BigThing o = in.next(); results.put(o.getId(), calc.calc(o)); } return results; } } class SafeIterator<T> { final Iterator<T> in; SafeIterator(Iterator<T> in) { this.in = in; } synchronized T nextOrNull() { if (in.hasNext()) { return in.next(); } return null; } } class BulkCalc2 { final Calc calc; final int numThreads; public BulkCalc2(Calc calc, int numThreads) { this.calc = calc; this.numThreads = numThreads; } public TreeMap<Integer, Double> calc(Iterator<BigThing> in) { ExecutorService e = Executors.newFixedThreadPool(numThreads); List<Future<?>> futures = Lists.newLinkedList(); final Map<Integer, Double> results = new MapMaker().concurrencyLevel(numThreads).makeMap(); final SafeIterator<BigThing> it = new SafeIterator<BigThing>(in); for (int i = 0; i < numThreads; i++) { futures.add(e.submit(new Runnable() { @Override public void run() { while (true) { BigThing o = it.nextOrNull(); if (o == null) { return; } results.put(o.getId(), calc.calc(o)); } } })); } e.shutdown(); for (Future<?> future : futures) { try { future.get(); } catch (InterruptedException ex) { // swallowing is OK } catch (ExecutionException ex) { throw Throwables.propagate(ex.getCause()); } } return new TreeMap<Integer, Double>(results); } }

    Read the article

  • How to sort a key of a map

    - by Tsuna Sawada
    How to sort (any kind of sorting) a key of a map(treemap or hashmap) i have a problem and it goes like this. i have a map that has a key of 27527-683, 27525-1179, 27525-1571, 27525-1813, 27525-4911, 27526-1303, 27526-3641, 27525-3989, 27525-4083, 27525-4670, 27526-4102, 27526-558, 27527-2411, 27527-4342 this is the list of keys and the value for each of the key is a list. now, how can i sort this key in ascending order by number. ex. if i want to sort : 1,2,11,20,31,3,10 i want to have as output is : 1,2,3,10,11,20,31 but when i use the autosort of treemap the output goes : 1,10,11,2,20,3,31 how can i sort it in ascending order by numeric? please help me. i can't think of anymore ways because this is my first time handling map and list

    Read the article

  • How to code the set method of a Map with another Map as value?

    - by Nazgulled
    I normally do this to set a new Map to a private variable: public static void setListaClausulas(Map<String, Clausula> nvLista) { listaClausulas = new TreeMap<String, Clausula>(nvLista); } I suppose this is ok to set a new copy of the nvLista and all it's members and not a reference, is it? But now I have a Map inside another Map and I'm doing this: public static void setListaClausulas(Map<String, Map<String, Clausula>> nvLista) { listaClausulas = new TreeMap<String, Map<String, Clausula>>(nvLista); } Is this the correct way to do it or do you recommend something else? What I want is to set a new copy of nvLista (and all it's elements) and not copy just the reference.

    Read the article

  • Difference between HashMap, LinkedHashMap and SortMap in java

    - by theband
    Map m1 = new HashMap(); m1.put("map", "HashMap"); m1.put("schildt", "java2"); m1.put("mathew", "Hyden"); m1.put("schildt", "java2s"); print(m1.keySet()); print(m1.values()); SortedMap sm = new TreeMap(); sm.put("map", "TreeMap"); sm.put("schildt", "java2"); sm.put("mathew", "Hyden"); sm.put("schildt", "java2s"); print(sm.keySet()); print(sm.values()); LinkedHashMap lm = new LinkedHashMap(); lm .put("map", "LinkedHashMap"); lm .put("schildt", "java2"); lm .put("mathew", "Hyden"); lm .put("schildt", "java2s"); print(lm .keySet()); print(lm .values()); What is the difference between these three? I don't see any difference in the output as all the three has keySet and values. What are Hashtables?

    Read the article

  • Most Elegant Way to write isPrime in java

    - by Anantha Kumaran
    public class Prime { public static boolean isPrime1(int n) { if (n <= 1) { return false; } if (n == 2) { return true; } for (int i = 2; i <= Math.sqrt(n) + 1; i++) { if (n % i == 0) { return false; } } return true; } public static boolean isPrime2(int n) { if (n <= 1) { return false; } if (n == 2) { return true; } if (n % 2 == 0) { return false; } for (int i = 3; i <= Math.sqrt(n) + 1; i = i + 2) { if (n % i == 0) { return false; } } return true; } } public class PrimeTest { public PrimeTest() { } @Test public void testIsPrime() throws IllegalArgumentException, IllegalAccessException, InvocationTargetException { Prime prime = new Prime(); TreeMap<Long, String> methodMap = new TreeMap<Long, String>(); for (Method method : Prime.class.getDeclaredMethods()) { long startTime = System.currentTimeMillis(); int primeCount = 0; for (int i = 0; i < 1000000; i++) { if ((Boolean) method.invoke(prime, i)) { primeCount++; } } long endTime = System.currentTimeMillis(); Assert.assertEquals(method.getName() + " failed ", 78498, primeCount); methodMap.put(endTime - startTime, method.getName()); } for (Entry<Long, String> entry : methodMap.entrySet()) { System.out.println(entry.getValue() + " " + entry.getKey() + " Milli seconds "); } } } I am trying to find the fastest way to check whether the given number is prime or not. This is what is finally came up with. Is there any better way than the second implementation(isPrime2).

    Read the article

  • java: libraries for immutable functional-style data structures

    - by Jason S
    This is very similar to another question (Functional Data Structures in Java) but the answers there are not particularly useful. I need to use immutable versions of the standard Java collections (e.g. HashMap / TreeMap / ArrayList / LinkedList / HashSet / TreeSet). By "immutable" I mean immutable in the functional sense (e.g. purely functional data structures), where updating operations on the data structure do not change the original data, but instead return a new instance of the same kind of data structure. Also typically new and old instances of the data structure will share immutable data to be efficient in time and space. From what I can tell my options include: Functional Java Scala Clojure but I'm not sure whether any of these are particularly appealing to me. I have a few requirements/desirements: the collections in question should be usable directly in Java (with the appropriate libraries in the classpath). FJ would work for me; I'm not sure if I can use Scala's or Clojure's data structures in Java w/o having to use the compilers/interpreters from those languages and w/o having to write Scala or Clojure code. Core operations on lists/maps/sets should be possible w/o having to create function objects with confusing syntaxes (FJ looks slightly iffy) They should be efficient in time and space. I'm looking for a library which ideally has done some performance testing. FJ's TreeMap is based on a red-black tree, not sure how that rates. Documentation / tutorials should be good enough so someone can get started quickly using the data structures. FJ fails on that front. Any suggestions?

    Read the article

  • How to have variables with dynamic data types in Java?

    - by Nazgulled
    Hi, I need to have a UserProfile class that it's just that, a user profile. This user profile has some vital user data of course, but it also needs to have lists of messages sent from the user friends. I need to save these messages in LinkedList, ArrayList, HashMap and TreeMap. But only one at a time and not duplicate the message for each data structure. Basically, something like a dynamic variable type where I could pick the data type for the messages. Is this, somehow, possible in Java? Or my best approach is something like this? I mean, have 2 different classes (for the user profile), one where I host the messages as Map<K,V> (and then I use HashMap and TreeMap where appropriately) and another class where I host them as List<E> (and then I use LinkedList and ArrayList where appropriately). And probably use a super class for the UserProfile so I don't have to duplicate variables and methods for fields like data, age, address, etc... Any thoughts?

    Read the article

  • Passing a comparator syntax help in Java

    - by Crystal
    I've tried this a couple ways, the first is have a class that implements comparator at the bottom of the following code. When I try to pass the comparat in sortListByLastName, I get a constructor not found error and I am not sure why import java.util.*; public class OrganizeThis implements WhoDoneIt { /** Add a person to the organizer @param p A person object */ public void add(Person p) { staff.put(p.getEmail(), p); //System.out.println("Person " + p + "added"); } /** * Remove a Person from the organizer. * * @param email The email of the person to be removed. */ public void remove(String email) { staff.remove(email); } /** * Remove all contacts from the organizer. * */ public void empty() { staff.clear(); } /** * Find the person stored in the organizer with the email address. * Note, each person will have a unique email address. * * @param email The person email address you are looking for. * */ public Person findByEmail(String email) { Person aPerson = staff.get(email); return aPerson; } /** * Find all persons stored in the organizer with the same last name. * Note, there can be multiple persons with the same last name. * * @param lastName The last name of the persons your are looking for. * */ public Person[] find(String lastName) { ArrayList<Person> names = new ArrayList<Person>(); for (Person s : staff.values()) { if (s.getLastName() == lastName) { names.add(s); } } // Convert ArrayList back to Array Person nameArray[] = new Person[names.size()]; names.toArray(nameArray); return nameArray; } /** * Return all the contact from the orgnizer in * an array sorted by last name. * * @return An array of Person objects. * */ public Person[] getSortedListByLastName() { PersonLastNameComparator comp = new PersonLastNameComparator(); Map<String, Person> sorted = new TreeMap<String, Person>(comp); ArrayList<Person> sortedArrayList = new ArrayList<Person>(); for (Person s: sorted.values()) { sortedArrayList.add(s); } Person sortedArray[] = new Person[sortedArrayList.size()]; sortedArrayList.toArray(sortedArray); return sortedArray; } private Map<String, Person> staff = new HashMap<String, Person>(); public static void main(String[] args) { OrganizeThis testObj = new OrganizeThis(); Person person1 = new Person("J", "W", "111-222-3333", "[email protected]"); Person person2 = new Person("K", "W", "345-678-9999", "[email protected]"); Person person3 = new Person("Phoebe", "Wang", "322-111-3333", "[email protected]"); Person person4 = new Person("Nermal", "Johnson", "322-342-5555", "[email protected]"); Person person5 = new Person("Apple", "Banana", "123-456-1111", "[email protected]"); testObj.add(person1); testObj.add(person2); testObj.add(person3); testObj.add(person4); testObj.add(person5); System.out.println(testObj.findByEmail("[email protected]")); System.out.println("------------" + '\n'); Person a[] = testObj.find("W"); for (Person p : a) System.out.println(p); System.out.println("------------" + '\n'); a = testObj.find("W"); for (Person p : a) System.out.println(p); System.out.println("SORTED" + '\n'); a = testObj.getSortedListByLastName(); for (Person b : a) { System.out.println(b); } System.out.println(testObj.getAuthor()); } } class PersonLastNameComparator implements Comparator<Person> { public int compare(Person a, Person b) { return a.getLastName().compareTo(b.getLastName()); } } And then when I tried doing it by creating an anonymous inner class, I also get a constructor TreeMap cannot find symbol error. Any thoughts? inner class method: public Person[] getSortedListByLastName() { //PersonLastNameComparator comp = new PersonLastNameComparator(); Map<String, Person> sorted = new TreeMap<String, Person>(new Comparator<Person>() { public int compare(Person a, Person b) { return a.getLastName().compareTo(b.getLastName()); } }); ArrayList<Person> sortedArrayList = new ArrayList<Person>(); for (Person s: sorted.values()) { sortedArrayList.add(s); } Person sortedArray[] = new Person[sortedArrayList.size()]; sortedArrayList.toArray(sortedArray); return sortedArray; }

    Read the article

  • Sorting in Hash Maps in Java

    - by Crystal
    I'm trying to get familiar with Collections. I have a String which is my key, email address, and a Person object (firstName, lastName, telephone, email). I read in the Java collections chapter on Sun's webpages that if you had a HashMap and wanted it sorted, you could use a TreeMap. How does this sort work? Is it based on the compareTo() method you have in your Person class? I overrode the compareTo() method in my Person class to sort by lastName. But it isn't working properly and was wondering if I have the right idea or not. getSortedListByLastName at the bottom of this code is where I try to convert to a TreeMap. Also, if this is the correct way to do it, or one of the correct ways to do it, how do I then sort by firstName since my compareTo() is comparing by lastName. import java.util.*; public class OrganizeThis { /** Add a person to the organizer @param p A person object */ public void add(Person p) { staff.put(p.getEmail(), p); //System.out.println("Person " + p + "added"); } /** * Remove a Person from the organizer. * * @param email The email of the person to be removed. */ public void remove(String email) { staff.remove(email); } /** * Remove all contacts from the organizer. * */ public void empty() { staff.clear(); } /** * Find the person stored in the organizer with the email address. * Note, each person will have a unique email address. * * @param email The person email address you are looking for. * */ public Person findByEmail(String email) { Person aPerson = staff.get(email); return aPerson; } /** * Find all persons stored in the organizer with the same last name. * Note, there can be multiple persons with the same last name. * * @param lastName The last name of the persons your are looking for. * */ public Person[] find(String lastName) { ArrayList<Person> names = new ArrayList<Person>(); for (Person s : staff.values()) { if (s.getLastName() == lastName) { names.add(s); } } // Convert ArrayList back to Array Person nameArray[] = new Person[names.size()]; names.toArray(nameArray); return nameArray; } /** * Return all the contact from the orgnizer in * an array sorted by last name. * * @return An array of Person objects. * */ public Person[] getSortedListByLastName() { Map<String, Person> sorted = new TreeMap<String, Person>(staff); ArrayList<Person> sortedArrayList = new ArrayList<Person>(); for (Person s: sorted.values()) { sortedArrayList.add(s); } Person sortedArray[] = new Person[sortedArrayList.size()]; sortedArrayList.toArray(sortedArray); return sortedArray; } private Map<String, Person> staff = new HashMap<String, Person>(); public static void main(String[] args) { OrganizeThis testObj = new OrganizeThis(); Person person1 = new Person("J", "W", "111-222-3333", "[email protected]"); Person person2 = new Person("K", "W", "345-678-9999", "[email protected]"); Person person3 = new Person("Phoebe", "Wang", "322-111-3333", "[email protected]"); Person person4 = new Person("Nermal", "Johnson", "322-342-5555", "[email protected]"); Person person5 = new Person("Apple", "Banana", "123-456-1111", "[email protected]"); testObj.add(person1); testObj.add(person2); testObj.add(person3); testObj.add(person4); testObj.add(person5); System.out.println(testObj.findByEmail("[email protected]")); System.out.println("------------" + '\n'); Person a[] = testObj.find("W"); for (Person p : a) System.out.println(p); System.out.println("------------" + '\n'); a = testObj.find("W"); for (Person p : a) System.out.println(p); System.out.println("SORTED" + '\n'); a = testObj.getSortedListByLastName(); for (Person b : a) { System.out.println(b); } } } Person class: public class Person implements Comparable { String firstName; String lastName; String telephone; String email; public Person() { firstName = ""; lastName = ""; telephone = ""; email = ""; } public Person(String firstName) { this.firstName = firstName; } public Person(String firstName, String lastName, String telephone, String email) { this.firstName = firstName; this.lastName = lastName; this.telephone = telephone; this.email = email; } public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getTelephone() { return telephone; } public void setTelephone(String telephone) { this.telephone = telephone; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } public int compareTo(Object o) { String s1 = this.lastName + this.firstName; String s2 = ((Person) o).lastName + ((Person) o).firstName; return s1.compareTo(s2); } public boolean equals(Object otherObject) { // a quick test to see if the objects are identical if (this == otherObject) { return true; } // must return false if the explicit parameter is null if (otherObject == null) { return false; } if (!(otherObject instanceof Person)) { return false; } Person other = (Person) otherObject; return firstName.equals(other.firstName) && lastName.equals(other.lastName) && telephone.equals(other.telephone) && email.equals(other.email); } public int hashCode() { return this.email.toLowerCase().hashCode(); } public String toString() { return getClass().getName() + "[firstName = " + firstName + '\n' + "lastName = " + lastName + '\n' + "telephone = " + telephone + '\n' + "email = " + email + "]"; } }

    Read the article

  • How to convert a fixed height/width-fixed layout to elastic?

    - by phretor
    I used the same software used here http://us.gn.bartal.org/ to create a fixed width/height treemap in HTML + CSS. I would like to make it elastic by having a JavaScript function to convert all pixels absolute positions and sizes to percentages. How would you suggest to proceed? Is there some jQuery/Prototype/Dojo magic that I can exploit?

    Read the article

  • Any big difference between using contains or loop through a list?

    - by Nazgulled
    Hi, Performance wise, is there really a big difference between using: ArrayList.contains(o) vs foreach|iterator LinkedList.contains(o) vs foreach|iterator HashMap.(containsKey|containsValue) vs foreach|iterator TreeMap.(containsKey|containsValue) vs foreach|iterator Of course, for the foreach|iterator loops, I'll have to explicitly compare the methods and return true or false accordingly. The object I'm comparing is an object where equals() and hashcode() are both properly overridden.

    Read the article

  • Calculating the Size (in Bytes and MB) of a Oracle Coherence Cache

    - by Ricardo Ferreira
    The concept and usage of data grids are becoming very popular in this days since this type of technology are evolving very fast with some cool lead products like Oracle Coherence. Once for a while, developers need an programmatic way to calculate the total size of a specific cache that are residing in the data grid. In this post, I will show how to accomplish this using Oracle Coherence API. This example has been tested with 3.6, 3.7 and 3.7.1 versions of Oracle Coherence. To start the development of this example, you need to create a POJO ("Plain Old Java Object") that represents a data structure that will hold user data. This data structure will also create an internal fat so I call that should increase considerably the size of each instance in the heap memory. Create a Java class named "Person" as shown in the listing below. package com.oracle.coherence.domain; import java.io.Serializable; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Random; @SuppressWarnings("serial") public class Person implements Serializable { private String firstName; private String lastName; private List<Object> fat; private String email; public Person() { generateFat(); } public Person(String firstName, String lastName, String email) { setFirstName(firstName); setLastName(lastName); setEmail(email); generateFat(); } private void generateFat() { fat = new ArrayList<Object>(); Random random = new Random(); for (int i = 0; i < random.nextInt(18000); i++) { HashMap<Long, Double> internalFat = new HashMap<Long, Double>(); for (int j = 0; j < random.nextInt(10000); j++) { internalFat.put(random.nextLong(), random.nextDouble()); } fat.add(internalFat); } } public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } } Now let's create a Java program that will start a data grid into Coherence and will create a cache named "People", that will hold people instances with sequential integer keys. Each person created in this program will trigger the execution of a custom constructor created in the People class that instantiates an internal fat (the random amount of data generated to increase the size of the object) for each person. Create a Java class named "CreatePeopleCacheAndPopulateWithData" as shown in the listing below. package com.oracle.coherence.demo; import com.oracle.coherence.domain.Person; import com.tangosol.net.CacheFactory; import com.tangosol.net.NamedCache; public class CreatePeopleCacheAndPopulateWithData { public static void main(String[] args) { // Asks Coherence for a new cache named "People"... NamedCache people = CacheFactory.getCache("People"); // Creates three people that will be putted into the data grid. Each person // generates an internal fat that should increase its size in terms of bytes... Person pessoa1 = new Person("Ricardo", "Ferreira", "[email protected]"); Person pessoa2 = new Person("Vitor", "Ferreira", "[email protected]"); Person pessoa3 = new Person("Vivian", "Ferreira", "[email protected]"); // Insert three people at the data grid... people.put(1, pessoa1); people.put(2, pessoa2); people.put(3, pessoa3); // Waits for 5 minutes until the user runs the Java program // that calculates the total size of the people cache... try { System.out.println("---> Waiting for 5 minutes for the cache size calculation..."); Thread.sleep(300000); } catch (InterruptedException ie) { ie.printStackTrace(); } } } Finally, let's create a Java program that, using the Coherence API and JMX, will calculate the total size of each cache that the data grid is currently managing. The approach used in this example was retrieve every cache that the data grid are currently managing, but if you are interested on an specific cache, the same approach can be used, you should only filter witch cache will be looked for. Create a Java class named "CalculateTheSizeOfPeopleCache" as shown in the listing below. package com.oracle.coherence.demo; import java.text.DecimalFormat; import java.util.Map; import java.util.Set; import java.util.TreeMap; import javax.management.MBeanServer; import javax.management.MBeanServerFactory; import javax.management.ObjectName; import com.tangosol.net.CacheFactory; public class CalculateTheSizeOfPeopleCache { @SuppressWarnings({ "unchecked", "rawtypes" }) private void run() throws Exception { // Enable JMX support in this Coherence data grid session... System.setProperty("tangosol.coherence.management", "all"); // Create a sample cache just to access the data grid... CacheFactory.getCache(MBeanServerFactory.class.getName()); // Gets the JMX server from Coherence data grid... MBeanServer jmxServer = getJMXServer(); // Creates a internal data structure that would maintain // the statistics from each cache in the data grid... Map cacheList = new TreeMap(); Set jmxObjectList = jmxServer.queryNames(new ObjectName("Coherence:type=Cache,*"), null); for (Object jmxObject : jmxObjectList) { ObjectName jmxObjectName = (ObjectName) jmxObject; String cacheName = jmxObjectName.getKeyProperty("name"); if (cacheName.equals(MBeanServerFactory.class.getName())) { continue; } else { cacheList.put(cacheName, new Statistics(cacheName)); } } // Updates the internal data structure with statistic data // retrieved from caches inside the in-memory data grid... Set<String> cacheNames = cacheList.keySet(); for (String cacheName : cacheNames) { Set resultSet = jmxServer.queryNames( new ObjectName("Coherence:type=Cache,name=" + cacheName + ",*"), null); for (Object resultSetRef : resultSet) { ObjectName objectName = (ObjectName) resultSetRef; if (objectName.getKeyProperty("tier").equals("back")) { int unit = (Integer) jmxServer.getAttribute(objectName, "Units"); int size = (Integer) jmxServer.getAttribute(objectName, "Size"); Statistics statistics = (Statistics) cacheList.get(cacheName); statistics.incrementUnit(unit); statistics.incrementSize(size); cacheList.put(cacheName, statistics); } } } // Finally... print the objects from the internal data // structure that represents the statistics from caches... cacheNames = cacheList.keySet(); for (String cacheName : cacheNames) { Statistics estatisticas = (Statistics) cacheList.get(cacheName); System.out.println(estatisticas); } } public MBeanServer getJMXServer() { MBeanServer jmxServer = null; for (Object jmxServerRef : MBeanServerFactory.findMBeanServer(null)) { jmxServer = (MBeanServer) jmxServerRef; if (jmxServer.getDefaultDomain().equals(DEFAULT_DOMAIN) || DEFAULT_DOMAIN.length() == 0) { break; } jmxServer = null; } if (jmxServer == null) { jmxServer = MBeanServerFactory.createMBeanServer(DEFAULT_DOMAIN); } return jmxServer; } private class Statistics { private long unit; private long size; private String cacheName; public Statistics(String cacheName) { this.cacheName = cacheName; } public void incrementUnit(long unit) { this.unit += unit; } public void incrementSize(long size) { this.size += size; } public long getUnit() { return unit; } public long getSize() { return size; } public double getUnitInMB() { return unit / (1024.0 * 1024.0); } public double getAverageSize() { return size == 0 ? 0 : unit / size; } public String toString() { StringBuffer sb = new StringBuffer(); sb.append("\nCache Statistics of '").append(cacheName).append("':\n"); sb.append(" - Total Entries of Cache -----> " + getSize()).append("\n"); sb.append(" - Used Memory (Bytes) --------> " + getUnit()).append("\n"); sb.append(" - Used Memory (MB) -----------> " + FORMAT.format(getUnitInMB())).append("\n"); sb.append(" - Object Average Size --------> " + FORMAT.format(getAverageSize())).append("\n"); return sb.toString(); } } public static void main(String[] args) throws Exception { new CalculateTheSizeOfPeopleCache().run(); } public static final DecimalFormat FORMAT = new DecimalFormat("###.###"); public static final String DEFAULT_DOMAIN = ""; public static final String DOMAIN_NAME = "Coherence"; } I've commented the overall example so, I don't think that you should get into trouble to understand it. Basically we are dealing with JMX. The first thing to do is enable JMX support for the Coherence client (ie, an JVM that will only retrieve values from the data grid and will not integrate the cluster) application. This can be done very easily using the runtime "tangosol.coherence.management" system property. Consult the Coherence documentation for JMX to understand the possible values that could be applied. The program creates an in memory data structure that holds a custom class created called "Statistics". This class represents the information that we are interested to see, which in this case are the size in bytes and in MB of the caches. An instance of this class is created for each cache that are currently managed by the data grid. Using JMX specific methods, we retrieve the information that are relevant for calculate the total size of the caches. To test this example, you should execute first the CreatePeopleCacheAndPopulateWithData.java program and after the CreatePeopleCacheAndPopulateWithData.java program. The results in the console should be something like this: 2012-06-23 13:29:31.188/4.970 Oracle Coherence 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded operational configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/tangosol-coherence.xml" 2012-06-23 13:29:31.219/5.001 Oracle Coherence 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded operational overrides from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml" 2012-06-23 13:29:31.219/5.001 Oracle Coherence 3.6.0.4 <D5> (thread=Main Thread, member=n/a): Optional configuration override "/tangosol-coherence-override.xml" is not specified 2012-06-23 13:29:31.266/5.048 Oracle Coherence 3.6.0.4 <D5> (thread=Main Thread, member=n/a): Optional configuration override "/custom-mbeans.xml" is not specified Oracle Coherence Version 3.6.0.4 Build 19111 Grid Edition: Development mode Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 2012-06-23 13:29:33.156/6.938 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded Reporter configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/reports/report-group.xml" 2012-06-23 13:29:33.500/7.282 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded cache configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/coherence-cache-config.xml" 2012-06-23 13:29:35.391/9.173 Oracle Coherence GE 3.6.0.4 <D4> (thread=Main Thread, member=n/a): TCMP bound to /192.168.177.133:8090 using SystemSocketProvider 2012-06-23 13:29:37.062/10.844 Oracle Coherence GE 3.6.0.4 <Info> (thread=Cluster, member=n/a): This Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) joined cluster "cluster:0xC4DB" with senior Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) 2012-06-23 13:29:37.172/10.954 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service Cluster with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service Management with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service DistributedCache with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Started cluster Name=cluster:0xC4DB Group{Address=224.3.6.0, Port=36000, TTL=4} MasterMemberSet ( ThisMember=Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle) OldestMember=Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith) ActualMemberSet=MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith) Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle) ) RecycleMillis=1200000 RecycleSet=MemberSet(Size=0, BitSetCount=0 ) ) TcpRing{Connections=[1]} IpMonitor{AddressListSize=0} 2012-06-23 13:29:37.891/11.673 Oracle Coherence GE 3.6.0.4 <D5> (thread=Invocation:Management, member=2): Service Management joined the cluster with senior service member 1 2012-06-23 13:29:39.203/12.985 Oracle Coherence GE 3.6.0.4 <D5> (thread=DistributedCache, member=2): Service DistributedCache joined the cluster with senior service member 1 2012-06-23 13:29:39.297/13.079 Oracle Coherence GE 3.6.0.4 <D4> (thread=DistributedCache, member=2): Asking member 1 for 128 primary partitions Cache Statistics of 'People': - Total Entries of Cache -----> 3 - Used Memory (Bytes) --------> 883920 - Used Memory (MB) -----------> 0.843 - Object Average Size --------> 294640 I hope that this post could save you some time when calculate the total size of Coherence cache became a requirement for your high scalable system using data grids. See you!

    Read the article

  • How to sort hashmap?

    - by agazerboy
    Hi All ! I have hashmap and its keys are like "folder/1.txt,folder/2.txt,folder/3.txt" and value has these text files data. Now i am stucked. I want to sort this list. But it does not let me do it :( Here is my hashmap data type: HashMap<String, ArrayList<String>> following function work good but it is for arraylist not for hashmap. Collections.sort(values, Collections.reverseOrder()); I also tried MapTree but it also didn't work, or may be I couldn't make it work. I used following steps to sort the code with maptree HashMap testMap = new HashMap(); Map sortedMap = new TreeMap(testMap); any other way to do it?? I have one doubt as my keys are (folder/1.txt, folder/2.txt ) may be that's why?

    Read the article

  • Java: Last access of 2D HashMap

    - by JamieFlowers
    I have the following structure: HashMap< String, HashMap< String, String Now i want to know the last accessed element in the 2nd dimension. I know there is TreeMap which makes sense in the 1rst dimension but after that it doesn't make any sense. How can I keep track of a 2D HashMap ordering? With access i mean: value = hashmap.get("a").get("1") value = hashmap.get("b").get("2") value = hashmap.get("c").get("3") hashmap.removeLast(); hashmap.removeLast(); hashmap.removeLast();

    Read the article

  • Java: versioned data structures?

    - by Jason S
    I have a data structure that is pretty simple (basically a structure containing some arrays and single values), but I need to record the history of the data structure so that I can efficiently get the contents of the data structure at any point in time. Is there a relatively straightforward way to do this? The best way I can think of would be to encapsulate the whole data structure with something that handles all the mutating operations by storing data in functional data structures, and then for each mutation operation caching a copy of the data structure in a Map indexed by time-ordering (e.g. a TreeMap with real time as keys, or a HashMap with a counter of mutation operations combined with one or more indexes stored in TreeMaps mapping real time / tick count / etc. to mutation operations) any suggestions?

    Read the article

  • Give me a practical use-case of Multi-set

    - by Calm Storm
    I would like to know a few practical use-cases (if they are not related/tied to any programming language it will be better).I can associate Sets, Lists and Maps to practical use cases. For example if you wanted a glossary of a book where terms that you want are listed alphabetically and a location/page number is the value, you would use the collection TreeMap(OrderedMap which is a Map) Somehow, I can't associate MultiSets with any "practical" usecase. Does someone know of any uses? http://en.wikipedia.org/wiki/Multiset does not tell me enough :) PS: If you guys think this should be community-wiki'ed it is okay. The only reason I did not do it was "There is a clear objective way to answer this question".

    Read the article

  • How to sort Map in Java

    - by kalpesh
    hi i want to sort map according to its key value plz see code below public static void main(String[] args) { SortedMap map = new TreeMap(); // Add some elements: map.put("2", "Two"); map.put("1", "One"); map.put("5", "Five"); map.put("4", "Four"); map.put("3", "Three"); map.put("10", "Ten"); map.put("12", "Twelve"); map.put("7", "Seven"); map.put("9", "Nine"); Iterator iterator = map.keySet().iterator(); while (iterator.hasNext()) { Object key = iterator.next(); System.out.println("key : " + key + " value :" + map.get(key)); } } Result Should come below key : 1 value :One key : 2 value :Two key : 3 value :Three key : 4 value :Four key : 5 value :Five key : 7 value :Seven key : 9 value :Nine key : 10 value :Ten key : 12 value :Twelve

    Read the article

  • Unchecked call to compareTo

    - by Dave Jarvis
    Background Create a Map that can be sorted by value. Problem The code executes as expected, but does not compile cleanly: http://pastebin.com/bWhbHQmT The syntax for passing Comparable as a generic parameter along to the Map.Entry<K, V> (where V must be Comparable?) -- so that the (Comparable) typecast shown in the warning can be dropped -- eludes me. Warning Compiler's cantankerous complaint: SortableValueMap.java:24: warning: [unchecked] unchecked call to compareTo(T) as a member of the raw type java.lang.Comparable return ((Comparable)entry1.getValue()).compareTo( entry2.getValue() ); Question How can the code be changed to compile without any warnings (without suppressing them while compiling with -Xlint:unchecked)? Related TreeMap sort by value How to sort a Map on the values in Java? http://paaloliver.wordpress.com/2006/01/24/sorting-maps-in-java/ Thank you!

    Read the article

  • Multiple indexes for a Java Collection - most basic solution?

    - by chris_l
    Hi, I'm looking for the most basic solution to create multiple indexes on a Java Collection. Required functionality: When a Value is removed, all index entries associated with that value must be removed. Index lookup must be faster than linear search (at least as fast as a TreeMap). Side conditions: It should ideally work with JavaSE (6.0) alone - no extra libraries, if possible. If necessary, then only small (not something like Lucene), common and well tested libraries. No database! Of course, I could write a class that manages multiple Maps myself. But I'd like to know, if it can be done without - while still getting a simple usage similar to using a single indexed java.util.Map. Thanks, Chris

    Read the article

< Previous Page | 1 2 3  | Next Page >